1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (dyn_cast<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 430 PI != PE;) { 431 BasicBlock *Pred = *PI++; 432 if (Blocks.count(Pred)) 433 continue; 434 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 435 } 436 // Now add the old exit block to the outline region. 437 Blocks.insert(CommonExitBlock); 438 return CommonExitBlock; 439 } 440 441 // Find the pair of life time markers for address 'Addr' that are either 442 // defined inside the outline region or can legally be shrinkwrapped into the 443 // outline region. If there are not other untracked uses of the address, return 444 // the pair of markers if found; otherwise return a pair of nullptr. 445 CodeExtractor::LifetimeMarkerInfo 446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 447 Instruction *Addr, 448 BasicBlock *ExitBlock) const { 449 LifetimeMarkerInfo Info; 450 451 for (User *U : Addr->users()) { 452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 453 if (IntrInst) { 454 // We don't model addresses with multiple start/end markers, but the 455 // markers do not need to be in the region. 456 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 457 if (Info.LifeStart) 458 return {}; 459 Info.LifeStart = IntrInst; 460 continue; 461 } 462 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 463 if (Info.LifeEnd) 464 return {}; 465 Info.LifeEnd = IntrInst; 466 continue; 467 } 468 // At this point, permit debug uses outside of the region. 469 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 470 if (isa<DbgInfoIntrinsic>(IntrInst)) 471 continue; 472 } 473 // Find untracked uses of the address, bail. 474 if (!definedInRegion(Blocks, U)) 475 return {}; 476 } 477 478 if (!Info.LifeStart || !Info.LifeEnd) 479 return {}; 480 481 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 482 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 483 // Do legality check. 484 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 485 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 486 return {}; 487 488 // Check to see if we have a place to do hoisting, if not, bail. 489 if (Info.HoistLifeEnd && !ExitBlock) 490 return {}; 491 492 return Info; 493 } 494 495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 496 ValueSet &SinkCands, ValueSet &HoistCands, 497 BasicBlock *&ExitBlock) const { 498 Function *Func = (*Blocks.begin())->getParent(); 499 ExitBlock = getCommonExitBlock(Blocks); 500 501 auto moveOrIgnoreLifetimeMarkers = 502 [&](const LifetimeMarkerInfo &LMI) -> bool { 503 if (!LMI.LifeStart) 504 return false; 505 if (LMI.SinkLifeStart) { 506 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 507 << "\n"); 508 SinkCands.insert(LMI.LifeStart); 509 } 510 if (LMI.HoistLifeEnd) { 511 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 512 HoistCands.insert(LMI.LifeEnd); 513 } 514 return true; 515 }; 516 517 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 518 // this is much faster than walking all the instructions. 519 for (AllocaInst *AI : CEAC.getAllocas()) { 520 BasicBlock *BB = AI->getParent(); 521 if (Blocks.count(BB)) 522 continue; 523 524 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 525 // check whether it is actually still in the original function. 526 Function *AIFunc = BB->getParent(); 527 if (AIFunc != Func) 528 continue; 529 530 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 531 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 532 if (Moved) { 533 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 534 SinkCands.insert(AI); 535 continue; 536 } 537 538 // Follow any bitcasts. 539 SmallVector<Instruction *, 2> Bitcasts; 540 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 541 for (User *U : AI->users()) { 542 if (U->stripInBoundsConstantOffsets() == AI) { 543 Instruction *Bitcast = cast<Instruction>(U); 544 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 545 if (LMI.LifeStart) { 546 Bitcasts.push_back(Bitcast); 547 BitcastLifetimeInfo.push_back(LMI); 548 continue; 549 } 550 } 551 552 // Found unknown use of AI. 553 if (!definedInRegion(Blocks, U)) { 554 Bitcasts.clear(); 555 break; 556 } 557 } 558 559 // Either no bitcasts reference the alloca or there are unknown uses. 560 if (Bitcasts.empty()) 561 continue; 562 563 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 564 SinkCands.insert(AI); 565 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 566 Instruction *BitcastAddr = Bitcasts[I]; 567 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 568 assert(LMI.LifeStart && 569 "Unsafe to sink bitcast without lifetime markers"); 570 moveOrIgnoreLifetimeMarkers(LMI); 571 if (!definedInRegion(Blocks, BitcastAddr)) { 572 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 573 << "\n"); 574 SinkCands.insert(BitcastAddr); 575 } 576 } 577 } 578 } 579 580 bool CodeExtractor::isEligible() const { 581 if (Blocks.empty()) 582 return false; 583 BasicBlock *Header = *Blocks.begin(); 584 Function *F = Header->getParent(); 585 586 // For functions with varargs, check that varargs handling is only done in the 587 // outlined function, i.e vastart and vaend are only used in outlined blocks. 588 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 589 auto containsVarArgIntrinsic = [](const Instruction &I) { 590 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 591 if (const Function *Callee = CI->getCalledFunction()) 592 return Callee->getIntrinsicID() == Intrinsic::vastart || 593 Callee->getIntrinsicID() == Intrinsic::vaend; 594 return false; 595 }; 596 597 for (auto &BB : *F) { 598 if (Blocks.count(&BB)) 599 continue; 600 if (llvm::any_of(BB, containsVarArgIntrinsic)) 601 return false; 602 } 603 } 604 return true; 605 } 606 607 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 608 const ValueSet &SinkCands) const { 609 for (BasicBlock *BB : Blocks) { 610 // If a used value is defined outside the region, it's an input. If an 611 // instruction is used outside the region, it's an output. 