xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 6bcf2ba2f0fff179602fd60b5e0127cd20fc907e)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <map>
64 #include <set>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 using ProfileCount = Function::ProfileCount;
70 
71 #define DEBUG_TYPE "code-extractor"
72 
73 // Provide a command-line option to aggregate function arguments into a struct
74 // for functions produced by the code extractor. This is useful when converting
75 // extracted functions to pthread-based code, as only one argument (void*) can
76 // be passed in to pthread_create().
77 static cl::opt<bool>
78 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
79                  cl::desc("Aggregate arguments to code-extracted functions"));
80 
81 /// Test whether a block is valid for extraction.
82 static bool isBlockValidForExtraction(const BasicBlock &BB,
83                                       const SetVector<BasicBlock *> &Result,
84                                       bool AllowVarArgs, bool AllowAlloca) {
85   // taking the address of a basic block moved to another function is illegal
86   if (BB.hasAddressTaken())
87     return false;
88 
89   // don't hoist code that uses another basicblock address, as it's likely to
90   // lead to unexpected behavior, like cross-function jumps
91   SmallPtrSet<User const *, 16> Visited;
92   SmallVector<User const *, 16> ToVisit;
93 
94   for (Instruction const &Inst : BB)
95     ToVisit.push_back(&Inst);
96 
97   while (!ToVisit.empty()) {
98     User const *Curr = ToVisit.pop_back_val();
99     if (!Visited.insert(Curr).second)
100       continue;
101     if (isa<BlockAddress const>(Curr))
102       return false; // even a reference to self is likely to be not compatible
103 
104     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
105       continue;
106 
107     for (auto const &U : Curr->operands()) {
108       if (auto *UU = dyn_cast<User>(U))
109         ToVisit.push_back(UU);
110     }
111   }
112 
113   // If explicitly requested, allow vastart and alloca. For invoke instructions
114   // verify that extraction is valid.
115   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
116     if (isa<AllocaInst>(I)) {
117        if (!AllowAlloca)
118          return false;
119        continue;
120     }
121 
122     if (const auto *II = dyn_cast<InvokeInst>(I)) {
123       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
124       // must be a part of the subgraph which is being extracted.
125       if (auto *UBB = II->getUnwindDest())
126         if (!Result.count(UBB))
127           return false;
128       continue;
129     }
130 
131     // All catch handlers of a catchswitch instruction as well as the unwind
132     // destination must be in the subgraph.
133     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
134       if (auto *UBB = CSI->getUnwindDest())
135         if (!Result.count(UBB))
136           return false;
137       for (auto *HBB : CSI->handlers())
138         if (!Result.count(const_cast<BasicBlock*>(HBB)))
139           return false;
140       continue;
141     }
142 
143     // Make sure that entire catch handler is within subgraph. It is sufficient
144     // to check that catch return's block is in the list.
145     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
146       for (const auto *U : CPI->users())
147         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
148           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
149             return false;
150       continue;
151     }
152 
153     // And do similar checks for cleanup handler - the entire handler must be
154     // in subgraph which is going to be extracted. For cleanup return should
155     // additionally check that the unwind destination is also in the subgraph.
156     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
157       for (const auto *U : CPI->users())
158         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
159           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
160             return false;
161       continue;
162     }
163     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
164       if (auto *UBB = CRI->getUnwindDest())
165         if (!Result.count(UBB))
166           return false;
167       continue;
168     }
169 
170     if (const CallInst *CI = dyn_cast<CallInst>(I))
171       if (const Function *F = CI->getCalledFunction())
172         if (F->getIntrinsicID() == Intrinsic::vastart) {
173           if (AllowVarArgs)
174             continue;
175           else
176             return false;
177         }
178   }
179 
180   return true;
181 }
182 
183 /// Build a set of blocks to extract if the input blocks are viable.
184 static SetVector<BasicBlock *>
185 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
186                         bool AllowVarArgs, bool AllowAlloca) {
187   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
188   SetVector<BasicBlock *> Result;
189 
190   // Loop over the blocks, adding them to our set-vector, and aborting with an
191   // empty set if we encounter invalid blocks.
192   for (BasicBlock *BB : BBs) {
193     // If this block is dead, don't process it.
194     if (DT && !DT->isReachableFromEntry(BB))
195       continue;
196 
197     if (!Result.insert(BB))
198       llvm_unreachable("Repeated basic blocks in extraction input");
199   }
200 
201   for (auto *BB : Result) {
202     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
203       return {};
204 
205     // Make sure that the first block is not a landing pad.
206     if (BB == Result.front()) {
207       if (BB->isEHPad()) {
208         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
209         return {};
210       }
211       continue;
212     }
213 
214     // All blocks other than the first must not have predecessors outside of
215     // the subgraph which is being extracted.
