xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 64249f177e4644cfe3a0ba80ade274175771950c)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 using namespace llvm::PatternMatch;
75 using ProfileCount = Function::ProfileCount;
76 
77 #define DEBUG_TYPE "code-extractor"
78 
79 // Provide a command-line option to aggregate function arguments into a struct
80 // for functions produced by the code extractor. This is useful when converting
81 // extracted functions to pthread-based code, as only one argument (void*) can
82 // be passed in to pthread_create().
83 static cl::opt<bool>
84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85                  cl::desc("Aggregate arguments to code-extracted functions"));
86 
87 /// Test whether a block is valid for extraction.
88 static bool isBlockValidForExtraction(const BasicBlock &BB,
89                                       const SetVector<BasicBlock *> &Result,
90                                       bool AllowVarArgs, bool AllowAlloca) {
91   // taking the address of a basic block moved to another function is illegal
92   if (BB.hasAddressTaken())
93     return false;
94 
95   // don't hoist code that uses another basicblock address, as it's likely to
96   // lead to unexpected behavior, like cross-function jumps
97   SmallPtrSet<User const *, 16> Visited;
98   SmallVector<User const *, 16> ToVisit;
99 
100   for (Instruction const &Inst : BB)
101     ToVisit.push_back(&Inst);
102 
103   while (!ToVisit.empty()) {
104     User const *Curr = ToVisit.pop_back_val();
105     if (!Visited.insert(Curr).second)
106       continue;
107     if (isa<BlockAddress const>(Curr))
108       return false; // even a reference to self is likely to be not compatible
109 
110     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111       continue;
112 
113     for (auto const &U : Curr->operands()) {
114       if (auto *UU = dyn_cast<User>(U))
115         ToVisit.push_back(UU);
116     }
117   }
118 
119   // If explicitly requested, allow vastart and alloca. For invoke instructions
120   // verify that extraction is valid.
121   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122     if (isa<AllocaInst>(I)) {
123        if (!AllowAlloca)
124          return false;
125        continue;
126     }
127 
128     if (const auto *II = dyn_cast<InvokeInst>(I)) {
129       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130       // must be a part of the subgraph which is being extracted.
131       if (auto *UBB = II->getUnwindDest())
132         if (!Result.count(UBB))
133           return false;
134       continue;
135     }
136 
137     // All catch handlers of a catchswitch instruction as well as the unwind
138     // destination must be in the subgraph.
139     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140       if (auto *UBB = CSI->getUnwindDest())
141         if (!Result.count(UBB))
142           return false;
143       for (auto *HBB : CSI->handlers())
144         if (!Result.count(const_cast<BasicBlock*>(HBB)))
145           return false;
146       continue;
147     }
148 
149     // Make sure that entire catch handler is within subgraph. It is sufficient
150     // to check that catch return's block is in the list.
151     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152       for (const auto *U : CPI->users())
153         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155             return false;
156       continue;
157     }
158 
159     // And do similar checks for cleanup handler - the entire handler must be
160     // in subgraph which is going to be extracted. For cleanup return should
161     // additionally check that the unwind destination is also in the subgraph.
162     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163       for (const auto *U : CPI->users())
164         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166             return false;
167       continue;
168     }
169     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170       if (auto *UBB = CRI->getUnwindDest())
171         if (!Result.count(UBB))
172           return false;
173       continue;
174     }
175 
176     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177       if (const Function *F = CI->getCalledFunction()) {
178         auto IID = F->getIntrinsicID();
179         if (IID == Intrinsic::vastart) {
180           if (AllowVarArgs)
181             continue;
182           else
183             return false;
184         }
185 
186         // Currently, we miscompile outlined copies of eh_typid_for. There are
187         // proposals for fixing this in llvm.org/PR39545.
188         if (IID == Intrinsic::eh_typeid_for)
189           return false;
190       }
191     }
192   }
193 
194   return true;
195 }
196 
197 /// Build a set of blocks to extract if the input blocks are viable.
198 static SetVector<BasicBlock *>
199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200                         bool AllowVarArgs, bool AllowAlloca) {
201   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
202   SetVector<BasicBlock *> Result;
203 
204   // Loop over the blocks, adding them to our set-vector, and aborting with an
205   // empty set if we encounter invalid blocks.
206   for (BasicBlock *BB : BBs) {
207     // If this block is dead, don't process it.
208     if (DT && !DT->isReachableFromEntry(BB))
209       continue;
210 
211     if (!Result.insert(BB))
212       llvm_unreachable("Repeated basic blocks in extraction input");
213   }
214 
215   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
216                     << '\n');
217 
218   for (auto *BB : Result) {
219     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220       return {};
221 
222     // Make sure that the first block is not a landing pad.
223     if (BB == Result.front()) {
224       if (BB->isEHPad()) {
225         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
226         return {};
227       }
228       continue;
229     }
230 
231     // All blocks other than the first must not have predecessors outside of
232     // the subgraph which is being extracted.
233     for (auto *PBB : predecessors(BB))
234       if (!Result.count(PBB)) {
235         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
236                              "outside the region except for the first block!\n"
237                           << "Problematic source BB: " << BB->getName() << "\n"
238                           << "Problematic destination BB: " << PBB->getName()
239                           << "\n");
240         return {};
241       }
242   }
243 
244   return Result;
245 }
246 
247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248                              bool AggregateArgs, BlockFrequencyInfo *BFI,
249                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
250                              bool AllowVarArgs, bool AllowAlloca,
251                              std::string Suffix)
252     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255       Suffix(Suffix) {}
256 
257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258                              BlockFrequencyInfo *BFI,
259                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
260                              std::string Suffix)
261     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262       BPI(BPI), AC(AC), AllowVarArgs(false),
263       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264                                      /* AllowVarArgs */ false,
265                                      /* AllowAlloca */ false)),
266       Suffix(Suffix) {}
267 
268 /// definedInRegion - Return true if the specified value is defined in the
269 /// extracted region.
270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271   if (Instruction *I = dyn_cast<Instruction>(V))
272     if (Blocks.count(I->getParent()))
273       return true;
274   return false;
275 }
276 
277 /// definedInCaller - Return true if the specified value is defined in the
278 /// function being code extracted, but not in the region being extracted.
279 /// These values must be passed in as live-ins to the function.
280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281   if (isa<Argument>(V)) return true;
282   if (Instruction *I = dyn_cast<Instruction>(V))
283     if (!Blocks.count(I->getParent()))
284       return true;
285   return false;
286 }
287 
288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289   BasicBlock *CommonExitBlock = nullptr;
290   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291     for (auto *Succ : successors(Block)) {
292       // Internal edges, ok.
