xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 69c9cd277dfa2e1d89c7c09d59ea2d846a98b7e8)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <map>
64 #include <set>
65 #include <utility>
66 #include <vector>
67 
68 using namespace llvm;
69 using ProfileCount = Function::ProfileCount;
70 
71 #define DEBUG_TYPE "code-extractor"
72 
73 // Provide a command-line option to aggregate function arguments into a struct
74 // for functions produced by the code extractor. This is useful when converting
75 // extracted functions to pthread-based code, as only one argument (void*) can
76 // be passed in to pthread_create().
77 static cl::opt<bool>
78 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
79                  cl::desc("Aggregate arguments to code-extracted functions"));
80 
81 /// Test whether a block is valid for extraction.
82 static bool isBlockValidForExtraction(const BasicBlock &BB,
83                                       const SetVector<BasicBlock *> &Result,
84                                       bool AllowVarArgs, bool AllowAlloca) {
85   // taking the address of a basic block moved to another function is illegal
86   if (BB.hasAddressTaken())
87     return false;
88 
89   // don't hoist code that uses another basicblock address, as it's likely to
90   // lead to unexpected behavior, like cross-function jumps
91   SmallPtrSet<User const *, 16> Visited;
92   SmallVector<User const *, 16> ToVisit;
93 
94   for (Instruction const &Inst : BB)
95     ToVisit.push_back(&Inst);
96 
97   while (!ToVisit.empty()) {
98     User const *Curr = ToVisit.pop_back_val();
99     if (!Visited.insert(Curr).second)
100       continue;
101     if (isa<BlockAddress const>(Curr))
102       return false; // even a reference to self is likely to be not compatible
103 
104     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
105       continue;
106 
107     for (auto const &U : Curr->operands()) {
108       if (auto *UU = dyn_cast<User>(U))
109         ToVisit.push_back(UU);
110     }
111   }
112 
113   // If explicitly requested, allow vastart and alloca. For invoke instructions
114   // verify that extraction is valid.
115   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
116     if (isa<AllocaInst>(I)) {
117        if (!AllowAlloca)
118          return false;
119        continue;
120     }
121 
122     if (const auto *II = dyn_cast<InvokeInst>(I)) {
123       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
124       // must be a part of the subgraph which is being extracted.
125       if (auto *UBB = II->getUnwindDest())
126         if (!Result.count(UBB))
127           return false;
128       continue;
129     }
130 
131     // All catch handlers of a catchswitch instruction as well as the unwind
132     // destination must be in the subgraph.
133     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
134       if (auto *UBB = CSI->getUnwindDest())
135         if (!Result.count(UBB))
136           return false;
137       for (auto *HBB : CSI->handlers())
138         if (!Result.count(const_cast<BasicBlock*>(HBB)))
139           return false;
140       continue;
141     }
142 
143     // Make sure that entire catch handler is within subgraph. It is sufficient
144     // to check that catch return's block is in the list.
145     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
146       for (const auto *U : CPI->users())
147         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
148           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
149             return false;
150       continue;
151     }
152 
153     // And do similar checks for cleanup handler - the entire handler must be
154     // in subgraph which is going to be extracted. For cleanup return should
155     // additionally check that the unwind destination is also in the subgraph.
156     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
157       for (const auto *U : CPI->users())
158         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
159           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
160             return false;
161       continue;
162     }
163     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
164       if (auto *UBB = CRI->getUnwindDest())
165         if (!Result.count(UBB))
166           return false;
167       continue;
168     }
169 
170     if (const CallInst *CI = dyn_cast<CallInst>(I))
171       if (const Function *F = CI->getCalledFunction())
172         if (F->getIntrinsicID() == Intrinsic::vastart) {
173           if (AllowVarArgs)
174             continue;
175           else
176             return false;
177         }
178   }
179 
180   return true;
181 }
182 
183 /// Build a set of blocks to extract if the input blocks are viable.
184 static SetVector<BasicBlock *>
185 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
186                         bool AllowVarArgs, bool AllowAlloca) {
187   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
188   SetVector<BasicBlock *> Result;
189 
190   // Loop over the blocks, adding them to our set-vector, and aborting with an
191   // empty set if we encounter invalid blocks.
192   for (BasicBlock *BB : BBs) {
193     // If this block is dead, don't process it.
194     if (DT && !DT->isReachableFromEntry(BB))
195       continue;
196 
197     if (!Result.insert(BB))
198       llvm_unreachable("Repeated basic blocks in extraction input");
199   }
200 
201   for (auto *BB : Result) {
202     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
203       return {};
204 
205     // Make sure that the first block is not a landing pad.
206     if (BB == Result.front()) {
207       if (BB->isEHPad()) {
208         DEBUG(dbgs() << "The first block cannot be an unwind block\n");
209         return {};
210       }
211       continue;
212     }
213 
214     // All blocks other than the first must not have predecessors outside of
215     // the subgraph which is being extracted.