612 for (Instruction &II : *BB) { 613 for (auto &OI : II.operands()) { 614 Value *V = OI; 615 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 616 Inputs.insert(V); 617 } 618 619 for (User *U : II.users()) 620 if (!definedInRegion(Blocks, U)) { 621 Outputs.insert(&II); 622 break; 623 } 624 } 625 } 626 } 627 628 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 629 /// of the region, we need to split the entry block of the region so that the 630 /// PHI node is easier to deal with. 631 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 632 unsigned NumPredsFromRegion = 0; 633 unsigned NumPredsOutsideRegion = 0; 634 635 if (Header != &Header->getParent()->getEntryBlock()) { 636 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 637 if (!PN) return; // No PHI nodes. 638 639 // If the header node contains any PHI nodes, check to see if there is more 640 // than one entry from outside the region. If so, we need to sever the 641 // header block into two. 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 643 if (Blocks.count(PN->getIncomingBlock(i))) 644 ++NumPredsFromRegion; 645 else 646 ++NumPredsOutsideRegion; 647 648 // If there is one (or fewer) predecessor from outside the region, we don't 649 // need to do anything special. 650 if (NumPredsOutsideRegion <= 1) return; 651 } 652 653 // Otherwise, we need to split the header block into two pieces: one 654 // containing PHI nodes merging values from outside of the region, and a 655 // second that contains all of the code for the block and merges back any 656 // incoming values from inside of the region. 657 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 658 659 // We only want to code extract the second block now, and it becomes the new 660 // header of the region. 661 BasicBlock *OldPred = Header; 662 Blocks.remove(OldPred); 663 Blocks.insert(NewBB); 664 Header = NewBB; 665 666 // Okay, now we need to adjust the PHI nodes and any branches from within the 667 // region to go to the new header block instead of the old header block. 668 if (NumPredsFromRegion) { 669 PHINode *PN = cast<PHINode>(OldPred->begin()); 670 // Loop over all of the predecessors of OldPred that are in the region, 671 // changing them to branch to NewBB instead. 672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 673 if (Blocks.count(PN->getIncomingBlock(i))) { 674 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 675 TI->replaceUsesOfWith(OldPred, NewBB); 676 } 677 678 // Okay, everything within the region is now branching to the right block, we 679 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 680 BasicBlock::iterator AfterPHIs; 681 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 682 PHINode *PN = cast<PHINode>(AfterPHIs); 683 // Create a new PHI node in the new region, which has an incoming value 684 // from OldPred of PN. 685 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 686 PN->getName() + ".ce", &NewBB->front()); 687 PN->replaceAllUsesWith(NewPN); 688 NewPN->addIncoming(PN, OldPred); 689 690 // Loop over all of the incoming value in PN, moving them to NewPN if they 691 // are from the extracted region. 692 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 693 if (Blocks.count(PN->getIncomingBlock(i))) { 694 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 695 PN->removeIncomingValue(i); 696 --i; 697 } 698 } 699 } 700 } 701 } 702 703 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 704 /// outlined region, we split these PHIs on two: one with inputs from region 705 /// and other with remaining incoming blocks; then first PHIs are placed in 706 /// outlined region. 707 void CodeExtractor::severSplitPHINodesOfExits( 708 const SmallPtrSetImpl<BasicBlock *> &Exits) { 709 for (BasicBlock *ExitBB : Exits) { 710 BasicBlock *NewBB = nullptr; 711 712 for (PHINode &PN : ExitBB->phis()) { 713 // Find all incoming values from the outlining region. 714 SmallVector<unsigned, 2> IncomingVals; 715 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 716 if (Blocks.count(PN.getIncomingBlock(i))) 717 IncomingVals.push_back(i); 718 719 // Do not process PHI if there is one (or fewer) predecessor from region. 720 // If PHI has exactly one predecessor from region, only this one incoming 721 // will be replaced on codeRepl block, so it should be safe to skip PHI. 722 if (IncomingVals.size() <= 1) 723 continue; 724 725 // Create block for new PHIs and add it to the list of outlined if it 726 // wasn't done before. 727 if (!NewBB) { 728 NewBB = BasicBlock::Create(ExitBB->getContext(), 729 ExitBB->getName() + ".split", 730 ExitBB->getParent(), ExitBB); 731 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 732 pred_end(ExitBB)); 733 for (BasicBlock *PredBB : Preds) 734 if (Blocks.count(PredBB)) 735 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 736 BranchInst::Create(ExitBB, NewBB); 737 Blocks.insert(NewBB); 738 } 739 740 // Split this PHI. 741 PHINode *NewPN = 742 PHINode::Create(PN.getType(), IncomingVals.size(), 743 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 744 for (unsigned i : IncomingVals) 745 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 746 for (unsigned i : reverse(IncomingVals)) 747 PN.removeIncomingValue(i, false); 748 PN.addIncoming(NewPN, NewBB); 749 } 750 } 751 } 752 753 void CodeExtractor::splitReturnBlocks() { 754 for (BasicBlock *Block : Blocks) 755 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 756 BasicBlock *New = 757 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 758 if (DT) { 759 // Old dominates New. New node dominates all other nodes dominated 760 // by Old. 761 DomTreeNode *OldNode = DT->getNode(Block); 762 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 763 OldNode->end()); 764 765 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 766 767 for (DomTreeNode *I : Children) 768 DT->changeImmediateDominator(I, NewNode); 769 } 770 } 771 } 772 773 /// constructFunction - make a function based on inputs and outputs, as follows: 774 /// f(in0, ..., inN, out0, ..., outN) 775 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 776 const ValueSet &outputs, 777 BasicBlock *header, 778 BasicBlock *newRootNode, 779 BasicBlock *newHeader, 780 Function *oldFunction, 781 Module *M) { 782 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 783 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 784 785 // This function returns unsigned, outputs will go back by reference. 