293       if (Blocks.count(Succ))
294         continue;
295       if (!CommonExitBlock) {
296         CommonExitBlock = Succ;
297         continue;
298       }
299       if (CommonExitBlock != Succ)
300         return true;
301     }
302     return false;
303   };
304 
305   if (any_of(Blocks, hasNonCommonExitSucc))
306     return nullptr;
307 
308   return CommonExitBlock;
309 }
310 
311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312   for (BasicBlock &BB : F) {
313     for (Instruction &II : BB.instructionsWithoutDebug())
314       if (auto *AI = dyn_cast<AllocaInst>(&II))
315         Allocas.push_back(AI);
316 
317     findSideEffectInfoForBlock(BB);
318   }
319 }
320 
321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322   for (Instruction &II : BB.instructionsWithoutDebug()) {
323     unsigned Opcode = II.getOpcode();
324     Value *MemAddr = nullptr;
325     switch (Opcode) {
326     case Instruction::Store:
327     case Instruction::Load: {
328       if (Opcode == Instruction::Store) {
329         StoreInst *SI = cast<StoreInst>(&II);
330         MemAddr = SI->getPointerOperand();
331       } else {
332         LoadInst *LI = cast<LoadInst>(&II);
333         MemAddr = LI->getPointerOperand();
334       }
335       // Global variable can not be aliased with locals.
336       if (dyn_cast<Constant>(MemAddr))
337         break;
338       Value *Base = MemAddr->stripInBoundsConstantOffsets();
339       if (!isa<AllocaInst>(Base)) {
340         SideEffectingBlocks.insert(&BB);
341         return;
342       }
343       BaseMemAddrs[&BB].insert(Base);
344       break;
345     }
346     default: {
347       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348       if (IntrInst) {
349         if (IntrInst->isLifetimeStartOrEnd())
350           break;
351         SideEffectingBlocks.insert(&BB);
352         return;
353       }
354       // Treat all the other cases conservatively if it has side effects.
355       if (II.mayHaveSideEffects()) {
356         SideEffectingBlocks.insert(&BB);
357         return;
358       }
359     }
360     }
361   }
362 }
363 
364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365     BasicBlock &BB, AllocaInst *Addr) const {
366   if (SideEffectingBlocks.count(&BB))
367     return true;
368   auto It = BaseMemAddrs.find(&BB);
369   if (It != BaseMemAddrs.end())
370     return It->second.count(Addr);
371   return false;
372 }
373 
374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377   Function *Func = (*Blocks.begin())->getParent();
378   for (BasicBlock &BB : *Func) {
379     if (Blocks.count(&BB))
380       continue;
381     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382       return false;
383   }
384   return true;
385 }
386 
387 BasicBlock *
388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389   BasicBlock *SinglePredFromOutlineRegion = nullptr;
390   assert(!Blocks.count(CommonExitBlock) &&
391          "Expect a block outside the region!");
392   for (auto *Pred : predecessors(CommonExitBlock)) {
393     if (!Blocks.count(Pred))
394       continue;
395     if (!SinglePredFromOutlineRegion) {
396       SinglePredFromOutlineRegion = Pred;
397     } else if (SinglePredFromOutlineRegion != Pred) {
398       SinglePredFromOutlineRegion = nullptr;
399       break;
400     }
401   }
402 
403   if (SinglePredFromOutlineRegion)
404     return SinglePredFromOutlineRegion;
405 
406 #ifndef NDEBUG
407   auto getFirstPHI = [](BasicBlock *BB) {
408     BasicBlock::iterator I = BB->begin();
409     PHINode *FirstPhi = nullptr;
410     while (I != BB->end()) {
411       PHINode *Phi = dyn_cast<PHINode>(I);
412       if (!Phi)
413         break;
414       if (!FirstPhi) {
415         FirstPhi = Phi;
416         break;
417       }
418     }
419     return FirstPhi;
420   };
421   // If there are any phi nodes, the single pred either exists or has already
422   // be created before code extraction.
423   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
424 #endif
425 
426   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427       CommonExitBlock->getFirstNonPHI()->getIterator());
428 
429   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
430        PI != PE;) {
431     BasicBlock *Pred = *PI++;
432     if (Blocks.count(Pred))
433       continue;
434     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
435   }
436   // Now add the old exit block to the outline region.
437   Blocks.insert(CommonExitBlock);
438   return CommonExitBlock;
439 }
440 
441 // Find the pair of life time markers for address 'Addr' that are either
442 // defined inside the outline region or can legally be shrinkwrapped into the
443 // outline region. If there are not other untracked uses of the address, return
444 // the pair of markers if found; otherwise return a pair of nullptr.
445 CodeExtractor::LifetimeMarkerInfo
446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447                                   Instruction *Addr,
448                                   BasicBlock *ExitBlock) const {
449   LifetimeMarkerInfo Info;
450 
451   for (User *U : Addr->users()) {
452     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453     if (IntrInst) {
454       // We don't model addresses with multiple start/end markers, but the
455       // markers do not need to be in the region.
456       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
457         if (Info.LifeStart)
458           return {};
459         Info.LifeStart = IntrInst;
460         continue;
461       }
462       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
463         if (Info.LifeEnd)
464           return {};
465         Info.LifeEnd = IntrInst;
466         continue;
467       }
468       // At this point, permit debug uses outside of the region.
469       // This is fixed in a later call to fixupDebugInfoPostExtraction().
470       if (isa<DbgInfoIntrinsic>(IntrInst))
471         continue;
472     }
473     // Find untracked uses of the address, bail.
474     if (!definedInRegion(Blocks, U))
475       return {};
476   }
477 
478   if (!Info.LifeStart || !Info.LifeEnd)
479     return {};
480 
481   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
482   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
483   // Do legality check.
484   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
485       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
486     return {};
487 
488   // Check to see if we have a place to do hoisting, if not, bail.
489   if (Info.HoistLifeEnd && !ExitBlock)
490     return {};
491 
492   return Info;
493 }
494 
495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
496                                 ValueSet &SinkCands, ValueSet &HoistCands,
497                                 BasicBlock *&ExitBlock) const {
498   Function *Func = (*Blocks.begin())->getParent();
499   ExitBlock = getCommonExitBlock(Blocks);
500 
501   auto moveOrIgnoreLifetimeMarkers =
502       [&](const LifetimeMarkerInfo &LMI) -> bool {
503     if (!LMI.LifeStart)
504       return false;
505     if (LMI.SinkLifeStart) {
506       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
507                         << "\n");
508       SinkCands.insert(LMI.LifeStart);
509     }
510     if (LMI.HoistLifeEnd) {
511       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
512       HoistCands.insert(LMI.LifeEnd);
513     }
514     return true;
515   };
516 
517   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
518   // this is much faster than walking all the instructions.
519   for (AllocaInst *AI : CEAC.getAllocas()) {
520     BasicBlock *BB = AI->getParent();
521     if (Blocks.count(BB))
522       continue;
523 
524     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
525     // check whether it is actually still in the original function.
