1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/RegionInfo.h" 25 #include "llvm/Analysis/RegionIterator.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/BlockFrequency.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include <algorithm> 43 #include <set> 44 using namespace llvm; 45 46 #define DEBUG_TYPE "code-extractor" 47 48 // Provide a command-line option to aggregate function arguments into a struct 49 // for functions produced by the code extractor. This is useful when converting 50 // extracted functions to pthread-based code, as only one argument (void*) can 51 // be passed in to pthread_create(). 52 static cl::opt<bool> 53 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 54 cl::desc("Aggregate arguments to code-extracted functions")); 55 56 /// \brief Test whether a block is valid for extraction. 57 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { 58 // Landing pads must be in the function where they were inserted for cleanup. 59 if (BB.isEHPad()) 60 return false; 61 62 // Don't hoist code containing allocas, invokes, or vastarts. 63 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 64 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 65 return false; 66 if (const CallInst *CI = dyn_cast<CallInst>(I)) 67 if (const Function *F = CI->getCalledFunction()) 68 if (F->getIntrinsicID() == Intrinsic::vastart) 69 return false; 70 } 71 72 return true; 73 } 74 75 /// \brief Build a set of blocks to extract if the input blocks are viable. 76 template <typename IteratorT> 77 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, 78 IteratorT BBEnd) { 79 SetVector<BasicBlock *> Result; 80 81 assert(BBBegin != BBEnd); 82 83 // Loop over the blocks, adding them to our set-vector, and aborting with an 84 // empty set if we encounter invalid blocks. 85 do { 86 if (!Result.insert(*BBBegin)) 87 llvm_unreachable("Repeated basic blocks in extraction input"); 88 89 if (!CodeExtractor::isBlockValidForExtraction(**BBBegin)) { 90 Result.clear(); 91 return Result; 92 } 93 } while (++BBBegin != BBEnd); 94 95 #ifndef NDEBUG 96 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 97 E = Result.end(); 98 I != E; ++I) 99 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 100 PI != PE; ++PI) 101 assert(Result.count(*PI) && 102 "No blocks in this region may have entries from outside the region" 103 " except for the first block!"); 104 #endif 105 106 return Result; 107 } 108 109 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef. 110 static SetVector<BasicBlock *> 111 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { 112 return buildExtractionBlockSet(BBs.begin(), BBs.end()); 113 } 114 115 /// \brief Helper to call buildExtractionBlockSet with a RegionNode. 116 static SetVector<BasicBlock *> 117 buildExtractionBlockSet(const RegionNode &RN) { 118 if (!RN.isSubRegion()) 119 // Just a single BasicBlock. 120 return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); 121 122 const Region &R = *RN.getNodeAs<Region>(); 123 124 return buildExtractionBlockSet(R.block_begin(), R.block_end()); 125 } 126 127 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs, 128 BlockFrequencyInfo *BFI, 129 BranchProbabilityInfo *BPI) 130 : DT(nullptr), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 131 BPI(BPI), Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} 132 133 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 134 bool AggregateArgs, BlockFrequencyInfo *BFI, 135 BranchProbabilityInfo *BPI) 136 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 137 BPI(BPI), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} 138 139 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 140 BlockFrequencyInfo *BFI, 141 BranchProbabilityInfo *BPI) 142 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 143 BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks())), 144 NumExitBlocks(~0U) {} 145 146 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, 147 bool AggregateArgs, BlockFrequencyInfo *BFI, 148 BranchProbabilityInfo *BPI) 149 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 150 BPI(BPI), Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} 151 152 /// definedInRegion - Return true if the specified value is defined in the 153 /// extracted region. 154 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 155 if (Instruction *I = dyn_cast<Instruction>(V)) 156 if (Blocks.count(I->getParent())) 157 return true; 158 return false; 159 } 160 161 /// definedInCaller - Return true if the specified value is defined in the 162 /// function being code extracted, but not in the region being extracted. 163 /// These values must be passed in as live-ins to the function. 164 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 165 if (isa<Argument>(V)) return true; 166 if (Instruction *I = dyn_cast<Instruction>(V)) 167 if (!Blocks.count(I->getParent())) 168 return true; 169 return false; 170 } 171 172 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, 173 ValueSet &Outputs) const { 174 for (BasicBlock *BB : Blocks) { 175 // If a used value is defined outside the region, it's an input. If an 176 // instruction is used outside the region, it's an output. 