786 switch (NumExitBlocks) { 787 case 0: 788 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 789 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 790 default: RetTy = Type::getInt16Ty(header->getContext()); break; 791 } 792 793 std::vector<Type *> paramTy; 794 795 // Add the types of the input values to the function's argument list 796 for (Value *value : inputs) { 797 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 798 paramTy.push_back(value->getType()); 799 } 800 801 // Add the types of the output values to the function's argument list. 802 for (Value *output : outputs) { 803 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 804 if (AggregateArgs) 805 paramTy.push_back(output->getType()); 806 else 807 paramTy.push_back(PointerType::getUnqual(output->getType())); 808 } 809 810 LLVM_DEBUG({ 811 dbgs() << "Function type: " << *RetTy << " f("; 812 for (Type *i : paramTy) 813 dbgs() << *i << ", "; 814 dbgs() << ")\n"; 815 }); 816 817 StructType *StructTy = nullptr; 818 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 819 StructTy = StructType::get(M->getContext(), paramTy); 820 paramTy.clear(); 821 paramTy.push_back(PointerType::getUnqual(StructTy)); 822 } 823 FunctionType *funcType = 824 FunctionType::get(RetTy, paramTy, 825 AllowVarArgs && oldFunction->isVarArg()); 826 827 std::string SuffixToUse = 828 Suffix.empty() 829 ? (header->getName().empty() ? "extracted" : header->getName().str()) 830 : Suffix; 831 // Create the new function 832 Function *newFunction = Function::Create( 833 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 834 oldFunction->getName() + "." + SuffixToUse, M); 835 // If the old function is no-throw, so is the new one. 836 if (oldFunction->doesNotThrow()) 837 newFunction->setDoesNotThrow(); 838 839 // Inherit the uwtable attribute if we need to. 840 if (oldFunction->hasUWTable()) 841 newFunction->setHasUWTable(); 842 843 // Inherit all of the target dependent attributes and white-listed 844 // target independent attributes. 845 // (e.g. If the extracted region contains a call to an x86.sse 846 // instruction we need to make sure that the extracted region has the 847 // "target-features" attribute allowing it to be lowered. 848 // FIXME: This should be changed to check to see if a specific 849 // attribute can not be inherited. 850 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 851 if (Attr.isStringAttribute()) { 852 if (Attr.getKindAsString() == "thunk") 853 continue; 854 } else 855 switch (Attr.getKindAsEnum()) { 856 // Those attributes cannot be propagated safely. Explicitly list them 857 // here so we get a warning if new attributes are added. This list also 858 // includes non-function attributes. 859 case Attribute::Alignment: 860 case Attribute::AllocSize: 861 case Attribute::ArgMemOnly: 862 case Attribute::Builtin: 863 case Attribute::ByVal: 864 case Attribute::Convergent: 865 case Attribute::Dereferenceable: 866 case Attribute::DereferenceableOrNull: 867 case Attribute::InAlloca: 868 case Attribute::InReg: 869 case Attribute::InaccessibleMemOnly: 870 case Attribute::InaccessibleMemOrArgMemOnly: 871 case Attribute::JumpTable: 872 case Attribute::Naked: 873 case Attribute::Nest: 874 case Attribute::NoAlias: 875 case Attribute::NoBuiltin: 876 case Attribute::NoCapture: 877 case Attribute::NoReturn: 878 case Attribute::NoSync: 879 case Attribute::None: 880 case Attribute::NonNull: 881 case Attribute::ReadNone: 882 case Attribute::ReadOnly: 883 case Attribute::Returned: 884 case Attribute::ReturnsTwice: 885 case Attribute::SExt: 886 case Attribute::Speculatable: 887 case Attribute::StackAlignment: 888 case Attribute::StructRet: 889 case Attribute::SwiftError: 890 case Attribute::SwiftSelf: 891 case Attribute::WillReturn: 892 case Attribute::WriteOnly: 893 case Attribute::ZExt: 894 case Attribute::ImmArg: 895 case Attribute::EndAttrKinds: 896 case Attribute::EmptyKey: 897 case Attribute::TombstoneKey: 898 continue; 899 // Those attributes should be safe to propagate to the extracted function. 900 case Attribute::AlwaysInline: 901 case Attribute::Cold: 902 case Attribute::NoRecurse: 903 case Attribute::InlineHint: 904 case Attribute::MinSize: 905 case Attribute::NoDuplicate: 906 case Attribute::NoFree: 907 case Attribute::NoImplicitFloat: 908 case Attribute::NoInline: 909 case Attribute::NonLazyBind: 910 case Attribute::NoRedZone: 911 case Attribute::NoUnwind: 912 case Attribute::OptForFuzzing: 913 case Attribute::OptimizeNone: 914 case Attribute::OptimizeForSize: 915 case Attribute::SafeStack: 916 case Attribute::ShadowCallStack: 917 case Attribute::SanitizeAddress: 918 case Attribute::SanitizeMemory: 919 case Attribute::SanitizeThread: 920 case Attribute::SanitizeHWAddress: 921 case Attribute::SanitizeMemTag: 922 case Attribute::SpeculativeLoadHardening: 923 case Attribute::StackProtect: 924 case Attribute::StackProtectReq: 925 case Attribute::StackProtectStrong: 926 case Attribute::StrictFP: 927 case Attribute::UWTable: 928 case Attribute::NoCfCheck: 929 break; 930 } 931 932 newFunction->addFnAttr(Attr); 933 } 934 newFunction->getBasicBlockList().push_back(newRootNode); 935 936 // Create an iterator to name all of the arguments we inserted. 937 Function::arg_iterator AI = newFunction->arg_begin(); 938 939 // Rewrite all users of the inputs in the extracted region to use the 940 // arguments (or appropriate addressing into struct) instead. 941 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 942 Value *RewriteVal; 943 if (AggregateArgs) { 944 Value *Idx[2]; 945 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 946 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 947 Instruction *TI = newFunction->begin()->getTerminator(); 948 GetElementPtrInst *GEP = GetElementPtrInst::Create( 949 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 950 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 951 "loadgep_" + inputs[i]->getName(), TI); 952 } else 953 RewriteVal = &*AI++; 954 955 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 956 for (User *use : Users) 957 if (Instruction *inst = dyn_cast<Instruction>(use)) 958 if (Blocks.count(inst->getParent())) 959 inst->replaceUsesOfWith(inputs[i], RewriteVal); 960 } 961 962 // Set names for input and output arguments. 