526     Function *AIFunc = BB->getParent();
527     if (AIFunc != Func)
528       continue;
529 
530     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
531     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
532     if (Moved) {
533       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
534       SinkCands.insert(AI);
535       continue;
536     }
537 
538     // Follow any bitcasts.
539     SmallVector<Instruction *, 2> Bitcasts;
540     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
541     for (User *U : AI->users()) {
542       if (U->stripInBoundsConstantOffsets() == AI) {
543         Instruction *Bitcast = cast<Instruction>(U);
544         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
545         if (LMI.LifeStart) {
546           Bitcasts.push_back(Bitcast);
547           BitcastLifetimeInfo.push_back(LMI);
548           continue;
549         }
550       }
551 
552       // Found unknown use of AI.
553       if (!definedInRegion(Blocks, U)) {
554         Bitcasts.clear();
555         break;
556       }
557     }
558 
559     // Either no bitcasts reference the alloca or there are unknown uses.
560     if (Bitcasts.empty())
561       continue;
562 
563     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
564     SinkCands.insert(AI);
565     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
566       Instruction *BitcastAddr = Bitcasts[I];
567       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
568       assert(LMI.LifeStart &&
569              "Unsafe to sink bitcast without lifetime markers");
570       moveOrIgnoreLifetimeMarkers(LMI);
571       if (!definedInRegion(Blocks, BitcastAddr)) {
572         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
573                           << "\n");
574         SinkCands.insert(BitcastAddr);
575       }
576     }
577   }
578 }
579 
580 bool CodeExtractor::isEligible() const {
581   if (Blocks.empty())
582     return false;
583   BasicBlock *Header = *Blocks.begin();
584   Function *F = Header->getParent();
585 
586   // For functions with varargs, check that varargs handling is only done in the
587   // outlined function, i.e vastart and vaend are only used in outlined blocks.
588   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
589     auto containsVarArgIntrinsic = [](const Instruction &I) {
590       if (const CallInst *CI = dyn_cast<CallInst>(&I))
591         if (const Function *Callee = CI->getCalledFunction())
592           return Callee->getIntrinsicID() == Intrinsic::vastart ||
593                  Callee->getIntrinsicID() == Intrinsic::vaend;
594       return false;
595     };
596 
597     for (auto &BB : *F) {
598       if (Blocks.count(&BB))
599         continue;
600       if (llvm::any_of(BB, containsVarArgIntrinsic))
601         return false;
602     }
603   }
604   return true;
605 }
606 
607 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
608                                       const ValueSet &SinkCands) const {
609   for (BasicBlock *BB : Blocks) {
610     // If a used value is defined outside the region, it's an input.  If an
611     // instruction is used outside the region, it's an output.
612     for (Instruction &II : *BB) {
613       for (auto &OI : II.operands()) {
614         Value *V = OI;
615         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
616           Inputs.insert(V);
617       }
618 
619       for (User *U : II.users())
620         if (!definedInRegion(Blocks, U)) {
621           Outputs.insert(&II);
622           break;
623         }
624     }
625   }
626 }
627 
628 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
629 /// of the region, we need to split the entry block of the region so that the
630 /// PHI node is easier to deal with.
631 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
632   unsigned NumPredsFromRegion = 0;
633   unsigned NumPredsOutsideRegion = 0;
634 
635   if (Header != &Header->getParent()->getEntryBlock()) {
636     PHINode *PN = dyn_cast<PHINode>(Header->begin());
637     if (!PN) return;  // No PHI nodes.
638 
639     // If the header node contains any PHI nodes, check to see if there is more
640     // than one entry from outside the region.  If so, we need to sever the
641     // header block into two.
642     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
643       if (Blocks.count(PN->getIncomingBlock(i)))
644         ++NumPredsFromRegion;
645       else
646         ++NumPredsOutsideRegion;
647 
648     // If there is one (or fewer) predecessor from outside the region, we don't
649     // need to do anything special.
650     if (NumPredsOutsideRegion <= 1) return;
651   }
652 
653   // Otherwise, we need to split the header block into two pieces: one
654   // containing PHI nodes merging values from outside of the region, and a
655   // second that contains all of the code for the block and merges back any
656   // incoming values from inside of the region.
657   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
658 
659   // We only want to code extract the second block now, and it becomes the new
660   // header of the region.
661   BasicBlock *OldPred = Header;
662   Blocks.remove(OldPred);
663   Blocks.insert(NewBB);
664   Header = NewBB;
665 
666   // Okay, now we need to adjust the PHI nodes and any branches from within the
667   // region to go to the new header block instead of the old header block.
668   if (NumPredsFromRegion) {
669     PHINode *PN = cast<PHINode>(OldPred->begin());
670     // Loop over all of the predecessors of OldPred that are in the region,
671     // changing them to branch to NewBB instead.
672     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
673       if (Blocks.count(PN->getIncomingBlock(i))) {
674         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
675         TI->replaceUsesOfWith(OldPred, NewBB);
676       }
677 
678     // Okay, everything within the region is now branching to the right block, we
679     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
680     BasicBlock::iterator AfterPHIs;
681     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
682       PHINode *PN = cast<PHINode>(AfterPHIs);
683       // Create a new PHI node in the new region, which has an incoming value
684       // from OldPred of PN.
685       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
686                                        PN->getName() + ".ce", &NewBB->front());
687       PN->replaceAllUsesWith(NewPN);
688       NewPN->addIncoming(PN, OldPred);
689 
690       // Loop over all of the incoming value in PN, moving them to NewPN if they
691       // are from the extracted region.
692       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
693         if (Blocks.count(PN->getIncomingBlock(i))) {
694           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
695           PN->removeIncomingValue(i);
696           --i;
697         }
698       }
699     }
700   }
701 }
702 
703 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
704 /// outlined region, we split these PHIs on two: one with inputs from region
705 /// and other with remaining incoming blocks; then first PHIs are placed in
706 /// outlined region.
707 void CodeExtractor::severSplitPHINodesOfExits(
708     const SmallPtrSetImpl<BasicBlock *> &Exits) {
709   for (BasicBlock *ExitBB : Exits) {
710     BasicBlock *NewBB = nullptr;
711 
712     for (PHINode &PN : ExitBB->phis()) {
713       // Find all incoming values from the outlining region.
714       SmallVector<unsigned, 2> IncomingVals;
715       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
716         if (Blocks.count(PN.getIncomingBlock(i)))
717           IncomingVals.push_back(i);
718 
719       // Do not process PHI if there is one (or fewer) predecessor from region.
720       // If PHI has exactly one predecessor from region, only this one incoming
721       // will be replaced on codeRepl block, so it should be safe to skip PHI.
722       if (IncomingVals.size() <= 1)
723         continue;
724 
725       // Create block for new PHIs and add it to the list of outlined if it
726       // wasn't done before.