177 for (Instruction &II : *BB) { 178 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 179 ++OI) 180 if (definedInCaller(Blocks, *OI)) 181 Inputs.insert(*OI); 182 183 for (User *U : II.users()) 184 if (!definedInRegion(Blocks, U)) { 185 Outputs.insert(&II); 186 break; 187 } 188 } 189 } 190 } 191 192 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 193 /// region, we need to split the entry block of the region so that the PHI node 194 /// is easier to deal with. 195 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 196 unsigned NumPredsFromRegion = 0; 197 unsigned NumPredsOutsideRegion = 0; 198 199 if (Header != &Header->getParent()->getEntryBlock()) { 200 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 201 if (!PN) return; // No PHI nodes. 202 203 // If the header node contains any PHI nodes, check to see if there is more 204 // than one entry from outside the region. If so, we need to sever the 205 // header block into two. 206 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 207 if (Blocks.count(PN->getIncomingBlock(i))) 208 ++NumPredsFromRegion; 209 else 210 ++NumPredsOutsideRegion; 211 212 // If there is one (or fewer) predecessor from outside the region, we don't 213 // need to do anything special. 214 if (NumPredsOutsideRegion <= 1) return; 215 } 216 217 // Otherwise, we need to split the header block into two pieces: one 218 // containing PHI nodes merging values from outside of the region, and a 219 // second that contains all of the code for the block and merges back any 220 // incoming values from inside of the region. 221 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator(); 222 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 223 Header->getName()+".ce"); 224 225 // We only want to code extract the second block now, and it becomes the new 226 // header of the region. 227 BasicBlock *OldPred = Header; 228 Blocks.remove(OldPred); 229 Blocks.insert(NewBB); 230 Header = NewBB; 231 232 // Okay, update dominator sets. The blocks that dominate the new one are the 233 // blocks that dominate TIBB plus the new block itself. 234 if (DT) 235 DT->splitBlock(NewBB); 236 237 // Okay, now we need to adjust the PHI nodes and any branches from within the 238 // region to go to the new header block instead of the old header block. 239 if (NumPredsFromRegion) { 240 PHINode *PN = cast<PHINode>(OldPred->begin()); 241 // Loop over all of the predecessors of OldPred that are in the region, 242 // changing them to branch to NewBB instead. 243 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 244 if (Blocks.count(PN->getIncomingBlock(i))) { 245 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 246 TI->replaceUsesOfWith(OldPred, NewBB); 247 } 248 249 // Okay, everything within the region is now branching to the right block, we 250 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 251 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 252 PHINode *PN = cast<PHINode>(AfterPHIs); 253 // Create a new PHI node in the new region, which has an incoming value 254 // from OldPred of PN. 255 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 256 PN->getName() + ".ce", &NewBB->front()); 257 NewPN->addIncoming(PN, OldPred); 258 259 // Loop over all of the incoming value in PN, moving them to NewPN if they 260 // are from the extracted region. 261 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 262 if (Blocks.count(PN->getIncomingBlock(i))) { 263 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 264 PN->removeIncomingValue(i); 265 --i; 266 } 267 } 268 } 269 } 270 } 271 272 void CodeExtractor::splitReturnBlocks() { 273 for (BasicBlock *Block : Blocks) 274 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 275 BasicBlock *New = 276 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 277 if (DT) { 278 // Old dominates New. New node dominates all other nodes dominated 279 // by Old. 280 DomTreeNode *OldNode = DT->getNode(Block); 281 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 282 OldNode->end()); 283 284 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 285 286 for (DomTreeNode *I : Children) 287 DT->changeImmediateDominator(I, NewNode); 288 } 289 } 290 } 291 292 /// constructFunction - make a function based on inputs and outputs, as follows: 293 /// f(in0, ..., inN, out0, ..., outN) 294 /// 295 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 296 const ValueSet &outputs, 297 BasicBlock *header, 298 BasicBlock *newRootNode, 299 BasicBlock *newHeader, 300 Function *oldFunction, 301 Module *M) { 302 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 303 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 304 305 // This function returns unsigned, outputs will go back by reference. 