216     for (auto *PBB : predecessors(BB))
217       if (!Result.count(PBB)) {
218         LLVM_DEBUG(
219             dbgs() << "No blocks in this region may have entries from "
220                       "outside the region except for the first block!\n");
221         return {};
222       }
223   }
224 
225   return Result;
226 }
227 
228 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
229                              bool AggregateArgs, BlockFrequencyInfo *BFI,
230                              BranchProbabilityInfo *BPI, bool AllowVarArgs,
231                              bool AllowAlloca)
232     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
233       BPI(BPI), AllowVarArgs(AllowVarArgs),
234       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)) {}
235 
236 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
237                              BlockFrequencyInfo *BFI,
238                              BranchProbabilityInfo *BPI)
239     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
240       BPI(BPI), AllowVarArgs(false),
241       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
242                                      /* AllowVarArgs */ false,
243                                      /* AllowAlloca */ false)) {}
244 
245 /// definedInRegion - Return true if the specified value is defined in the
246 /// extracted region.
247 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
248   if (Instruction *I = dyn_cast<Instruction>(V))
249     if (Blocks.count(I->getParent()))
250       return true;
251   return false;
252 }
253 
254 /// definedInCaller - Return true if the specified value is defined in the
255 /// function being code extracted, but not in the region being extracted.
256 /// These values must be passed in as live-ins to the function.
257 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
258   if (isa<Argument>(V)) return true;
259   if (Instruction *I = dyn_cast<Instruction>(V))
260     if (!Blocks.count(I->getParent()))
261       return true;
262   return false;
263 }
264 
265 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
266   BasicBlock *CommonExitBlock = nullptr;
267   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
268     for (auto *Succ : successors(Block)) {
269       // Internal edges, ok.
270       if (Blocks.count(Succ))
271         continue;
272       if (!CommonExitBlock) {
273         CommonExitBlock = Succ;
274         continue;
275       }
276       if (CommonExitBlock == Succ)
277         continue;
278 
279       return true;
280     }
281     return false;
282   };
283 
284   if (any_of(Blocks, hasNonCommonExitSucc))
285     return nullptr;
286 
287   return CommonExitBlock;
288 }
289 
290 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
291     Instruction *Addr) const {
292   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
293   Function *Func = (*Blocks.begin())->getParent();
294   for (BasicBlock &BB : *Func) {
295     if (Blocks.count(&BB))
296       continue;
297     for (Instruction &II : BB) {
298       if (isa<DbgInfoIntrinsic>(II))
299         continue;
300 
301       unsigned Opcode = II.getOpcode();
302       Value *MemAddr = nullptr;
303       switch (Opcode) {
304       case Instruction::Store:
305       case Instruction::Load: {
306         if (Opcode == Instruction::Store) {
307           StoreInst *SI = cast<StoreInst>(&II);
308           MemAddr = SI->getPointerOperand();
309         } else {
310           LoadInst *LI = cast<LoadInst>(&II);
311           MemAddr = LI->getPointerOperand();
312         }
313         // Global variable can not be aliased with locals.
314         if (dyn_cast<Constant>(MemAddr))
315           break;
316         Value *Base = MemAddr->stripInBoundsConstantOffsets();
317         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
318           return false;
319         break;
320       }
321       default: {
322         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
323         if (IntrInst) {
324           if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
325               IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
326             break;
327           return false;
328         }
329         // Treat all the other cases conservatively if it has side effects.
330         if (II.mayHaveSideEffects())
331           return false;
332       }
333       }
334     }
335   }
336 
337   return true;
338 }
339 
340 BasicBlock *
341 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
342   BasicBlock *SinglePredFromOutlineRegion = nullptr;
343   assert(!Blocks.count(CommonExitBlock) &&
344          "Expect a block outside the region!");
345   for (auto *Pred : predecessors(CommonExitBlock)) {
346     if (!Blocks.count(Pred))
347       continue;
348     if (!SinglePredFromOutlineRegion) {
349       SinglePredFromOutlineRegion = Pred;
350     } else if (SinglePredFromOutlineRegion != Pred) {
351       SinglePredFromOutlineRegion = nullptr;
352       break;
353     }
354   }
355 
356   if (SinglePredFromOutlineRegion)
357     return SinglePredFromOutlineRegion;
358 
359 #ifndef NDEBUG
360   auto getFirstPHI = [](BasicBlock *BB) {
361     BasicBlock::iterator I = BB->begin();
362     PHINode *FirstPhi = nullptr;
363     while (I != BB->end()) {
364       PHINode *Phi = dyn_cast<PHINode>(I);
365       if (!Phi)
366         break;
367       if (!FirstPhi) {
368         FirstPhi = Phi;
369         break;
370       }
371     }
372     return FirstPhi;
373   };
374   // If there are any phi nodes, the single pred either exists or has already
375   // be created before code extraction.
376   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
377 #endif
378 
379   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
380       CommonExitBlock->getFirstNonPHI()->getIterator());
381 
382   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
383        PI != PE;) {
384     BasicBlock *Pred = *PI++;
385     if (Blocks.count(Pred))
386       continue;
387     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
388   }
389   // Now add the old exit block to the outline region.
