1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/BasicBlock.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/Verifier.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include "llvm/Transforms/Utils/FunctionUtils.h" 26 #include "Support/Debug.h" 27 #include "Support/StringExtras.h" 28 #include <algorithm> 29 #include <set> 30 using namespace llvm; 31 32 namespace { 33 34 /// getFunctionArg - Return a pointer to F's ARGNOth argument. 35 /// 36 Argument *getFunctionArg(Function *F, unsigned argno) { 37 Function::aiterator I = F->abegin(); 38 std::advance(I, argno); 39 return I; 40 } 41 42 struct CodeExtractor { 43 typedef std::vector<Value*> Values; 44 typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy; 45 typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy; 46 PhiVal2ArgTy PhiVal2Arg; 47 std::set<BasicBlock*> BlocksToExtract; 48 public: 49 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 50 51 private: 52 void findInputsOutputs(Values &inputs, Values &outputs, 53 BasicBlock *newHeader, 54 BasicBlock *newRootNode); 55 56 void processPhiNodeInputs(PHINode *Phi, 57 Values &inputs, 58 BasicBlock *newHeader, 59 BasicBlock *newRootNode); 60 61 void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot); 62 63 Function *constructFunction(const Values &inputs, 64 const Values &outputs, 65 BasicBlock *newRootNode, BasicBlock *newHeader, 66 Function *oldFunction, Module *M); 67 68 void moveCodeToFunction(Function *newFunction); 69 70 void emitCallAndSwitchStatement(Function *newFunction, 71 BasicBlock *newHeader, 72 Values &inputs, 73 Values &outputs); 74 75 }; 76 } 77 78 void CodeExtractor::processPhiNodeInputs(PHINode *Phi, 79 Values &inputs, 80 BasicBlock *codeReplacer, 81 BasicBlock *newFuncRoot) 82 { 83 // Separate incoming values and BasicBlocks as internal/external. We ignore 84 // the case where both the value and BasicBlock are internal, because we don't 85 // need to do a thing. 86 std::vector<unsigned> EValEBB; 87 std::vector<unsigned> EValIBB; 88 std::vector<unsigned> IValEBB; 89 90 for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) { 91 Value *phiVal = Phi->getIncomingValue(i); 92 if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) { 93 if (BlocksToExtract.count(Inst->getParent())) { 94 if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) 95 IValEBB.push_back(i); 96 } else { 97 if (BlocksToExtract.count(Phi->getIncomingBlock(i))) 98 EValIBB.push_back(i); 99 else 100 EValEBB.push_back(i); 101 } 102 } else if (Constant *Const = dyn_cast<Constant>(phiVal)) { 103 // Constants are internal, but considered `external' if they are coming 104 // from an external block. 105 if (!BlocksToExtract.count(Phi->getIncomingBlock(i))) 106 EValEBB.push_back(i); 107 } else if (Argument *Arg = dyn_cast<Argument>(phiVal)) { 108 // arguments are external 109 if (BlocksToExtract.count(Phi->getIncomingBlock(i))) 110 EValIBB.push_back(i); 111 else 112 EValEBB.push_back(i); 113 } else { 114 phiVal->dump(); 115 assert(0 && "Unhandled input in a Phi node"); 116 } 117 } 118 119 // Both value and block are external. Need to group all of 120 // these, have an external phi, pass the result as an 121 // argument, and have THIS phi use that result. 122 if (EValEBB.size() > 0) { 123 if (EValEBB.size() == 1) { 124 // Now if it's coming from the newFuncRoot, it's that funky input 125 unsigned phiIdx = EValEBB[0]; 126 if (!dyn_cast<Constant>(Phi->getIncomingValue(phiIdx))) 127 { 128 PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size())); 129 // We can just pass this value in as argument 130 inputs.push_back(Phi->getIncomingValue(phiIdx)); 131 } 132 Phi->setIncomingBlock(phiIdx, newFuncRoot); 133 } else { 134 PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi"); 135 codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi); 136 for (std::vector<unsigned>::iterator i = EValEBB.begin(), 137 e = EValEBB.end(); i != e; ++i) 138 { 139 externalPhi->addIncoming(Phi->getIncomingValue(*i), 140 Phi->getIncomingBlock(*i)); 141 142 // We make these values invalid instead of deleting them because that 143 // would shift the indices of other values... The fixPhiNodes should 144 // clean these phi nodes up later. 145 Phi->setIncomingValue(*i, 0); 146 Phi->setIncomingBlock(*i, 0); 147 } 148 PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(), 149 inputs.size())); 150 // We can just pass this value in as argument 151 inputs.push_back(externalPhi); 152 } 153 } 154 155 // When the value is external, but block internal... 