963 if (!AggregateArgs) { 964 AI = newFunction->arg_begin(); 965 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 966 AI->setName(inputs[i]->getName()); 967 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 968 AI->setName(outputs[i]->getName()+".out"); 969 } 970 971 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 972 // within the new function. This must be done before we lose track of which 973 // blocks were originally in the code region. 974 std::vector<User *> Users(header->user_begin(), header->user_end()); 975 for (auto &U : Users) 976 // The BasicBlock which contains the branch is not in the region 977 // modify the branch target to a new block 978 if (Instruction *I = dyn_cast<Instruction>(U)) 979 if (I->isTerminator() && I->getFunction() == oldFunction && 980 !Blocks.count(I->getParent())) 981 I->replaceUsesOfWith(header, newHeader); 982 983 return newFunction; 984 } 985 986 /// Erase lifetime.start markers which reference inputs to the extraction 987 /// region, and insert the referenced memory into \p LifetimesStart. 988 /// 989 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 990 /// of allocas which will be moved from the caller function into the extracted 991 /// function (\p SunkAllocas). 992 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 993 const SetVector<Value *> &SunkAllocas, 994 SetVector<Value *> &LifetimesStart) { 995 for (BasicBlock *BB : Blocks) { 996 for (auto It = BB->begin(), End = BB->end(); It != End;) { 997 auto *II = dyn_cast<IntrinsicInst>(&*It); 998 ++It; 999 if (!II || !II->isLifetimeStartOrEnd()) 1000 continue; 1001 1002 // Get the memory operand of the lifetime marker. If the underlying 1003 // object is a sunk alloca, or is otherwise defined in the extraction 1004 // region, the lifetime marker must not be erased. 1005 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1006 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1007 continue; 1008 1009 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1010 LifetimesStart.insert(Mem); 1011 II->eraseFromParent(); 1012 } 1013 } 1014 } 1015 1016 /// Insert lifetime start/end markers surrounding the call to the new function 1017 /// for objects defined in the caller. 1018 static void insertLifetimeMarkersSurroundingCall( 1019 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1020 CallInst *TheCall) { 1021 LLVMContext &Ctx = M->getContext(); 1022 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1023 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1024 Instruction *Term = TheCall->getParent()->getTerminator(); 1025 1026 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1027 // needed to satisfy this requirement so they may be reused. 1028 DenseMap<Value *, Value *> Bitcasts; 1029 1030 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1031 // markers before the call if \p InsertBefore, and after the call otherwise. 1032 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1033 bool InsertBefore) { 1034 for (Value *Mem : Objects) { 1035 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1036 TheCall->getFunction()) && 1037 "Input memory not defined in original function"); 1038 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1039 if (!MemAsI8Ptr) { 1040 if (Mem->getType() == Int8PtrTy) 1041 MemAsI8Ptr = Mem; 1042 else 1043 MemAsI8Ptr = 1044 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1045 } 1046 1047 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1048 if (InsertBefore) 1049 Marker->insertBefore(TheCall); 1050 else 1051 Marker->insertBefore(Term); 1052 } 1053 }; 1054 1055 if (!LifetimesStart.empty()) { 1056 auto StartFn = llvm::Intrinsic::getDeclaration( 1057 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1058 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1059 } 1060 1061 if (!LifetimesEnd.empty()) { 1062 auto EndFn = llvm::Intrinsic::getDeclaration( 1063 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1064 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1065 } 1066 } 1067 1068 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1069 /// the call instruction, splitting any PHI nodes in the header block as 1070 /// necessary. 1071 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1072 BasicBlock *codeReplacer, 1073 ValueSet &inputs, 1074 ValueSet &outputs) { 1075 // Emit a call to the new function, passing in: *pointer to struct (if 1076 // aggregating parameters), or plan inputs and allocated memory for outputs 1077 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1078 1079 Module *M = newFunction->getParent(); 1080 LLVMContext &Context = M->getContext(); 1081 const DataLayout &DL = M->getDataLayout(); 1082 CallInst *call = nullptr; 1083 1084 // Add inputs as params, or to be filled into the struct 1085 unsigned ArgNo = 0; 1086 SmallVector<unsigned, 1> SwiftErrorArgs; 1087 for (Value *input : inputs) { 1088 if (AggregateArgs) 1089 StructValues.push_back(input); 1090 else { 1091 params.push_back(input); 1092 if (input->isSwiftError()) 1093 SwiftErrorArgs.push_back(ArgNo); 1094 } 1095 ++ArgNo; 1096 } 1097 1098 // Create allocas for the outputs 1099 for (Value *output : outputs) { 1100 if (AggregateArgs) { 1101 StructValues.push_back(output); 1102 } else { 1103 AllocaInst *alloca = 1104 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1105 nullptr, output->getName() + ".loc", 1106 &codeReplacer->getParent()->front().front()); 1107 ReloadOutputs.push_back(alloca); 1108 params.push_back(alloca); 1109 } 1110 } 1111 1112 StructType *StructArgTy = nullptr; 1113 AllocaInst *Struct = nullptr; 1114 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1115 std::vector<Type *> ArgTypes; 1116 for (ValueSet::iterator v = StructValues.begin(), 1117 ve = StructValues.end(); v != ve; ++v) 1118 ArgTypes.push_back((*v)->getType()); 1119 1120 // Allocate a struct at the beginning of this function 