390   Blocks.insert(CommonExitBlock);
391   return CommonExitBlock;
392 }
393 
394 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
395                                 BasicBlock *&ExitBlock) const {
396   Function *Func = (*Blocks.begin())->getParent();
397   ExitBlock = getCommonExitBlock(Blocks);
398 
399   for (BasicBlock &BB : *Func) {
400     if (Blocks.count(&BB))
401       continue;
402     for (Instruction &II : BB) {
403       auto *AI = dyn_cast<AllocaInst>(&II);
404       if (!AI)
405         continue;
406 
407       // Find the pair of life time markers for address 'Addr' that are either
408       // defined inside the outline region or can legally be shrinkwrapped into
409       // the outline region. If there are not other untracked uses of the
410       // address, return the pair of markers if found; otherwise return a pair
411       // of nullptr.
412       auto GetLifeTimeMarkers =
413           [&](Instruction *Addr, bool &SinkLifeStart,
414               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
415         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
416 
417         for (User *U : Addr->users()) {
418           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
419           if (IntrInst) {
420             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
421               // Do not handle the case where AI has multiple start markers.
422               if (LifeStart)
423                 return std::make_pair<Instruction *>(nullptr, nullptr);
424               LifeStart = IntrInst;
425             }
426             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
427               if (LifeEnd)
428                 return std::make_pair<Instruction *>(nullptr, nullptr);
429               LifeEnd = IntrInst;
430             }
431             continue;
432           }
433           // Find untracked uses of the address, bail.
434           if (!definedInRegion(Blocks, U))
435             return std::make_pair<Instruction *>(nullptr, nullptr);
436         }
437 
438         if (!LifeStart || !LifeEnd)
439           return std::make_pair<Instruction *>(nullptr, nullptr);
440 
441         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
442         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
443         // Do legality Check.
444         if ((SinkLifeStart || HoistLifeEnd) &&
445             !isLegalToShrinkwrapLifetimeMarkers(Addr))
446           return std::make_pair<Instruction *>(nullptr, nullptr);
447 
448         // Check to see if we have a place to do hoisting, if not, bail.
449         if (HoistLifeEnd && !ExitBlock)
450           return std::make_pair<Instruction *>(nullptr, nullptr);
451 
452         return std::make_pair(LifeStart, LifeEnd);
453       };
454 
455       bool SinkLifeStart = false, HoistLifeEnd = false;
456       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
457 
458       if (Markers.first) {
459         if (SinkLifeStart)
460           SinkCands.insert(Markers.first);
461         SinkCands.insert(AI);
462         if (HoistLifeEnd)
463           HoistCands.insert(Markers.second);
464         continue;
465       }
466 
467       // Follow the bitcast.
468       Instruction *MarkerAddr = nullptr;
469       for (User *U : AI->users()) {
470         if (U->stripInBoundsConstantOffsets() == AI) {
471           SinkLifeStart = false;
472           HoistLifeEnd = false;
473           Instruction *Bitcast = cast<Instruction>(U);
474           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
475           if (Markers.first) {
476             MarkerAddr = Bitcast;
477             continue;
478           }
479         }
480 
481         // Found unknown use of AI.
482         if (!definedInRegion(Blocks, U)) {
483           MarkerAddr = nullptr;
484           break;
485         }
486       }
487 
488       if (MarkerAddr) {
489         if (SinkLifeStart)
490           SinkCands.insert(Markers.first);
491         if (!definedInRegion(Blocks, MarkerAddr))
492           SinkCands.insert(MarkerAddr);
493         SinkCands.insert(AI);
494         if (HoistLifeEnd)
495           HoistCands.insert(Markers.second);
496       }
497     }
498   }
499 }
500 
501 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
502                                       const ValueSet &SinkCands) const {
503   for (BasicBlock *BB : Blocks) {
504     // If a used value is defined outside the region, it's an input.  If an
505     // instruction is used outside the region, it's an output.
506     for (Instruction &II : *BB) {
507       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
508            ++OI) {
509         Value *V = *OI;
510         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
511           Inputs.insert(V);
512       }
513 
514       for (User *U : II.users())
515         if (!definedInRegion(Blocks, U)) {
516           Outputs.insert(&II);
517           break;
518         }
519     }
520   }
521 }
522 
523 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
524 /// region, we need to split the entry block of the region so that the PHI node
525 /// is easier to deal with.
526 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
527   unsigned NumPredsFromRegion = 0;
528   unsigned NumPredsOutsideRegion = 0;
529 
530   if (Header != &Header->getParent()->getEntryBlock()) {
531     PHINode *PN = dyn_cast<PHINode>(Header->begin());
532     if (!PN) return;  // No PHI nodes.
533 
534     // If the header node contains any PHI nodes, check to see if there is more
535     // than one entry from outside the region.  If so, we need to sever the
536     // header block into two.
537     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
538       if (Blocks.count(PN->getIncomingBlock(i)))
539         ++NumPredsFromRegion;
540       else
541         ++NumPredsOutsideRegion;
542 
543     // If there is one (or fewer) predecessor from outside the region, we don't
544     // need to do anything special.
