1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (isa<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (BasicBlock *Pred : 430 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 431 if (Blocks.count(Pred)) 432 continue; 433 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 434 } 435 // Now add the old exit block to the outline region. 436 Blocks.insert(CommonExitBlock); 437 OldTargets.push_back(NewExitBlock); 438 return CommonExitBlock; 439 } 440 441 // Find the pair of life time markers for address 'Addr' that are either 442 // defined inside the outline region or can legally be shrinkwrapped into the 443 // outline region. If there are not other untracked uses of the address, return 444 // the pair of markers if found; otherwise return a pair of nullptr. 445 CodeExtractor::LifetimeMarkerInfo 446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 447 Instruction *Addr, 448 BasicBlock *ExitBlock) const { 449 LifetimeMarkerInfo Info; 450 451 for (User *U : Addr->users()) { 452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 453 if (IntrInst) { 454 // We don't model addresses with multiple start/end markers, but the 455 // markers do not need to be in the region. 456 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 457 if (Info.LifeStart) 458 return {}; 459 Info.LifeStart = IntrInst; 460 continue; 461 } 462 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 463 if (Info.LifeEnd) 464 return {}; 465 Info.LifeEnd = IntrInst; 466 continue; 467 } 468 // At this point, permit debug uses outside of the region. 469 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 470 if (isa<DbgInfoIntrinsic>(IntrInst)) 471 continue; 472 } 473 // Find untracked uses of the address, bail. 474 if (!definedInRegion(Blocks, U)) 475 return {}; 476 } 477 478 if (!Info.LifeStart || !Info.LifeEnd) 479 return {}; 480 481 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 482 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 483 // Do legality check. 484 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 485 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 486 return {}; 487 488 // Check to see if we have a place to do hoisting, if not, bail. 489 if (Info.HoistLifeEnd && !ExitBlock) 490 return {}; 491 492 return Info; 493 } 494 495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 496 ValueSet &SinkCands, ValueSet &HoistCands, 497 BasicBlock *&ExitBlock) const { 498 Function *Func = (*Blocks.begin())->getParent(); 499 ExitBlock = getCommonExitBlock(Blocks); 500 501 auto moveOrIgnoreLifetimeMarkers = 502 [&](const LifetimeMarkerInfo &LMI) -> bool { 503 if (!LMI.LifeStart) 504 return false; 505 if (LMI.SinkLifeStart) { 506 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 507 << "\n"); 508 SinkCands.insert(LMI.LifeStart); 509 } 510 if (LMI.HoistLifeEnd) { 511 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 512 HoistCands.insert(LMI.LifeEnd); 513 } 514 return true; 515 }; 516 517 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 518 // this is much faster than walking all the instructions. 519 for (AllocaInst *AI : CEAC.getAllocas()) { 520 BasicBlock *BB = AI->getParent(); 521 if (Blocks.count(BB)) 522 continue; 523 524 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 525 // check whether it is actually still in the original function. 526 Function *AIFunc = BB->getParent(); 527 if (AIFunc != Func) 528 continue; 529 530 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 531 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 532 if (Moved) { 533 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 534 SinkCands.insert(AI); 535 continue; 536 } 537 538 // Find bitcasts in the outlined region that have lifetime marker users 539 // outside that region. Replace the lifetime marker use with an 540 // outside region bitcast to avoid unnecessary alloca/reload instructions 541 // and extra lifetime markers. 542 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 543 for (User *U : AI->users()) { 544 if (!definedInRegion(Blocks, U)) 545 continue; 546 547 if (U->stripInBoundsConstantOffsets() != AI) 548 continue; 549 550 Instruction *Bitcast = cast<Instruction>(U); 551 for (User *BU : Bitcast->users()) { 552 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 553 if (!IntrInst) 554 continue; 555 556 if (!IntrInst->isLifetimeStartOrEnd()) 557 continue; 558 559 if (definedInRegion(Blocks, IntrInst)) 560 continue; 561 562 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 563 << *Bitcast << " in out-of-region lifetime marker " 564 << *IntrInst << "\n"); 565 LifetimeBitcastUsers.push_back(IntrInst); 566 } 567 } 568 569 for (Instruction *I : LifetimeBitcastUsers) { 570 Module *M = AIFunc->getParent(); 571 LLVMContext &Ctx = M->getContext(); 572 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 573 CastInst *CastI = 574 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 575 I->replaceUsesOfWith(I->getOperand(1), CastI); 576 } 577 578 // Follow any bitcasts. 579 SmallVector<Instruction *, 2> Bitcasts; 580 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 581 for (User *U : AI->users()) { 582 if (U->stripInBoundsConstantOffsets() == AI) { 583 Instruction *Bitcast = cast<Instruction>(U); 584 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 585 if (LMI.LifeStart) { 586 Bitcasts.push_back(Bitcast); 587 BitcastLifetimeInfo.push_back(LMI); 588 continue; 589 } 590 } 591 592 // Found unknown use of AI. 593 if (!definedInRegion(Blocks, U)) { 594 Bitcasts.clear(); 595 break; 596 } 597 } 598 599 // Either no bitcasts reference the alloca or there are unknown uses. 600 if (Bitcasts.empty()) 601 continue; 602 603 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 604 SinkCands.insert(AI); 605 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 606 Instruction *BitcastAddr = Bitcasts[I]; 607 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 608 assert(LMI.LifeStart && 609 "Unsafe to sink bitcast without lifetime markers"); 610 moveOrIgnoreLifetimeMarkers(LMI); 611 if (!definedInRegion(Blocks, BitcastAddr)) { 612 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 613 << "\n"); 614 SinkCands.insert(BitcastAddr); 615 } 616 } 617 } 618 } 619 620 bool CodeExtractor::isEligible() const { 621 if (Blocks.empty()) 622 return false; 623 BasicBlock *Header = *Blocks.begin(); 624 Function *F = Header->getParent(); 625 626 // For functions with varargs, check that varargs handling is only done in the 627 // outlined function, i.e vastart and vaend are only used in outlined blocks. 