xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 620892432332fe344a7a5520983b09ecbf2e6fb6)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/RegionInfo.h"
25 #include "llvm/Analysis/RegionIterator.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include <algorithm>
43 #include <set>
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "code-extractor"
47 
48 // Provide a command-line option to aggregate function arguments into a struct
49 // for functions produced by the code extractor. This is useful when converting
50 // extracted functions to pthread-based code, as only one argument (void*) can
51 // be passed in to pthread_create().
52 static cl::opt<bool>
53 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
54                  cl::desc("Aggregate arguments to code-extracted functions"));
55 
56 /// \brief Test whether a block is valid for extraction.
57 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) {
58   // Landing pads must be in the function where they were inserted for cleanup.
59   if (BB.isEHPad())
60     return false;
61 
62   // Don't hoist code containing allocas, invokes, or vastarts.
63   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
64     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
65       return false;
66     if (const CallInst *CI = dyn_cast<CallInst>(I))
67       if (const Function *F = CI->getCalledFunction())
68         if (F->getIntrinsicID() == Intrinsic::vastart)
69           return false;
70   }
71 
72   return true;
73 }
74 
75 /// \brief Build a set of blocks to extract if the input blocks are viable.
76 template <typename IteratorT>
77 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
78                                                        IteratorT BBEnd) {
79   SetVector<BasicBlock *> Result;
80 
81   assert(BBBegin != BBEnd);
82 
83   // Loop over the blocks, adding them to our set-vector, and aborting with an
84   // empty set if we encounter invalid blocks.
85   do {
86     if (!Result.insert(*BBBegin))
87       llvm_unreachable("Repeated basic blocks in extraction input");
88 
89     if (!CodeExtractor::isBlockValidForExtraction(**BBBegin)) {
90       Result.clear();
91       return Result;
92     }
93   } while (++BBBegin != BBEnd);
94 
95 #ifndef NDEBUG
96   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
97                                          E = Result.end();
98        I != E; ++I)
99     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
100          PI != PE; ++PI)
101       assert(Result.count(*PI) &&
102              "No blocks in this region may have entries from outside the region"
103              " except for the first block!");
104 #endif
105 
106   return Result;
107 }
108 
109 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
110 static SetVector<BasicBlock *>
111 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
112   return buildExtractionBlockSet(BBs.begin(), BBs.end());
113 }
114 
115 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
116 static SetVector<BasicBlock *>
117 buildExtractionBlockSet(const RegionNode &RN) {
118   if (!RN.isSubRegion())
119     // Just a single BasicBlock.
120     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
121 
122   const Region &R = *RN.getNodeAs<Region>();
123 
124   return buildExtractionBlockSet(R.block_begin(), R.block_end());
125 }
126 
127 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs,
128                              BlockFrequencyInfo *BFI,
129                              BranchProbabilityInfo *BPI)
130     : DT(nullptr), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
131       BPI(BPI), Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
132 
133 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
134                              bool AggregateArgs, BlockFrequencyInfo *BFI,
135                              BranchProbabilityInfo *BPI)
136     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
137       BPI(BPI), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
138 
139 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
140                              BlockFrequencyInfo *BFI,
141                              BranchProbabilityInfo *BPI)
142     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
143       BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks())),
144       NumExitBlocks(~0U) {}
145 
146 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
147                              bool AggregateArgs, BlockFrequencyInfo *BFI,
148                              BranchProbabilityInfo *BPI)
149     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
150       BPI(BPI), Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
151 
152 /// definedInRegion - Return true if the specified value is defined in the
153 /// extracted region.
154 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
155   if (Instruction *I = dyn_cast<Instruction>(V))
156     if (Blocks.count(I->getParent()))
157       return true;
158   return false;
159 }
160 
161 /// definedInCaller - Return true if the specified value is defined in the
162 /// function being code extracted, but not in the region being extracted.
163 /// These values must be passed in as live-ins to the function.
164 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
165   if (isa<Argument>(V)) return true;
166   if (Instruction *I = dyn_cast<Instruction>(V))
167     if (!Blocks.count(I->getParent()))
168       return true;
169   return false;
170 }
171 
172 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
173                                       ValueSet &Outputs) const {
174   for (BasicBlock *BB : Blocks) {
175     // If a used value is defined outside the region, it's an input.  If an
176     // instruction is used outside the region, it's an output.