545     if (NumPredsOutsideRegion <= 1) return;
546   }
547 
548   // Otherwise, we need to split the header block into two pieces: one
549   // containing PHI nodes merging values from outside of the region, and a
550   // second that contains all of the code for the block and merges back any
551   // incoming values from inside of the region.
552   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
553 
554   // We only want to code extract the second block now, and it becomes the new
555   // header of the region.
556   BasicBlock *OldPred = Header;
557   Blocks.remove(OldPred);
558   Blocks.insert(NewBB);
559   Header = NewBB;
560 
561   // Okay, now we need to adjust the PHI nodes and any branches from within the
562   // region to go to the new header block instead of the old header block.
563   if (NumPredsFromRegion) {
564     PHINode *PN = cast<PHINode>(OldPred->begin());
565     // Loop over all of the predecessors of OldPred that are in the region,
566     // changing them to branch to NewBB instead.
567     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
568       if (Blocks.count(PN->getIncomingBlock(i))) {
569         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
570         TI->replaceUsesOfWith(OldPred, NewBB);
571       }
572 
573     // Okay, everything within the region is now branching to the right block, we
574     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
575     BasicBlock::iterator AfterPHIs;
576     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
577       PHINode *PN = cast<PHINode>(AfterPHIs);
578       // Create a new PHI node in the new region, which has an incoming value
579       // from OldPred of PN.
580       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
581                                        PN->getName() + ".ce", &NewBB->front());
582       PN->replaceAllUsesWith(NewPN);
583       NewPN->addIncoming(PN, OldPred);
584 
585       // Loop over all of the incoming value in PN, moving them to NewPN if they
586       // are from the extracted region.
587       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
588         if (Blocks.count(PN->getIncomingBlock(i))) {
589           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
590           PN->removeIncomingValue(i);
591           --i;
592         }
593       }
594     }
595   }
596 }
597 
598 void CodeExtractor::splitReturnBlocks() {
599   for (BasicBlock *Block : Blocks)
600     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
601       BasicBlock *New =
602           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
603       if (DT) {
604         // Old dominates New. New node dominates all other nodes dominated
605         // by Old.
606         DomTreeNode *OldNode = DT->getNode(Block);
607         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
608                                                OldNode->end());
609 
610         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
611 
612         for (DomTreeNode *I : Children)
613           DT->changeImmediateDominator(I, NewNode);
614       }
615     }
616 }
617 
618 /// constructFunction - make a function based on inputs and outputs, as follows:
619 /// f(in0, ..., inN, out0, ..., outN)
620 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
621                                            const ValueSet &outputs,
622                                            BasicBlock *header,
623                                            BasicBlock *newRootNode,
624                                            BasicBlock *newHeader,
625                                            Function *oldFunction,
626                                            Module *M) {
627   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
628   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
629 
630   // This function returns unsigned, outputs will go back by reference.
631   switch (NumExitBlocks) {
632   case 0:
633   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
634   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
635   default: RetTy = Type::getInt16Ty(header->getContext()); break;
636   }
637 
638   std::vector<Type *> paramTy;
639 
640   // Add the types of the input values to the function's argument list
641   for (Value *value : inputs) {
642     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
643     paramTy.push_back(value->getType());
644   }
645 
646   // Add the types of the output values to the function's argument list.
647   for (Value *output : outputs) {
648     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
649     if (AggregateArgs)
650       paramTy.push_back(output->getType());
651     else
652       paramTy.push_back(PointerType::getUnqual(output->getType()));
653   }
654 
655   LLVM_DEBUG({
656     dbgs() << "Function type: " << *RetTy << " f(";
657     for (Type *i : paramTy)
658       dbgs() << *i << ", ";
659     dbgs() << ")\n";
660   });
661 
662   StructType *StructTy;
663   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
664     StructTy = StructType::get(M->getContext(), paramTy);
665     paramTy.clear();
666     paramTy.push_back(PointerType::getUnqual(StructTy));
667   }
668   FunctionType *funcType =
669                   FunctionType::get(RetTy, paramTy,
670                                     AllowVarArgs && oldFunction->isVarArg());
671 
672   // Create the new function
673   Function *newFunction = Function::Create(
674       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
675       oldFunction->getName() + "_" + header->getName(), M);
676   // If the old function is no-throw, so is the new one.
677   if (oldFunction->doesNotThrow())
678     newFunction->setDoesNotThrow();
679 
680   // Inherit the uwtable attribute if we need to.
681   if (oldFunction->hasUWTable())
682     newFunction->setHasUWTable();
683 
684   // Inherit all of the target dependent attributes and white-listed
685   // target independent attributes.
686   //  (e.g. If the extracted region contains a call to an x86.sse
687   //  instruction we need to make sure that the extracted region has the
688   //  "target-features" attribute allowing it to be lowered.
689   // FIXME: This should be changed to check to see if a specific
690   //           attribute can not be inherited.
691   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
692     if (Attr.isStringAttribute()) {
693       if (Attr.getKindAsString() == "thunk")
694         continue;
695     } else
696       switch (Attr.getKindAsEnum()) {
697       // Those attributes cannot be propagated safely. Explicitly list them
698       // here so we get a warning if new attributes are added. This list also
699       // includes non-function attributes.