628 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 629 auto containsVarArgIntrinsic = [](const Instruction &I) { 630 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 631 if (const Function *Callee = CI->getCalledFunction()) 632 return Callee->getIntrinsicID() == Intrinsic::vastart || 633 Callee->getIntrinsicID() == Intrinsic::vaend; 634 return false; 635 }; 636 637 for (auto &BB : *F) { 638 if (Blocks.count(&BB)) 639 continue; 640 if (llvm::any_of(BB, containsVarArgIntrinsic)) 641 return false; 642 } 643 } 644 return true; 645 } 646 647 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 648 const ValueSet &SinkCands) const { 649 for (BasicBlock *BB : Blocks) { 650 // If a used value is defined outside the region, it's an input. If an 651 // instruction is used outside the region, it's an output. 652 for (Instruction &II : *BB) { 653 for (auto &OI : II.operands()) { 654 Value *V = OI; 655 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 656 Inputs.insert(V); 657 } 658 659 for (User *U : II.users()) 660 if (!definedInRegion(Blocks, U)) { 661 Outputs.insert(&II); 662 break; 663 } 664 } 665 } 666 } 667 668 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 669 /// of the region, we need to split the entry block of the region so that the 670 /// PHI node is easier to deal with. 671 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 672 unsigned NumPredsFromRegion = 0; 673 unsigned NumPredsOutsideRegion = 0; 674 675 if (Header != &Header->getParent()->getEntryBlock()) { 676 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 677 if (!PN) return; // No PHI nodes. 678 679 // If the header node contains any PHI nodes, check to see if there is more 680 // than one entry from outside the region. If so, we need to sever the 681 // header block into two. 682 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 683 if (Blocks.count(PN->getIncomingBlock(i))) 684 ++NumPredsFromRegion; 685 else 686 ++NumPredsOutsideRegion; 687 688 // If there is one (or fewer) predecessor from outside the region, we don't 689 // need to do anything special. 690 if (NumPredsOutsideRegion <= 1) return; 691 } 692 693 // Otherwise, we need to split the header block into two pieces: one 694 // containing PHI nodes merging values from outside of the region, and a 695 // second that contains all of the code for the block and merges back any 696 // incoming values from inside of the region. 697 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 698 699 // We only want to code extract the second block now, and it becomes the new 700 // header of the region. 701 BasicBlock *OldPred = Header; 702 Blocks.remove(OldPred); 703 Blocks.insert(NewBB); 704 Header = NewBB; 705 706 // Okay, now we need to adjust the PHI nodes and any branches from within the 707 // region to go to the new header block instead of the old header block. 708 if (NumPredsFromRegion) { 709 PHINode *PN = cast<PHINode>(OldPred->begin()); 710 // Loop over all of the predecessors of OldPred that are in the region, 711 // changing them to branch to NewBB instead. 712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 713 if (Blocks.count(PN->getIncomingBlock(i))) { 714 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 715 TI->replaceUsesOfWith(OldPred, NewBB); 716 } 717 718 // Okay, everything within the region is now branching to the right block, we 719 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 720 BasicBlock::iterator AfterPHIs; 721 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 722 PHINode *PN = cast<PHINode>(AfterPHIs); 723 // Create a new PHI node in the new region, which has an incoming value 724 // from OldPred of PN. 725 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 726 PN->getName() + ".ce", &NewBB->front()); 727 PN->replaceAllUsesWith(NewPN); 728 NewPN->addIncoming(PN, OldPred); 729 730 // Loop over all of the incoming value in PN, moving them to NewPN if they 731 // are from the extracted region. 732 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 733 if (Blocks.count(PN->getIncomingBlock(i))) { 734 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 735 PN->removeIncomingValue(i); 736 --i; 737 } 738 } 739 } 740 } 741 } 742 743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 744 /// outlined region, we split these PHIs on two: one with inputs from region 745 /// and other with remaining incoming blocks; then first PHIs are placed in 746 /// outlined region. 747 void CodeExtractor::severSplitPHINodesOfExits( 748 const SmallPtrSetImpl<BasicBlock *> &Exits) { 749 for (BasicBlock *ExitBB : Exits) { 750 BasicBlock *NewBB = nullptr; 751 752 for (PHINode &PN : ExitBB->phis()) { 753 // Find all incoming values from the outlining region. 754 SmallVector<unsigned, 2> IncomingVals; 755 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 756 if (Blocks.count(PN.getIncomingBlock(i))) 757 IncomingVals.push_back(i); 758 759 // Do not process PHI if there is one (or fewer) predecessor from region. 760 // If PHI has exactly one predecessor from region, only this one incoming 761 // will be replaced on codeRepl block, so it should be safe to skip PHI. 762 if (IncomingVals.size() <= 1) 763 continue; 764 765 // Create block for new PHIs and add it to the list of outlined if it 766 // wasn't done before. 767 if (!NewBB) { 768 NewBB = BasicBlock::Create(ExitBB->getContext(), 769 ExitBB->getName() + ".split", 770 ExitBB->getParent(), ExitBB); 771 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 772 for (BasicBlock *PredBB : Preds) 773 if (Blocks.count(PredBB)) 774 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 775 BranchInst::Create(ExitBB, NewBB); 776 Blocks.insert(NewBB); 777 } 778 779 // Split this PHI. 780 PHINode *NewPN = 781 PHINode::Create(PN.getType(), IncomingVals.size(), 782 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 783 for (unsigned i : IncomingVals) 784 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 785 for (unsigned i : reverse(IncomingVals)) 786 PN.removeIncomingValue(i, false); 787 PN.addIncoming(NewPN, NewBB); 788 } 789 } 790 } 791 792 void CodeExtractor::splitReturnBlocks() { 793 for (BasicBlock *Block : Blocks) 794 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 795 BasicBlock *New = 796 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 797 if (DT) { 798 // Old dominates New. New node dominates all other nodes dominated 799 // by Old. 800 DomTreeNode *OldNode = DT->getNode(Block); 801 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 802 OldNode->end()); 803 804 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 805 806 for (DomTreeNode *I : Children) 807 DT->changeImmediateDominator(I, NewNode); 808 } 809 } 810 } 811 812 /// constructFunction - make a function based on inputs and outputs, as follows: 813 /// f(in0, ..., inN, out0, ..., outN) 814 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 815 const ValueSet &outputs, 816 BasicBlock *header, 817 BasicBlock *newRootNode, 818 BasicBlock *newHeader, 819 Function *oldFunction, 820 Module *M) { 821 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 822 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 823 824 // This function returns unsigned, outputs will go back by reference. 