1121 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1122 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1123 "structArg", 1124 &codeReplacer->getParent()->front().front()); 1125 params.push_back(Struct); 1126 1127 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1128 Value *Idx[2]; 1129 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1130 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1131 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1132 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1133 codeReplacer->getInstList().push_back(GEP); 1134 StoreInst *SI = new StoreInst(StructValues[i], GEP); 1135 codeReplacer->getInstList().push_back(SI); 1136 } 1137 } 1138 1139 // Emit the call to the function 1140 call = CallInst::Create(newFunction, params, 1141 NumExitBlocks > 1 ? "targetBlock" : ""); 1142 // Add debug location to the new call, if the original function has debug 1143 // info. In that case, the terminator of the entry block of the extracted 1144 // function contains the first debug location of the extracted function, 1145 // set in extractCodeRegion. 1146 if (codeReplacer->getParent()->getSubprogram()) { 1147 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1148 call->setDebugLoc(DL); 1149 } 1150 codeReplacer->getInstList().push_back(call); 1151 1152 // Set swifterror parameter attributes. 1153 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1154 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1155 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1156 } 1157 1158 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1159 unsigned FirstOut = inputs.size(); 1160 if (!AggregateArgs) 1161 std::advance(OutputArgBegin, inputs.size()); 1162 1163 // Reload the outputs passed in by reference. 1164 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1165 Value *Output = nullptr; 1166 if (AggregateArgs) { 1167 Value *Idx[2]; 1168 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1169 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1170 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1171 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1172 codeReplacer->getInstList().push_back(GEP); 1173 Output = GEP; 1174 } else { 1175 Output = ReloadOutputs[i]; 1176 } 1177 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1178 outputs[i]->getName() + ".reload", 1179 codeReplacer); 1180 Reloads.push_back(load); 1181 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1182 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1183 Instruction *inst = cast<Instruction>(Users[u]); 1184 if (!Blocks.count(inst->getParent())) 1185 inst->replaceUsesOfWith(outputs[i], load); 1186 } 1187 } 1188 1189 // Now we can emit a switch statement using the call as a value. 1190 SwitchInst *TheSwitch = 1191 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1192 codeReplacer, 0, codeReplacer); 1193 1194 // Since there may be multiple exits from the original region, make the new 1195 // function return an unsigned, switch on that number. This loop iterates 1196 // over all of the blocks in the extracted region, updating any terminator 1197 // instructions in the to-be-extracted region that branch to blocks that are 1198 // not in the region to be extracted. 1199 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1200 1201 unsigned switchVal = 0; 1202 for (BasicBlock *Block : Blocks) { 1203 Instruction *TI = Block->getTerminator(); 1204 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1205 if (!Blocks.count(TI->getSuccessor(i))) { 1206 BasicBlock *OldTarget = TI->getSuccessor(i); 1207 // add a new basic block which returns the appropriate value 1208 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1209 if (!NewTarget) { 1210 // If we don't already have an exit stub for this non-extracted 1211 // destination, create one now! 1212 NewTarget = BasicBlock::Create(Context, 1213 OldTarget->getName() + ".exitStub", 1214 newFunction); 1215 unsigned SuccNum = switchVal++; 1216 1217 Value *brVal = nullptr; 1218 switch (NumExitBlocks) { 1219 case 0: 1220 case 1: break; // No value needed. 1221 case 2: // Conditional branch, return a bool 1222 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1223 break; 1224 default: 1225 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1226 break; 1227 } 1228 1229 ReturnInst::Create(Context, brVal, NewTarget); 1230 1231 // Update the switch instruction. 1232 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1233 SuccNum), 1234 OldTarget); 1235 } 1236 1237 // rewrite the original branch instruction with this new target 1238 TI->setSuccessor(i, NewTarget); 1239 } 1240 } 1241 1242 // Store the arguments right after the definition of output value. 1243 // This should be proceeded after creating exit stubs to be ensure that invoke 1244 // result restore will be placed in the outlined function. 1245 Function::arg_iterator OAI = OutputArgBegin; 1246 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1247 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1248 if (!OutI) 1249 continue; 1250 1251 // Find proper insertion point. 1252 BasicBlock::iterator InsertPt; 1253 // In case OutI is an invoke, we insert the store at the beginning in the 1254 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1255 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1256 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1257 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1258 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1259 else 1260 InsertPt = std::next(OutI->getIterator()); 1261 1262 Instruction *InsertBefore = &*InsertPt; 1263 assert((InsertBefore->getFunction() == newFunction || 1264 Blocks.count(InsertBefore->getParent())) && 1265 "InsertPt should be in new function"); 1266 assert(OAI != newFunction->arg_end() && 1267 "Number of output arguments should match " 1268 "the amount of defined values"); 1269 if (AggregateArgs) { 1270 Value *Idx[2]; 1271 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1272 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1273 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1274 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1275 InsertBefore); 1276 new StoreInst(outputs[i], GEP, InsertBefore); 1277 // Since there should be only one struct argument aggregating 1278 // all the output values, we shouldn't increment OAI, which always 1279 // points to the struct argument, in this case. 1280 } else { 1281 new StoreInst(outputs[i], &*OAI, InsertBefore); 1282 ++OAI; 1283 } 1284 } 1285 1286 // Now that we've done the deed, simplify the switch instruction. 