700       case Attribute::Alignment:
701       case Attribute::AllocSize:
702       case Attribute::ArgMemOnly:
703       case Attribute::Builtin:
704       case Attribute::ByVal:
705       case Attribute::Convergent:
706       case Attribute::Dereferenceable:
707       case Attribute::DereferenceableOrNull:
708       case Attribute::InAlloca:
709       case Attribute::InReg:
710       case Attribute::InaccessibleMemOnly:
711       case Attribute::InaccessibleMemOrArgMemOnly:
712       case Attribute::JumpTable:
713       case Attribute::Naked:
714       case Attribute::Nest:
715       case Attribute::NoAlias:
716       case Attribute::NoBuiltin:
717       case Attribute::NoCapture:
718       case Attribute::NoReturn:
719       case Attribute::None:
720       case Attribute::NonNull:
721       case Attribute::ReadNone:
722       case Attribute::ReadOnly:
723       case Attribute::Returned:
724       case Attribute::ReturnsTwice:
725       case Attribute::SExt:
726       case Attribute::Speculatable:
727       case Attribute::StackAlignment:
728       case Attribute::StructRet:
729       case Attribute::SwiftError:
730       case Attribute::SwiftSelf:
731       case Attribute::WriteOnly:
732       case Attribute::ZExt:
733       case Attribute::EndAttrKinds:
734         continue;
735       // Those attributes should be safe to propagate to the extracted function.
736       case Attribute::AlwaysInline:
737       case Attribute::Cold:
738       case Attribute::NoRecurse:
739       case Attribute::InlineHint:
740       case Attribute::MinSize:
741       case Attribute::NoDuplicate:
742       case Attribute::NoImplicitFloat:
743       case Attribute::NoInline:
744       case Attribute::NonLazyBind:
745       case Attribute::NoRedZone:
746       case Attribute::NoUnwind:
747       case Attribute::OptForFuzzing:
748       case Attribute::OptimizeNone:
749       case Attribute::OptimizeForSize:
750       case Attribute::SafeStack:
751       case Attribute::ShadowCallStack:
752       case Attribute::SanitizeAddress:
753       case Attribute::SanitizeMemory:
754       case Attribute::SanitizeThread:
755       case Attribute::SanitizeHWAddress:
756       case Attribute::StackProtect:
757       case Attribute::StackProtectReq:
758       case Attribute::StackProtectStrong:
759       case Attribute::StrictFP:
760       case Attribute::UWTable:
761       case Attribute::NoCfCheck:
762         break;
763       }
764 
765     newFunction->addFnAttr(Attr);
766   }
767   newFunction->getBasicBlockList().push_back(newRootNode);
768 
769   // Create an iterator to name all of the arguments we inserted.
770   Function::arg_iterator AI = newFunction->arg_begin();
771 
772   // Rewrite all users of the inputs in the extracted region to use the
773   // arguments (or appropriate addressing into struct) instead.
774   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
775     Value *RewriteVal;
776     if (AggregateArgs) {
777       Value *Idx[2];
778       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
779       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
780       TerminatorInst *TI = newFunction->begin()->getTerminator();
781       GetElementPtrInst *GEP = GetElementPtrInst::Create(
782           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
783       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
784     } else
785       RewriteVal = &*AI++;
786 
787     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
788     for (User *use : Users)
789       if (Instruction *inst = dyn_cast<Instruction>(use))
790         if (Blocks.count(inst->getParent()))
791           inst->replaceUsesOfWith(inputs[i], RewriteVal);
792   }
793 
794   // Set names for input and output arguments.
795   if (!AggregateArgs) {
796     AI = newFunction->arg_begin();
797     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
798       AI->setName(inputs[i]->getName());
799     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
800       AI->setName(outputs[i]->getName()+".out");
801   }
802 
803   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
804   // within the new function. This must be done before we lose track of which
805   // blocks were originally in the code region.
806   std::vector<User *> Users(header->user_begin(), header->user_end());
807   for (unsigned i = 0, e = Users.size(); i != e; ++i)
808     // The BasicBlock which contains the branch is not in the region
809     // modify the branch target to a new block
810     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
811       if (!Blocks.count(TI->getParent()) &&
812           TI->getParent()->getParent() == oldFunction)
813         TI->replaceUsesOfWith(header, newHeader);
814 
815   return newFunction;
816 }
817 
818 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
819 /// the call instruction, splitting any PHI nodes in the header block as
820 /// necessary.