825 switch (NumExitBlocks) { 826 case 0: 827 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 828 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 829 default: RetTy = Type::getInt16Ty(header->getContext()); break; 830 } 831 832 std::vector<Type *> paramTy; 833 834 // Add the types of the input values to the function's argument list 835 for (Value *value : inputs) { 836 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 837 paramTy.push_back(value->getType()); 838 } 839 840 // Add the types of the output values to the function's argument list. 841 for (Value *output : outputs) { 842 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 843 if (AggregateArgs) 844 paramTy.push_back(output->getType()); 845 else 846 paramTy.push_back(PointerType::getUnqual(output->getType())); 847 } 848 849 LLVM_DEBUG({ 850 dbgs() << "Function type: " << *RetTy << " f("; 851 for (Type *i : paramTy) 852 dbgs() << *i << ", "; 853 dbgs() << ")\n"; 854 }); 855 856 StructType *StructTy = nullptr; 857 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 858 StructTy = StructType::get(M->getContext(), paramTy); 859 paramTy.clear(); 860 paramTy.push_back(PointerType::getUnqual(StructTy)); 861 } 862 FunctionType *funcType = 863 FunctionType::get(RetTy, paramTy, 864 AllowVarArgs && oldFunction->isVarArg()); 865 866 std::string SuffixToUse = 867 Suffix.empty() 868 ? (header->getName().empty() ? "extracted" : header->getName().str()) 869 : Suffix; 870 // Create the new function 871 Function *newFunction = Function::Create( 872 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 873 oldFunction->getName() + "." + SuffixToUse, M); 874 875 // Inherit all of the target dependent attributes and white-listed 876 // target independent attributes. 877 // (e.g. If the extracted region contains a call to an x86.sse 878 // instruction we need to make sure that the extracted region has the 879 // "target-features" attribute allowing it to be lowered. 880 // FIXME: This should be changed to check to see if a specific 881 // attribute can not be inherited. 882 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 883 if (Attr.isStringAttribute()) { 884 if (Attr.getKindAsString() == "thunk") 885 continue; 886 } else 887 switch (Attr.getKindAsEnum()) { 888 // Those attributes cannot be propagated safely. Explicitly list them 889 // here so we get a warning if new attributes are added. 890 case Attribute::AllocSize: 891 case Attribute::ArgMemOnly: 892 case Attribute::Builtin: 893 case Attribute::Convergent: 894 case Attribute::InaccessibleMemOnly: 895 case Attribute::InaccessibleMemOrArgMemOnly: 896 case Attribute::JumpTable: 897 case Attribute::Naked: 898 case Attribute::NoBuiltin: 899 case Attribute::NoMerge: 900 case Attribute::NoReturn: 901 case Attribute::NoSync: 902 case Attribute::ReadNone: 903 case Attribute::ReadOnly: 904 case Attribute::ReturnsTwice: 905 case Attribute::Speculatable: 906 case Attribute::StackAlignment: 907 case Attribute::WillReturn: 908 case Attribute::WriteOnly: 909 continue; 910 // Those attributes should be safe to propagate to the extracted function. 911 case Attribute::AlwaysInline: 912 case Attribute::Cold: 913 case Attribute::DisableSanitizerInstrumentation: 914 case Attribute::Hot: 915 case Attribute::NoRecurse: 916 case Attribute::InlineHint: 917 case Attribute::MinSize: 918 case Attribute::NoCallback: 919 case Attribute::NoDuplicate: 920 case Attribute::NoFree: 921 case Attribute::NoImplicitFloat: 922 case Attribute::NoInline: 923 case Attribute::NonLazyBind: 924 case Attribute::NoRedZone: 925 case Attribute::NoUnwind: 926 case Attribute::NoSanitizeCoverage: 927 case Attribute::NullPointerIsValid: 928 case Attribute::OptForFuzzing: 929 case Attribute::OptimizeNone: 930 case Attribute::OptimizeForSize: 931 case Attribute::SafeStack: 932 case Attribute::ShadowCallStack: 933 case Attribute::SanitizeAddress: 934 case Attribute::SanitizeMemory: 935 case Attribute::SanitizeThread: 936 case Attribute::SanitizeHWAddress: 937 case Attribute::SanitizeMemTag: 938 case Attribute::SpeculativeLoadHardening: 939 case Attribute::StackProtect: 940 case Attribute::StackProtectReq: 941 case Attribute::StackProtectStrong: 942 case Attribute::StrictFP: 943 case Attribute::UWTable: 944 case Attribute::VScaleRange: 945 case Attribute::NoCfCheck: 946 case Attribute::MustProgress: 947 case Attribute::NoProfile: 948 break; 949 // These attributes cannot be applied to functions. 950 case Attribute::Alignment: 951 case Attribute::ByVal: 952 case Attribute::Dereferenceable: 953 case Attribute::DereferenceableOrNull: 954 case Attribute::ElementType: 955 case Attribute::InAlloca: 956 case Attribute::InReg: 957 case Attribute::Nest: 958 case Attribute::NoAlias: 959 case Attribute::NoCapture: 960 case Attribute::NoUndef: 961 case Attribute::NonNull: 962 case Attribute::Preallocated: 963 case Attribute::Returned: 964 case Attribute::SExt: 965 case Attribute::StructRet: 966 case Attribute::SwiftError: 967 case Attribute::SwiftSelf: 968 case Attribute::SwiftAsync: 969 case Attribute::ZExt: 970 case Attribute::ImmArg: 971 case Attribute::ByRef: 972 // These are not really attributes. 973 case Attribute::None: 974 case Attribute::EndAttrKinds: 975 case Attribute::EmptyKey: 976 case Attribute::TombstoneKey: 977 llvm_unreachable("Not a function attribute"); 978 } 979 980 newFunction->addFnAttr(Attr); 981 } 982 newFunction->getBasicBlockList().push_back(newRootNode); 983 984 // Create an iterator to name all of the arguments we inserted. 985 Function::arg_iterator AI = newFunction->arg_begin(); 986 987 // Rewrite all users of the inputs in the extracted region to use the 988 // arguments (or appropriate addressing into struct) instead. 