1287 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1288 switch (NumExitBlocks) { 1289 case 0: 1290 // There are no successors (the block containing the switch itself), which 1291 // means that previously this was the last part of the function, and hence 1292 // this should be rewritten as a `ret' 1293 1294 // Check if the function should return a value 1295 if (OldFnRetTy->isVoidTy()) { 1296 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1297 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1298 // return what we have 1299 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1300 } else { 1301 // Otherwise we must have code extracted an unwind or something, just 1302 // return whatever we want. 1303 ReturnInst::Create(Context, 1304 Constant::getNullValue(OldFnRetTy), TheSwitch); 1305 } 1306 1307 TheSwitch->eraseFromParent(); 1308 break; 1309 case 1: 1310 // Only a single destination, change the switch into an unconditional 1311 // branch. 1312 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1313 TheSwitch->eraseFromParent(); 1314 break; 1315 case 2: 1316 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1317 call, TheSwitch); 1318 TheSwitch->eraseFromParent(); 1319 break; 1320 default: 1321 // Otherwise, make the default destination of the switch instruction be one 1322 // of the other successors. 1323 TheSwitch->setCondition(call); 1324 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1325 // Remove redundant case 1326 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1327 break; 1328 } 1329 1330 // Insert lifetime markers around the reloads of any output values. The 1331 // allocas output values are stored in are only in-use in the codeRepl block. 1332 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1333 1334 return call; 1335 } 1336 1337 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1338 Function *oldFunc = (*Blocks.begin())->getParent(); 1339 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1340 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1341 1342 for (BasicBlock *Block : Blocks) { 1343 // Delete the basic block from the old function, and the list of blocks 1344 oldBlocks.remove(Block); 1345 1346 // Insert this basic block into the new function 1347 newBlocks.push_back(Block); 1348 } 1349 } 1350 1351 void CodeExtractor::calculateNewCallTerminatorWeights( 1352 BasicBlock *CodeReplacer, 1353 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1354 BranchProbabilityInfo *BPI) { 1355 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1356 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1357 1358 // Update the branch weights for the exit block. 1359 Instruction *TI = CodeReplacer->getTerminator(); 1360 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1361 1362 // Block Frequency distribution with dummy node. 1363 Distribution BranchDist; 1364 1365 // Add each of the frequencies of the successors. 1366 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1367 BlockNode ExitNode(i); 1368 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1369 if (ExitFreq != 0) 1370 BranchDist.addExit(ExitNode, ExitFreq); 1371 else 1372 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1373 } 1374 1375 // Check for no total weight. 1376 if (BranchDist.Total == 0) 1377 return; 1378 1379 // Normalize the distribution so that they can fit in unsigned. 1380 BranchDist.normalize(); 1381 1382 // Create normalized branch weights and set the metadata. 1383 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1384 const auto &Weight = BranchDist.Weights[I]; 1385 1386 // Get the weight and update the current BFI. 1387 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1388 BranchProbability BP(Weight.Amount, BranchDist.Total); 1389 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1390 } 1391 TI->setMetadata( 1392 LLVMContext::MD_prof, 1393 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1394 } 1395 1396 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1397 /// \p F. 1398 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1399 for (Instruction &I : instructions(F)) { 1400 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1401 findDbgUsers(DbgUsers, &I); 1402 for (DbgVariableIntrinsic *DVI : DbgUsers) 1403 if (DVI->getFunction() != &F) 1404 DVI->eraseFromParent(); 1405 } 1406 } 1407 1408 /// Fix up the debug info in the old and new functions by pointing line 1409 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1410 /// intrinsics which point to values outside of the new function. 1411 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1412 CallInst &TheCall) { 1413 DISubprogram *OldSP = OldFunc.getSubprogram(); 1414 LLVMContext &Ctx = OldFunc.getContext(); 1415 1416 if (!OldSP) { 1417 // Erase any debug info the new function contains. 1418 stripDebugInfo(NewFunc); 1419 // Make sure the old function doesn't contain any non-local metadata refs. 1420 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1421 return; 1422 } 1423 1424 // Create a subprogram for the new function. Leave out a description of the 1425 // function arguments, as the parameters don't correspond to anything at the 1426 // source level. 1427 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1428 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false, 1429 OldSP->getUnit()); 1430 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1431 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1432 DISubprogram::SPFlagOptimized | 1433 DISubprogram::SPFlagLocalToUnit; 1434 auto NewSP = DIB.createFunction( 1435 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1436 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1437 NewFunc.setSubprogram(NewSP); 1438 1439 // Debug intrinsics in the new function need to be updated in one of two 1440 // ways: 1441 // 1) They need to be deleted, because they describe a value in the old 1442 // function. 