727       if (!NewBB) {
728         NewBB = BasicBlock::Create(ExitBB->getContext(),
729                                    ExitBB->getName() + ".split",
730                                    ExitBB->getParent(), ExitBB);
731         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
732                                            pred_end(ExitBB));
733         for (BasicBlock *PredBB : Preds)
734           if (Blocks.count(PredBB))
735             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
736         BranchInst::Create(ExitBB, NewBB);
737         Blocks.insert(NewBB);
738       }
739 
740       // Split this PHI.
741       PHINode *NewPN =
742           PHINode::Create(PN.getType(), IncomingVals.size(),
743                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
744       for (unsigned i : IncomingVals)
745         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
746       for (unsigned i : reverse(IncomingVals))
747         PN.removeIncomingValue(i, false);
748       PN.addIncoming(NewPN, NewBB);
749     }
750   }
751 }
752 
753 void CodeExtractor::splitReturnBlocks() {
754   for (BasicBlock *Block : Blocks)
755     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
756       BasicBlock *New =
757           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
758       if (DT) {
759         // Old dominates New. New node dominates all other nodes dominated
760         // by Old.
761         DomTreeNode *OldNode = DT->getNode(Block);
762         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
763                                                OldNode->end());
764 
765         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
766 
767         for (DomTreeNode *I : Children)
768           DT->changeImmediateDominator(I, NewNode);
769       }
770     }
771 }
772 
773 /// constructFunction - make a function based on inputs and outputs, as follows:
774 /// f(in0, ..., inN, out0, ..., outN)
775 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
776                                            const ValueSet &outputs,
777                                            BasicBlock *header,
778                                            BasicBlock *newRootNode,
779                                            BasicBlock *newHeader,
780                                            Function *oldFunction,
781                                            Module *M) {
782   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
783   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
784 
785   // This function returns unsigned, outputs will go back by reference.
786   switch (NumExitBlocks) {
787   case 0:
788   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
789   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
790   default: RetTy = Type::getInt16Ty(header->getContext()); break;
791   }
792 
793   std::vector<Type *> paramTy;
794 
795   // Add the types of the input values to the function's argument list
796   for (Value *value : inputs) {
797     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
798     paramTy.push_back(value->getType());
799   }
800 
801   // Add the types of the output values to the function's argument list.
802   for (Value *output : outputs) {
803     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
804     if (AggregateArgs)
805       paramTy.push_back(output->getType());
806     else
807       paramTy.push_back(PointerType::getUnqual(output->getType()));
808   }
809 
810   LLVM_DEBUG({
811     dbgs() << "Function type: " << *RetTy << " f(";
812     for (Type *i : paramTy)
813       dbgs() << *i << ", ";
814     dbgs() << ")\n";
815   });
816 
817   StructType *StructTy = nullptr;
818   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
819     StructTy = StructType::get(M->getContext(), paramTy);
820     paramTy.clear();
821     paramTy.push_back(PointerType::getUnqual(StructTy));
822   }
823   FunctionType *funcType =
824                   FunctionType::get(RetTy, paramTy,
825                                     AllowVarArgs && oldFunction->isVarArg());
826 
827   std::string SuffixToUse =
828       Suffix.empty()
829           ? (header->getName().empty() ? "extracted" : header->getName().str())
830           : Suffix;
831   // Create the new function
832   Function *newFunction = Function::Create(
833       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
834       oldFunction->getName() + "." + SuffixToUse, M);
835   // If the old function is no-throw, so is the new one.
836   if (oldFunction->doesNotThrow())
837     newFunction->setDoesNotThrow();
838 
839   // Inherit the uwtable attribute if we need to.
840   if (oldFunction->hasUWTable())
841     newFunction->setHasUWTable();
842 
843   // Inherit all of the target dependent attributes and white-listed
844   // target independent attributes.
845   //  (e.g. If the extracted region contains a call to an x86.sse
846   //  instruction we need to make sure that the extracted region has the
847   //  "target-features" attribute allowing it to be lowered.
848   // FIXME: This should be changed to check to see if a specific
849   //           attribute can not be inherited.
850   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
851     if (Attr.isStringAttribute()) {
852       if (Attr.getKindAsString() == "thunk")
853         continue;
854     } else
855       switch (Attr.getKindAsEnum()) {
856       // Those attributes cannot be propagated safely. Explicitly list them
857       // here so we get a warning if new attributes are added. This list also
858       // includes non-function attributes.
859       case Attribute::Alignment:
860       case Attribute::AllocSize:
861       case Attribute::ArgMemOnly:
862       case Attribute::Builtin:
863       case Attribute::ByVal:
864       case Attribute::Convergent:
865       case Attribute::Dereferenceable:
866       case Attribute::DereferenceableOrNull:
867       case Attribute::InAlloca:
868       case Attribute::InReg:
869       case Attribute::InaccessibleMemOnly:
870       case Attribute::InaccessibleMemOrArgMemOnly:
871       case Attribute::JumpTable:
872       case Attribute::Naked:
873       case Attribute::Nest:
874       case Attribute::NoAlias:
875       case Attribute::NoBuiltin:
876       case Attribute::NoCapture:
877       case Attribute::NoReturn:
878       case Attribute::NoSync:
879       case Attribute::None:
880       case Attribute::NonNull:
881       case Attribute::ReadNone:
882       case Attribute::ReadOnly:
883       case Attribute::Returned:
884       case Attribute::ReturnsTwice:
885       case Attribute::SExt:
886       case Attribute::Speculatable:
887       case Attribute::StackAlignment:
888       case Attribute::StructRet:
889       case Attribute::SwiftError:
890       case Attribute::SwiftSelf:
891       case Attribute::WillReturn:
892       case Attribute::WriteOnly:
893       case Attribute::ZExt:
894       case Attribute::ImmArg:
895       case Attribute::EndAttrKinds:
896       case Attribute::EmptyKey:
897       case Attribute::TombstoneKey:
898         continue;
899       // Those attributes should be safe to propagate to the extracted function.
900       case Attribute::AlwaysInline:
901       case Attribute::Cold:
902       case Attribute::NoRecurse:
903       case Attribute::InlineHint:
904       case Attribute::MinSize:
905       case Attribute::NoDuplicate:
906       case Attribute::NoFree:
907       case Attribute::NoImplicitFloat:
908       case Attribute::NoInline:
909       case Attribute::NonLazyBind:
910       case Attribute::NoRedZone:
911       case Attribute::NoUnwind:
912       case Attribute::OptForFuzzing:
913       case Attribute::OptimizeNone:
914       case Attribute::OptimizeForSize:
915       case Attribute::SafeStack:
916       case Attribute::ShadowCallStack:
917       case Attribute::SanitizeAddress:
918       case Attribute::SanitizeMemory:
919       case Attribute::SanitizeThread:
920       case Attribute::SanitizeHWAddress:
921       case Attribute::SanitizeMemTag:
922       case Attribute::SpeculativeLoadHardening:
923       case Attribute::StackProtect:
924       case Attribute::StackProtectReq:
925       case Attribute::StackProtectStrong:
926       case Attribute::StrictFP:
927       case Attribute::UWTable:
928       case Attribute::NoCfCheck:
929         break;
930       }
931 
932     newFunction->addFnAttr(Attr);
933   }
934   newFunction->getBasicBlockList().push_back(newRootNode);
935 
936   // Create an iterator to name all of the arguments we inserted.