989 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 990 Value *RewriteVal; 991 if (AggregateArgs) { 992 Value *Idx[2]; 993 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 994 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 995 Instruction *TI = newFunction->begin()->getTerminator(); 996 GetElementPtrInst *GEP = GetElementPtrInst::Create( 997 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 998 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 999 "loadgep_" + inputs[i]->getName(), TI); 1000 } else 1001 RewriteVal = &*AI++; 1002 1003 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1004 for (User *use : Users) 1005 if (Instruction *inst = dyn_cast<Instruction>(use)) 1006 if (Blocks.count(inst->getParent())) 1007 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1008 } 1009 1010 // Set names for input and output arguments. 1011 if (!AggregateArgs) { 1012 AI = newFunction->arg_begin(); 1013 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 1014 AI->setName(inputs[i]->getName()); 1015 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 1016 AI->setName(outputs[i]->getName()+".out"); 1017 } 1018 1019 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1020 // within the new function. This must be done before we lose track of which 1021 // blocks were originally in the code region. 1022 std::vector<User *> Users(header->user_begin(), header->user_end()); 1023 for (auto &U : Users) 1024 // The BasicBlock which contains the branch is not in the region 1025 // modify the branch target to a new block 1026 if (Instruction *I = dyn_cast<Instruction>(U)) 1027 if (I->isTerminator() && I->getFunction() == oldFunction && 1028 !Blocks.count(I->getParent())) 1029 I->replaceUsesOfWith(header, newHeader); 1030 1031 return newFunction; 1032 } 1033 1034 /// Erase lifetime.start markers which reference inputs to the extraction 1035 /// region, and insert the referenced memory into \p LifetimesStart. 1036 /// 1037 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1038 /// of allocas which will be moved from the caller function into the extracted 1039 /// function (\p SunkAllocas). 1040 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1041 const SetVector<Value *> &SunkAllocas, 1042 SetVector<Value *> &LifetimesStart) { 1043 for (BasicBlock *BB : Blocks) { 1044 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1045 auto *II = dyn_cast<IntrinsicInst>(&I); 1046 if (!II || !II->isLifetimeStartOrEnd()) 1047 continue; 1048 1049 // Get the memory operand of the lifetime marker. If the underlying 1050 // object is a sunk alloca, or is otherwise defined in the extraction 1051 // region, the lifetime marker must not be erased. 1052 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1053 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1054 continue; 1055 1056 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1057 LifetimesStart.insert(Mem); 1058 II->eraseFromParent(); 1059 } 1060 } 1061 } 1062 1063 /// Insert lifetime start/end markers surrounding the call to the new function 1064 /// for objects defined in the caller. 1065 static void insertLifetimeMarkersSurroundingCall( 1066 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1067 CallInst *TheCall) { 1068 LLVMContext &Ctx = M->getContext(); 1069 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1070 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1071 Instruction *Term = TheCall->getParent()->getTerminator(); 1072 1073 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1074 // needed to satisfy this requirement so they may be reused. 1075 DenseMap<Value *, Value *> Bitcasts; 1076 1077 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1078 // markers before the call if \p InsertBefore, and after the call otherwise. 1079 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1080 bool InsertBefore) { 1081 for (Value *Mem : Objects) { 1082 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1083 TheCall->getFunction()) && 1084 "Input memory not defined in original function"); 1085 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1086 if (!MemAsI8Ptr) { 1087 if (Mem->getType() == Int8PtrTy) 1088 MemAsI8Ptr = Mem; 1089 else 1090 MemAsI8Ptr = 1091 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1092 } 1093 1094 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1095 if (InsertBefore) 1096 Marker->insertBefore(TheCall); 1097 else 1098 Marker->insertBefore(Term); 1099 } 1100 }; 1101 1102 if (!LifetimesStart.empty()) { 1103 auto StartFn = llvm::Intrinsic::getDeclaration( 1104 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1105 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1106 } 1107 1108 if (!LifetimesEnd.empty()) { 1109 auto EndFn = llvm::Intrinsic::getDeclaration( 1110 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1111 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1112 } 1113 } 1114 1115 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1116 /// the call instruction, splitting any PHI nodes in the header block as 1117 /// necessary. 1118 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1119 BasicBlock *codeReplacer, 1120 ValueSet &inputs, 1121 ValueSet &outputs) { 1122 // Emit a call to the new function, passing in: *pointer to struct (if 1123 // aggregating parameters), or plan inputs and allocated memory for outputs 1124 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1125 1126 Module *M = newFunction->getParent(); 1127 LLVMContext &Context = M->getContext(); 1128 const DataLayout &DL = M->getDataLayout(); 1129 CallInst *call = nullptr; 1130 1131 // Add inputs as params, or to be filled into the struct 1132 unsigned ArgNo = 0; 1133 SmallVector<unsigned, 1> SwiftErrorArgs; 1134 for (Value *input : inputs) { 1135 if (AggregateArgs) 1136 StructValues.push_back(input); 1137 else { 1138 params.push_back(input); 1139 if (input->isSwiftError()) 1140 SwiftErrorArgs.push_back(ArgNo); 1141 } 1142 ++ArgNo; 1143 } 1144 1145 // Create allocas for the outputs 1146 for (Value *output : outputs) { 1147 if (AggregateArgs) { 1148 StructValues.push_back(output); 1149 } else { 1150 AllocaInst *alloca = 1151 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1152 nullptr, output->getName() + ".loc", 1153 &codeReplacer->getParent()->front().front()); 1154 ReloadOutputs.push_back(alloca); 1155 params.push_back(alloca); 1156 } 1157 } 1158 1159 StructType *StructArgTy = nullptr; 1160 AllocaInst *Struct = nullptr; 1161 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1162 std::vector<Type *> ArgTypes; 1163 for (Value *V : StructValues) 