306 switch (NumExitBlocks) { 307 case 0: 308 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 309 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 310 default: RetTy = Type::getInt16Ty(header->getContext()); break; 311 } 312 313 std::vector<Type*> paramTy; 314 315 // Add the types of the input values to the function's argument list 316 for (Value *value : inputs) { 317 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 318 paramTy.push_back(value->getType()); 319 } 320 321 // Add the types of the output values to the function's argument list. 322 for (Value *output : outputs) { 323 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 324 if (AggregateArgs) 325 paramTy.push_back(output->getType()); 326 else 327 paramTy.push_back(PointerType::getUnqual(output->getType())); 328 } 329 330 DEBUG({ 331 dbgs() << "Function type: " << *RetTy << " f("; 332 for (Type *i : paramTy) 333 dbgs() << *i << ", "; 334 dbgs() << ")\n"; 335 }); 336 337 StructType *StructTy; 338 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 339 StructTy = StructType::get(M->getContext(), paramTy); 340 paramTy.clear(); 341 paramTy.push_back(PointerType::getUnqual(StructTy)); 342 } 343 FunctionType *funcType = 344 FunctionType::get(RetTy, paramTy, false); 345 346 // Create the new function 347 Function *newFunction = Function::Create(funcType, 348 GlobalValue::InternalLinkage, 349 oldFunction->getName() + "_" + 350 header->getName(), M); 351 // If the old function is no-throw, so is the new one. 352 if (oldFunction->doesNotThrow()) 353 newFunction->setDoesNotThrow(); 354 355 newFunction->getBasicBlockList().push_back(newRootNode); 356 357 // Create an iterator to name all of the arguments we inserted. 358 Function::arg_iterator AI = newFunction->arg_begin(); 359 360 // Rewrite all users of the inputs in the extracted region to use the 361 // arguments (or appropriate addressing into struct) instead. 362 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 363 Value *RewriteVal; 364 if (AggregateArgs) { 365 Value *Idx[2]; 366 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 367 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 368 TerminatorInst *TI = newFunction->begin()->getTerminator(); 369 GetElementPtrInst *GEP = GetElementPtrInst::Create( 370 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 371 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 372 } else 373 RewriteVal = &*AI++; 374 375 std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 376 for (User *use : Users) 377 if (Instruction *inst = dyn_cast<Instruction>(use)) 378 if (Blocks.count(inst->getParent())) 379 inst->replaceUsesOfWith(inputs[i], RewriteVal); 380 } 381 382 // Set names for input and output arguments. 383 if (!AggregateArgs) { 384 AI = newFunction->arg_begin(); 385 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 386 AI->setName(inputs[i]->getName()); 387 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 388 AI->setName(outputs[i]->getName()+".out"); 389 } 390 391 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 392 // within the new function. This must be done before we lose track of which 393 // blocks were originally in the code region. 394 std::vector<User*> Users(header->user_begin(), header->user_end()); 395 for (unsigned i = 0, e = Users.size(); i != e; ++i) 396 // The BasicBlock which contains the branch is not in the region 397 // modify the branch target to a new block 398 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 399 if (!Blocks.count(TI->getParent()) && 400 TI->getParent()->getParent() == oldFunction) 401 TI->replaceUsesOfWith(header, newHeader); 402 403 return newFunction; 404 } 405 406 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 407 /// that uses the value within the basic block, and return the predecessor 408 /// block associated with that use, or return 0 if none is found. 409 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 410 for (Use &U : Used->uses()) { 411 PHINode *P = dyn_cast<PHINode>(U.getUser()); 412 if (P && P->getParent() == BB) 413 return P->getIncomingBlock(U); 414 } 415 416 return nullptr; 417 } 418 419 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 420 /// the call instruction, splitting any PHI nodes in the header block as 421 /// necessary. 422 void CodeExtractor:: 423 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 424 ValueSet &inputs, ValueSet &outputs) { 425 // Emit a call to the new function, passing in: *pointer to struct (if 426 // aggregating parameters), or plan inputs and allocated memory for outputs 427 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 428 429 LLVMContext &Context = newFunction->getContext(); 430 431 // Add inputs as params, or to be filled into the struct 432 for (Value *input : inputs) 433 if (AggregateArgs) 434 StructValues.push_back(input); 435 else 436 params.push_back(input); 437 438 // Create allocas for the outputs 439 for (Value *output : outputs) { 440 if (AggregateArgs) { 441 StructValues.push_back(output); 442 } else { 443 