1443 // 2) They need to point to fresh metadata, e.g. because they currently 1444 // point to a variable in the wrong scope. 1445 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1446 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1447 for (Instruction &I : instructions(NewFunc)) { 1448 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1449 if (!DII) 1450 continue; 1451 1452 // Point the intrinsic to a fresh label within the new function. 1453 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1454 DILabel *OldLabel = DLI->getLabel(); 1455 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1456 if (!NewLabel) 1457 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1458 OldLabel->getFile(), OldLabel->getLine()); 1459 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1460 continue; 1461 } 1462 1463 // If the location isn't a constant or an instruction, delete the 1464 // intrinsic. 1465 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1466 Value *Location = DVI->getVariableLocation(); 1467 if (!Location || 1468 (!isa<Constant>(Location) && !isa<Instruction>(Location))) { 1469 DebugIntrinsicsToDelete.push_back(DVI); 1470 continue; 1471 } 1472 1473 // If the variable location is an instruction but isn't in the new 1474 // function, delete the intrinsic. 1475 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1476 if (LocationInst && LocationInst->getFunction() != &NewFunc) { 1477 DebugIntrinsicsToDelete.push_back(DVI); 1478 continue; 1479 } 1480 1481 // Point the intrinsic to a fresh variable within the new function. 1482 DILocalVariable *OldVar = DVI->getVariable(); 1483 DINode *&NewVar = RemappedMetadata[OldVar]; 1484 if (!NewVar) 1485 NewVar = DIB.createAutoVariable( 1486 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1487 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1488 OldVar->getAlignInBits()); 1489 DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar)); 1490 } 1491 for (auto *DII : DebugIntrinsicsToDelete) 1492 DII->eraseFromParent(); 1493 DIB.finalizeSubprogram(NewSP); 1494 1495 // Fix up the scope information attached to the line locations in the new 1496 // function. 1497 for (Instruction &I : instructions(NewFunc)) { 1498 if (const DebugLoc &DL = I.getDebugLoc()) 1499 I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP)); 1500 1501 // Loop info metadata may contain line locations. Fix them up. 1502 auto updateLoopInfoLoc = [&Ctx, 1503 NewSP](const DILocation &Loc) -> DILocation * { 1504 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP, 1505 nullptr); 1506 }; 1507 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1508 } 1509 if (!TheCall.getDebugLoc()) 1510 TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP)); 1511 1512 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1513 } 1514 1515 Function * 1516 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1517 if (!isEligible()) 1518 return nullptr; 1519 1520 // Assumption: this is a single-entry code region, and the header is the first 1521 // block in the region. 1522 BasicBlock *header = *Blocks.begin(); 1523 Function *oldFunction = header->getParent(); 1524 1525 // Calculate the entry frequency of the new function before we change the root 1526 // block. 1527 BlockFrequency EntryFreq; 1528 if (BFI) { 1529 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1530 for (BasicBlock *Pred : predecessors(header)) { 1531 if (Blocks.count(Pred)) 1532 continue; 1533 EntryFreq += 1534 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1535 } 1536 } 1537 1538 // Remove @llvm.assume calls that will be moved to the new function from the 1539 // old function's assumption cache. 1540 for (BasicBlock *Block : Blocks) { 1541 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1542 Instruction *I = &*It; 1543 ++It; 1544 1545 if (match(I, m_Intrinsic<Intrinsic::assume>())) { 1546 if (AC) 1547 AC->unregisterAssumption(cast<CallInst>(I)); 1548 I->eraseFromParent(); 1549 } 1550 } 1551 } 1552 1553 // If we have any return instructions in the region, split those blocks so 1554 // that the return is not in the region. 1555 splitReturnBlocks(); 1556 1557 // Calculate the exit blocks for the extracted region and the total exit 1558 // weights for each of those blocks. 1559 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1560 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1561 for (BasicBlock *Block : Blocks) { 1562 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1563 ++SI) { 1564 if (!Blocks.count(*SI)) { 1565 // Update the branch weight for this successor. 1566 if (BFI) { 1567 BlockFrequency &BF = ExitWeights[*SI]; 1568 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1569 } 1570 ExitBlocks.insert(*SI); 1571 } 1572 } 1573 } 1574 NumExitBlocks = ExitBlocks.size(); 1575 1576 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1577 severSplitPHINodesOfEntry(header); 1578 severSplitPHINodesOfExits(ExitBlocks); 1579 1580 // This takes place of the original loop 1581 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1582 "codeRepl", oldFunction, 1583 header); 1584 1585 // The new function needs a root node because other nodes can branch to the 1586 // head of the region, but the entry node of a function cannot have preds. 1587 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1588 "newFuncRoot"); 1589 auto *BranchI = BranchInst::Create(header); 1590 // If the original function has debug info, we have to add a debug location 1591 // to the new branch instruction from the artificial entry block. 1592 // We use the debug location of the first instruction in the extracted 1593 // blocks, as there is no other equivalent line in the source code. 1594 if (oldFunction->getSubprogram()) { 1595 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1596 return any_of(*BB, [&BranchI](const Instruction &I) { 1597 if (!I.getDebugLoc()) 1598 return false; 1599 BranchI->setDebugLoc(I.getDebugLoc()); 1600 return true; 1601 }); 1602 }); 1603 } 1604 newFuncRoot->getInstList().push_back(BranchI); 1605 1606 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1607 BasicBlock *CommonExit = nullptr; 1608 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1609 assert(HoistingCands.empty() || CommonExit); 1610 1611 // Find inputs to, outputs from the code region. 