216     for (auto *PBB : predecessors(BB))
217       if (!Result.count(PBB)) {
218         DEBUG(dbgs() << "No blocks in this region may have entries from "
219                          "outside the region except for the first block!\n");
220         return {};
221       }
222   }
223 
224   return Result;
225 }
226 
227 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
228                              bool AggregateArgs, BlockFrequencyInfo *BFI,
229                              BranchProbabilityInfo *BPI, bool AllowVarArgs,
230                              bool AllowAlloca)
231     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
232       BPI(BPI), AllowVarArgs(AllowVarArgs),
233       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)) {}
234 
235 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
236                              BlockFrequencyInfo *BFI,
237                              BranchProbabilityInfo *BPI)
238     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
239       BPI(BPI), AllowVarArgs(false),
240       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
241                                      /* AllowVarArgs */ false,
242                                      /* AllowAlloca */ false)) {}
243 
244 /// definedInRegion - Return true if the specified value is defined in the
245 /// extracted region.
246 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
247   if (Instruction *I = dyn_cast<Instruction>(V))
248     if (Blocks.count(I->getParent()))
249       return true;
250   return false;
251 }
252 
253 /// definedInCaller - Return true if the specified value is defined in the
254 /// function being code extracted, but not in the region being extracted.
255 /// These values must be passed in as live-ins to the function.
256 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
257   if (isa<Argument>(V)) return true;
258   if (Instruction *I = dyn_cast<Instruction>(V))
259     if (!Blocks.count(I->getParent()))
260       return true;
261   return false;
262 }
263 
264 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
265   BasicBlock *CommonExitBlock = nullptr;
266   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
267     for (auto *Succ : successors(Block)) {
268       // Internal edges, ok.
269       if (Blocks.count(Succ))
270         continue;
271       if (!CommonExitBlock) {
272         CommonExitBlock = Succ;
273         continue;
274       }
275       if (CommonExitBlock == Succ)
276         continue;
277 
278       return true;
279     }
280     return false;
281   };
282 
283   if (any_of(Blocks, hasNonCommonExitSucc))
284     return nullptr;
285 
286   return CommonExitBlock;
287 }
288 
289 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
290     Instruction *Addr) const {
291   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
292   Function *Func = (*Blocks.begin())->getParent();
293   for (BasicBlock &BB : *Func) {
294     if (Blocks.count(&BB))
295       continue;
296     for (Instruction &II : BB) {
297       if (isa<DbgInfoIntrinsic>(II))
298         continue;
299 
300       unsigned Opcode = II.getOpcode();
301       Value *MemAddr = nullptr;
302       switch (Opcode) {
303       case Instruction::Store:
304       case Instruction::Load: {
305         if (Opcode == Instruction::Store) {
306           StoreInst *SI = cast<StoreInst>(&II);
307           MemAddr = SI->getPointerOperand();
308         } else {
309           LoadInst *LI = cast<LoadInst>(&II);
310           MemAddr = LI->getPointerOperand();
311         }
312         // Global variable can not be aliased with locals.
313         if (dyn_cast<Constant>(MemAddr))
314           break;
315         Value *Base = MemAddr->stripInBoundsConstantOffsets();
316         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
317           return false;
318         break;
319       }
320       default: {
321         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
322         if (IntrInst) {
323           if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
324               IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
325             break;
326           return false;
327         }
328         // Treat all the other cases conservatively if it has side effects.
329         if (II.mayHaveSideEffects())
330           return false;
331       }
332       }
333     }
334   }
335 
336   return true;
337 }
338 
339 BasicBlock *
340 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
341   BasicBlock *SinglePredFromOutlineRegion = nullptr;
342   assert(!Blocks.count(CommonExitBlock) &&
343          "Expect a block outside the region!");
344   for (auto *Pred : predecessors(CommonExitBlock)) {
345     if (!Blocks.count(Pred))
346       continue;
347     if (!SinglePredFromOutlineRegion) {
348       SinglePredFromOutlineRegion = Pred;
349     } else if (SinglePredFromOutlineRegion != Pred) {
350       SinglePredFromOutlineRegion = nullptr;
351       break;
352     }
353   }
354 
355   if (SinglePredFromOutlineRegion)
356     return SinglePredFromOutlineRegion;
357 
358 #ifndef NDEBUG
359   auto getFirstPHI = [](BasicBlock *BB) {
360     BasicBlock::iterator I = BB->begin();
361     PHINode *FirstPhi = nullptr;
362     while (I != BB->end()) {
363       PHINode *Phi = dyn_cast<PHINode>(I);
364       if (!Phi)
365         break;
366       if (!FirstPhi) {
367         FirstPhi = Phi;
368         break;
369       }
370     }
371     return FirstPhi;
372   };
373   // If there are any phi nodes, the single pred either exists or has already
374   // be created before code extraction.
375   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
376 #endif
377 
378   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
379       CommonExitBlock->getFirstNonPHI()->getIterator());
380 
381   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
382        PI != PE;) {
383     BasicBlock *Pred = *PI++;
384     if (Blocks.count(Pred))
385       continue;
386     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
387   }
388   // Now add the old exit block to the outline region.