177     for (Instruction &II : *BB) {
178       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
179            ++OI)
180         if (definedInCaller(Blocks, *OI))
181           Inputs.insert(*OI);
182 
183       for (User *U : II.users())
184         if (!definedInRegion(Blocks, U)) {
185           Outputs.insert(&II);
186           break;
187         }
188     }
189   }
190 }
191 
192 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
193 /// region, we need to split the entry block of the region so that the PHI node
194 /// is easier to deal with.
195 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
196   unsigned NumPredsFromRegion = 0;
197   unsigned NumPredsOutsideRegion = 0;
198 
199   if (Header != &Header->getParent()->getEntryBlock()) {
200     PHINode *PN = dyn_cast<PHINode>(Header->begin());
201     if (!PN) return;  // No PHI nodes.
202 
203     // If the header node contains any PHI nodes, check to see if there is more
204     // than one entry from outside the region.  If so, we need to sever the
205     // header block into two.
206     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
207       if (Blocks.count(PN->getIncomingBlock(i)))
208         ++NumPredsFromRegion;
209       else
210         ++NumPredsOutsideRegion;
211 
212     // If there is one (or fewer) predecessor from outside the region, we don't
213     // need to do anything special.
214     if (NumPredsOutsideRegion <= 1) return;
215   }
216 
217   // Otherwise, we need to split the header block into two pieces: one
218   // containing PHI nodes merging values from outside of the region, and a
219   // second that contains all of the code for the block and merges back any
220   // incoming values from inside of the region.
221   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator();
222   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
223                                               Header->getName()+".ce");
224 
225   // We only want to code extract the second block now, and it becomes the new
226   // header of the region.
227   BasicBlock *OldPred = Header;
228   Blocks.remove(OldPred);
229   Blocks.insert(NewBB);
230   Header = NewBB;
231 
232   // Okay, update dominator sets. The blocks that dominate the new one are the
233   // blocks that dominate TIBB plus the new block itself.
234   if (DT)
235     DT->splitBlock(NewBB);
236 
237   // Okay, now we need to adjust the PHI nodes and any branches from within the
238   // region to go to the new header block instead of the old header block.
239   if (NumPredsFromRegion) {
240     PHINode *PN = cast<PHINode>(OldPred->begin());
241     // Loop over all of the predecessors of OldPred that are in the region,
242     // changing them to branch to NewBB instead.
243     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
244       if (Blocks.count(PN->getIncomingBlock(i))) {
245         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
246         TI->replaceUsesOfWith(OldPred, NewBB);
247       }
248 
249     // Okay, everything within the region is now branching to the right block, we
250     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
251     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
252       PHINode *PN = cast<PHINode>(AfterPHIs);
253       // Create a new PHI node in the new region, which has an incoming value
254       // from OldPred of PN.
255       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
256                                        PN->getName() + ".ce", &NewBB->front());
257       NewPN->addIncoming(PN, OldPred);
258 
259       // Loop over all of the incoming value in PN, moving them to NewPN if they
260       // are from the extracted region.
261       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
262         if (Blocks.count(PN->getIncomingBlock(i))) {
263           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
264           PN->removeIncomingValue(i);
265           --i;
266         }
267       }
268     }
269   }
270 }
271 
272 void CodeExtractor::splitReturnBlocks() {
273   for (BasicBlock *Block : Blocks)
274     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
275       BasicBlock *New =
276           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
277       if (DT) {
278         // Old dominates New. New node dominates all other nodes dominated
279         // by Old.
280         DomTreeNode *OldNode = DT->getNode(Block);
281         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
282                                                OldNode->end());
283 
284         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
285 
286         for (DomTreeNode *I : Children)
287           DT->changeImmediateDominator(I, NewNode);
288       }
289     }
290 }
291 
292 /// constructFunction - make a function based on inputs and outputs, as follows:
293 /// f(in0, ..., inN, out0, ..., outN)
294 ///
295 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
296                                            const ValueSet &outputs,
297                                            BasicBlock *header,
298                                            BasicBlock *newRootNode,
299                                            BasicBlock *newHeader,
300                                            Function *oldFunction,
301                                            Module *M) {
302   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
303   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
304 
305   // This function returns unsigned, outputs will go back by reference.