937   Function::arg_iterator AI = newFunction->arg_begin();
938 
939   // Rewrite all users of the inputs in the extracted region to use the
940   // arguments (or appropriate addressing into struct) instead.
941   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
942     Value *RewriteVal;
943     if (AggregateArgs) {
944       Value *Idx[2];
945       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
946       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
947       Instruction *TI = newFunction->begin()->getTerminator();
948       GetElementPtrInst *GEP = GetElementPtrInst::Create(
949           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
950       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
951                                 "loadgep_" + inputs[i]->getName(), TI);
952     } else
953       RewriteVal = &*AI++;
954 
955     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
956     for (User *use : Users)
957       if (Instruction *inst = dyn_cast<Instruction>(use))
958         if (Blocks.count(inst->getParent()))
959           inst->replaceUsesOfWith(inputs[i], RewriteVal);
960   }
961 
962   // Set names for input and output arguments.
963   if (!AggregateArgs) {
964     AI = newFunction->arg_begin();
965     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
966       AI->setName(inputs[i]->getName());
967     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
968       AI->setName(outputs[i]->getName()+".out");
969   }
970 
971   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
972   // within the new function. This must be done before we lose track of which
973   // blocks were originally in the code region.
974   std::vector<User *> Users(header->user_begin(), header->user_end());
975   for (auto &U : Users)
976     // The BasicBlock which contains the branch is not in the region
977     // modify the branch target to a new block
978     if (Instruction *I = dyn_cast<Instruction>(U))
979       if (I->isTerminator() && I->getFunction() == oldFunction &&
980           !Blocks.count(I->getParent()))
981         I->replaceUsesOfWith(header, newHeader);
982 
983   return newFunction;
984 }
985 
986 /// Erase lifetime.start markers which reference inputs to the extraction
987 /// region, and insert the referenced memory into \p LifetimesStart.
988 ///
989 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
990 /// of allocas which will be moved from the caller function into the extracted
991 /// function (\p SunkAllocas).
992 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
993                                          const SetVector<Value *> &SunkAllocas,
994                                          SetVector<Value *> &LifetimesStart) {
995   for (BasicBlock *BB : Blocks) {
996     for (auto It = BB->begin(), End = BB->end(); It != End;) {
997       auto *II = dyn_cast<IntrinsicInst>(&*It);
998       ++It;
999       if (!II || !II->isLifetimeStartOrEnd())
1000         continue;
1001 
1002       // Get the memory operand of the lifetime marker. If the underlying
1003       // object is a sunk alloca, or is otherwise defined in the extraction
1004       // region, the lifetime marker must not be erased.
1005       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1006       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1007         continue;
1008 
1009       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1010         LifetimesStart.insert(Mem);
1011       II->eraseFromParent();
1012     }
1013   }
1014 }
1015 
1016 /// Insert lifetime start/end markers surrounding the call to the new function
1017 /// for objects defined in the caller.
1018 static void insertLifetimeMarkersSurroundingCall(
1019     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1020     CallInst *TheCall) {
1021   LLVMContext &Ctx = M->getContext();
1022   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1023   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1024   Instruction *Term = TheCall->getParent()->getTerminator();
1025 
1026   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1027   // needed to satisfy this requirement so they may be reused.
1028   DenseMap<Value *, Value *> Bitcasts;
1029 
1030   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1031   // markers before the call if \p InsertBefore, and after the call otherwise.
1032   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1033                            bool InsertBefore) {
1034     for (Value *Mem : Objects) {
1035       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1036                                             TheCall->getFunction()) &&
1037              "Input memory not defined in original function");
1038       Value *&MemAsI8Ptr = Bitcasts[Mem];
1039       if (!MemAsI8Ptr) {
1040         if (Mem->getType() == Int8PtrTy)
1041           MemAsI8Ptr = Mem;
1042         else
1043           MemAsI8Ptr =
1044               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1045       }
1046 
1047       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1048       if (InsertBefore)
1049         Marker->insertBefore(TheCall);
1050       else
1051         Marker->insertBefore(Term);
1052     }
1053   };
1054 
1055   if (!LifetimesStart.empty()) {
1056     auto StartFn = llvm::Intrinsic::getDeclaration(
1057         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1058     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1059   }
1060 
1061   if (!LifetimesEnd.empty()) {
1062     auto EndFn = llvm::Intrinsic::getDeclaration(
1063         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1064     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1065   }
1066 }
1067 
1068 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1069 /// the call instruction, splitting any PHI nodes in the header block as
1070 /// necessary.
1071 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1072                                                     BasicBlock *codeReplacer,
1073                                                     ValueSet &inputs,
1074                                                     ValueSet &outputs) {
1075   // Emit a call to the new function, passing in: *pointer to struct (if
1076   // aggregating parameters), or plan inputs and allocated memory for outputs
1077   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1078 
1079   Module *M = newFunction->getParent();
1080   LLVMContext &Context = M->getContext();
1081   const DataLayout &DL = M->getDataLayout();
1082   CallInst *call = nullptr;
1083 
1084   // Add inputs as params, or to be filled into the struct
1085   unsigned ArgNo = 0;
1086   SmallVector<unsigned, 1> SwiftErrorArgs;
1087   for (Value *input : inputs) {
1088     if (AggregateArgs)
1089       StructValues.push_back(input);
1090     else {
1091       params.push_back(input);
1092       if (input->isSwiftError())
1093         SwiftErrorArgs.push_back(ArgNo);
1094     }
1095     ++ArgNo;
1096   }
1097 
1098   // Create allocas for the outputs
1099   for (Value *output : outputs) {
1100     if (AggregateArgs) {
1101       StructValues.push_back(output);
1102     } else {
1103       AllocaInst *alloca =
1104         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1105                        nullptr, output->getName() + ".loc",
1106                        &codeReplacer->getParent()->front().front());
1107       ReloadOutputs.push_back(alloca);
1108       params.push_back(alloca);
1109     }
1110   }
1111 
1112   StructType *StructArgTy = nullptr;
1113   AllocaInst *Struct = nullptr;
1114   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1115     std::vector<Type *> ArgTypes;
1116     for (ValueSet::iterator v = StructValues.begin(),
1117            ve = StructValues.end(); v != ve; ++v)
1118       ArgTypes.push_back((*v)->getType());
1119 
1120     // Allocate a struct at the beginning of this function
1121     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1122     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1123                             "structArg",
1124                             &codeReplacer->getParent()->front().front());
1125     params.push_back(Struct);
1126 
1127     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1128       Value *Idx[2];
1129       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1130       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1131       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1132           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1133       codeReplacer->getInstList().push_back(GEP);
1134       StoreInst *SI = new StoreInst(StructValues[i], GEP);
1135       codeReplacer->getInstList().push_back(SI);
1136     }
1137   }
1138 
1139   // Emit the call to the function
1140   call = CallInst::Create(newFunction, params,
1141                           NumExitBlocks > 1 ? "targetBlock" : "");
1142   // Add debug location to the new call, if the original function has debug
1143   // info. In that case, the terminator of the entry block of the extracted
1144   // function contains the first debug location of the extracted function,
1145   // set in extractCodeRegion.