389   Blocks.insert(CommonExitBlock);
390   return CommonExitBlock;
391 }
392 
393 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
394                                 BasicBlock *&ExitBlock) const {
395   Function *Func = (*Blocks.begin())->getParent();
396   ExitBlock = getCommonExitBlock(Blocks);
397 
398   for (BasicBlock &BB : *Func) {
399     if (Blocks.count(&BB))
400       continue;
401     for (Instruction &II : BB) {
402       auto *AI = dyn_cast<AllocaInst>(&II);
403       if (!AI)
404         continue;
405 
406       // Find the pair of life time markers for address 'Addr' that are either
407       // defined inside the outline region or can legally be shrinkwrapped into
408       // the outline region. If there are not other untracked uses of the
409       // address, return the pair of markers if found; otherwise return a pair
410       // of nullptr.
411       auto GetLifeTimeMarkers =
412           [&](Instruction *Addr, bool &SinkLifeStart,
413               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
414         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
415 
416         for (User *U : Addr->users()) {
417           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
418           if (IntrInst) {
419             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
420               // Do not handle the case where AI has multiple start markers.
421               if (LifeStart)
422                 return std::make_pair<Instruction *>(nullptr, nullptr);
423               LifeStart = IntrInst;
424             }
425             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
426               if (LifeEnd)
427                 return std::make_pair<Instruction *>(nullptr, nullptr);
428               LifeEnd = IntrInst;
429             }
430             continue;
431           }
432           // Find untracked uses of the address, bail.
433           if (!definedInRegion(Blocks, U))
434             return std::make_pair<Instruction *>(nullptr, nullptr);
435         }
436 
437         if (!LifeStart || !LifeEnd)
438           return std::make_pair<Instruction *>(nullptr, nullptr);
439 
440         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
441         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
442         // Do legality Check.
443         if ((SinkLifeStart || HoistLifeEnd) &&
444             !isLegalToShrinkwrapLifetimeMarkers(Addr))
445           return std::make_pair<Instruction *>(nullptr, nullptr);
446 
447         // Check to see if we have a place to do hoisting, if not, bail.
448         if (HoistLifeEnd && !ExitBlock)
449           return std::make_pair<Instruction *>(nullptr, nullptr);
450 
451         return std::make_pair(LifeStart, LifeEnd);
452       };
453 
454       bool SinkLifeStart = false, HoistLifeEnd = false;
455       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
456 
457       if (Markers.first) {
458         if (SinkLifeStart)
459           SinkCands.insert(Markers.first);
460         SinkCands.insert(AI);
461         if (HoistLifeEnd)
462           HoistCands.insert(Markers.second);
463         continue;
464       }
465 
466       // Follow the bitcast.
467       Instruction *MarkerAddr = nullptr;
468       for (User *U : AI->users()) {
469         if (U->stripInBoundsConstantOffsets() == AI) {
470           SinkLifeStart = false;
471           HoistLifeEnd = false;
472           Instruction *Bitcast = cast<Instruction>(U);
473           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
474           if (Markers.first) {
475             MarkerAddr = Bitcast;
476             continue;
477           }
478         }
479 
480         // Found unknown use of AI.
481         if (!definedInRegion(Blocks, U)) {
482           MarkerAddr = nullptr;
483           break;
484         }
485       }
486 
487       if (MarkerAddr) {
488         if (SinkLifeStart)
489           SinkCands.insert(Markers.first);
490         if (!definedInRegion(Blocks, MarkerAddr))
491           SinkCands.insert(MarkerAddr);
492         SinkCands.insert(AI);
493         if (HoistLifeEnd)
494           HoistCands.insert(Markers.second);
495       }
496     }
497   }
498 }
499 
500 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
501                                       const ValueSet &SinkCands) const {
502   for (BasicBlock *BB : Blocks) {
503     // If a used value is defined outside the region, it's an input.  If an
504     // instruction is used outside the region, it's an output.
505     for (Instruction &II : *BB) {
506       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
507            ++OI) {
508         Value *V = *OI;
509         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
510           Inputs.insert(V);
511       }
512 
513       for (User *U : II.users())
514         if (!definedInRegion(Blocks, U)) {
515           Outputs.insert(&II);
516           break;
517         }
518     }
519   }
520 }
521 
522 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
523 /// region, we need to split the entry block of the region so that the PHI node
524 /// is easier to deal with.
525 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
526   unsigned NumPredsFromRegion = 0;
527   unsigned NumPredsOutsideRegion = 0;
528 
529   if (Header != &Header->getParent()->getEntryBlock()) {
530     PHINode *PN = dyn_cast<PHINode>(Header->begin());
531     if (!PN) return;  // No PHI nodes.
532 
533     // If the header node contains any PHI nodes, check to see if there is more
534     // than one entry from outside the region.  If so, we need to sever the
535     // header block into two.
536     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
537       if (Blocks.count(PN->getIncomingBlock(i)))
538         ++NumPredsFromRegion;
539       else
540         ++NumPredsOutsideRegion;
541 
542     // If there is one (or fewer) predecessor from outside the region, we don't
543     // need to do anything special.