1164 ArgTypes.push_back(V->getType()); 1165 1166 // Allocate a struct at the beginning of this function 1167 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1168 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1169 "structArg", 1170 &codeReplacer->getParent()->front().front()); 1171 params.push_back(Struct); 1172 1173 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1174 Value *Idx[2]; 1175 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1176 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1177 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1178 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1179 codeReplacer->getInstList().push_back(GEP); 1180 new StoreInst(StructValues[i], GEP, codeReplacer); 1181 } 1182 } 1183 1184 // Emit the call to the function 1185 call = CallInst::Create(newFunction, params, 1186 NumExitBlocks > 1 ? "targetBlock" : ""); 1187 // Add debug location to the new call, if the original function has debug 1188 // info. In that case, the terminator of the entry block of the extracted 1189 // function contains the first debug location of the extracted function, 1190 // set in extractCodeRegion. 1191 if (codeReplacer->getParent()->getSubprogram()) { 1192 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1193 call->setDebugLoc(DL); 1194 } 1195 codeReplacer->getInstList().push_back(call); 1196 1197 // Set swifterror parameter attributes. 1198 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1199 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1200 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1201 } 1202 1203 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1204 unsigned FirstOut = inputs.size(); 1205 if (!AggregateArgs) 1206 std::advance(OutputArgBegin, inputs.size()); 1207 1208 // Reload the outputs passed in by reference. 1209 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1210 Value *Output = nullptr; 1211 if (AggregateArgs) { 1212 Value *Idx[2]; 1213 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1214 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1215 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1216 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1217 codeReplacer->getInstList().push_back(GEP); 1218 Output = GEP; 1219 } else { 1220 Output = ReloadOutputs[i]; 1221 } 1222 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1223 outputs[i]->getName() + ".reload", 1224 codeReplacer); 1225 Reloads.push_back(load); 1226 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1227 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1228 Instruction *inst = cast<Instruction>(Users[u]); 1229 if (!Blocks.count(inst->getParent())) 1230 inst->replaceUsesOfWith(outputs[i], load); 1231 } 1232 } 1233 1234 // Now we can emit a switch statement using the call as a value. 1235 SwitchInst *TheSwitch = 1236 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1237 codeReplacer, 0, codeReplacer); 1238 1239 // Since there may be multiple exits from the original region, make the new 1240 // function return an unsigned, switch on that number. This loop iterates 1241 // over all of the blocks in the extracted region, updating any terminator 1242 // instructions in the to-be-extracted region that branch to blocks that are 1243 // not in the region to be extracted. 1244 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1245 1246 // Iterate over the previously collected targets, and create new blocks inside 1247 // the function to branch to. 1248 unsigned switchVal = 0; 1249 for (BasicBlock *OldTarget : OldTargets) { 1250 if (Blocks.count(OldTarget)) 1251 continue; 1252 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1253 if (NewTarget) 1254 continue; 1255 1256 // If we don't already have an exit stub for this non-extracted 1257 // destination, create one now! 1258 NewTarget = BasicBlock::Create(Context, 1259 OldTarget->getName() + ".exitStub", 1260 newFunction); 1261 unsigned SuccNum = switchVal++; 1262 1263 Value *brVal = nullptr; 1264 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1265 switch (NumExitBlocks) { 1266 case 0: 1267 case 1: break; // No value needed. 1268 case 2: // Conditional branch, return a bool 1269 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1270 break; 1271 default: 1272 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1273 break; 1274 } 1275 1276 ReturnInst::Create(Context, brVal, NewTarget); 1277 1278 // Update the switch instruction. 1279 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1280 SuccNum), 1281 OldTarget); 1282 } 1283 1284 for (BasicBlock *Block : Blocks) { 1285 Instruction *TI = Block->getTerminator(); 1286 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1287 if (Blocks.count(TI->getSuccessor(i))) 1288 continue; 1289 BasicBlock *OldTarget = TI->getSuccessor(i); 1290 // add a new basic block which returns the appropriate value 1291 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1292 assert(NewTarget && "Unknown target block!"); 1293 1294 // rewrite the original branch instruction with this new target 1295 TI->setSuccessor(i, NewTarget); 1296 } 1297 } 1298 1299 // Store the arguments right after the definition of output value. 1300 // This should be proceeded after creating exit stubs to be ensure that invoke 1301 // result restore will be placed in the outlined function. 1302 Function::arg_iterator OAI = OutputArgBegin; 1303 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1304 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1305 if (!OutI) 1306 continue; 1307 1308 // Find proper insertion point. 1309 BasicBlock::iterator InsertPt; 1310 // In case OutI is an invoke, we insert the store at the beginning in the 1311 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1312 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1313 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1314 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1315 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1316 else 1317 InsertPt = std::next(OutI->getIterator()); 1318 1319 Instruction *InsertBefore = &*InsertPt; 1320 assert((InsertBefore->getFunction() == newFunction || 1321 Blocks.count(InsertBefore->getParent())) && 1322 "InsertPt should be in new function"); 1323 assert(OAI != newFunction->arg_end() && 1324 "Number of output arguments should match " 1325 "the amount of defined values"); 1326 if (AggregateArgs) { 1327 Value *Idx[2]; 1328 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1329 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1330 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1331 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1332 InsertBefore); 1333 new StoreInst(outputs[i], GEP, InsertBefore); 1334 // Since there should be only one struct argument aggregating 1335 // all the output values, we shouldn't increment OAI, which always 1336 // points to the struct argument, in this case. 1337 } else { 1338 new StoreInst(outputs[i], &*OAI, InsertBefore); 1339 ++OAI; 1340 } 1341 } 1342 1343 // Now that we've done the deed, simplify the switch instruction. 