1146   if (codeReplacer->getParent()->getSubprogram()) {
1147     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1148       call->setDebugLoc(DL);
1149   }
1150   codeReplacer->getInstList().push_back(call);
1151 
1152   // Set swifterror parameter attributes.
1153   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1154     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1155     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1156   }
1157 
1158   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1159   unsigned FirstOut = inputs.size();
1160   if (!AggregateArgs)
1161     std::advance(OutputArgBegin, inputs.size());
1162 
1163   // Reload the outputs passed in by reference.
1164   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1165     Value *Output = nullptr;
1166     if (AggregateArgs) {
1167       Value *Idx[2];
1168       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1169       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1170       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1171           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1172       codeReplacer->getInstList().push_back(GEP);
1173       Output = GEP;
1174     } else {
1175       Output = ReloadOutputs[i];
1176     }
1177     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1178                                   outputs[i]->getName() + ".reload",
1179                                   codeReplacer);
1180     Reloads.push_back(load);
1181     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1182     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1183       Instruction *inst = cast<Instruction>(Users[u]);
1184       if (!Blocks.count(inst->getParent()))
1185         inst->replaceUsesOfWith(outputs[i], load);
1186     }
1187   }
1188 
1189   // Now we can emit a switch statement using the call as a value.
1190   SwitchInst *TheSwitch =
1191       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1192                          codeReplacer, 0, codeReplacer);
1193 
1194   // Since there may be multiple exits from the original region, make the new
1195   // function return an unsigned, switch on that number.  This loop iterates
1196   // over all of the blocks in the extracted region, updating any terminator
1197   // instructions in the to-be-extracted region that branch to blocks that are
1198   // not in the region to be extracted.
1199   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1200 
1201   unsigned switchVal = 0;
1202   for (BasicBlock *Block : Blocks) {
1203     Instruction *TI = Block->getTerminator();
1204     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1205       if (!Blocks.count(TI->getSuccessor(i))) {
1206         BasicBlock *OldTarget = TI->getSuccessor(i);
1207         // add a new basic block which returns the appropriate value
1208         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1209         if (!NewTarget) {
1210           // If we don't already have an exit stub for this non-extracted
1211           // destination, create one now!
1212           NewTarget = BasicBlock::Create(Context,
1213                                          OldTarget->getName() + ".exitStub",
1214                                          newFunction);
1215           unsigned SuccNum = switchVal++;
1216 
1217           Value *brVal = nullptr;
1218           switch (NumExitBlocks) {
1219           case 0:
1220           case 1: break;  // No value needed.
1221           case 2:         // Conditional branch, return a bool
1222             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1223             break;
1224           default:
1225             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1226             break;
1227           }
1228 
1229           ReturnInst::Create(Context, brVal, NewTarget);
1230 
1231           // Update the switch instruction.
1232           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1233                                               SuccNum),
1234                              OldTarget);
1235         }
1236 
1237         // rewrite the original branch instruction with this new target
1238         TI->setSuccessor(i, NewTarget);
1239       }
1240   }
1241 
1242   // Store the arguments right after the definition of output value.
1243   // This should be proceeded after creating exit stubs to be ensure that invoke
1244   // result restore will be placed in the outlined function.
1245   Function::arg_iterator OAI = OutputArgBegin;
1246   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1247     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1248     if (!OutI)
1249       continue;
1250 
1251     // Find proper insertion point.
1252     BasicBlock::iterator InsertPt;
1253     // In case OutI is an invoke, we insert the store at the beginning in the
1254     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1255     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1256       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1257     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1258       InsertPt = Phi->getParent()->getFirstInsertionPt();
1259     else
1260       InsertPt = std::next(OutI->getIterator());
1261 
1262     Instruction *InsertBefore = &*InsertPt;
1263     assert((InsertBefore->getFunction() == newFunction ||
1264             Blocks.count(InsertBefore->getParent())) &&
1265            "InsertPt should be in new function");
1266     assert(OAI != newFunction->arg_end() &&
1267            "Number of output arguments should match "
1268            "the amount of defined values");
1269     if (AggregateArgs) {
1270       Value *Idx[2];
1271       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1272       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1273       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1274           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1275           InsertBefore);
1276       new StoreInst(outputs[i], GEP, InsertBefore);
1277       // Since there should be only one struct argument aggregating
1278       // all the output values, we shouldn't increment OAI, which always
1279       // points to the struct argument, in this case.
1280     } else {
1281       new StoreInst(outputs[i], &*OAI, InsertBefore);
1282       ++OAI;
1283     }
1284   }
1285 
1286   // Now that we've done the deed, simplify the switch instruction.
1287   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1288   switch (NumExitBlocks) {
1289   case 0:
1290     // There are no successors (the block containing the switch itself), which
1291     // means that previously this was the last part of the function, and hence
1292     // this should be rewritten as a `ret'
1293 
1294     // Check if the function should return a value
1295     if (OldFnRetTy->isVoidTy()) {
1296       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1297     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1298       // return what we have
1299       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1300     } else {
1301       // Otherwise we must have code extracted an unwind or something, just
1302       // return whatever we want.
1303       ReturnInst::Create(Context,
1304                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1305     }
1306 
1307     TheSwitch->eraseFromParent();
1308     break;
1309   case 1:
1310     // Only a single destination, change the switch into an unconditional
1311     // branch.
1312     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1313     TheSwitch->eraseFromParent();
1314     break;
1315   case 2:
1316     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1317                        call, TheSwitch);
1318     TheSwitch->eraseFromParent();
1319     break;
1320   default:
1321     // Otherwise, make the default destination of the switch instruction be one
1322     // of the other successors.
1323     TheSwitch->setCondition(call);
1324     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1325     // Remove redundant case
1326     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1327     break;
1328   }
1329 
1330   // Insert lifetime markers around the reloads of any output values. The
1331   // allocas output values are stored in are only in-use in the codeRepl block.