544     if (NumPredsOutsideRegion <= 1) return;
545   }
546 
547   // Otherwise, we need to split the header block into two pieces: one
548   // containing PHI nodes merging values from outside of the region, and a
549   // second that contains all of the code for the block and merges back any
550   // incoming values from inside of the region.
551   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
552 
553   // We only want to code extract the second block now, and it becomes the new
554   // header of the region.
555   BasicBlock *OldPred = Header;
556   Blocks.remove(OldPred);
557   Blocks.insert(NewBB);
558   Header = NewBB;
559 
560   // Okay, now we need to adjust the PHI nodes and any branches from within the
561   // region to go to the new header block instead of the old header block.
562   if (NumPredsFromRegion) {
563     PHINode *PN = cast<PHINode>(OldPred->begin());
564     // Loop over all of the predecessors of OldPred that are in the region,
565     // changing them to branch to NewBB instead.
566     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
567       if (Blocks.count(PN->getIncomingBlock(i))) {
568         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
569         TI->replaceUsesOfWith(OldPred, NewBB);
570       }
571 
572     // Okay, everything within the region is now branching to the right block, we
573     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
574     BasicBlock::iterator AfterPHIs;
575     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
576       PHINode *PN = cast<PHINode>(AfterPHIs);
577       // Create a new PHI node in the new region, which has an incoming value
578       // from OldPred of PN.
579       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
580                                        PN->getName() + ".ce", &NewBB->front());
581       PN->replaceAllUsesWith(NewPN);
582       NewPN->addIncoming(PN, OldPred);
583 
584       // Loop over all of the incoming value in PN, moving them to NewPN if they
585       // are from the extracted region.
586       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
587         if (Blocks.count(PN->getIncomingBlock(i))) {
588           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
589           PN->removeIncomingValue(i);
590           --i;
591         }
592       }
593     }
594   }
595 }
596 
597 void CodeExtractor::splitReturnBlocks() {
598   for (BasicBlock *Block : Blocks)
599     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
600       BasicBlock *New =
601           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
602       if (DT) {
603         // Old dominates New. New node dominates all other nodes dominated
604         // by Old.
605         DomTreeNode *OldNode = DT->getNode(Block);
606         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
607                                                OldNode->end());
608 
609         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
610 
611         for (DomTreeNode *I : Children)
612           DT->changeImmediateDominator(I, NewNode);
613       }
614     }
615 }
616 
617 /// constructFunction - make a function based on inputs and outputs, as follows:
618 /// f(in0, ..., inN, out0, ..., outN)
619 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
620                                            const ValueSet &outputs,
621                                            BasicBlock *header,
622                                            BasicBlock *newRootNode,
623                                            BasicBlock *newHeader,
624                                            Function *oldFunction,
625                                            Module *M) {
626   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
627   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
628 
629   // This function returns unsigned, outputs will go back by reference.
630   switch (NumExitBlocks) {
631   case 0:
632   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
633   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
634   default: RetTy = Type::getInt16Ty(header->getContext()); break;
635   }
636 
637   std::vector<Type *> paramTy;
638 
639   // Add the types of the input values to the function's argument list
640   for (Value *value : inputs) {
641     DEBUG(dbgs() << "value used in func: " << *value << "\n");
642     paramTy.push_back(value->getType());
643   }
644 
645   // Add the types of the output values to the function's argument list.
646   for (Value *output : outputs) {
647     DEBUG(dbgs() << "instr used in func: " << *output << "\n");
648     if (AggregateArgs)
649       paramTy.push_back(output->getType());
650     else
651       paramTy.push_back(PointerType::getUnqual(output->getType()));
652   }
653 
654   DEBUG({
655     dbgs() << "Function type: " << *RetTy << " f(";
656     for (Type *i : paramTy)
657       dbgs() << *i << ", ";
658     dbgs() << ")\n";
659   });
660 
661   StructType *StructTy;
662   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
663     StructTy = StructType::get(M->getContext(), paramTy);
664     paramTy.clear();
665     paramTy.push_back(PointerType::getUnqual(StructTy));
666   }
667   FunctionType *funcType =
668                   FunctionType::get(RetTy, paramTy,
669                                     AllowVarArgs && oldFunction->isVarArg());
670 
671   // Create the new function
672   Function *newFunction = Function::Create(funcType,
673                                            GlobalValue::InternalLinkage,
674                                            oldFunction->getName() + "_" +
675                                            header->getName(), M);
676   // If the old function is no-throw, so is the new one.
677   if (oldFunction->doesNotThrow())
678     newFunction->setDoesNotThrow();
679 
680   // Inherit the uwtable attribute if we need to.
681   if (oldFunction->hasUWTable())
682     newFunction->setHasUWTable();
683 
684   // Inherit all of the target dependent attributes and white-listed
685   // target independent attributes.
686   //  (e.g. If the extracted region contains a call to an x86.sse
687   //  instruction we need to make sure that the extracted region has the
688   //  "target-features" attribute allowing it to be lowered.