306   switch (NumExitBlocks) {
307   case 0:
308   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
309   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
310   default: RetTy = Type::getInt16Ty(header->getContext()); break;
311   }
312 
313   std::vector<Type*> paramTy;
314 
315   // Add the types of the input values to the function's argument list
316   for (Value *value : inputs) {
317     DEBUG(dbgs() << "value used in func: " << *value << "\n");
318     paramTy.push_back(value->getType());
319   }
320 
321   // Add the types of the output values to the function's argument list.
322   for (Value *output : outputs) {
323     DEBUG(dbgs() << "instr used in func: " << *output << "\n");
324     if (AggregateArgs)
325       paramTy.push_back(output->getType());
326     else
327       paramTy.push_back(PointerType::getUnqual(output->getType()));
328   }
329 
330   DEBUG({
331     dbgs() << "Function type: " << *RetTy << " f(";
332     for (Type *i : paramTy)
333       dbgs() << *i << ", ";
334     dbgs() << ")\n";
335   });
336 
337   StructType *StructTy;
338   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
339     StructTy = StructType::get(M->getContext(), paramTy);
340     paramTy.clear();
341     paramTy.push_back(PointerType::getUnqual(StructTy));
342   }
343   FunctionType *funcType =
344                   FunctionType::get(RetTy, paramTy, false);
345 
346   // Create the new function
347   Function *newFunction = Function::Create(funcType,
348                                            GlobalValue::InternalLinkage,
349                                            oldFunction->getName() + "_" +
350                                            header->getName(), M);
351   // If the old function is no-throw, so is the new one.
352   if (oldFunction->doesNotThrow())
353     newFunction->setDoesNotThrow();
354 
355   newFunction->getBasicBlockList().push_back(newRootNode);
356 
357   // Create an iterator to name all of the arguments we inserted.
358   Function::arg_iterator AI = newFunction->arg_begin();
359 
360   // Rewrite all users of the inputs in the extracted region to use the
361   // arguments (or appropriate addressing into struct) instead.
362   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
363     Value *RewriteVal;
364     if (AggregateArgs) {
365       Value *Idx[2];
366       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
367       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
368       TerminatorInst *TI = newFunction->begin()->getTerminator();
369       GetElementPtrInst *GEP = GetElementPtrInst::Create(
370           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
371       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
372     } else
373       RewriteVal = &*AI++;
374 
375     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
376     for (User *use : Users)
377       if (Instruction *inst = dyn_cast<Instruction>(use))
378         if (Blocks.count(inst->getParent()))
379           inst->replaceUsesOfWith(inputs[i], RewriteVal);
380   }
381 
382   // Set names for input and output arguments.
383   if (!AggregateArgs) {
384     AI = newFunction->arg_begin();
385     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
386       AI->setName(inputs[i]->getName());
387     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
388       AI->setName(outputs[i]->getName()+".out");
389   }
390 
391   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
392   // within the new function. This must be done before we lose track of which
393   // blocks were originally in the code region.
394   std::vector<User*> Users(header->user_begin(), header->user_end());
395   for (unsigned i = 0, e = Users.size(); i != e; ++i)
396     // The BasicBlock which contains the branch is not in the region
397     // modify the branch target to a new block
398     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
399       if (!Blocks.count(TI->getParent()) &&
400           TI->getParent()->getParent() == oldFunction)
401         TI->replaceUsesOfWith(header, newHeader);
402 
403   return newFunction;
404 }
405 
406 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
407 /// that uses the value within the basic block, and return the predecessor
408 /// block associated with that use, or return 0 if none is found.
409 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
410   for (Use &U : Used->uses()) {
411      PHINode *P = dyn_cast<PHINode>(U.getUser());
412      if (P && P->getParent() == BB)
413        return P->getIncomingBlock(U);
414   }
415 
416   return nullptr;
417 }
418 
419 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
420 /// the call instruction, splitting any PHI nodes in the header block as
421 /// necessary.