1612 findInputsOutputs(inputs, outputs, SinkingCands); 1613 1614 // Now sink all instructions which only have non-phi uses inside the region. 1615 // Group the allocas at the start of the block, so that any bitcast uses of 1616 // the allocas are well-defined. 1617 AllocaInst *FirstSunkAlloca = nullptr; 1618 for (auto *II : SinkingCands) { 1619 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1620 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1621 if (!FirstSunkAlloca) 1622 FirstSunkAlloca = AI; 1623 } 1624 } 1625 assert((SinkingCands.empty() || FirstSunkAlloca) && 1626 "Did not expect a sink candidate without any allocas"); 1627 for (auto *II : SinkingCands) { 1628 if (!isa<AllocaInst>(II)) { 1629 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1630 } 1631 } 1632 1633 if (!HoistingCands.empty()) { 1634 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1635 Instruction *TI = HoistToBlock->getTerminator(); 1636 for (auto *II : HoistingCands) 1637 cast<Instruction>(II)->moveBefore(TI); 1638 } 1639 1640 // Collect objects which are inputs to the extraction region and also 1641 // referenced by lifetime start markers within it. The effects of these 1642 // markers must be replicated in the calling function to prevent the stack 1643 // coloring pass from merging slots which store input objects. 1644 ValueSet LifetimesStart; 1645 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1646 1647 // Construct new function based on inputs/outputs & add allocas for all defs. 1648 Function *newFunction = 1649 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1650 oldFunction, oldFunction->getParent()); 1651 1652 // Update the entry count of the function. 1653 if (BFI) { 1654 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1655 if (Count.hasValue()) 1656 newFunction->setEntryCount( 1657 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1658 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1659 } 1660 1661 CallInst *TheCall = 1662 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1663 1664 moveCodeToFunction(newFunction); 1665 1666 // Replicate the effects of any lifetime start/end markers which referenced 1667 // input objects in the extraction region by placing markers around the call. 1668 insertLifetimeMarkersSurroundingCall( 1669 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1670 1671 // Propagate personality info to the new function if there is one. 1672 if (oldFunction->hasPersonalityFn()) 1673 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1674 1675 // Update the branch weights for the exit block. 1676 if (BFI && NumExitBlocks > 1) 1677 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1678 1679 // Loop over all of the PHI nodes in the header and exit blocks, and change 1680 // any references to the old incoming edge to be the new incoming edge. 1681 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1682 PHINode *PN = cast<PHINode>(I); 1683 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1684 if (!Blocks.count(PN->getIncomingBlock(i))) 1685 PN->setIncomingBlock(i, newFuncRoot); 1686 } 1687 1688 for (BasicBlock *ExitBB : ExitBlocks) 1689 for (PHINode &PN : ExitBB->phis()) { 1690 Value *IncomingCodeReplacerVal = nullptr; 1691 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1692 // Ignore incoming values from outside of the extracted region. 1693 if (!Blocks.count(PN.getIncomingBlock(i))) 1694 continue; 1695 1696 // Ensure that there is only one incoming value from codeReplacer. 1697 if (!IncomingCodeReplacerVal) { 1698 PN.setIncomingBlock(i, codeReplacer); 1699 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1700 } else 1701 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1702 "PHI has two incompatbile incoming values from codeRepl"); 1703 } 1704 } 1705 1706 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1707 1708 // Mark the new function `noreturn` if applicable. Terminators which resume 1709 // exception propagation are treated as returning instructions. This is to 1710 // avoid inserting traps after calls to outlined functions which unwind. 1711 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1712 const Instruction *Term = BB.getTerminator(); 1713 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1714 }); 1715 if (doesNotReturn) 1716 newFunction->setDoesNotReturn(); 1717 1718 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1719 newFunction->dump(); 1720 report_fatal_error("verification of newFunction failed!"); 1721 }); 1722 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1723 report_fatal_error("verification of oldFunction failed!")); 1724 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1725 report_fatal_error("Stale Asumption cache for old Function!")); 1726 return newFunction; 1727 } 1728 1729 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1730 const Function &NewFunc, 1731 AssumptionCache *AC) { 1732 for (auto AssumeVH : AC->assumptions()) { 1733 CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH); 1734 if (!I) 1735 continue; 1736 1737 // There shouldn't be any llvm.assume intrinsics in the new function. 1738 if (I->getFunction() != &OldFunc) 1739 return true; 1740 1741 // There shouldn't be any stale affected values in the assumption cache 1742 // that were previously in the old function, but that have now been moved 1743 // to the new function. 1744 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1745 CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1746 if (!AffectedCI) 1747 continue; 1748 if (AffectedCI->getFunction() != &OldFunc) 1749 return true; 1750 auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0)); 1751 if (AssumedInst->getFunction() != &OldFunc) 1752 return true; 1753 } 1754 } 1755 return false; 1756 } 1757