689   // FIXME: This should be changed to check to see if a specific
690   //           attribute can not be inherited.
691   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
692     if (Attr.isStringAttribute()) {
693       if (Attr.getKindAsString() == "thunk")
694         continue;
695     } else
696       switch (Attr.getKindAsEnum()) {
697       // Those attributes cannot be propagated safely. Explicitly list them
698       // here so we get a warning if new attributes are added. This list also
699       // includes non-function attributes.
700       case Attribute::Alignment:
701       case Attribute::AllocSize:
702       case Attribute::ArgMemOnly:
703       case Attribute::Builtin:
704       case Attribute::ByVal:
705       case Attribute::Convergent:
706       case Attribute::Dereferenceable:
707       case Attribute::DereferenceableOrNull:
708       case Attribute::InAlloca:
709       case Attribute::InReg:
710       case Attribute::InaccessibleMemOnly:
711       case Attribute::InaccessibleMemOrArgMemOnly:
712       case Attribute::JumpTable:
713       case Attribute::Naked:
714       case Attribute::Nest:
715       case Attribute::NoAlias:
716       case Attribute::NoBuiltin:
717       case Attribute::NoCapture:
718       case Attribute::NoReturn:
719       case Attribute::None:
720       case Attribute::NonNull:
721       case Attribute::ReadNone:
722       case Attribute::ReadOnly:
723       case Attribute::Returned:
724       case Attribute::ReturnsTwice:
725       case Attribute::SExt:
726       case Attribute::Speculatable:
727       case Attribute::StackAlignment:
728       case Attribute::StructRet:
729       case Attribute::SwiftError:
730       case Attribute::SwiftSelf:
731       case Attribute::WriteOnly:
732       case Attribute::ZExt:
733       case Attribute::EndAttrKinds:
734         continue;
735       // Those attributes should be safe to propagate to the extracted function.
736       case Attribute::AlwaysInline:
737       case Attribute::Cold:
738       case Attribute::NoRecurse:
739       case Attribute::InlineHint:
740       case Attribute::MinSize:
741       case Attribute::NoDuplicate:
742       case Attribute::NoImplicitFloat:
743       case Attribute::NoInline:
744       case Attribute::NonLazyBind:
745       case Attribute::NoRedZone:
746       case Attribute::NoUnwind:
747       case Attribute::OptForFuzzing:
748       case Attribute::OptimizeNone:
749       case Attribute::OptimizeForSize:
750       case Attribute::SafeStack:
751       case Attribute::ShadowCallStack:
752       case Attribute::SanitizeAddress:
753       case Attribute::SanitizeMemory:
754       case Attribute::SanitizeThread:
755       case Attribute::SanitizeHWAddress:
756       case Attribute::StackProtect:
757       case Attribute::StackProtectReq:
758       case Attribute::StackProtectStrong:
759       case Attribute::StrictFP:
760       case Attribute::UWTable:
761       case Attribute::NoCfCheck:
762         break;
763       }
764 
765     newFunction->addFnAttr(Attr);
766   }
767   newFunction->getBasicBlockList().push_back(newRootNode);
768 
769   // Create an iterator to name all of the arguments we inserted.
770   Function::arg_iterator AI = newFunction->arg_begin();
771 
772   // Rewrite all users of the inputs in the extracted region to use the
773   // arguments (or appropriate addressing into struct) instead.
774   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
775     Value *RewriteVal;
776     if (AggregateArgs) {
777       Value *Idx[2];
778       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
779       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
780       TerminatorInst *TI = newFunction->begin()->getTerminator();
781       GetElementPtrInst *GEP = GetElementPtrInst::Create(
782           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
783       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
784     } else
785       RewriteVal = &*AI++;
786 
787     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
788     for (User *use : Users)
789       if (Instruction *inst = dyn_cast<Instruction>(use))
790         if (Blocks.count(inst->getParent()))
791           inst->replaceUsesOfWith(inputs[i], RewriteVal);
792   }
793 
794   // Set names for input and output arguments.
795   if (!AggregateArgs) {
796     AI = newFunction->arg_begin();
797     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
798       AI->setName(inputs[i]->getName());
799     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
800       AI->setName(outputs[i]->getName()+".out");
801   }
802 
803   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
804   // within the new function. This must be done before we lose track of which
805   // blocks were originally in the code region.
806   std::vector<User *> Users(header->user_begin(), header->user_end());
807   for (unsigned i = 0, e = Users.size(); i != e; ++i)
808     // The BasicBlock which contains the branch is not in the region
809     // modify the branch target to a new block
810     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
811       if (!Blocks.count(TI->getParent()) &&
812           TI->getParent()->getParent() == oldFunction)
813         TI->replaceUsesOfWith(header, newHeader);
814 
815   return newFunction;
816 }
817 
818 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
819 /// the call instruction, splitting any PHI nodes in the header block as
820 /// necessary.