AllocaInst *alloca = 444 new AllocaInst(output->getType(), nullptr, output->getName() + ".loc", 445 &codeReplacer->getParent()->front().front()); 446 ReloadOutputs.push_back(alloca); 447 params.push_back(alloca); 448 } 449 } 450 451 StructType *StructArgTy = nullptr; 452 AllocaInst *Struct = nullptr; 453 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 454 std::vector<Type*> ArgTypes; 455 for (ValueSet::iterator v = StructValues.begin(), 456 ve = StructValues.end(); v != ve; ++v) 457 ArgTypes.push_back((*v)->getType()); 458 459 // Allocate a struct at the beginning of this function 460 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 461 Struct = new AllocaInst(StructArgTy, nullptr, "structArg", 462 &codeReplacer->getParent()->front().front()); 463 params.push_back(Struct); 464 465 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 466 Value *Idx[2]; 467 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 468 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 469 GetElementPtrInst *GEP = GetElementPtrInst::Create( 470 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 471 codeReplacer->getInstList().push_back(GEP); 472 StoreInst *SI = new StoreInst(StructValues[i], GEP); 473 codeReplacer->getInstList().push_back(SI); 474 } 475 } 476 477 // Emit the call to the function 478 CallInst *call = CallInst::Create(newFunction, params, 479 NumExitBlocks > 1 ? "targetBlock" : ""); 480 codeReplacer->getInstList().push_back(call); 481 482 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 483 unsigned FirstOut = inputs.size(); 484 if (!AggregateArgs) 485 std::advance(OutputArgBegin, inputs.size()); 486 487 // Reload the outputs passed in by reference 488 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 489 Value *Output = nullptr; 490 if (AggregateArgs) { 491 Value *Idx[2]; 492 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 493 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 494 GetElementPtrInst *GEP = GetElementPtrInst::Create( 495 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 496 codeReplacer->getInstList().push_back(GEP); 497 Output = GEP; 498 } else { 499 Output = ReloadOutputs[i]; 500 } 501 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 502 Reloads.push_back(load); 503 codeReplacer->getInstList().push_back(load); 504 std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 505 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 506 Instruction *inst = cast<Instruction>(Users[u]); 507 if (!Blocks.count(inst->getParent())) 508 inst->replaceUsesOfWith(outputs[i], load); 509 } 510 } 511 512 // Now we can emit a switch statement using the call as a value. 513 SwitchInst *TheSwitch = 514 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 515 codeReplacer, 0, codeReplacer); 516 517 // Since there may be multiple exits from the original region, make the new 518 // function return an unsigned, switch on that number. This loop iterates 519 // over all of the blocks in the extracted region, updating any terminator 520 // instructions in the to-be-extracted region that branch to blocks that are 521 // not in the region to be extracted. 522 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 523 524 unsigned switchVal = 0; 525 for (BasicBlock *Block : Blocks) { 526 TerminatorInst *TI = Block->getTerminator(); 527 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 528 if (!Blocks.count(TI->getSuccessor(i))) { 529 BasicBlock *OldTarget = TI->getSuccessor(i); 530 // add a new basic block which returns the appropriate value 531 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 532 if (!NewTarget) { 533 // If we don't already have an exit stub for this non-extracted 534 // destination, create one now! 535 NewTarget = BasicBlock::Create(Context, 536 OldTarget->getName() + ".exitStub", 537 newFunction); 538 unsigned SuccNum = switchVal++; 539 540 Value *brVal = nullptr; 541 switch (NumExitBlocks) { 542 case 0: 543 case 1: break; // No value needed. 544 case 2: // Conditional branch, return a bool 545 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 546 break; 547 default: 548 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 549 break; 550 } 551 552 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 553 554 // Update the switch instruction. 555 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 556 SuccNum), 557 OldTarget); 558 559 // Restore values just before we exit 560 Function::arg_iterator OAI = OutputArgBegin; 561 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 562 // For an invoke, the normal destination is the only one that is 563 // dominated by the result of the invocation 564 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 565 566 bool DominatesDef = true; 567 568 BasicBlock *NormalDest = nullptr; 569 if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out])) 570 NormalDest = Invoke->getNormalDest(); 571 572 if (NormalDest) { 573 DefBlock = NormalDest; 574 575 // Make sure we are looking at the original successor block, not 576 // at a newly inserted exit block, which won't be in the dominator 577 // info. 578 for (const auto &I : ExitBlockMap) 579 if (DefBlock == I.second) { 580 DefBlock = I.first; 581 break; 582 } 583 584 // In the extract block case, if the block we are extracting ends 585 // with an invoke instruction, make sure that we don't emit a 586 // store of the invoke value for the unwind block. 