422 void CodeExtractor::
423 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
424                            ValueSet &inputs, ValueSet &outputs) {
425   // Emit a call to the new function, passing in: *pointer to struct (if
426   // aggregating parameters), or plan inputs and allocated memory for outputs
427   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
428 
429   LLVMContext &Context = newFunction->getContext();
430 
431   // Add inputs as params, or to be filled into the struct
432   for (Value *input : inputs)
433     if (AggregateArgs)
434       StructValues.push_back(input);
435     else
436       params.push_back(input);
437 
438   // Create allocas for the outputs
439   for (Value *output : outputs) {
440     if (AggregateArgs) {
441       StructValues.push_back(output);
442     } else {
443       AllocaInst *alloca =
444           new AllocaInst(output->getType(), nullptr, output->getName() + ".loc",
445                          &codeReplacer->getParent()->front().front());
446       ReloadOutputs.push_back(alloca);
447       params.push_back(alloca);
448     }
449   }
450 
451   StructType *StructArgTy = nullptr;
452   AllocaInst *Struct = nullptr;
453   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
454     std::vector<Type*> ArgTypes;
455     for (ValueSet::iterator v = StructValues.begin(),
456            ve = StructValues.end(); v != ve; ++v)
457       ArgTypes.push_back((*v)->getType());
458 
459     // Allocate a struct at the beginning of this function
460     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
461     Struct = new AllocaInst(StructArgTy, nullptr, "structArg",
462                             &codeReplacer->getParent()->front().front());
463     params.push_back(Struct);
464 
465     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
466       Value *Idx[2];
467       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
468       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
469       GetElementPtrInst *GEP = GetElementPtrInst::Create(
470           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
471       codeReplacer->getInstList().push_back(GEP);
472       StoreInst *SI = new StoreInst(StructValues[i], GEP);
473       codeReplacer->getInstList().push_back(SI);
474     }
475   }
476 
477   // Emit the call to the function
478   CallInst *call = CallInst::Create(newFunction, params,
479                                     NumExitBlocks > 1 ? "targetBlock" : "");
480   codeReplacer->getInstList().push_back(call);
481 
482   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
483   unsigned FirstOut = inputs.size();
484   if (!AggregateArgs)
485     std::advance(OutputArgBegin, inputs.size());
486 
487   // Reload the outputs passed in by reference
488   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
489     Value *Output = nullptr;
490     if (AggregateArgs) {
491       Value *Idx[2];
492       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
493       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
494       GetElementPtrInst *GEP = GetElementPtrInst::Create(
495           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
496       codeReplacer->getInstList().push_back(GEP);
497       Output = GEP;
498     } else {
499       Output = ReloadOutputs[i];
500     }
501     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
502     Reloads.push_back(load);
503     codeReplacer->getInstList().push_back(load);
504     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
505     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
506       Instruction *inst = cast<Instruction>(Users[u]);
507       if (!Blocks.count(inst->getParent()))
508         inst->replaceUsesOfWith(outputs[i], load);
509     }
510   }
511 
512   // Now we can emit a switch statement using the call as a value.
513   SwitchInst *TheSwitch =
514       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
515                          codeReplacer, 0, codeReplacer);
516 
517   // Since there may be multiple exits from the original region, make the new
518   // function return an unsigned, switch on that number.  This loop iterates
519   // over all of the blocks in the extracted region, updating any terminator
520   // instructions in the to-be-extracted region that branch to blocks that are
521   // not in the region to be extracted.
522   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
523 
524   unsigned switchVal = 0;
525   for (BasicBlock *Block : Blocks) {
526     TerminatorInst *TI = Block->getTerminator();
527     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
528       if (!Blocks.count(TI->getSuccessor(i))) {
529         BasicBlock *OldTarget = TI->getSuccessor(i);
530         // add a new basic block which returns the appropriate value
531         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
532         if (!NewTarget) {
533           // If we don't already have an exit stub for this non-extracted
534           // destination, create one now!
535           NewTarget = BasicBlock::Create(Context,
536                                          OldTarget->getName() + ".exitStub",
537                                          newFunction);
538           unsigned SuccNum = switchVal++;
539 
540           Value *brVal = nullptr;
541           switch (NumExitBlocks) {
542           case 0:
543           case 1: break;  // No value needed.
544           case 2:         // Conditional branch, return a bool
545             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
546             break;
547           default:
548             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
549             break;
550           }
551 
552           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
553 
554           // Update the switch instruction.
555           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
556                                               SuccNum),
557                              OldTarget);
558 
559           // Restore values just before we exit
560           Function::arg_iterator OAI = OutputArgBegin;
561           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
562             // For an invoke, the normal destination is the only one that is
563             // dominated by the result of the invocation
564             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
565 
566             bool DominatesDef = true;
567 
568             BasicBlock *NormalDest = nullptr;
569             if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
570               NormalDest = Invoke->getNormalDest();
571 
572             if (NormalDest) {
573               DefBlock = NormalDest;
574 
575               // Make sure we are looking at the original successor block, not
576               // at a newly inserted exit block, which won't be in the dominator
577               // info.
