1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <map> 64 #include <set> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 using ProfileCount = Function::ProfileCount; 70 71 #define DEBUG_TYPE "code-extractor" 72 73 // Provide a command-line option to aggregate function arguments into a struct 74 // for functions produced by the code extractor. This is useful when converting 75 // extracted functions to pthread-based code, as only one argument (void*) can 76 // be passed in to pthread_create(). 77 static cl::opt<bool> 78 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 79 cl::desc("Aggregate arguments to code-extracted functions")); 80 81 /// Test whether a block is valid for extraction. 82 static bool isBlockValidForExtraction(const BasicBlock &BB, 83 const SetVector<BasicBlock *> &Result, 84 bool AllowVarArgs, bool AllowAlloca) { 85 // taking the address of a basic block moved to another function is illegal 86 if (BB.hasAddressTaken()) 87 return false; 88 89 // don't hoist code that uses another basicblock address, as it's likely to 90 // lead to unexpected behavior, like cross-function jumps 91 SmallPtrSet<User const *, 16> Visited; 92 SmallVector<User const *, 16> ToVisit; 93 94 for (Instruction const &Inst : BB) 95 ToVisit.push_back(&Inst); 96 97 while (!ToVisit.empty()) { 98 User const *Curr = ToVisit.pop_back_val(); 99 if (!Visited.insert(Curr).second) 100 continue; 101 if (isa<BlockAddress const>(Curr)) 102 return false; // even a reference to self is likely to be not compatible 103 104 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 105 continue; 106 107 for (auto const &U : Curr->operands()) { 108 if (auto *UU = dyn_cast<User>(U)) 109 ToVisit.push_back(UU); 110 } 111 } 112 113 // If explicitly requested, allow vastart and alloca. For invoke instructions 114 // verify that extraction is valid. 115 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 116 if (isa<AllocaInst>(I)) { 117 if (!AllowAlloca) 118 return false; 119 continue; 120 } 121 122 if (const auto *II = dyn_cast<InvokeInst>(I)) { 123 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 124 // must be a part of the subgraph which is being extracted. 125 if (auto *UBB = II->getUnwindDest()) 126 if (!Result.count(UBB)) 127 return false; 128 continue; 129 } 130 131 // All catch handlers of a catchswitch instruction as well as the unwind 132 // destination must be in the subgraph. 133 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 134 if (auto *UBB = CSI->getUnwindDest()) 135 if (!Result.count(UBB)) 136 return false; 137 for (auto *HBB : CSI->handlers()) 138 if (!Result.count(const_cast<BasicBlock*>(HBB))) 139 return false; 140 continue; 141 } 142 143 // Make sure that entire catch handler is within subgraph. It is sufficient 144 // to check that catch return's block is in the list. 145 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 146 for (const auto *U : CPI->users()) 147 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 148 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 149 return false; 150 continue; 151 } 152 153 // And do similar checks for cleanup handler - the entire handler must be 154 // in subgraph which is going to be extracted. For cleanup return should 155 // additionally check that the unwind destination is also in the subgraph. 156 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 157 for (const auto *U : CPI->users()) 158 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 159 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 160 return false; 161 continue; 162 } 163 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 164 if (auto *UBB = CRI->getUnwindDest()) 165 if (!Result.count(UBB)) 166 return false; 167 continue; 168 } 169 170 if (const CallInst *CI = dyn_cast<CallInst>(I)) 171 if (const Function *F = CI->getCalledFunction()) 172 if (F->getIntrinsicID() == Intrinsic::vastart) { 173 if (AllowVarArgs) 174 continue; 175 else 176 return false; 177 } 178 } 179 180 return true; 181 } 182 183 /// Build a set of blocks to extract if the input blocks are viable. 184 static SetVector<BasicBlock *> 185 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 186 bool AllowVarArgs, bool AllowAlloca) { 187 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 188 SetVector<BasicBlock *> Result; 189 190 // Loop over the blocks, adding them to our set-vector, and aborting with an 191 // empty set if we encounter invalid blocks. 192 for (BasicBlock *BB : BBs) { 193 // If this block is dead, don't process it. 194 if (DT && !DT->isReachableFromEntry(BB)) 195 continue; 196 197 if (!Result.insert(BB)) 198 llvm_unreachable("Repeated basic blocks in extraction input"); 199 } 200 201 for (auto *BB : Result) { 202 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 203 return {}; 204 205 // Make sure that the first block is not a landing pad. 206 if (BB == Result.front()) { 207 if (BB->isEHPad()) { 208 DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 209 return {}; 210 } 211 continue; 212 } 213 214 // All blocks other than the first must not have predecessors outside of 215 // the subgraph which is being extracted. 216 for (auto *PBB : predecessors(BB)) 217 if (!Result.count(PBB)) { 218 DEBUG(dbgs() << "No blocks in this region may have entries from " 219 "outside the region except for the first block!