821 void CodeExtractor::
822 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
823                            ValueSet &inputs, ValueSet &outputs) {
824   // Emit a call to the new function, passing in: *pointer to struct (if
825   // aggregating parameters), or plan inputs and allocated memory for outputs
826   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
827 
828   Module *M = newFunction->getParent();
829   LLVMContext &Context = M->getContext();
830   const DataLayout &DL = M->getDataLayout();
831 
832   // Add inputs as params, or to be filled into the struct
833   for (Value *input : inputs)
834     if (AggregateArgs)
835       StructValues.push_back(input);
836     else
837       params.push_back(input);
838 
839   // Create allocas for the outputs
840   for (Value *output : outputs) {
841     if (AggregateArgs) {
842       StructValues.push_back(output);
843     } else {
844       AllocaInst *alloca =
845         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
846                        nullptr, output->getName() + ".loc",
847                        &codeReplacer->getParent()->front().front());
848       ReloadOutputs.push_back(alloca);
849       params.push_back(alloca);
850     }
851   }
852 
853   StructType *StructArgTy = nullptr;
854   AllocaInst *Struct = nullptr;
855   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
856     std::vector<Type *> ArgTypes;
857     for (ValueSet::iterator v = StructValues.begin(),
858            ve = StructValues.end(); v != ve; ++v)
859       ArgTypes.push_back((*v)->getType());
860 
861     // Allocate a struct at the beginning of this function
862     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
863     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
864                             "structArg",
865                             &codeReplacer->getParent()->front().front());
866     params.push_back(Struct);
867 
868     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
869       Value *Idx[2];
870       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
871       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
872       GetElementPtrInst *GEP = GetElementPtrInst::Create(
873           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
874       codeReplacer->getInstList().push_back(GEP);
875       StoreInst *SI = new StoreInst(StructValues[i], GEP);
876       codeReplacer->getInstList().push_back(SI);
877     }
878   }
879 
880   // Emit the call to the function
881   CallInst *call = CallInst::Create(newFunction, params,
882                                     NumExitBlocks > 1 ? "targetBlock" : "");
883   // Add debug location to the new call, if the original function has debug
884   // info. In that case, the terminator of the entry block of the extracted
885   // function contains the first debug location of the extracted function,
886   // set in extractCodeRegion.
887   if (codeReplacer->getParent()->getSubprogram()) {
888     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
889       call->setDebugLoc(DL);
890   }
891   codeReplacer->getInstList().push_back(call);
892 
893   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
894   unsigned FirstOut = inputs.size();
895   if (!AggregateArgs)
896     std::advance(OutputArgBegin, inputs.size());
897 
898   // Reload the outputs passed in by reference.
899   Function::arg_iterator OAI = OutputArgBegin;
900   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
901     Value *Output = nullptr;
902     if (AggregateArgs) {
903       Value *Idx[2];
904       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
905       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
906       GetElementPtrInst *GEP = GetElementPtrInst::Create(
907           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
908       codeReplacer->getInstList().push_back(GEP);
909       Output = GEP;
910     } else {
911       Output = ReloadOutputs[i];
912     }
913     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
914     Reloads.push_back(load);
915     codeReplacer->getInstList().push_back(load);
916     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
917     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
918       Instruction *inst = cast<Instruction>(Users[u]);
919       if (!Blocks.count(inst->getParent()))
920         inst->replaceUsesOfWith(outputs[i], load);
921     }
922 
923     // Store to argument right after the definition of output value.
924     auto *OutI = dyn_cast<Instruction>(outputs[i]);
925     if (!OutI)
926       continue;
927     // Find proper insertion point.
928     Instruction *InsertPt = OutI->getNextNode();
929     // Let's assume that there is no other guy interleave non-PHI in PHIs.
930     if (isa<PHINode>(InsertPt))
931       InsertPt = InsertPt->getParent()->getFirstNonPHI();
932 
933     assert(OAI != newFunction->arg_end() &&
934            "Number of output arguments should match "
935            "the amount of defined values");
936     if (AggregateArgs) {
937       Value *Idx[2];
938       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
939       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
940       GetElementPtrInst *GEP = GetElementPtrInst::Create(
941           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
942       new StoreInst(outputs[i], GEP, InsertPt);
943       // Since there should be only one struct argument aggregating
944       // all the output values, we shouldn't increment OAI, which always
945       // points to the struct argument, in this case.
946     } else {
947       new StoreInst(outputs[i], &*OAI, InsertPt);
948       ++OAI;
949     }
950   }
951 
952   // Now we can emit a switch statement using the call as a value.
953   SwitchInst *TheSwitch =
954       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
955                          codeReplacer, 0, codeReplacer);
956 
957   // Since there may be multiple exits from the original region, make the new
958   // function return an unsigned, switch on that number.  This loop iterates
959   // over all of the blocks in the extracted region, updating any terminator
960   // instructions in the to-be-extracted region that branch to blocks that are
961   // not in the region to be extracted.
962   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
963 
964   unsigned switchVal = 0;
965   for (BasicBlock *Block : Blocks) {
966     TerminatorInst *TI = Block->getTerminator();
967     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
968       if (!Blocks.count(TI->getSuccessor(i))) {
969         BasicBlock *OldTarget = TI->getSuccessor(i);
970         // add a new basic block which returns the appropriate value
971         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
972         if (!NewTarget) {
973           // If we don't already have an exit stub for this non-extracted
974           // destination, create one now!