1344 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1345 switch (NumExitBlocks) { 1346 case 0: 1347 // There are no successors (the block containing the switch itself), which 1348 // means that previously this was the last part of the function, and hence 1349 // this should be rewritten as a `ret' 1350 1351 // Check if the function should return a value 1352 if (OldFnRetTy->isVoidTy()) { 1353 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1354 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1355 // return what we have 1356 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1357 } else { 1358 // Otherwise we must have code extracted an unwind or something, just 1359 // return whatever we want. 1360 ReturnInst::Create(Context, 1361 Constant::getNullValue(OldFnRetTy), TheSwitch); 1362 } 1363 1364 TheSwitch->eraseFromParent(); 1365 break; 1366 case 1: 1367 // Only a single destination, change the switch into an unconditional 1368 // branch. 1369 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1370 TheSwitch->eraseFromParent(); 1371 break; 1372 case 2: 1373 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1374 call, TheSwitch); 1375 TheSwitch->eraseFromParent(); 1376 break; 1377 default: 1378 // Otherwise, make the default destination of the switch instruction be one 1379 // of the other successors. 1380 TheSwitch->setCondition(call); 1381 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1382 // Remove redundant case 1383 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1384 break; 1385 } 1386 1387 // Insert lifetime markers around the reloads of any output values. The 1388 // allocas output values are stored in are only in-use in the codeRepl block. 1389 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1390 1391 return call; 1392 } 1393 1394 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1395 Function *oldFunc = (*Blocks.begin())->getParent(); 1396 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1397 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1398 1399 auto newFuncIt = newFunction->front().getIterator(); 1400 for (BasicBlock *Block : Blocks) { 1401 // Delete the basic block from the old function, and the list of blocks 1402 oldBlocks.remove(Block); 1403 1404 // Insert this basic block into the new function 1405 // Insert the original blocks after the entry block created 1406 // for the new function. The entry block may be followed 1407 // by a set of exit blocks at this point, but these exit 1408 // blocks better be placed at the end of the new function. 1409 newFuncIt = newBlocks.insertAfter(newFuncIt, Block); 1410 } 1411 } 1412 1413 void CodeExtractor::calculateNewCallTerminatorWeights( 1414 BasicBlock *CodeReplacer, 1415 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1416 BranchProbabilityInfo *BPI) { 1417 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1418 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1419 1420 // Update the branch weights for the exit block. 1421 Instruction *TI = CodeReplacer->getTerminator(); 1422 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1423 1424 // Block Frequency distribution with dummy node. 1425 Distribution BranchDist; 1426 1427 SmallVector<BranchProbability, 4> EdgeProbabilities( 1428 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1429 1430 // Add each of the frequencies of the successors. 1431 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1432 BlockNode ExitNode(i); 1433 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1434 if (ExitFreq != 0) 1435 BranchDist.addExit(ExitNode, ExitFreq); 1436 else 1437 EdgeProbabilities[i] = BranchProbability::getZero(); 1438 } 1439 1440 // Check for no total weight. 1441 if (BranchDist.Total == 0) { 1442 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1443 return; 1444 } 1445 1446 // Normalize the distribution so that they can fit in unsigned. 1447 BranchDist.normalize(); 1448 1449 // Create normalized branch weights and set the metadata. 1450 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1451 const auto &Weight = BranchDist.Weights[I]; 1452 1453 // Get the weight and update the current BFI. 1454 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1455 BranchProbability BP(Weight.Amount, BranchDist.Total); 1456 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1457 } 1458 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1459 TI->setMetadata( 1460 LLVMContext::MD_prof, 1461 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1462 } 1463 1464 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1465 /// \p F. 1466 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1467 for (Instruction &I : instructions(F)) { 1468 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1469 findDbgUsers(DbgUsers, &I); 1470 for (DbgVariableIntrinsic *DVI : DbgUsers) 1471 if (DVI->getFunction() != &F) 1472 DVI->eraseFromParent(); 1473 } 1474 } 1475 1476 /// Fix up the debug info in the old and new functions by pointing line 1477 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1478 /// intrinsics which point to values outside of the new function. 1479 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1480 CallInst &TheCall) { 1481 DISubprogram *OldSP = OldFunc.getSubprogram(); 1482 LLVMContext &Ctx = OldFunc.getContext(); 1483 1484 if (!OldSP) { 1485 // Erase any debug info the new function contains. 1486 stripDebugInfo(NewFunc); 1487 // Make sure the old function doesn't contain any non-local metadata refs. 1488 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1489 return; 1490 } 1491 1492 // Create a subprogram for the new function. Leave out a description of the 1493 // function arguments, as the parameters don't correspond to anything at the 1494 // source level. 