156 // just pass it in as argument, no change to phi node 157 for (std::vector<unsigned>::iterator i = EValIBB.begin(), 158 e = EValIBB.end(); i != e; ++i) 159 { 160 // rewrite the phi input node to be an argument 161 PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size())); 162 inputs.push_back(Phi->getIncomingValue(*i)); 163 } 164 165 // Value internal, block external 166 // this can happen if we are extracting a part of a loop 167 for (std::vector<unsigned>::iterator i = IValEBB.begin(), 168 e = IValEBB.end(); i != e; ++i) 169 { 170 assert(0 && "Cannot (YET) handle internal values via external blocks"); 171 } 172 } 173 174 175 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, 176 BasicBlock *newHeader, 177 BasicBlock *newRootNode) { 178 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 179 ce = BlocksToExtract.end(); ci != ce; ++ci) { 180 BasicBlock *BB = *ci; 181 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 182 // If a used value is defined outside the region, it's an input. If an 183 // instruction is used outside the region, it's an output. 184 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 185 processPhiNodeInputs(Phi, inputs, newHeader, newRootNode); 186 } else { 187 // All other instructions go through the generic input finder 188 // Loop over the operands of each instruction (inputs) 189 for (User::op_iterator op = I->op_begin(), opE = I->op_end(); 190 op != opE; ++op) 191 if (Instruction *opI = dyn_cast<Instruction>(*op)) { 192 // Check if definition of this operand is within the loop 193 if (!BlocksToExtract.count(opI->getParent())) { 194 // add this operand to the inputs 195 inputs.push_back(opI); 196 } 197 } else if (isa<Argument>(*op)) { 198 inputs.push_back(*op); 199 } 200 } 201 202 // Consider uses of this instruction (outputs) 203 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 204 UI != E; ++UI) 205 if (!BlocksToExtract.count(cast<Instruction>(*UI)->getParent())) 206 outputs.push_back(*UI); 207 } // for: insts 208 } // for: basic blocks 209 } 210 211 void CodeExtractor::rewritePhiNodes(Function *F, 212 BasicBlock *newFuncRoot) { 213 // Write any changes that were saved before: use function arguments as inputs 214 for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); 215 i != e; ++i) 216 { 217 PHINode *phi = (*i).first; 218 PhiValChangesTy &values = (*i).second; 219 for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx) 220 { 221 unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second; 222 if (phiValueIdx < phi->getNumIncomingValues()) 223 phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum)); 224 else 225 phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot); 226 } 227 } 228 229 // Delete any invalid Phi node inputs that were marked as NULL previously 230 for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); 231 i != e; ++i) 232 { 233 PHINode *phi = (*i).first; 234 for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx) 235 { 236 if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) { 237 phi->removeIncomingValue(idx); 238 --idx; 239 --end; 240 } 241 } 242 } 243 244 // We are done with the saved values 245 PhiVal2Arg.clear(); 246 } 247 248 249 /// constructFunction - make a function based on inputs and outputs, as follows: 250 /// f(in0, ..., inN, out0, ..., outN) 251 /// 252 Function *CodeExtractor::constructFunction(const Values &inputs, 253 const Values &outputs, 254 BasicBlock *newRootNode, 255 BasicBlock *newHeader, 256 Function *oldFunction, Module *M) { 257 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 258 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 259 BasicBlock *header = *BlocksToExtract.begin(); 260 261 // This function returns unsigned, outputs will go back by reference. 262 Type *retTy = Type::UShortTy; 263 std::vector<const Type*> paramTy; 264 265 // Add the types of the input values to the function's argument list 266 for (Values::const_iterator i = inputs.begin(), 267 e = inputs.end(); i != e; ++i) { 268 const Value *value = *i; 269 DEBUG(std::cerr << "value used in func: " << value << "\n"); 270 paramTy.push_back(value->getType()); 271 } 272 273 // Add the types of the output values to the function's argument list, but 274 // make them pointer types for scalars 275 for (Values::const_iterator i = outputs.begin(), 276 e = outputs.end(); i != e; ++i) { 277 const Value *value = *i; 278 DEBUG(std::cerr << "instr used in func: " << value << "\n"); 279 const Type *valueType = value->getType(); 280 // Convert scalar types into a pointer of that type 281 if (valueType->isPrimitiveType()) { 282 valueType = PointerType::get(valueType); 283 } 284 paramTy.push_back(valueType); 285 } 286 287 DEBUG(std::cerr << "Function type: " << retTy << " f("); 288 for (std::vector<const Type*>::iterator i = paramTy.begin(), 289 e = paramTy.end(); i != e; ++i) 290 DEBUG(std::cerr << (*i) << ", "); 291 DEBUG(std::cerr << ")\n"); 292 293 const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); 294 295 // Create the new function 296 Function *newFunction = new Function(funcType, 297 GlobalValue::InternalLinkage, 298 oldFunction->getName() + "_code", M); 299 newFunction->getBasicBlockList().push_back(newRootNode); 300 301 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 302 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 303 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 304 use != useE; ++use) 305 if (Instruction* inst = dyn_cast<Instruction>(*use)) 306 if (BlocksToExtract.count(inst->getParent())) 307 inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i)); 308 } 309 310 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 311 // within the new function. This must be done before we lose track of which 312 // blocks were originally in the code region. 313 std::vector<User*> Users(header->use_begin(), header->use_end()); 314 for (std::vector<User*>::iterator i = Users.begin(), e = Users.end(); 315 i != e; ++i) { 316 if (BranchInst *inst = dyn_cast<BranchInst>(*i)) { 317 BasicBlock *BB = inst->getParent(); 318 if (!BlocksToExtract.count(BB) && BB->getParent() == oldFunction) { 319 // The BasicBlock which contains the branch is not in the region 320 // modify the branch target to a new block 321 inst->replaceUsesOfWith(header, newHeader); 322 } 323 } 324 } 325 326 return newFunction; 327 } 328 329 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 330 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 331 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 332 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 333 334 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 335 e = BlocksToExtract.end(); i != e; ++i) { 336 // Delete the basic block from the old function, and the list of blocks 337 oldBlocks.remove(*i); 338 339 // Insert this basic block into the new function 340 newBlocks.push_back(*i); 341 } 342 } 343 344 void 345 CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 346 BasicBlock *codeReplacer, 347 Values &inputs, 348 Values &outputs) 349 { 350 // Emit a call to the new function, passing allocated memory for outputs and 351 // just plain inputs for non-scalars 352 std::vector<Value*> params(inputs); 353 354 for (Values::const_iterator i = outputs.begin(), e = outputs.end(); i != e; 355 ++i) { 356 Value *Output = *i; 357 // Create allocas for scalar outputs 358 if (Output->getType()->isPrimitiveType()) { 359 AllocaInst *alloca = 360 new AllocaInst((*i)->getType(), 0, Output->getName()+".loc", 361 codeReplacer->getParent()->begin()->begin()); 362 params.push_back(alloca); 363 364 LoadInst *load = new LoadInst(alloca, Output->getName()+".reload"); 365 codeReplacer->getInstList().push_back(load); 366 std::vector<User*> Users((*i)->use_begin(), (*i)->use_end()); 367 for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end(); 368 use != useE; ++use) { 369 if (Instruction* inst = dyn_cast<Instruction>(*use)) { 370 if (!BlocksToExtract.count(inst->getParent())) 371 inst->replaceUsesOfWith(*i, load); 372 } 373 } 374 } else { 375 params.push_back(*i); 376 } 377 } 378 379 CallInst *call = new CallInst(newFunction, params, "targetBlock"); 380 codeReplacer->getInstList().push_front(call); 381 382 // Now we can emit a switch statement using the call as a value. 383 SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); 384 385 // Since there may be multiple exits from the original region, make the new 386 // function return an unsigned, switch on that number. This loop iterates 387 // over all of the blocks in the extracted region, updating any terminator 388 // instructions in the to-be-extracted region that branch to blocks that are 389 // not in the region to be extracted. 390 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 391 392 unsigned switchVal = 0; 393 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 394 e = BlocksToExtract.end(); i != e; ++i) { 395 TerminatorInst *TI = (*i)->getTerminator(); 396 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 397 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 398 BasicBlock *OldTarget = TI->getSuccessor(i); 399 // add a new basic block which returns the appropriate value 400 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 401 if (!NewTarget) { 402 // If we don't already have an exit stub for this non-extracted 403 // destination, create one now! 404 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 405 newFunction); 406 407 ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); 408 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 409 410 // Update the switch instruction. 