975           NewTarget = BasicBlock::Create(Context,
976                                          OldTarget->getName() + ".exitStub",
977                                          newFunction);
978           unsigned SuccNum = switchVal++;
979 
980           Value *brVal = nullptr;
981           switch (NumExitBlocks) {
982           case 0:
983           case 1: break;  // No value needed.
984           case 2:         // Conditional branch, return a bool
985             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
986             break;
987           default:
988             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
989             break;
990           }
991 
992           ReturnInst::Create(Context, brVal, NewTarget);
993 
994           // Update the switch instruction.
995           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
996                                               SuccNum),
997                              OldTarget);
998         }
999 
1000         // rewrite the original branch instruction with this new target
1001         TI->setSuccessor(i, NewTarget);
1002       }
1003   }
1004 
1005   // Now that we've done the deed, simplify the switch instruction.
1006   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1007   switch (NumExitBlocks) {
1008   case 0:
1009     // There are no successors (the block containing the switch itself), which
1010     // means that previously this was the last part of the function, and hence
1011     // this should be rewritten as a `ret'
1012 
1013     // Check if the function should return a value
1014     if (OldFnRetTy->isVoidTy()) {
1015       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1016     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1017       // return what we have
1018       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1019     } else {
1020       // Otherwise we must have code extracted an unwind or something, just
1021       // return whatever we want.
1022       ReturnInst::Create(Context,
1023                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1024     }
1025 
1026     TheSwitch->eraseFromParent();
1027     break;
1028   case 1:
1029     // Only a single destination, change the switch into an unconditional
1030     // branch.
1031     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1032     TheSwitch->eraseFromParent();
1033     break;
1034   case 2:
1035     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1036                        call, TheSwitch);
1037     TheSwitch->eraseFromParent();
1038     break;
1039   default:
1040     // Otherwise, make the default destination of the switch instruction be one
1041     // of the other successors.
1042     TheSwitch->setCondition(call);
1043     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1044     // Remove redundant case
1045     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1046     break;
1047   }
1048 }
1049 
1050 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1051   Function *oldFunc = (*Blocks.begin())->getParent();
1052   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1053   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1054 
1055   for (BasicBlock *Block : Blocks) {
1056     // Delete the basic block from the old function, and the list of blocks
1057     oldBlocks.remove(Block);
1058 
1059     // Insert this basic block into the new function
1060     newBlocks.push_back(Block);
1061   }
1062 }
1063 
1064 void CodeExtractor::calculateNewCallTerminatorWeights(
1065     BasicBlock *CodeReplacer,
1066     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1067     BranchProbabilityInfo *BPI) {
1068   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1069   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1070 
1071   // Update the branch weights for the exit block.
1072   TerminatorInst *TI = CodeReplacer->getTerminator();
1073   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1074 
1075   // Block Frequency distribution with dummy node.
1076   Distribution BranchDist;
1077 
1078   // Add each of the frequencies of the successors.
1079   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1080     BlockNode ExitNode(i);
1081     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1082     if (ExitFreq != 0)
1083       BranchDist.addExit(ExitNode, ExitFreq);
1084     else
1085       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1086   }
1087 
1088   // Check for no total weight.
1089   if (BranchDist.Total == 0)
1090     return;
1091 
1092   // Normalize the distribution so that they can fit in unsigned.
1093   BranchDist.normalize();
1094 
1095   // Create normalized branch weights and set the metadata.
1096   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1097     const auto &Weight = BranchDist.Weights[I];
1098 
1099     // Get the weight and update the current BFI.
1100     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1101     BranchProbability BP(Weight.Amount, BranchDist.Total);
1102     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1103   }
1104   TI->setMetadata(
1105       LLVMContext::MD_prof,
1106       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1107 }
1108 
1109 Function *CodeExtractor::extractCodeRegion() {
1110   if (!isEligible())
1111     return nullptr;
1112 
1113   // Assumption: this is a single-entry code region, and the header is the first
1114   // block in the region.
1115   BasicBlock *header = *Blocks.begin();
1116   Function *oldFunction = header->getParent();
1117 
1118   // For functions with varargs, check that varargs handling is only done in the
1119   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1120   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1121     auto containsVarArgIntrinsic = [](Instruction &I) {
1122       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1123         if (const Function *F = CI->getCalledFunction())
1124           return F->getIntrinsicID() == Intrinsic::vastart ||
1125                  F->getIntrinsicID() == Intrinsic::vaend;
1126       return false;
1127     };
1128 
1129     for (auto &BB : *oldFunction) {
1130       if (Blocks.count(&BB))
1131         continue;
1132       if (llvm::any_of(BB, containsVarArgIntrinsic))
1133         return nullptr;
1134     }
1135   }
1136   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1137   BasicBlock *CommonExit = nullptr;
1138 
1139   // Calculate the entry frequency of the new function before we change the root
1140   //   block.