\n"); 220 return {}; 221 } 222 } 223 224 return Result; 225 } 226 227 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 228 bool AggregateArgs, BlockFrequencyInfo *BFI, 229 BranchProbabilityInfo *BPI, bool AllowVarArgs, 230 bool AllowAlloca) 231 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 232 BPI(BPI), AllowVarArgs(AllowVarArgs), 233 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)) {} 234 235 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 236 BlockFrequencyInfo *BFI, 237 BranchProbabilityInfo *BPI) 238 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 239 BPI(BPI), AllowVarArgs(false), 240 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 241 /* AllowVarArgs */ false, 242 /* AllowAlloca */ false)) {} 243 244 /// definedInRegion - Return true if the specified value is defined in the 245 /// extracted region. 246 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 247 if (Instruction *I = dyn_cast<Instruction>(V)) 248 if (Blocks.count(I->getParent())) 249 return true; 250 return false; 251 } 252 253 /// definedInCaller - Return true if the specified value is defined in the 254 /// function being code extracted, but not in the region being extracted. 255 /// These values must be passed in as live-ins to the function. 256 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 257 if (isa<Argument>(V)) return true; 258 if (Instruction *I = dyn_cast<Instruction>(V)) 259 if (!Blocks.count(I->getParent())) 260 return true; 261 return false; 262 } 263 264 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 265 BasicBlock *CommonExitBlock = nullptr; 266 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 267 for (auto *Succ : successors(Block)) { 268 // Internal edges, ok. 269 if (Blocks.count(Succ)) 270 continue; 271 if (!CommonExitBlock) { 272 CommonExitBlock = Succ; 273 continue; 274 } 275 if (CommonExitBlock == Succ) 276 continue; 277 278 return true; 279 } 280 return false; 281 }; 282 283 if (any_of(Blocks, hasNonCommonExitSucc)) 284 return nullptr; 285 286 return CommonExitBlock; 287 } 288 289 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 290 Instruction *Addr) const { 291 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 292 Function *Func = (*Blocks.begin())->getParent(); 293 for (BasicBlock &BB : *Func) { 294 if (Blocks.count(&BB)) 295 continue; 296 for (Instruction &II : BB) { 297 if (isa<DbgInfoIntrinsic>(II)) 298 continue; 299 300 unsigned Opcode = II.getOpcode(); 301 Value *MemAddr = nullptr; 302 switch (Opcode) { 303 case Instruction::Store: 304 case Instruction::Load: { 305 if (Opcode == Instruction::Store) { 306 StoreInst *SI = cast<StoreInst>(&II); 307 MemAddr = SI->getPointerOperand(); 308 } else { 309 LoadInst *LI = cast<LoadInst>(&II); 310 MemAddr = LI->getPointerOperand(); 311 } 312 // Global variable can not be aliased with locals. 313 if (dyn_cast<Constant>(MemAddr)) 314 break; 315 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 316 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 317 return false; 318 break; 319 } 320 default: { 321 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 322 if (IntrInst) { 323 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 324 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 325 break; 326 return false; 327 } 328 // Treat all the other cases conservatively if it has side effects. 329 if (II.mayHaveSideEffects()) 330 return false; 331 } 332 } 333 } 334 } 335 336 return true; 337 } 338 339 BasicBlock * 340 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 341 BasicBlock *SinglePredFromOutlineRegion = nullptr; 342 assert(!Blocks.count(CommonExitBlock) && 343 "Expect a block outside the region!"); 344 for (auto *Pred : predecessors(CommonExitBlock)) { 345 if (!Blocks.count(Pred)) 346 continue; 347 if (!SinglePredFromOutlineRegion) { 348 SinglePredFromOutlineRegion = Pred; 349 } else if (SinglePredFromOutlineRegion != Pred) { 350 SinglePredFromOutlineRegion = nullptr; 351 break; 352 } 353 } 354 355 if (SinglePredFromOutlineRegion) 356 return SinglePredFromOutlineRegion; 357 358 #ifndef NDEBUG 359 auto getFirstPHI = [](BasicBlock *BB) { 360 BasicBlock::iterator I = BB->begin(); 361 PHINode *FirstPhi = nullptr; 362 while (I != BB->end()) { 363 PHINode *Phi = dyn_cast<PHINode>(I); 364 if (!Phi) 365 break; 366 if (!FirstPhi) { 367 FirstPhi = Phi; 368 break; 369 } 370 } 371 return FirstPhi; 372 }; 373 // If there are any phi nodes, the single pred either exists or has already 374 // be created before code extraction. 375 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 376 #endif 377 378 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 379 CommonExitBlock->getFirstNonPHI()->getIterator()); 380 381 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 382 PI != PE;) { 383 BasicBlock *Pred = *PI++; 384 if (Blocks.count(Pred)) 385 continue; 386 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 387 } 388 // Now add the old exit block to the outline region. 389 Blocks.insert(CommonExitBlock); 390 return CommonExitBlock; 391 } 392 393 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 394 BasicBlock *&ExitBlock) const { 395 Function *Func = (*Blocks.begin())->getParent(); 396 ExitBlock = getCommonExitBlock(Blocks); 397 398 for (BasicBlock &BB : *Func) { 399 if (Blocks.count(&BB)) 400 continue; 401 for (Instruction &II : BB) { 402 auto *AI = dyn_cast<AllocaInst>(&II); 403 if (!AI) 404 continue; 405 406 // Find the pair of life time markers for address 'Addr' that are either 407 // defined inside the outline region or can legally be shrinkwrapped into 408 // the outline region. If there are not other untracked uses of the 409 // address, return the pair of markers if found; otherwise return a pair 410 // of nullptr. 