821 void CodeExtractor::
822 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
823                            ValueSet &inputs, ValueSet &outputs) {
824   // Emit a call to the new function, passing in: *pointer to struct (if
825   // aggregating parameters), or plan inputs and allocated memory for outputs
826   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
827 
828   Module *M = newFunction->getParent();
829   LLVMContext &Context = M->getContext();
830   const DataLayout &DL = M->getDataLayout();
831 
832   // Add inputs as params, or to be filled into the struct
833   for (Value *input : inputs)
834     if (AggregateArgs)
835       StructValues.push_back(input);
836     else
837       params.push_back(input);
838 
839   // Create allocas for the outputs
840   for (Value *output : outputs) {
841     if (AggregateArgs) {
842       StructValues.push_back(output);
843     } else {
844       AllocaInst *alloca =
845         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
846                        nullptr, output->getName() + ".loc",
847                        &codeReplacer->getParent()->front().front());
848       ReloadOutputs.push_back(alloca);
849       params.push_back(alloca);
850     }
851   }
852 
853   StructType *StructArgTy = nullptr;
854   AllocaInst *Struct = nullptr;
855   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
856     std::vector<Type *> ArgTypes;
857     for (ValueSet::iterator v = StructValues.begin(),
858            ve = StructValues.end(); v != ve; ++v)
859       ArgTypes.push_back((*v)->getType());
860 
861     // Allocate a struct at the beginning of this function
862     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
863     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
864                             "structArg",
865                             &codeReplacer->getParent()->front().front());
866     params.push_back(Struct);
867 
868     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
869       Value *Idx[2];
870       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
871       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
872       GetElementPtrInst *GEP = GetElementPtrInst::Create(
873           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
874       codeReplacer->getInstList().push_back(GEP);
875       StoreInst *SI = new StoreInst(StructValues[i], GEP);
876       codeReplacer->getInstList().push_back(SI);
877     }
878   }
879 
880   // Emit the call to the function
881   CallInst *call = CallInst::Create(newFunction, params,
882                                     NumExitBlocks > 1 ? "targetBlock" : "");
883   // Add debug location to the new call, if the original function has debug
884   // info. In that case, the terminator of the entry block of the extracted
885   // function contains the first debug location of the extracted function,
886   // set in extractCodeRegion.
887   if (codeReplacer->getParent()->getSubprogram()) {
888     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
889       call->setDebugLoc(DL);
890   }
891   codeReplacer->getInstList().push_back(call);
892 
893   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
894   unsigned FirstOut = inputs.size();
895   if (!AggregateArgs)
896     std::advance(OutputArgBegin, inputs.size());
897 
898   // Reload the outputs passed in by reference.
899   Function::arg_iterator OAI = OutputArgBegin;
900   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
901     Value *Output = nullptr;
902     if (AggregateArgs) {
903       Value *Idx[2];
904       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
905       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
906       GetElementPtrInst *GEP = GetElementPtrInst::Create(
907           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
908       codeReplacer->getInstList().push_back(GEP);
909       Output = GEP;
910     } else {
911       Output = ReloadOutputs[i];
912     }
913     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
914     Reloads.push_back(load);
915     codeReplacer->getInstList().push_back(load);
916     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
917     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
918       Instruction *inst = cast<Instruction>(Users[u]);
919       if (!Blocks.count(inst->getParent()))
920         inst->replaceUsesOfWith(outputs[i], load);
921     }
922 
923     // Store to argument right after the definition of output value.
924     auto *OutI = dyn_cast<Instruction>(outputs[i]);
925     if (!OutI)
926       continue;
927 
928     // Find proper insertion point.
929     Instruction *InsertPt;
930     // In case OutI is an invoke, we insert the store at the beginning in the
931     // 'normal destination' BB. Otherwise we insert the store right after OutI.
932     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
933       InsertPt = InvokeI->getNormalDest()->getFirstNonPHI();
934     else
935       InsertPt = OutI->getNextNode();
936 
937     // Let's assume that there is no other guy interleave non-PHI in PHIs.
938     if (isa<PHINode>(InsertPt))
939       InsertPt = InsertPt->getParent()->getFirstNonPHI();
940 
941     assert(OAI != newFunction->arg_end() &&
942            "Number of output arguments should match "
943            "the amount of defined values");
944     if (AggregateArgs) {
945       Value *Idx[2];
946       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
947       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
948       GetElementPtrInst *GEP = GetElementPtrInst::Create(
949           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
950       new StoreInst(outputs[i], GEP, InsertPt);
951       // Since there should be only one struct argument aggregating
952       // all the output values, we shouldn't increment OAI, which always
953       // points to the struct argument, in this case.
954     } else {
955       new StoreInst(outputs[i], &*OAI, InsertPt);
956       ++OAI;
957     }
958   }
959 
960   // Now we can emit a switch statement using the call as a value.
961   SwitchInst *TheSwitch =
962       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
963                          codeReplacer, 0, codeReplacer);
964 
965   // Since there may be multiple exits from the original region, make the new
966   // function return an unsigned, switch on that number.  This loop iterates
967   // over all of the blocks in the extracted region, updating any terminator
968   // instructions in the to-be-extracted region that branch to blocks that are
969   // not in the region to be extracted.
970   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
971 
972   unsigned switchVal = 0;
973   for (BasicBlock *Block : Blocks) {
974     TerminatorInst *TI = Block->getTerminator();
975     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
976       if (!Blocks.count(TI->getSuccessor(i))) {
977         BasicBlock *OldTarget = TI->getSuccessor(i);
978         // add a new basic block which returns the appropriate value
979         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
980         if (!NewTarget) {
981           // If we don't already have an exit stub for this non-extracted
982           // destination, create one now!