1141   BlockFrequency EntryFreq;
1142   if (BFI) {
1143     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1144     for (BasicBlock *Pred : predecessors(header)) {
1145       if (Blocks.count(Pred))
1146         continue;
1147       EntryFreq +=
1148           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1149     }
1150   }
1151 
1152   // If we have to split PHI nodes or the entry block, do so now.
1153   severSplitPHINodes(header);
1154 
1155   // If we have any return instructions in the region, split those blocks so
1156   // that the return is not in the region.
1157   splitReturnBlocks();
1158 
1159   // This takes place of the original loop
1160   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1161                                                 "codeRepl", oldFunction,
1162                                                 header);
1163 
1164   // The new function needs a root node because other nodes can branch to the
1165   // head of the region, but the entry node of a function cannot have preds.
1166   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1167                                                "newFuncRoot");
1168   auto *BranchI = BranchInst::Create(header);
1169   // If the original function has debug info, we have to add a debug location
1170   // to the new branch instruction from the artificial entry block.
1171   // We use the debug location of the first instruction in the extracted
1172   // blocks, as there is no other equivalent line in the source code.
1173   if (oldFunction->getSubprogram()) {
1174     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1175       return any_of(*BB, [&BranchI](const Instruction &I) {
1176         if (!I.getDebugLoc())
1177           return false;
1178         BranchI->setDebugLoc(I.getDebugLoc());
1179         return true;
1180       });
1181     });
1182   }
1183   newFuncRoot->getInstList().push_back(BranchI);
1184 
1185   findAllocas(SinkingCands, HoistingCands, CommonExit);
1186   assert(HoistingCands.empty() || CommonExit);
1187 
1188   // Find inputs to, outputs from the code region.
1189   findInputsOutputs(inputs, outputs, SinkingCands);
1190 
1191   // Now sink all instructions which only have non-phi uses inside the region
1192   for (auto *II : SinkingCands)
1193     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1194                                       newFuncRoot->getFirstInsertionPt());
1195 
1196   if (!HoistingCands.empty()) {
1197     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1198     Instruction *TI = HoistToBlock->getTerminator();
1199     for (auto *II : HoistingCands)
1200       cast<Instruction>(II)->moveBefore(TI);
1201   }
1202 
1203   // Calculate the exit blocks for the extracted region and the total exit
1204   // weights for each of those blocks.
1205   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1206   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1207   for (BasicBlock *Block : Blocks) {
1208     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1209          ++SI) {
1210       if (!Blocks.count(*SI)) {
1211         // Update the branch weight for this successor.
1212         if (BFI) {
1213           BlockFrequency &BF = ExitWeights[*SI];
1214           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1215         }
1216         ExitBlocks.insert(*SI);
1217       }
1218     }
1219   }
1220   NumExitBlocks = ExitBlocks.size();
1221 
1222   // Construct new function based on inputs/outputs & add allocas for all defs.
1223   Function *newFunction = constructFunction(inputs, outputs, header,
1224                                             newFuncRoot,
1225                                             codeReplacer, oldFunction,
1226                                             oldFunction->getParent());
1227 
1228   // Update the entry count of the function.
1229   if (BFI) {
1230     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1231     if (Count.hasValue())
1232       newFunction->setEntryCount(
1233           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1234     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1235   }
1236 
1237   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1238 
1239   moveCodeToFunction(newFunction);
1240 
1241   // Propagate personality info to the new function if there is one.
1242   if (oldFunction->hasPersonalityFn())
1243     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1244 
1245   // Update the branch weights for the exit block.
1246   if (BFI && NumExitBlocks > 1)
1247     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1248 
1249   // Loop over all of the PHI nodes in the header block, and change any
1250   // references to the old incoming edge to be the new incoming edge.
1251   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1252     PHINode *PN = cast<PHINode>(I);
1253     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1254       if (!Blocks.count(PN->getIncomingBlock(i)))
1255         PN->setIncomingBlock(i, newFuncRoot);
1256   }
1257 
1258   // Look at all successors of the codeReplacer block.  If any of these blocks
1259   // had PHI nodes in them, we need to update the "from" block to be the code
1260   // replacer, not the original block in the extracted region.
1261   std::vector<BasicBlock *> Succs(succ_begin(codeReplacer),
1262                                   succ_end(codeReplacer));
1263   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
1264     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
1265       PHINode *PN = cast<PHINode>(I);
1266       std::set<BasicBlock*> ProcessedPreds;
1267       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1268         if (Blocks.count(PN->getIncomingBlock(i))) {
1269           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
1270             PN->setIncomingBlock(i, codeReplacer);
1271           else {
1272             // There were multiple entries in the PHI for this block, now there
1273             // is only one, so remove the duplicated entries.
1274             PN->removeIncomingValue(i, false);
1275             --i; --e;
1276           }
1277         }
1278     }
1279 
1280   DEBUG(if (verifyFunction(*newFunction))
1281         report_fatal_error("verifyFunction failed!"));
1282   return newFunction;
1283 }
1284