1332   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1333 
1334   return call;
1335 }
1336 
1337 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1338   Function *oldFunc = (*Blocks.begin())->getParent();
1339   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1340   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1341 
1342   for (BasicBlock *Block : Blocks) {
1343     // Delete the basic block from the old function, and the list of blocks
1344     oldBlocks.remove(Block);
1345 
1346     // Insert this basic block into the new function
1347     newBlocks.push_back(Block);
1348   }
1349 }
1350 
1351 void CodeExtractor::calculateNewCallTerminatorWeights(
1352     BasicBlock *CodeReplacer,
1353     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1354     BranchProbabilityInfo *BPI) {
1355   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1356   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1357 
1358   // Update the branch weights for the exit block.
1359   Instruction *TI = CodeReplacer->getTerminator();
1360   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1361 
1362   // Block Frequency distribution with dummy node.
1363   Distribution BranchDist;
1364 
1365   // Add each of the frequencies of the successors.
1366   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1367     BlockNode ExitNode(i);
1368     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1369     if (ExitFreq != 0)
1370       BranchDist.addExit(ExitNode, ExitFreq);
1371     else
1372       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1373   }
1374 
1375   // Check for no total weight.
1376   if (BranchDist.Total == 0)
1377     return;
1378 
1379   // Normalize the distribution so that they can fit in unsigned.
1380   BranchDist.normalize();
1381 
1382   // Create normalized branch weights and set the metadata.
1383   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1384     const auto &Weight = BranchDist.Weights[I];
1385 
1386     // Get the weight and update the current BFI.
1387     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1388     BranchProbability BP(Weight.Amount, BranchDist.Total);
1389     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1390   }
1391   TI->setMetadata(
1392       LLVMContext::MD_prof,
1393       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1394 }
1395 
1396 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1397 /// \p F.
1398 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1399   for (Instruction &I : instructions(F)) {
1400     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1401     findDbgUsers(DbgUsers, &I);
1402     for (DbgVariableIntrinsic *DVI : DbgUsers)
1403       if (DVI->getFunction() != &F)
1404         DVI->eraseFromParent();
1405   }
1406 }
1407 
1408 /// Fix up the debug info in the old and new functions by pointing line
1409 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1410 /// intrinsics which point to values outside of the new function.
1411 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1412                                          CallInst &TheCall) {
1413   DISubprogram *OldSP = OldFunc.getSubprogram();
1414   LLVMContext &Ctx = OldFunc.getContext();
1415 
1416   if (!OldSP) {
1417     // Erase any debug info the new function contains.
1418     stripDebugInfo(NewFunc);
1419     // Make sure the old function doesn't contain any non-local metadata refs.
1420     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1421     return;
1422   }
1423 
1424   // Create a subprogram for the new function. Leave out a description of the
1425   // function arguments, as the parameters don't correspond to anything at the
1426   // source level.
1427   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1428   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolvedNodes=*/false,
1429                 OldSP->getUnit());
1430   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1431   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1432                                     DISubprogram::SPFlagOptimized |
1433                                     DISubprogram::SPFlagLocalToUnit;
1434   auto NewSP = DIB.createFunction(
1435       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1436       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1437   NewFunc.setSubprogram(NewSP);
1438 
1439   // Debug intrinsics in the new function need to be updated in one of two
1440   // ways:
1441   //  1) They need to be deleted, because they describe a value in the old
1442   //     function.
1443   //  2) They need to point to fresh metadata, e.g. because they currently
1444   //     point to a variable in the wrong scope.
1445   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1446   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1447   for (Instruction &I : instructions(NewFunc)) {
1448     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1449     if (!DII)
1450       continue;
1451 
1452     // Point the intrinsic to a fresh label within the new function.
1453     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1454       DILabel *OldLabel = DLI->getLabel();
1455       DINode *&NewLabel = RemappedMetadata[OldLabel];
1456       if (!NewLabel)
1457         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1458                                 OldLabel->getFile(), OldLabel->getLine());
1459       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1460       continue;
1461     }
1462 
1463     // If the location isn't a constant or an instruction, delete the
1464     // intrinsic.
1465     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1466     Value *Location = DVI->getVariableLocation();
1467     if (!Location ||
1468         (!isa<Constant>(Location) && !isa<Instruction>(Location))) {
1469       DebugIntrinsicsToDelete.push_back(DVI);
1470       continue;
1471     }
1472 
1473     // If the variable location is an instruction but isn't in the new
1474     // function, delete the intrinsic.
1475     Instruction *LocationInst = dyn_cast<Instruction>(Location);
1476     if (LocationInst && LocationInst->getFunction() != &NewFunc) {
1477       DebugIntrinsicsToDelete.push_back(DVI);
1478       continue;
1479     }
1480 
1481     // Point the intrinsic to a fresh variable within the new function.
1482     DILocalVariable *OldVar = DVI->getVariable();
1483     DINode *&NewVar = RemappedMetadata[OldVar];
1484     if (!NewVar)
1485       NewVar = DIB.createAutoVariable(
1486           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1487           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1488           OldVar->getAlignInBits());
1489     DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar));
1490   }
1491   for (auto *DII : DebugIntrinsicsToDelete)
1492     DII->eraseFromParent();
1493   DIB.finalizeSubprogram(NewSP);
1494 
1495   // Fix up the scope information attached to the line locations in the new
1496   // function.
1497   for (Instruction &I : instructions(NewFunc)) {
1498     if (const DebugLoc &DL = I.getDebugLoc())
1499       I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP));
1500 
1501     // Loop info metadata may contain line locations. Fix them up.
1502     auto updateLoopInfoLoc = [&Ctx,
1503                               NewSP](const DILocation &Loc) -> DILocation * {
1504       return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP,
1505                              nullptr);
1506     };
1507     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1508   }
1509   if (!TheCall.getDebugLoc())
1510     TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP));
1511 
1512   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1513 }
1514 
1515 Function *
1516 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1517   if (!isEligible())
1518     return nullptr;
1519 
1520   // Assumption: this is a single-entry code region, and the header is the first
1521   // block in the region.
1522   BasicBlock *header = *Blocks.begin();
1523   Function *oldFunction = header->getParent();
1524 
1525   // Calculate the entry frequency of the new function before we change the root
1526   //   block.
1527   BlockFrequency EntryFreq;
1528   if (BFI) {
1529     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1530     for (BasicBlock *Pred : predecessors(header)) {
1531       if (Blocks.count(Pred))
1532         continue;
1533       EntryFreq +=
1534           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1535     }
1536   }
1537 
1538   // Remove @llvm.assume calls that will be moved to the new function from the
1539   // old function's assumption cache.
1540   for (BasicBlock *Block : Blocks) {
1541     for (auto It = Block->begin(), End = Block->end(); It != End;) {
1542       Instruction *I = &*It;
1543       ++It;
1544 
1545       if (match(I, m_Intrinsic<Intrinsic::assume>())) {
1546         if (AC)
1547           AC->unregisterAssumption(cast<CallInst>(I));
1548         I->eraseFromParent();
1549       }
1550     }
1551   }
1552 
1553   // If we have any return instructions in the region, split those blocks so
1554   // that the return is not in the region.