983           NewTarget = BasicBlock::Create(Context,
984                                          OldTarget->getName() + ".exitStub",
985                                          newFunction);
986           unsigned SuccNum = switchVal++;
987 
988           Value *brVal = nullptr;
989           switch (NumExitBlocks) {
990           case 0:
991           case 1: break;  // No value needed.
992           case 2:         // Conditional branch, return a bool
993             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
994             break;
995           default:
996             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
997             break;
998           }
999 
1000           ReturnInst::Create(Context, brVal, NewTarget);
1001 
1002           // Update the switch instruction.
1003           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1004                                               SuccNum),
1005                              OldTarget);
1006         }
1007 
1008         // rewrite the original branch instruction with this new target
1009         TI->setSuccessor(i, NewTarget);
1010       }
1011   }
1012 
1013   // Now that we've done the deed, simplify the switch instruction.
1014   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1015   switch (NumExitBlocks) {
1016   case 0:
1017     // There are no successors (the block containing the switch itself), which
1018     // means that previously this was the last part of the function, and hence
1019     // this should be rewritten as a `ret'
1020 
1021     // Check if the function should return a value
1022     if (OldFnRetTy->isVoidTy()) {
1023       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1024     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1025       // return what we have
1026       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1027     } else {
1028       // Otherwise we must have code extracted an unwind or something, just
1029       // return whatever we want.
1030       ReturnInst::Create(Context,
1031                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1032     }
1033 
1034     TheSwitch->eraseFromParent();
1035     break;
1036   case 1:
1037     // Only a single destination, change the switch into an unconditional
1038     // branch.
1039     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1040     TheSwitch->eraseFromParent();
1041     break;
1042   case 2:
1043     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1044                        call, TheSwitch);
1045     TheSwitch->eraseFromParent();
1046     break;
1047   default:
1048     // Otherwise, make the default destination of the switch instruction be one
1049     // of the other successors.
1050     TheSwitch->setCondition(call);
1051     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1052     // Remove redundant case
1053     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1054     break;
1055   }
1056 }
1057 
1058 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1059   Function *oldFunc = (*Blocks.begin())->getParent();
1060   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1061   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1062 
1063   for (BasicBlock *Block : Blocks) {
1064     // Delete the basic block from the old function, and the list of blocks
1065     oldBlocks.remove(Block);
1066 
1067     // Insert this basic block into the new function
1068     newBlocks.push_back(Block);
1069   }
1070 }
1071 
1072 void CodeExtractor::calculateNewCallTerminatorWeights(
1073     BasicBlock *CodeReplacer,
1074     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1075     BranchProbabilityInfo *BPI) {
1076   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1077   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1078 
1079   // Update the branch weights for the exit block.
1080   TerminatorInst *TI = CodeReplacer->getTerminator();
1081   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1082 
1083   // Block Frequency distribution with dummy node.
1084   Distribution BranchDist;
1085 
1086   // Add each of the frequencies of the successors.
1087   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1088     BlockNode ExitNode(i);
1089     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1090     if (ExitFreq != 0)
1091       BranchDist.addExit(ExitNode, ExitFreq);
1092     else
1093       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1094   }
1095 
1096   // Check for no total weight.
1097   if (BranchDist.Total == 0)
1098     return;
1099 
1100   // Normalize the distribution so that they can fit in unsigned.
1101   BranchDist.normalize();
1102 
1103   // Create normalized branch weights and set the metadata.
1104   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1105     const auto &Weight = BranchDist.Weights[I];
1106 
1107     // Get the weight and update the current BFI.
1108     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1109     BranchProbability BP(Weight.Amount, BranchDist.Total);
1110     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1111   }
1112   TI->setMetadata(
1113       LLVMContext::MD_prof,
1114       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1115 }
1116 
1117 Function *CodeExtractor::extractCodeRegion() {
1118   if (!isEligible())
1119     return nullptr;
1120 
1121   // Assumption: this is a single-entry code region, and the header is the first
1122   // block in the region.
1123   BasicBlock *header = *Blocks.begin();
1124   Function *oldFunction = header->getParent();
1125 
1126   // For functions with varargs, check that varargs handling is only done in the
1127   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1128   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1129     auto containsVarArgIntrinsic = [](Instruction &I) {
1130       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1131         if (const Function *F = CI->getCalledFunction())
1132           return F->getIntrinsicID() == Intrinsic::vastart ||
1133                  F->getIntrinsicID() == Intrinsic::vaend;
1134       return false;
1135     };
1136 
1137     for (auto &BB : *oldFunction) {
1138       if (Blocks.count(&BB))
1139         continue;
1140       if (llvm::any_of(BB, containsVarArgIntrinsic))
1141         return nullptr;
1142     }
1143   }
1144   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1145   BasicBlock *CommonExit = nullptr;
1146 
1147   // Calculate the entry frequency of the new function before we change the root
1148   //   block.