587 if (!DT && DefBlock != OldTarget) 588 DominatesDef = false; 589 } 590 591 if (DT) { 592 DominatesDef = DT->dominates(DefBlock, OldTarget); 593 594 // If the output value is used by a phi in the target block, 595 // then we need to test for dominance of the phi's predecessor 596 // instead. Unfortunately, this a little complicated since we 597 // have already rewritten uses of the value to uses of the reload. 598 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 599 OldTarget); 600 if (pred && DT && DT->dominates(DefBlock, pred)) 601 DominatesDef = true; 602 } 603 604 if (DominatesDef) { 605 if (AggregateArgs) { 606 Value *Idx[2]; 607 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 608 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 609 FirstOut+out); 610 GetElementPtrInst *GEP = GetElementPtrInst::Create( 611 StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(), 612 NTRet); 613 new StoreInst(outputs[out], GEP, NTRet); 614 } else { 615 new StoreInst(outputs[out], &*OAI, NTRet); 616 } 617 } 618 // Advance output iterator even if we don't emit a store 619 if (!AggregateArgs) ++OAI; 620 } 621 } 622 623 // rewrite the original branch instruction with this new target 624 TI->setSuccessor(i, NewTarget); 625 } 626 } 627 628 // Now that we've done the deed, simplify the switch instruction. 629 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 630 switch (NumExitBlocks) { 631 case 0: 632 // There are no successors (the block containing the switch itself), which 633 // means that previously this was the last part of the function, and hence 634 // this should be rewritten as a `ret' 635 636 // Check if the function should return a value 637 if (OldFnRetTy->isVoidTy()) { 638 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 639 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 640 // return what we have 641 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 642 } else { 643 // Otherwise we must have code extracted an unwind or something, just 644 // return whatever we want. 645 ReturnInst::Create(Context, 646 Constant::getNullValue(OldFnRetTy), TheSwitch); 647 } 648 649 TheSwitch->eraseFromParent(); 650 break; 651 case 1: 652 // Only a single destination, change the switch into an unconditional 653 // branch. 654 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 655 TheSwitch->eraseFromParent(); 656 break; 657 case 2: 658 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 659 call, TheSwitch); 660 TheSwitch->eraseFromParent(); 661 break; 662 default: 663 // Otherwise, make the default destination of the switch instruction be one 664 // of the other successors. 665 TheSwitch->setCondition(call); 666 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 667 // Remove redundant case 668 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 669 break; 670 } 671 } 672 673 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 674 Function *oldFunc = (*Blocks.begin())->getParent(); 675 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 676 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 677 678 for (BasicBlock *Block : Blocks) { 679 // Delete the basic block from the old function, and the list of blocks 680 oldBlocks.remove(Block); 681 682 // Insert this basic block into the new function 683 newBlocks.push_back(Block); 684 } 685 } 686 687 void CodeExtractor::calculateNewCallTerminatorWeights( 688 BasicBlock *CodeReplacer, 689 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 690 BranchProbabilityInfo *BPI) { 691 typedef BlockFrequencyInfoImplBase::Distribution Distribution; 692 typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; 693 694 // Update the branch weights for the exit block. 695 TerminatorInst *TI = CodeReplacer->getTerminator(); 696 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 697 698 // Block Frequency distribution with dummy node. 699 Distribution BranchDist; 700 701 // Add each of the frequencies of the successors. 702 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 703 BlockNode ExitNode(i); 704 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 705 if (ExitFreq != 0) 706 BranchDist.addExit(ExitNode, ExitFreq); 707 else 708 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 709 } 710 711 // Check for no total weight. 712 if (BranchDist.Total == 0) 713 return; 714 715 // Normalize the distribution so that they can fit in unsigned. 716 BranchDist.normalize(); 717 718 // Create normalized branch weights and set the metadata. 