1495 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1496 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1497 OldSP->getUnit()); 1498 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1499 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1500 DISubprogram::SPFlagOptimized | 1501 DISubprogram::SPFlagLocalToUnit; 1502 auto NewSP = DIB.createFunction( 1503 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1504 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1505 NewFunc.setSubprogram(NewSP); 1506 1507 // Debug intrinsics in the new function need to be updated in one of two 1508 // ways: 1509 // 1) They need to be deleted, because they describe a value in the old 1510 // function. 1511 // 2) They need to point to fresh metadata, e.g. because they currently 1512 // point to a variable in the wrong scope. 1513 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1514 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1515 for (Instruction &I : instructions(NewFunc)) { 1516 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1517 if (!DII) 1518 continue; 1519 1520 // Point the intrinsic to a fresh label within the new function. 1521 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1522 DILabel *OldLabel = DLI->getLabel(); 1523 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1524 if (!NewLabel) 1525 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1526 OldLabel->getFile(), OldLabel->getLine()); 1527 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1528 continue; 1529 } 1530 1531 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1532 // Location is invalid if it isn't a constant or an instruction, or is an 1533 // instruction but isn't in the new function. 1534 if (!Location || 1535 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1536 return true; 1537 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1538 return LocationInst && LocationInst->getFunction() != &NewFunc; 1539 }; 1540 1541 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1542 // If any of the used locations are invalid, delete the intrinsic. 1543 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1544 DebugIntrinsicsToDelete.push_back(DVI); 1545 continue; 1546 } 1547 1548 // Point the intrinsic to a fresh variable within the new function. 1549 DILocalVariable *OldVar = DVI->getVariable(); 1550 DINode *&NewVar = RemappedMetadata[OldVar]; 1551 if (!NewVar) 1552 NewVar = DIB.createAutoVariable( 1553 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1554 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1555 OldVar->getAlignInBits()); 1556 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1557 } 1558 for (auto *DII : DebugIntrinsicsToDelete) 1559 DII->eraseFromParent(); 1560 DIB.finalizeSubprogram(NewSP); 1561 1562 // Fix up the scope information attached to the line locations in the new 1563 // function. 1564 for (Instruction &I : instructions(NewFunc)) { 1565 if (const DebugLoc &DL = I.getDebugLoc()) 1566 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1567 1568 // Loop info metadata may contain line locations. Fix them up. 1569 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1570 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1571 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1572 nullptr); 1573 return MD; 1574 }; 1575 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1576 } 1577 if (!TheCall.getDebugLoc()) 1578 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1579 1580 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1581 } 1582 1583 Function * 1584 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1585 ValueSet Inputs, Outputs; 1586 return extractCodeRegion(CEAC, Inputs, Outputs); 1587 } 1588 1589 Function * 1590 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1591 ValueSet &inputs, ValueSet &outputs) { 1592 if (!isEligible()) 1593 return nullptr; 1594 1595 // Assumption: this is a single-entry code region, and the header is the first 1596 // block in the region. 1597 BasicBlock *header = *Blocks.begin(); 1598 Function *oldFunction = header->getParent(); 1599 1600 // Calculate the entry frequency of the new function before we change the root 1601 // block. 1602 BlockFrequency EntryFreq; 1603 if (BFI) { 1604 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1605 for (BasicBlock *Pred : predecessors(header)) { 1606 if (Blocks.count(Pred)) 1607 continue; 1608 EntryFreq += 1609 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1610 } 1611 } 1612 1613 // Remove @llvm.assume calls that will be moved to the new function from the 1614 // old function's assumption cache. 1615 for (BasicBlock *Block : Blocks) { 1616 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1617 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1618 if (AC) 1619 AC->unregisterAssumption(AI); 1620 AI->eraseFromParent(); 1621 } 1622 } 1623 } 1624 1625 // If we have any return instructions in the region, split those blocks so 1626 // that the return is not in the region. 1627 splitReturnBlocks(); 1628 1629 // Calculate the exit blocks for the extracted region and the total exit 1630 // weights for each of those blocks. 1631 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1632 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1633 for (BasicBlock *Block : Blocks) { 1634 for (BasicBlock *Succ : successors(Block)) { 1635 if (!Blocks.count(Succ)) { 1636 // Update the branch weight for this successor. 1637 if (BFI) { 1638 BlockFrequency &BF = ExitWeights[Succ]; 1639 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1640 } 1641 ExitBlocks.insert(Succ); 1642 } 1643 } 1644 } 1645 NumExitBlocks = ExitBlocks.size(); 1646 1647 for (BasicBlock *Block : Blocks) { 1648 Instruction *TI = Block->getTerminator(); 1649 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1650 if (Blocks.count(TI->getSuccessor(i))) 1651 continue; 1652 BasicBlock *OldTarget = TI->getSuccessor(i); 1653 OldTargets.push_back(OldTarget); 1654 } 1655 } 1656 1657 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1658 severSplitPHINodesOfEntry(header); 1659 severSplitPHINodesOfExits(ExitBlocks); 1660 1661 // This takes place of the original loop 1662 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1663 "codeRepl", oldFunction, 1664 header); 1665 1666 // The new function needs a root node because other nodes can branch to the 1667 // head of the region, but the entry node of a function cannot have preds. 1668 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1669 "newFuncRoot"); 1670 auto *BranchI = BranchInst::Create(header); 1671 // If the original function has debug info, we have to add a debug location 1672 // to the new branch instruction from the artificial entry block. 