578               for (const auto &I : ExitBlockMap)
579                 if (DefBlock == I.second) {
580                   DefBlock = I.first;
581                   break;
582                 }
583 
584               // In the extract block case, if the block we are extracting ends
585               // with an invoke instruction, make sure that we don't emit a
586               // store of the invoke value for the unwind block.
587               if (!DT && DefBlock != OldTarget)
588                 DominatesDef = false;
589             }
590 
591             if (DT) {
592               DominatesDef = DT->dominates(DefBlock, OldTarget);
593 
594               // If the output value is used by a phi in the target block,
595               // then we need to test for dominance of the phi's predecessor
596               // instead.  Unfortunately, this a little complicated since we
597               // have already rewritten uses of the value to uses of the reload.
598               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
599                                                           OldTarget);
600               if (pred && DT && DT->dominates(DefBlock, pred))
601                 DominatesDef = true;
602             }
603 
604             if (DominatesDef) {
605               if (AggregateArgs) {
606                 Value *Idx[2];
607                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
608                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
609                                           FirstOut+out);
610                 GetElementPtrInst *GEP = GetElementPtrInst::Create(
611                     StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
612                     NTRet);
613                 new StoreInst(outputs[out], GEP, NTRet);
614               } else {
615                 new StoreInst(outputs[out], &*OAI, NTRet);
616               }
617             }
618             // Advance output iterator even if we don't emit a store
619             if (!AggregateArgs) ++OAI;
620           }
621         }
622 
623         // rewrite the original branch instruction with this new target
624         TI->setSuccessor(i, NewTarget);
625       }
626   }
627 
628   // Now that we've done the deed, simplify the switch instruction.
629   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
630   switch (NumExitBlocks) {
631   case 0:
632     // There are no successors (the block containing the switch itself), which
633     // means that previously this was the last part of the function, and hence
634     // this should be rewritten as a `ret'
635 
636     // Check if the function should return a value
637     if (OldFnRetTy->isVoidTy()) {
638       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
639     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
640       // return what we have
641       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
642     } else {
643       // Otherwise we must have code extracted an unwind or something, just
644       // return whatever we want.
645       ReturnInst::Create(Context,
646                          Constant::getNullValue(OldFnRetTy), TheSwitch);
647     }
648 
649     TheSwitch->eraseFromParent();
650     break;
651   case 1:
652     // Only a single destination, change the switch into an unconditional
653     // branch.
654     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
655     TheSwitch->eraseFromParent();
656     break;
657   case 2:
658     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
659                        call, TheSwitch);
660     TheSwitch->eraseFromParent();
661     break;
662   default:
663     // Otherwise, make the default destination of the switch instruction be one
664     // of the other successors.
665     TheSwitch->setCondition(call);
666     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
667     // Remove redundant case
668     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
669     break;
670   }
671 }
672 
673 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
674   Function *oldFunc = (*Blocks.begin())->getParent();
675   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
676   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
677 
678   for (BasicBlock *Block : Blocks) {
679     // Delete the basic block from the old function, and the list of blocks
680     oldBlocks.remove(Block);
681 
682     // Insert this basic block into the new function
683     newBlocks.push_back(Block);
684   }
685 }
686 
687 void CodeExtractor::calculateNewCallTerminatorWeights(
688     BasicBlock *CodeReplacer,
689     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
690     BranchProbabilityInfo *BPI) {
691   typedef BlockFrequencyInfoImplBase::Distribution Distribution;
692   typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
693 
694   // Update the branch weights for the exit block.
695   TerminatorInst *TI = CodeReplacer->getTerminator();
696   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
697 
698   // Block Frequency distribution with dummy node.
699   Distribution BranchDist;
700 
701   // Add each of the frequencies of the successors.
702   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
703     BlockNode ExitNode(i);
704     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
705     if (ExitFreq != 0)
706       BranchDist.addExit(ExitNode, ExitFreq);
707     else
708       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
709   }
710 
711   // Check for no total weight.
712   if (BranchDist.Total == 0)
713     return;
714 
715   // Normalize the distribution so that they can fit in unsigned.
716   BranchDist.normalize();
717 
718   // Create normalized branch weights and set the metadata.
719   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
720     const auto &Weight = BranchDist.Weights[I];
721 
722     // Get the weight and update the current BFI.