411 auto GetLifeTimeMarkers = 412 [&](Instruction *Addr, bool &SinkLifeStart, 413 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 414 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 415 416 for (User *U : Addr->users()) { 417 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 418 if (IntrInst) { 419 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 420 // Do not handle the case where AI has multiple start markers. 421 if (LifeStart) 422 return std::make_pair<Instruction *>(nullptr, nullptr); 423 LifeStart = IntrInst; 424 } 425 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 426 if (LifeEnd) 427 return std::make_pair<Instruction *>(nullptr, nullptr); 428 LifeEnd = IntrInst; 429 } 430 continue; 431 } 432 // Find untracked uses of the address, bail. 433 if (!definedInRegion(Blocks, U)) 434 return std::make_pair<Instruction *>(nullptr, nullptr); 435 } 436 437 if (!LifeStart || !LifeEnd) 438 return std::make_pair<Instruction *>(nullptr, nullptr); 439 440 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 441 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 442 // Do legality Check. 443 if ((SinkLifeStart || HoistLifeEnd) && 444 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 445 return std::make_pair<Instruction *>(nullptr, nullptr); 446 447 // Check to see if we have a place to do hoisting, if not, bail. 448 if (HoistLifeEnd && !ExitBlock) 449 return std::make_pair<Instruction *>(nullptr, nullptr); 450 451 return std::make_pair(LifeStart, LifeEnd); 452 }; 453 454 bool SinkLifeStart = false, HoistLifeEnd = false; 455 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 456 457 if (Markers.first) { 458 if (SinkLifeStart) 459 SinkCands.insert(Markers.first); 460 SinkCands.insert(AI); 461 if (HoistLifeEnd) 462 HoistCands.insert(Markers.second); 463 continue; 464 } 465 466 // Follow the bitcast. 467 Instruction *MarkerAddr = nullptr; 468 for (User *U : AI->users()) { 469 if (U->stripInBoundsConstantOffsets() == AI) { 470 SinkLifeStart = false; 471 HoistLifeEnd = false; 472 Instruction *Bitcast = cast<Instruction>(U); 473 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 474 if (Markers.first) { 475 MarkerAddr = Bitcast; 476 continue; 477 } 478 } 479 480 // Found unknown use of AI. 481 if (!definedInRegion(Blocks, U)) { 482 MarkerAddr = nullptr; 483 break; 484 } 485 } 486 487 if (MarkerAddr) { 488 if (SinkLifeStart) 489 SinkCands.insert(Markers.first); 490 if (!definedInRegion(Blocks, MarkerAddr)) 491 SinkCands.insert(MarkerAddr); 492 SinkCands.insert(AI); 493 if (HoistLifeEnd) 494 HoistCands.insert(Markers.second); 495 } 496 } 497 } 498 } 499 500 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 501 const ValueSet &SinkCands) const { 502 for (BasicBlock *BB : Blocks) { 503 // If a used value is defined outside the region, it's an input. If an 504 // instruction is used outside the region, it's an output. 505 for (Instruction &II : *BB) { 506 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 507 ++OI) { 508 Value *V = *OI; 509 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 510 Inputs.insert(V); 511 } 512 513 for (User *U : II.users()) 514 if (!definedInRegion(Blocks, U)) { 515 Outputs.insert(&II); 516 break; 517 } 518 } 519 } 520 } 521 522 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 523 /// region, we need to split the entry block of the region so that the PHI node 524 /// is easier to deal with. 525 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 526 unsigned NumPredsFromRegion = 0; 527 unsigned NumPredsOutsideRegion = 0; 528 529 if (Header != &Header->getParent()->getEntryBlock()) { 530 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 531 if (!PN) return; // No PHI nodes. 532 533 // If the header node contains any PHI nodes, check to see if there is more 534 // than one entry from outside the region. If so, we need to sever the 535 // header block into two. 536 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 537 if (Blocks.count(PN->getIncomingBlock(i))) 538 ++NumPredsFromRegion; 539 else 540 ++NumPredsOutsideRegion; 541 542 // If there is one (or fewer) predecessor from outside the region, we don't 543 // need to do anything special. 544 if (NumPredsOutsideRegion <= 1) return; 545 } 546 547 // Otherwise, we need to split the header block into two pieces: one 548 // containing PHI nodes merging values from outside of the region, and a 549 // second that contains all of the code for the block and merges back any 550 // incoming values from inside of the region. 551 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 552 553 // We only want to code extract the second block now, and it becomes the new 554 // header of the region. 555 BasicBlock *OldPred = Header; 556 Blocks.remove(OldPred); 557 Blocks.insert(NewBB); 558 Header = NewBB; 559 560 // Okay, now we need to adjust the PHI nodes and any branches from within the 561 // region to go to the new header block instead of the old header block. 