719 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 720 const auto &Weight = BranchDist.Weights[I]; 721 722 // Get the weight and update the current BFI. 723 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 724 BranchProbability BP(Weight.Amount, BranchDist.Total); 725 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 726 } 727 TI->setMetadata( 728 LLVMContext::MD_prof, 729 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 730 } 731 732 Function *CodeExtractor::extractCodeRegion() { 733 if (!isEligible()) 734 return nullptr; 735 736 ValueSet inputs, outputs; 737 738 // Assumption: this is a single-entry code region, and the header is the first 739 // block in the region. 740 BasicBlock *header = *Blocks.begin(); 741 742 // Calculate the entry frequency of the new function before we change the root 743 // block. 744 BlockFrequency EntryFreq; 745 if (BFI) { 746 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 747 for (BasicBlock *Pred : predecessors(header)) { 748 if (Blocks.count(Pred)) 749 continue; 750 EntryFreq += 751 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 752 } 753 } 754 755 // If we have to split PHI nodes or the entry block, do so now. 756 severSplitPHINodes(header); 757 758 // If we have any return instructions in the region, split those blocks so 759 // that the return is not in the region. 760 splitReturnBlocks(); 761 762 Function *oldFunction = header->getParent(); 763 764 // This takes place of the original loop 765 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 766 "codeRepl", oldFunction, 767 header); 768 769 // The new function needs a root node because other nodes can branch to the 770 // head of the region, but the entry node of a function cannot have preds. 771 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 772 "newFuncRoot"); 773 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 774 775 // Find inputs to, outputs from the code region. 776 findInputsOutputs(inputs, outputs); 777 778 // Calculate the exit blocks for the extracted region and the total exit 779 // weights for each of those blocks. 780 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 781 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 782 for (BasicBlock *Block : Blocks) { 783 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 784 ++SI) { 785 if (!Blocks.count(*SI)) { 786 // Update the branch weight for this successor. 787 if (BFI) { 788 BlockFrequency &BF = ExitWeights[*SI]; 789 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 790 } 791 ExitBlocks.insert(*SI); 792 } 793 } 794 } 795 NumExitBlocks = ExitBlocks.size(); 796 797 // Construct new function based on inputs/outputs & add allocas for all defs. 798 Function *newFunction = constructFunction(inputs, outputs, header, 799 newFuncRoot, 800 codeReplacer, oldFunction, 801 oldFunction->getParent()); 802 803 // Update the entry count of the function. 804 if (BFI) { 805 Optional<uint64_t> EntryCount = 806 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 807 if (EntryCount.hasValue()) 808 newFunction->setEntryCount(EntryCount.getValue()); 809 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 810 } 811 812 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 813 814 moveCodeToFunction(newFunction); 815 816 // Update the branch weights for the exit block. 817 if (BFI && NumExitBlocks > 1) 818 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 819 820 // Loop over all of the PHI nodes in the header block, and change any 821 // references to the old incoming edge to be the new incoming edge. 822 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 823 PHINode *PN = cast<PHINode>(I); 824 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 825 if (!Blocks.count(PN->getIncomingBlock(i))) 826 PN->setIncomingBlock(i, newFuncRoot); 827 } 828 829 // Look at all successors of the codeReplacer block. If any of these blocks 830 // had PHI nodes in them, we need to update the "from" block to be the code 831 // replacer, not the original block in the extracted region. 832 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 833 succ_end(codeReplacer)); 834 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 835 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 836 PHINode *PN = cast<PHINode>(I); 837 std::set<BasicBlock*> ProcessedPreds; 838 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 839 if (Blocks.count(PN->getIncomingBlock(i))) { 840 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 841 PN->setIncomingBlock(i, codeReplacer); 842 else { 843 // There were multiple entries in the PHI for this block, now there 844 // is only one, so remove the duplicated entries. 845 PN->removeIncomingValue(i, false); 846 --i; --e; 847 } 848 } 849 } 850 851 //cerr << "NEW FUNCTION: " << *newFunction; 852 // verifyFunction(*newFunction); 853 854 // cerr << "OLD FUNCTION: " << *oldFunction; 855 // verifyFunction(*oldFunction); 856 857 DEBUG(if (verifyFunction(*newFunction)) 858 report_fatal_error("verifyFunction failed!")); 859 return newFunction; 860 } 861