1149   BlockFrequency EntryFreq;
1150   if (BFI) {
1151     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1152     for (BasicBlock *Pred : predecessors(header)) {
1153       if (Blocks.count(Pred))
1154         continue;
1155       EntryFreq +=
1156           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1157     }
1158   }
1159 
1160   // If we have to split PHI nodes or the entry block, do so now.
1161   severSplitPHINodes(header);
1162 
1163   // If we have any return instructions in the region, split those blocks so
1164   // that the return is not in the region.
1165   splitReturnBlocks();
1166 
1167   // This takes place of the original loop
1168   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1169                                                 "codeRepl", oldFunction,
1170                                                 header);
1171 
1172   // The new function needs a root node because other nodes can branch to the
1173   // head of the region, but the entry node of a function cannot have preds.
1174   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1175                                                "newFuncRoot");
1176   auto *BranchI = BranchInst::Create(header);
1177   // If the original function has debug info, we have to add a debug location
1178   // to the new branch instruction from the artificial entry block.
1179   // We use the debug location of the first instruction in the extracted
1180   // blocks, as there is no other equivalent line in the source code.
1181   if (oldFunction->getSubprogram()) {
1182     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1183       return any_of(*BB, [&BranchI](const Instruction &I) {
1184         if (!I.getDebugLoc())
1185           return false;
1186         BranchI->setDebugLoc(I.getDebugLoc());
1187         return true;
1188       });
1189     });
1190   }
1191   newFuncRoot->getInstList().push_back(BranchI);
1192 
1193   findAllocas(SinkingCands, HoistingCands, CommonExit);
1194   assert(HoistingCands.empty() || CommonExit);
1195 
1196   // Find inputs to, outputs from the code region.
1197   findInputsOutputs(inputs, outputs, SinkingCands);
1198 
1199   // Now sink all instructions which only have non-phi uses inside the region
1200   for (auto *II : SinkingCands)
1201     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1202                                       newFuncRoot->getFirstInsertionPt());
1203 
1204   if (!HoistingCands.empty()) {
1205     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1206     Instruction *TI = HoistToBlock->getTerminator();
1207     for (auto *II : HoistingCands)
1208       cast<Instruction>(II)->moveBefore(TI);
1209   }
1210 
1211   // Calculate the exit blocks for the extracted region and the total exit
1212   // weights for each of those blocks.
1213   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1214   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1215   for (BasicBlock *Block : Blocks) {
1216     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1217          ++SI) {
1218       if (!Blocks.count(*SI)) {
1219         // Update the branch weight for this successor.
1220         if (BFI) {
1221           BlockFrequency &BF = ExitWeights[*SI];
1222           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1223         }
1224         ExitBlocks.insert(*SI);
1225       }
1226     }
1227   }
1228   NumExitBlocks = ExitBlocks.size();
1229 
1230   // Construct new function based on inputs/outputs & add allocas for all defs.
1231   Function *newFunction = constructFunction(inputs, outputs, header,
1232                                             newFuncRoot,
1233                                             codeReplacer, oldFunction,
1234                                             oldFunction->getParent());
1235 
1236   // Update the entry count of the function.
1237   if (BFI) {
1238     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1239     if (Count.hasValue())
1240       newFunction->setEntryCount(
1241           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1242     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1243   }
1244 
1245   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1246 
1247   moveCodeToFunction(newFunction);
1248 
1249   // Propagate personality info to the new function if there is one.
1250   if (oldFunction->hasPersonalityFn())
1251     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1252 
1253   // Update the branch weights for the exit block.
1254   if (BFI && NumExitBlocks > 1)
1255     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1256 
1257   // Loop over all of the PHI nodes in the header block, and change any
1258   // references to the old incoming edge to be the new incoming edge.
1259   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1260     PHINode *PN = cast<PHINode>(I);
1261     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1262       if (!Blocks.count(PN->getIncomingBlock(i)))
1263         PN->setIncomingBlock(i, newFuncRoot);
1264   }
1265 
1266   // Look at all successors of the codeReplacer block.  If any of these blocks
1267   // had PHI nodes in them, we need to update the "from" block to be the code
1268   // replacer, not the original block in the extracted region.
1269   std::vector<BasicBlock *> Succs(succ_begin(codeReplacer),
1270                                   succ_end(codeReplacer));
1271   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1272     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
1273       PHINode *PN = cast<PHINode>(I);
1274       std::set<BasicBlock*> ProcessedPreds;
1275       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1276         if (Blocks.count(PN->getIncomingBlock(i))) {
1277           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
1278             PN->setIncomingBlock(i, codeReplacer);
1279           else {
1280             // There were multiple entries in the PHI for this block, now there
1281             // is only one, so remove the duplicated entries.
1282             PN->removeIncomingValue(i, false);
1283             --i; --e;
1284           }
1285         }
1286     }
1287 
1288   LLVM_DEBUG(if (verifyFunction(*newFunction))
1289                  report_fatal_error("verifyFunction failed!"));
1290   return newFunction;
1291 }
1292