723     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
724     BranchProbability BP(Weight.Amount, BranchDist.Total);
725     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
726   }
727   TI->setMetadata(
728       LLVMContext::MD_prof,
729       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
730 }
731 
732 Function *CodeExtractor::extractCodeRegion() {
733   if (!isEligible())
734     return nullptr;
735 
736   ValueSet inputs, outputs;
737 
738   // Assumption: this is a single-entry code region, and the header is the first
739   // block in the region.
740   BasicBlock *header = *Blocks.begin();
741 
742   // Calculate the entry frequency of the new function before we change the root
743   //   block.
744   BlockFrequency EntryFreq;
745   if (BFI) {
746     assert(BPI && "Both BPI and BFI are required to preserve profile info");
747     for (BasicBlock *Pred : predecessors(header)) {
748       if (Blocks.count(Pred))
749         continue;
750       EntryFreq +=
751           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
752     }
753   }
754 
755   // If we have to split PHI nodes or the entry block, do so now.
756   severSplitPHINodes(header);
757 
758   // If we have any return instructions in the region, split those blocks so
759   // that the return is not in the region.
760   splitReturnBlocks();
761 
762   Function *oldFunction = header->getParent();
763 
764   // This takes place of the original loop
765   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
766                                                 "codeRepl", oldFunction,
767                                                 header);
768 
769   // The new function needs a root node because other nodes can branch to the
770   // head of the region, but the entry node of a function cannot have preds.
771   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
772                                                "newFuncRoot");
773   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
774 
775   // Find inputs to, outputs from the code region.
776   findInputsOutputs(inputs, outputs);
777 
778   // Calculate the exit blocks for the extracted region and the total exit
779   //  weights for each of those blocks.
780   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
781   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
782   for (BasicBlock *Block : Blocks) {
783     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
784          ++SI) {
785       if (!Blocks.count(*SI)) {
786         // Update the branch weight for this successor.
787         if (BFI) {
788           BlockFrequency &BF = ExitWeights[*SI];
789           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
790         }
791         ExitBlocks.insert(*SI);
792       }
793     }
794   }
795   NumExitBlocks = ExitBlocks.size();
796 
797   // Construct new function based on inputs/outputs & add allocas for all defs.
798   Function *newFunction = constructFunction(inputs, outputs, header,
799                                             newFuncRoot,
800                                             codeReplacer, oldFunction,
801                                             oldFunction->getParent());
802 
803   // Update the entry count of the function.
804   if (BFI) {
805     Optional<uint64_t> EntryCount =
806         BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
807     if (EntryCount.hasValue())
808       newFunction->setEntryCount(EntryCount.getValue());
809     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
810   }
811 
812   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
813 
814   moveCodeToFunction(newFunction);
815 
816   // Update the branch weights for the exit block.
817   if (BFI && NumExitBlocks > 1)
818     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
819 
820   // Loop over all of the PHI nodes in the header block, and change any
821   // references to the old incoming edge to be the new incoming edge.
822   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
823     PHINode *PN = cast<PHINode>(I);
824     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
825       if (!Blocks.count(PN->getIncomingBlock(i)))
826         PN->setIncomingBlock(i, newFuncRoot);
827   }
828 
829   // Look at all successors of the codeReplacer block.  If any of these blocks
830   // had PHI nodes in them, we need to update the "from" block to be the code
831   // replacer, not the original block in the extracted region.
832   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
833                                  succ_end(codeReplacer));
834   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
835     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
836       PHINode *PN = cast<PHINode>(I);
837       std::set<BasicBlock*> ProcessedPreds;
838       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
839         if (Blocks.count(PN->getIncomingBlock(i))) {
840           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
841             PN->setIncomingBlock(i, codeReplacer);
842           else {
843             // There were multiple entries in the PHI for this block, now there
844             // is only one, so remove the duplicated entries.
845             PN->removeIncomingValue(i, false);
846             --i; --e;
847           }
848         }
849     }
850 
851   //cerr << "NEW FUNCTION: " << *newFunction;
852   //  verifyFunction(*newFunction);
853 
854   //  cerr << "OLD FUNCTION: " << *oldFunction;
855   //  verifyFunction(*oldFunction);
856 
857   DEBUG(if (verifyFunction(*newFunction))
858         report_fatal_error("verifyFunction failed!"));
859   return newFunction;
860 }
861