411 TheSwitch->addCase(brVal, OldTarget); 412 413 // Restore values just before we exit 414 // FIXME: Use a GetElementPtr to bunch the outputs in a struct 415 for (unsigned out = 0, e = outputs.size(); out != e; ++out) 416 new StoreInst(outputs[out], getFunctionArg(newFunction, out),NTRet); 417 } 418 419 // rewrite the original branch instruction with this new target 420 TI->setSuccessor(i, NewTarget); 421 } 422 } 423 424 // Now that we've done the deed, make the default destination of the switch 425 // instruction be one of the exit blocks of the region. 426 if (TheSwitch->getNumSuccessors() > 1) { 427 // FIXME: this is broken w.r.t. PHI nodes, but the old code was more broken. 428 // This edge is not traversable. 429 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(1)); 430 } 431 } 432 433 434 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 435 /// new function. Returns pointer to the new function. 436 /// 437 /// algorithm: 438 /// 439 /// find inputs and outputs for the region 440 /// 441 /// for inputs: add to function as args, map input instr* to arg# 442 /// for outputs: add allocas for scalars, 443 /// add to func as args, map output instr* to arg# 444 /// 445 /// rewrite func to use argument #s instead of instr* 446 /// 447 /// for each scalar output in the function: at every exit, store intermediate 448 /// computed result back into memory. 449 /// 450 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 451 { 452 // 1) Find inputs, outputs 453 // 2) Construct new function 454 // * Add allocas for defs, pass as args by reference 455 // * Pass in uses as args 456 // 3) Move code region, add call instr to func 457 // 458 BlocksToExtract.insert(code.begin(), code.end()); 459 460 Values inputs, outputs; 461 462 // Assumption: this is a single-entry code region, and the header is the first 463 // block in the region. 464 BasicBlock *header = code[0]; 465 for (unsigned i = 1, e = code.size(); i != e; ++i) 466 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 467 PI != E; ++PI) 468 assert(BlocksToExtract.count(*PI) && 469 "No blocks in this region may have entries from outside the region" 470 " except for the first block!"); 471 472 Function *oldFunction = header->getParent(); 473 474 // This takes place of the original loop 475 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 476 477 // The new function needs a root node because other nodes can branch to the 478 // head of the loop, and the root cannot have predecessors 479 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 480 newFuncRoot->getInstList().push_back(new BranchInst(header)); 481 482 // Find inputs to, outputs from the code region 483 // 484 // If one of the inputs is coming from a different basic block and it's in a 485 // phi node, we need to rewrite the phi node: 486 // 487 // * All the inputs which involve basic blocks OUTSIDE of this region go into 488 // a NEW phi node that takes care of finding which value really came in. 489 // The result of this phi is passed to the function as an argument. 490 // 491 // * All the other phi values stay. 492 // 493 // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for 494 // blocks moving to a new function. 495 // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass 496 // the values as parameters to the function 497 findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); 498 499 // Step 2: Construct new function based on inputs/outputs, 500 // Add allocas for all defs 501 Function *newFunction = constructFunction(inputs, outputs, newFuncRoot, 502 codeReplacer, oldFunction, 503 oldFunction->getParent()); 504 505 rewritePhiNodes(newFunction, newFuncRoot); 506 507 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 508 509 moveCodeToFunction(newFunction); 510 511 DEBUG(if (verifyFunction(*newFunction)) abort()); 512 return newFunction; 513 } 514 515 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 516 /// function 517 /// 518 Function* llvm::ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 519 return CodeExtractor().ExtractCodeRegion(code); 520 } 521 522 /// ExtractBasicBlock - slurp a natural loop into a brand new function 523 /// 524 Function* llvm::ExtractLoop(Loop *L) { 525 return CodeExtractor().ExtractCodeRegion(L->getBlocks()); 526 } 527 528 /// ExtractBasicBlock - slurp a basic block into a brand new function 529 /// 530 Function* llvm::ExtractBasicBlock(BasicBlock *BB) { 531 std::vector<BasicBlock*> Blocks; 532 Blocks.push_back(BB); 533 return CodeExtractor().ExtractCodeRegion(Blocks); 534 } 535