562 if (NumPredsFromRegion) { 563 PHINode *PN = cast<PHINode>(OldPred->begin()); 564 // Loop over all of the predecessors of OldPred that are in the region, 565 // changing them to branch to NewBB instead. 566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 567 if (Blocks.count(PN->getIncomingBlock(i))) { 568 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 569 TI->replaceUsesOfWith(OldPred, NewBB); 570 } 571 572 // Okay, everything within the region is now branching to the right block, we 573 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 574 BasicBlock::iterator AfterPHIs; 575 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 576 PHINode *PN = cast<PHINode>(AfterPHIs); 577 // Create a new PHI node in the new region, which has an incoming value 578 // from OldPred of PN. 579 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 580 PN->getName() + ".ce", &NewBB->front()); 581 PN->replaceAllUsesWith(NewPN); 582 NewPN->addIncoming(PN, OldPred); 583 584 // Loop over all of the incoming value in PN, moving them to NewPN if they 585 // are from the extracted region. 586 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 587 if (Blocks.count(PN->getIncomingBlock(i))) { 588 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 589 PN->removeIncomingValue(i); 590 --i; 591 } 592 } 593 } 594 } 595 } 596 597 void CodeExtractor::splitReturnBlocks() { 598 for (BasicBlock *Block : Blocks) 599 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 600 BasicBlock *New = 601 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 602 if (DT) { 603 // Old dominates New. New node dominates all other nodes dominated 604 // by Old. 605 DomTreeNode *OldNode = DT->getNode(Block); 606 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 607 OldNode->end()); 608 609 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 610 611 for (DomTreeNode *I : Children) 612 DT->changeImmediateDominator(I, NewNode); 613 } 614 } 615 } 616 617 /// constructFunction - make a function based on inputs and outputs, as follows: 618 /// f(in0, ..., inN, out0, ..., outN) 619 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 620 const ValueSet &outputs, 621 BasicBlock *header, 622 BasicBlock *newRootNode, 623 BasicBlock *newHeader, 624 Function *oldFunction, 625 Module *M) { 626 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 627 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 628 629 // This function returns unsigned, outputs will go back by reference. 630 switch (NumExitBlocks) { 631 case 0: 632 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 633 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 634 default: RetTy = Type::getInt16Ty(header->getContext()); break; 635 } 636 637 std::vector<Type *> paramTy; 638 639 // Add the types of the input values to the function's argument list 640 for (Value *value : inputs) { 641 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 642 paramTy.push_back(value->getType()); 643 } 644 645 // Add the types of the output values to the function's argument list. 646 for (Value *output : outputs) { 647 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 648 if (AggregateArgs) 649 paramTy.push_back(output->getType()); 650 else 651 paramTy.push_back(PointerType::getUnqual(output->getType())); 652 } 653 654 DEBUG({ 655 dbgs() << "Function type: " << *RetTy << " f("; 656 for (Type *i : paramTy) 657 dbgs() << *i << ", "; 658 dbgs() << ")\n"; 659 }); 660 661 StructType *StructTy; 662 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 663 StructTy = StructType::get(M->getContext(), paramTy); 664 paramTy.clear(); 665 paramTy.push_back(PointerType::getUnqual(StructTy)); 666 } 667 FunctionType *funcType = 668 FunctionType::get(RetTy, paramTy, 669 AllowVarArgs && oldFunction->isVarArg()); 670 671 // Create the new function 672 Function *newFunction = Function::Create(funcType, 673 GlobalValue::InternalLinkage, 674 oldFunction->getName() + "_" + 675 header->getName(), M); 676 // If the old function is no-throw, so is the new one. 677 if (oldFunction->doesNotThrow()) 678 newFunction->setDoesNotThrow(); 679 680 // Inherit the uwtable attribute if we need to. 681 if (oldFunction->hasUWTable()) 682 newFunction->setHasUWTable(); 683 684 // Inherit all of the target dependent attributes and white-listed 685 // target independent attributes. 686 // (e.g. If the extracted region contains a call to an x86.sse 687 // instruction we need to make sure that the extracted region has the 688 // "target-features" attribute allowing it to be lowered. 689 // FIXME: This should be changed to check to see if a specific 690 // attribute can not be inherited. 691 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 692 if (Attr.isStringAttribute()) { 693 if (Attr.getKindAsString() == "thunk") 694 continue; 695 } else 696 switch (Attr.getKindAsEnum()) { 697 // Those attributes cannot be propagated safely. Explicitly list them 698 // here so we get a warning if new attributes are added. This list also 699 // includes non-function attributes. 