1673 // We use the debug location of the first instruction in the extracted 1674 // blocks, as there is no other equivalent line in the source code. 1675 if (oldFunction->getSubprogram()) { 1676 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1677 return any_of(*BB, [&BranchI](const Instruction &I) { 1678 if (!I.getDebugLoc()) 1679 return false; 1680 BranchI->setDebugLoc(I.getDebugLoc()); 1681 return true; 1682 }); 1683 }); 1684 } 1685 newFuncRoot->getInstList().push_back(BranchI); 1686 1687 ValueSet SinkingCands, HoistingCands; 1688 BasicBlock *CommonExit = nullptr; 1689 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1690 assert(HoistingCands.empty() || CommonExit); 1691 1692 // Find inputs to, outputs from the code region. 1693 findInputsOutputs(inputs, outputs, SinkingCands); 1694 1695 // Now sink all instructions which only have non-phi uses inside the region. 1696 // Group the allocas at the start of the block, so that any bitcast uses of 1697 // the allocas are well-defined. 1698 AllocaInst *FirstSunkAlloca = nullptr; 1699 for (auto *II : SinkingCands) { 1700 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1701 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1702 if (!FirstSunkAlloca) 1703 FirstSunkAlloca = AI; 1704 } 1705 } 1706 assert((SinkingCands.empty() || FirstSunkAlloca) && 1707 "Did not expect a sink candidate without any allocas"); 1708 for (auto *II : SinkingCands) { 1709 if (!isa<AllocaInst>(II)) { 1710 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1711 } 1712 } 1713 1714 if (!HoistingCands.empty()) { 1715 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1716 Instruction *TI = HoistToBlock->getTerminator(); 1717 for (auto *II : HoistingCands) 1718 cast<Instruction>(II)->moveBefore(TI); 1719 } 1720 1721 // Collect objects which are inputs to the extraction region and also 1722 // referenced by lifetime start markers within it. The effects of these 1723 // markers must be replicated in the calling function to prevent the stack 1724 // coloring pass from merging slots which store input objects. 1725 ValueSet LifetimesStart; 1726 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1727 1728 // Construct new function based on inputs/outputs & add allocas for all defs. 1729 Function *newFunction = 1730 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1731 oldFunction, oldFunction->getParent()); 1732 1733 // Update the entry count of the function. 1734 if (BFI) { 1735 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1736 if (Count.hasValue()) 1737 newFunction->setEntryCount( 1738 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1739 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1740 } 1741 1742 CallInst *TheCall = 1743 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1744 1745 moveCodeToFunction(newFunction); 1746 1747 // Replicate the effects of any lifetime start/end markers which referenced 1748 // input objects in the extraction region by placing markers around the call. 1749 insertLifetimeMarkersSurroundingCall( 1750 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1751 1752 // Propagate personality info to the new function if there is one. 1753 if (oldFunction->hasPersonalityFn()) 1754 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1755 1756 // Update the branch weights for the exit block. 1757 if (BFI && NumExitBlocks > 1) 1758 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1759 1760 // Loop over all of the PHI nodes in the header and exit blocks, and change 1761 // any references to the old incoming edge to be the new incoming edge. 1762 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1763 PHINode *PN = cast<PHINode>(I); 1764 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1765 if (!Blocks.count(PN->getIncomingBlock(i))) 1766 PN->setIncomingBlock(i, newFuncRoot); 1767 } 1768 1769 for (BasicBlock *ExitBB : ExitBlocks) 1770 for (PHINode &PN : ExitBB->phis()) { 1771 Value *IncomingCodeReplacerVal = nullptr; 1772 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1773 // Ignore incoming values from outside of the extracted region. 1774 if (!Blocks.count(PN.getIncomingBlock(i))) 1775 continue; 1776 1777 // Ensure that there is only one incoming value from codeReplacer. 1778 if (!IncomingCodeReplacerVal) { 1779 PN.setIncomingBlock(i, codeReplacer); 1780 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1781 } else 1782 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1783 "PHI has two incompatbile incoming values from codeRepl"); 1784 } 1785 } 1786 1787 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1788 1789 // Mark the new function `noreturn` if applicable. Terminators which resume 1790 // exception propagation are treated as returning instructions. This is to 1791 // avoid inserting traps after calls to outlined functions which unwind. 1792 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1793 const Instruction *Term = BB.getTerminator(); 1794 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1795 }); 1796 if (doesNotReturn) 1797 newFunction->setDoesNotReturn(); 1798 1799 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1800 newFunction->dump(); 1801 report_fatal_error("verification of newFunction failed!"); 1802 }); 1803 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1804 report_fatal_error("verification of oldFunction failed!")); 1805 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1806 report_fatal_error("Stale Asumption cache for old Function!")); 1807 return newFunction; 1808 } 1809 1810 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1811 const Function &NewFunc, 1812 AssumptionCache *AC) { 1813 for (auto AssumeVH : AC->assumptions()) { 1814 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1815 if (!I) 1816 continue; 1817 1818 // There shouldn't be any llvm.assume intrinsics in the new function. 1819 if (I->getFunction() != &OldFunc) 1820 return true; 1821 1822 // There shouldn't be any stale affected values in the assumption cache 1823 // that were previously in the old function, but that have now been moved 1824 // to the new function. 1825 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1826 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1827 if (!AffectedCI) 1828 continue; 1829 if (AffectedCI->getFunction() != &OldFunc) 1830 return true; 1831 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1832 if (AssumedInst->getFunction() != &OldFunc) 1833 return true; 1834 } 1835 } 1836 return false; 1837 } 1838