1555   splitReturnBlocks();
1556 
1557   // Calculate the exit blocks for the extracted region and the total exit
1558   // weights for each of those blocks.
1559   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1560   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1561   for (BasicBlock *Block : Blocks) {
1562     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1563          ++SI) {
1564       if (!Blocks.count(*SI)) {
1565         // Update the branch weight for this successor.
1566         if (BFI) {
1567           BlockFrequency &BF = ExitWeights[*SI];
1568           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1569         }
1570         ExitBlocks.insert(*SI);
1571       }
1572     }
1573   }
1574   NumExitBlocks = ExitBlocks.size();
1575 
1576   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1577   severSplitPHINodesOfEntry(header);
1578   severSplitPHINodesOfExits(ExitBlocks);
1579 
1580   // This takes place of the original loop
1581   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1582                                                 "codeRepl", oldFunction,
1583                                                 header);
1584 
1585   // The new function needs a root node because other nodes can branch to the
1586   // head of the region, but the entry node of a function cannot have preds.
1587   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1588                                                "newFuncRoot");
1589   auto *BranchI = BranchInst::Create(header);
1590   // If the original function has debug info, we have to add a debug location
1591   // to the new branch instruction from the artificial entry block.
1592   // We use the debug location of the first instruction in the extracted
1593   // blocks, as there is no other equivalent line in the source code.
1594   if (oldFunction->getSubprogram()) {
1595     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1596       return any_of(*BB, [&BranchI](const Instruction &I) {
1597         if (!I.getDebugLoc())
1598           return false;
1599         BranchI->setDebugLoc(I.getDebugLoc());
1600         return true;
1601       });
1602     });
1603   }
1604   newFuncRoot->getInstList().push_back(BranchI);
1605 
1606   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1607   BasicBlock *CommonExit = nullptr;
1608   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1609   assert(HoistingCands.empty() || CommonExit);
1610 
1611   // Find inputs to, outputs from the code region.
1612   findInputsOutputs(inputs, outputs, SinkingCands);
1613 
1614   // Now sink all instructions which only have non-phi uses inside the region.
1615   // Group the allocas at the start of the block, so that any bitcast uses of
1616   // the allocas are well-defined.
1617   AllocaInst *FirstSunkAlloca = nullptr;
1618   for (auto *II : SinkingCands) {
1619     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1620       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1621       if (!FirstSunkAlloca)
1622         FirstSunkAlloca = AI;
1623     }
1624   }
1625   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1626          "Did not expect a sink candidate without any allocas");
1627   for (auto *II : SinkingCands) {
1628     if (!isa<AllocaInst>(II)) {
1629       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1630     }
1631   }
1632 
1633   if (!HoistingCands.empty()) {
1634     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1635     Instruction *TI = HoistToBlock->getTerminator();
1636     for (auto *II : HoistingCands)
1637       cast<Instruction>(II)->moveBefore(TI);
1638   }
1639 
1640   // Collect objects which are inputs to the extraction region and also
1641   // referenced by lifetime start markers within it. The effects of these
1642   // markers must be replicated in the calling function to prevent the stack
1643   // coloring pass from merging slots which store input objects.
1644   ValueSet LifetimesStart;
1645   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1646 
1647   // Construct new function based on inputs/outputs & add allocas for all defs.
1648   Function *newFunction =
1649       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1650                         oldFunction, oldFunction->getParent());
1651 
1652   // Update the entry count of the function.
1653   if (BFI) {
1654     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1655     if (Count.hasValue())
1656       newFunction->setEntryCount(
1657           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1658     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1659   }
1660 
1661   CallInst *TheCall =
1662       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1663 
1664   moveCodeToFunction(newFunction);
1665 
1666   // Replicate the effects of any lifetime start/end markers which referenced
1667   // input objects in the extraction region by placing markers around the call.
1668   insertLifetimeMarkersSurroundingCall(
1669       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1670 
1671   // Propagate personality info to the new function if there is one.
1672   if (oldFunction->hasPersonalityFn())
1673     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1674 
1675   // Update the branch weights for the exit block.
1676   if (BFI && NumExitBlocks > 1)
1677     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1678 
1679   // Loop over all of the PHI nodes in the header and exit blocks, and change
1680   // any references to the old incoming edge to be the new incoming edge.
1681   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1682     PHINode *PN = cast<PHINode>(I);
1683     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1684       if (!Blocks.count(PN->getIncomingBlock(i)))
1685         PN->setIncomingBlock(i, newFuncRoot);
1686   }
1687 
1688   for (BasicBlock *ExitBB : ExitBlocks)
1689     for (PHINode &PN : ExitBB->phis()) {
1690       Value *IncomingCodeReplacerVal = nullptr;
1691       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1692         // Ignore incoming values from outside of the extracted region.
1693         if (!Blocks.count(PN.getIncomingBlock(i)))
1694           continue;
1695 
1696         // Ensure that there is only one incoming value from codeReplacer.
1697         if (!IncomingCodeReplacerVal) {
1698           PN.setIncomingBlock(i, codeReplacer);
1699           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1700         } else
1701           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1702                  "PHI has two incompatbile incoming values from codeRepl");
1703       }
1704     }
1705 
1706   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1707 
1708   // Mark the new function `noreturn` if applicable. Terminators which resume
1709   // exception propagation are treated as returning instructions. This is to
1710   // avoid inserting traps after calls to outlined functions which unwind.
1711   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1712     const Instruction *Term = BB.getTerminator();
1713     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1714   });
1715   if (doesNotReturn)
1716     newFunction->setDoesNotReturn();
1717 
1718   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1719     newFunction->dump();
1720     report_fatal_error("verification of newFunction failed!");
1721   });
1722   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1723              report_fatal_error("verification of oldFunction failed!"));
1724   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1725                  report_fatal_error("Stale Asumption cache for old Function!"));
1726   return newFunction;
1727 }
1728 
1729 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1730                                           const Function &NewFunc,
1731                                           AssumptionCache *AC) {
1732   for (auto AssumeVH : AC->assumptions()) {
1733     CallInst *I = dyn_cast_or_null<CallInst>(AssumeVH);
1734     if (!I)
1735       continue;
1736 
1737     // There shouldn't be any llvm.assume intrinsics in the new function.
1738     if (I->getFunction() != &OldFunc)
1739       return true;
1740 
1741     // There shouldn't be any stale affected values in the assumption cache
1742     // that were previously in the old function, but that have now been moved
1743     // to the new function.
1744     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1745       CallInst *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1746       if (!AffectedCI)
1747         continue;
1748       if (AffectedCI->getFunction() != &OldFunc)
1749         return true;
1750       auto *AssumedInst = dyn_cast<Instruction>(AffectedCI->getOperand(0));
1751       if (AssumedInst->getFunction() != &OldFunc)
1752         return true;
1753     }
1754   }
1755   return false;
1756 }
1757