700 case Attribute::Alignment: 701 case Attribute::AllocSize: 702 case Attribute::ArgMemOnly: 703 case Attribute::Builtin: 704 case Attribute::ByVal: 705 case Attribute::Convergent: 706 case Attribute::Dereferenceable: 707 case Attribute::DereferenceableOrNull: 708 case Attribute::InAlloca: 709 case Attribute::InReg: 710 case Attribute::InaccessibleMemOnly: 711 case Attribute::InaccessibleMemOrArgMemOnly: 712 case Attribute::JumpTable: 713 case Attribute::Naked: 714 case Attribute::Nest: 715 case Attribute::NoAlias: 716 case Attribute::NoBuiltin: 717 case Attribute::NoCapture: 718 case Attribute::NoReturn: 719 case Attribute::None: 720 case Attribute::NonNull: 721 case Attribute::ReadNone: 722 case Attribute::ReadOnly: 723 case Attribute::Returned: 724 case Attribute::ReturnsTwice: 725 case Attribute::SExt: 726 case Attribute::Speculatable: 727 case Attribute::StackAlignment: 728 case Attribute::StructRet: 729 case Attribute::SwiftError: 730 case Attribute::SwiftSelf: 731 case Attribute::WriteOnly: 732 case Attribute::ZExt: 733 case Attribute::EndAttrKinds: 734 continue; 735 // Those attributes should be safe to propagate to the extracted function. 736 case Attribute::AlwaysInline: 737 case Attribute::Cold: 738 case Attribute::NoRecurse: 739 case Attribute::InlineHint: 740 case Attribute::MinSize: 741 case Attribute::NoDuplicate: 742 case Attribute::NoImplicitFloat: 743 case Attribute::NoInline: 744 case Attribute::NonLazyBind: 745 case Attribute::NoRedZone: 746 case Attribute::NoUnwind: 747 case Attribute::OptForFuzzing: 748 case Attribute::OptimizeNone: 749 case Attribute::OptimizeForSize: 750 case Attribute::SafeStack: 751 case Attribute::ShadowCallStack: 752 case Attribute::SanitizeAddress: 753 case Attribute::SanitizeMemory: 754 case Attribute::SanitizeThread: 755 case Attribute::SanitizeHWAddress: 756 case Attribute::StackProtect: 757 case Attribute::StackProtectReq: 758 case Attribute::StackProtectStrong: 759 case Attribute::StrictFP: 760 case Attribute::UWTable: 761 case Attribute::NoCfCheck: 762 break; 763 } 764 765 newFunction->addFnAttr(Attr); 766 } 767 newFunction->getBasicBlockList().push_back(newRootNode); 768 769 // Create an iterator to name all of the arguments we inserted. 770 Function::arg_iterator AI = newFunction->arg_begin(); 771 772 // Rewrite all users of the inputs in the extracted region to use the 773 // arguments (or appropriate addressing into struct) instead. 774 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 775 Value *RewriteVal; 776 if (AggregateArgs) { 777 Value *Idx[2]; 778 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 779 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 780 TerminatorInst *TI = newFunction->begin()->getTerminator(); 781 GetElementPtrInst *GEP = GetElementPtrInst::Create( 782 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 783 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 784 } else 785 RewriteVal = &*AI++; 786 787 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 788 for (User *use : Users) 789 if (Instruction *inst = dyn_cast<Instruction>(use)) 790 if (Blocks.count(inst->getParent())) 791 inst->replaceUsesOfWith(inputs[i], RewriteVal); 792 } 793 794 // Set names for input and output arguments. 795 if (!AggregateArgs) { 796 AI = newFunction->arg_begin(); 797 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 798 AI->setName(inputs[i]->getName()); 799 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 800 AI->setName(outputs[i]->getName()+".out"); 801 } 802 803 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 804 // within the new function. This must be done before we lose track of which 805 // blocks were originally in the code region. 806 std::vector<User *> Users(header->user_begin(), header->user_end()); 807 for (unsigned i = 0, e = Users.size(); i != e; ++i) 808 // The BasicBlock which contains the branch is not in the region 809 // modify the branch target to a new block 810 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 811 if (!Blocks.count(TI->getParent()) && 812 TI->getParent()->getParent() == oldFunction) 813 TI->replaceUsesOfWith(header, newHeader); 814 815 return newFunction; 816 } 817 818 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 819 /// the call instruction, splitting any PHI nodes in the header block as 820 /// necessary. 821 void CodeExtractor:: 822 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 823 ValueSet &inputs, ValueSet &outputs) { 824 // Emit a call to the new function, passing in: *pointer to struct (if 825 // aggregating parameters), or plan inputs and allocated memory for outputs 826 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 827 828 Module *M = newFunction->getParent(); 829 LLVMContext &Context = M->getContext(); 830 const DataLayout &DL = M->getDataLayout(); 831 832 // Add inputs as params, or to be filled into the struct 833 for (Value *input : inputs) 834 if (AggregateArgs) 835 StructValues.push_back(input); 836 else 837 params.push_back(input); 838 839 // Create allocas for the outputs 840 for (Value *output : outputs) { 841 if (AggregateArgs) { 842 StructValues.push_back(output); 843 } else { 844 AllocaInst *alloca = 845 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 846 nullptr, output->getName() + ".loc", 847 &codeReplacer->getParent()->front().front()); 848 ReloadOutputs.push_back(alloca); 849 params.push_back(alloca); 850 } 851 } 852 853 StructType *StructArgTy = nullptr; 854 AllocaInst *Struct = nullptr; 855 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 856 std::vector<Type *> ArgTypes; 857 for (ValueSet::iterator v = StructValues.begin(), 858 ve = StructValues.end(); v != ve; ++v) 859 ArgTypes.push_back((*v)->getType()); 860 861 // Allocate a struct at the beginning of this function 862 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 863 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 864 "structArg", 865 &codeReplacer->getParent()->front().front()); 866 params.push_back(Struct); 867 868 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 869 Value *Idx[2]; 870 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 871 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 872 GetElementPtrInst *GEP = GetElementPtrInst::Create( 873 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 874 codeReplacer->getInstList().push_back(GEP); 875 StoreInst *SI = new StoreInst(StructValues[i], GEP); 876 codeReplacer->getInstList().push_back(SI); 877 } 878 } 879 880 // Emit the call to the function 881 CallInst *call = CallInst::Create(newFunction, params, 882 NumExitBlocks > 1 ? "targetBlock" : ""); 883 // Add debug location to the new call, if the original function has debug 884 // info. In that case, the terminator of the entry block of the extracted 885 // function contains the first debug location of the extracted function, 886 // set in extractCodeRegion. 887 if (codeReplacer->getParent()->getSubprogram()) { 888 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 889 call->setDebugLoc(DL); 890 } 891 codeReplacer->getInstList().push_back(call); 892 893 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 894 unsigned FirstOut = inputs.size(); 895 if (!AggregateArgs) 896 std::advance(OutputArgBegin, inputs.size()); 897 898 // Reload the outputs passed in by reference. 899 Function::arg_iterator OAI = OutputArgBegin; 900 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 901 Value *Output = nullptr; 902 if (AggregateArgs) { 903 Value *Idx[2]; 904 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 905 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 906 GetElementPtrInst *GEP = GetElementPtrInst::Create( 907 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 908 codeReplacer->getInstList().push_back(GEP); 909 Output = GEP; 910 } else { 911 Output = ReloadOutputs[i]; 912 } 913 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 914 Reloads.push_back(load); 915 codeReplacer->getInstList().push_back(load); 916 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 917 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 918 Instruction *inst = cast<Instruction>(Users[u]); 919 if (!Blocks.count(inst->getParent())) 920 inst->replaceUsesOfWith(outputs[i], load); 921 } 922 923 // Store to argument right after the definition of output value. 924 auto *OutI = dyn_cast<Instruction>(outputs[i]); 925 if (!OutI) 926 continue; 927 // Find proper insertion point. 928 Instruction *InsertPt = OutI->getNextNode(); 929 // Let's assume that there is no other guy interleave non-PHI in PHIs. 930 if (isa<PHINode>(InsertPt)) 931 InsertPt = InsertPt->getParent()->getFirstNonPHI(); 932 933 assert(OAI != newFunction->arg_end() && 934 "Number of output arguments should match " 935 "the amount of defined values"); 936 if (AggregateArgs) { 937 Value *Idx[2]; 938 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 939 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 940 GetElementPtrInst *GEP = GetElementPtrInst::Create( 941 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); 942 new StoreInst(outputs[i], GEP, InsertPt); 943 // Since there should be only one struct argument aggregating 944 // all the output values, we shouldn't increment OAI, which always 945 // points to the struct argument, in this case. 946 } else { 947 new StoreInst(outputs[i], &*OAI, InsertPt); 948 ++OAI; 949 } 950 } 951 952 // Now we can emit a switch statement using the call as a value. 953 SwitchInst *TheSwitch = 954 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 955 codeReplacer, 0, codeReplacer); 956 957 // Since there may be multiple exits from the original region, make the new 958 // function return an unsigned, switch on that number. This loop iterates 959 // over all of the blocks in the extracted region, updating any terminator 960 // instructions in the to-be-extracted region that branch to blocks that are 961 // not in the region to be extracted. 962 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 963 964 unsigned switchVal = 0; 965 for (BasicBlock *Block : Blocks) { 966 TerminatorInst *TI = Block->getTerminator(); 967 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 968 if (!Blocks.count(TI->getSuccessor(i))) { 969 BasicBlock *OldTarget = TI->getSuccessor(i); 970 // add a new basic block which returns the appropriate value 971 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 972 if (!NewTarget) { 973 // If we don't already have an exit stub for this non-extracted 974 // destination, create one now! 975 NewTarget = BasicBlock::Create(Context, 976 OldTarget->getName() + ".exitStub", 977 newFunction); 978 unsigned SuccNum = switchVal++; 979 980 Value *brVal = nullptr; 981 switch (NumExitBlocks) { 982 case 0: 983 case 1: break; // No value needed. 984 case 2: // Conditional branch, return a bool 985 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 986 break; 987 default: 988 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 989 break; 990 } 991 992 ReturnInst::Create(Context, brVal, NewTarget); 993 994 // Update the switch instruction. 995 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 996 SuccNum), 997 OldTarget); 998 } 999 1000 // rewrite the original branch instruction with this new target 1001 TI->setSuccessor(i, NewTarget); 1002 } 1003 } 1004 1005 // Now that we've done the deed, simplify the switch instruction. 1006 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1007 switch (NumExitBlocks) { 1008 case 0: 1009 // There are no successors (the block containing the switch itself), which 1010 // means that previously this was the last part of the function, and hence 1011 // this should be rewritten as a `ret' 1012 1013 // Check if the function should return a value 1014 if (OldFnRetTy->isVoidTy()) { 1015 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1016 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1017 // return what we have 1018 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1019 } else { 1020 // Otherwise we must have code extracted an unwind or something, just 1021 // return whatever we want. 1022 ReturnInst::Create(Context, 1023 Constant::getNullValue(OldFnRetTy), TheSwitch); 1024 } 1025 1026 TheSwitch->eraseFromParent(); 1027 break; 1028 case 1: 1029 // Only a single destination, change the switch into an unconditional 1030 // branch. 1031 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1032 TheSwitch->eraseFromParent(); 1033 break; 1034 case 2: 1035 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1036 call, TheSwitch); 1037 TheSwitch->eraseFromParent(); 1038 break; 1039 default: 1040 // Otherwise, make the default destination of the switch instruction be one 1041 // of the other successors. 1042 TheSwitch->setCondition(call); 1043 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1044 // Remove redundant case 1045 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1046 break; 1047 } 1048 } 1049 1050 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1051 Function *oldFunc = (*Blocks.begin())->getParent(); 1052 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1053 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1054 1055 for (BasicBlock *Block : Blocks) { 1056 // Delete the basic block from the old function, and the list of blocks 1057 oldBlocks.remove(Block); 1058 1059 // Insert this basic block into the new function 1060 newBlocks.push_back(Block); 1061 } 1062 } 1063 1064 void CodeExtractor::calculateNewCallTerminatorWeights( 1065 BasicBlock *CodeReplacer, 1066 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1067 BranchProbabilityInfo *BPI) { 1068 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1069 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1070 1071 // Update the branch weights for the exit block. 1072 TerminatorInst *TI = CodeReplacer->getTerminator(); 1073 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1074 1075 // Block Frequency distribution with dummy node. 1076 Distribution BranchDist; 1077 1078 // Add each of the frequencies of the successors. 1079 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1080 BlockNode ExitNode(i); 1081 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1082 if (ExitFreq != 0) 1083 BranchDist.addExit(ExitNode, ExitFreq); 1084 else 1085 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1086 } 1087 1088 // Check for no total weight. 1089 if (BranchDist.Total == 0) 1090 return; 1091 1092 // Normalize the distribution so that they can fit in unsigned. 1093 BranchDist.normalize(); 1094 1095 // Create normalized branch weights and set the metadata. 1096 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1097 const auto &Weight = BranchDist.Weights[I]; 1098 1099 // Get the weight and update the current BFI. 1100 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1101 BranchProbability BP(Weight.Amount, BranchDist.Total); 1102 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1103 } 1104 TI->setMetadata( 1105 LLVMContext::MD_prof, 1106 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1107 } 1108 1109 Function *CodeExtractor::extractCodeRegion() { 1110 if (!isEligible()) 1111 return nullptr; 1112 1113 // Assumption: this is a single-entry code region, and the header is the first 1114 // block in the region. 1115 BasicBlock *header = *Blocks.begin(); 1116 Function *oldFunction = header->getParent(); 1117 1118 // For functions with varargs, check that varargs handling is only done in the 1119 // outlined function, i.e vastart and vaend are only used in outlined blocks. 1120 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { 1121 auto containsVarArgIntrinsic = [](Instruction &I) { 1122 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1123 if (const Function *F = CI->getCalledFunction()) 1124 return F->getIntrinsicID() == Intrinsic::vastart || 1125 F->getIntrinsicID() == Intrinsic::vaend; 1126 return false; 1127 }; 1128 1129 for (auto &BB : *oldFunction) { 1130 if (Blocks.count(&BB)) 1131 continue; 1132 if (llvm::any_of(BB, containsVarArgIntrinsic)) 1133 return nullptr; 1134 } 1135 } 1136 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1137 BasicBlock *CommonExit = nullptr; 1138 1139 // Calculate the entry frequency of the new function before we change the root 1140 // block. 1141 BlockFrequency EntryFreq; 1142 if (BFI) { 1143 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1144 for (BasicBlock *Pred : predecessors(header)) { 1145 if (Blocks.count(Pred)) 1146 continue; 1147 EntryFreq += 1148 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1149 } 1150 } 1151 1152 // If we have to split PHI nodes or the entry block, do so now. 1153 severSplitPHINodes(header); 1154 1155 // If we have any return instructions in the region, split those blocks so 1156 // that the return is not in the region. 1157 splitReturnBlocks(); 1158 1159 // This takes place of the original loop 1160 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1161 "codeRepl", oldFunction, 1162 header); 1163 1164 // The new function needs a root node because other nodes can branch to the 1165 // head of the region, but the entry node of a function cannot have preds. 1166 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1167 "newFuncRoot"); 1168 auto *BranchI = BranchInst::Create(header); 1169 // If the original function has debug info, we have to add a debug location 1170 // to the new branch instruction from the artificial entry block. 1171 // We use the debug location of the first instruction in the extracted 1172 // blocks, as there is no other equivalent line in the source code. 1173 if (oldFunction->getSubprogram()) { 1174 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1175 return any_of(*BB, [&BranchI](const Instruction &I) { 1176 if (!I.getDebugLoc()) 1177 return false; 1178 BranchI->setDebugLoc(I.getDebugLoc()); 1179 return true; 1180 }); 1181 }); 1182 } 1183 newFuncRoot->getInstList().push_back(BranchI); 1184 1185 findAllocas(SinkingCands, HoistingCands, CommonExit); 1186 assert(HoistingCands.empty() || CommonExit); 1187 1188 // Find inputs to, outputs from the code region. 1189 findInputsOutputs(inputs, outputs, SinkingCands); 1190 1191 // Now sink all instructions which only have non-phi uses inside the region 1192 for (auto *II : SinkingCands) 1193 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1194 newFuncRoot->getFirstInsertionPt()); 1195 1196 if (!HoistingCands.empty()) { 1197 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1198 Instruction *TI = HoistToBlock->getTerminator(); 1199 for (auto *II : HoistingCands) 1200 cast<Instruction>(II)->moveBefore(TI); 1201 } 1202 1203 // Calculate the exit blocks for the extracted region and the total exit 1204 // weights for each of those blocks. 1205 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1206 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1207 for (BasicBlock *Block : Blocks) { 1208 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1209 ++SI) { 1210 if (!Blocks.count(*SI)) { 1211 // Update the branch weight for this successor. 1212 if (BFI) { 1213 BlockFrequency &BF = ExitWeights[*SI]; 1214 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1215 } 1216 ExitBlocks.insert(*SI); 1217 } 1218 } 1219 } 1220 NumExitBlocks = ExitBlocks.size(); 1221 1222 // Construct new function based on inputs/outputs & add allocas for all defs. 1223 Function *newFunction = constructFunction(inputs, outputs, header, 1224 newFuncRoot, 1225 codeReplacer, oldFunction, 1226 oldFunction->getParent()); 1227 1228 // Update the entry count of the function. 1229 if (BFI) { 1230 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1231 if (Count.hasValue()) 1232 newFunction->setEntryCount( 1233 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1234 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1235 } 1236 1237 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1238 1239 moveCodeToFunction(newFunction); 1240 1241 // Propagate personality info to the new function if there is one. 1242 if (oldFunction->hasPersonalityFn()) 1243 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1244 1245 // Update the branch weights for the exit block. 1246 if (BFI && NumExitBlocks > 1) 1247 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1248 1249 // Loop over all of the PHI nodes in the header block, and change any 1250 // references to the old incoming edge to be the new incoming edge. 1251 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1252 PHINode *PN = cast<PHINode>(I); 1253 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1254 if (!Blocks.count(PN->getIncomingBlock(i))) 1255 PN->setIncomingBlock(i, newFuncRoot); 1256 } 1257 1258 // Look at all successors of the codeReplacer block. If any of these blocks 1259 // had PHI nodes in them, we need to update the "from" block to be the code 1260 // replacer, not the original block in the extracted region. 1261 std::vector<BasicBlock *> Succs(succ_begin(codeReplacer), 1262 succ_end(codeReplacer)); 1263 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 1264 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 1265 PHINode *PN = cast<PHINode>(I); 1266 std::set<BasicBlock*> ProcessedPreds; 1267 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1268 if (Blocks.count(PN->getIncomingBlock(i))) { 1269 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 1270 PN->setIncomingBlock(i, codeReplacer); 1271 else { 1272 // There were multiple entries in the PHI for this block, now there 1273 // is only one, so remove the duplicated entries. 1274 PN->removeIncomingValue(i, false); 1275 --i; --e; 1276 } 1277 } 1278 } 1279 1280 DEBUG(if (verifyFunction(*newFunction)) 1281 report_fatal_error("verifyFunction failed!")); 1282 return newFunction; 1283 } 1284