1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <algorithm> 34 #include <set> 35 using namespace llvm; 36 37 // Provide a command-line option to aggregate function arguments into a struct 38 // for functions produced by the code extractor. This is useful when converting 39 // extracted functions to pthread-based code, as only one argument (void*) can 40 // be passed in to pthread_create(). 41 static cl::opt<bool> 42 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 43 cl::desc("Aggregate arguments to code-extracted functions")); 44 45 namespace { 46 class VISIBILITY_HIDDEN CodeExtractor { 47 typedef std::vector<Value*> Values; 48 std::set<BasicBlock*> BlocksToExtract; 49 DominatorTree* DT; 50 bool AggregateArgs; 51 unsigned NumExitBlocks; 52 const Type *RetTy; 53 public: 54 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 55 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 56 57 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 58 59 bool isEligible(const std::vector<BasicBlock*> &code); 60 61 private: 62 /// definedInRegion - Return true if the specified value is defined in the 63 /// extracted region. 64 bool definedInRegion(Value *V) const { 65 if (Instruction *I = dyn_cast<Instruction>(V)) 66 if (BlocksToExtract.count(I->getParent())) 67 return true; 68 return false; 69 } 70 71 /// definedInCaller - Return true if the specified value is defined in the 72 /// function being code extracted, but not in the region being extracted. 73 /// These values must be passed in as live-ins to the function. 74 bool definedInCaller(Value *V) const { 75 if (isa<Argument>(V)) return true; 76 if (Instruction *I = dyn_cast<Instruction>(V)) 77 if (!BlocksToExtract.count(I->getParent())) 78 return true; 79 return false; 80 } 81 82 void severSplitPHINodes(BasicBlock *&Header); 83 void splitReturnBlocks(); 84 void findInputsOutputs(Values &inputs, Values &outputs); 85 86 Function *constructFunction(const Values &inputs, 87 const Values &outputs, 88 BasicBlock *header, 89 BasicBlock *newRootNode, BasicBlock *newHeader, 90 Function *oldFunction, Module *M); 91 92 void moveCodeToFunction(Function *newFunction); 93 94 void emitCallAndSwitchStatement(Function *newFunction, 95 BasicBlock *newHeader, 96 Values &inputs, 97 Values &outputs); 98 99 }; 100 } 101 102 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 103 /// region, we need to split the entry block of the region so that the PHI node 104 /// is easier to deal with. 105 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 106 bool HasPredsFromRegion = false; 107 unsigned NumPredsOutsideRegion = 0; 108 109 if (Header != &Header->getParent()->getEntryBlock()) { 110 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 111 if (!PN) return; // No PHI nodes. 112 113 // If the header node contains any PHI nodes, check to see if there is more 114 // than one entry from outside the region. If so, we need to sever the 115 // header block into two. 116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 117 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 118 HasPredsFromRegion = true; 119 else 120 ++NumPredsOutsideRegion; 121 122 // If there is one (or fewer) predecessor from outside the region, we don't 123 // need to do anything special. 124 if (NumPredsOutsideRegion <= 1) return; 125 } 126 127 // Otherwise, we need to split the header block into two pieces: one 128 // containing PHI nodes merging values from outside of the region, and a 129 // second that contains all of the code for the block and merges back any 130 // incoming values from inside of the region. 131 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 132 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 133 Header->getName()+".ce"); 134 135 // We only want to code extract the second block now, and it becomes the new 136 // header of the region. 137 BasicBlock *OldPred = Header; 138 BlocksToExtract.erase(OldPred); 139 BlocksToExtract.insert(NewBB); 140 Header = NewBB; 141 142 // Okay, update dominator sets. The blocks that dominate the new one are the 143 // blocks that dominate TIBB plus the new block itself. 144 if (DT) 145 DT->splitBlock(NewBB); 146 147 // Okay, now we need to adjust the PHI nodes and any branches from within the 148 // region to go to the new header block instead of the old header block. 149 if (HasPredsFromRegion) { 150 PHINode *PN = cast<PHINode>(OldPred->begin()); 151 // Loop over all of the predecessors of OldPred that are in the region, 152 // changing them to branch to NewBB instead. 153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 154 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 155 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 156 TI->replaceUsesOfWith(OldPred, NewBB); 157 } 158 159 // Okay, everthing within the region is now branching to the right block, we 160 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 161 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 162 PHINode *PN = cast<PHINode>(AfterPHIs); 163 // Create a new PHI node in the new region, which has an incoming value 164 // from OldPred of PN. 165 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 166 NewBB->begin()); 167 NewPN->addIncoming(PN, OldPred); 168 169 // Loop over all of the incoming value in PN, moving them to NewPN if they 170 // are from the extracted region. 171 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 172 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 173 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 174 PN->removeIncomingValue(i); 175 --i; 176 } 177 } 178 } 179 } 180 } 181 182 void CodeExtractor::splitReturnBlocks() { 183 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 184 E = BlocksToExtract.end(); I != E; ++I) 185 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 186 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 187 } 188 189 // findInputsOutputs - Find inputs to, outputs from the code region. 190 // 191 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 192 std::set<BasicBlock*> ExitBlocks; 193 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 194 ce = BlocksToExtract.end(); ci != ce; ++ci) { 195 BasicBlock *BB = *ci; 196 197 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 198 // If a used value is defined outside the region, it's an input. If an 199 // instruction is used outside the region, it's an output. 200 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 201 if (definedInCaller(*O)) 202 inputs.push_back(*O); 203 204 // Consider uses of this instruction (outputs). 205 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 206 UI != E; ++UI) 207 if (!definedInRegion(*UI)) { 208 outputs.push_back(I); 209 break; 210 } 211 } // for: insts 212 213 // Keep track of the exit blocks from the region. 214 TerminatorInst *TI = BB->getTerminator(); 215 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 216 if (!BlocksToExtract.count(TI->getSuccessor(i))) 217 ExitBlocks.insert(TI->getSuccessor(i)); 218 } // for: basic blocks 219 220 NumExitBlocks = ExitBlocks.size(); 221 222 // Eliminate duplicates. 223 std::sort(inputs.begin(), inputs.end()); 224 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 225 std::sort(outputs.begin(), outputs.end()); 226 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 227 } 228 229 /// constructFunction - make a function based on inputs and outputs, as follows: 230 /// f(in0, ..., inN, out0, ..., outN) 231 /// 232 Function *CodeExtractor::constructFunction(const Values &inputs, 233 const Values &outputs, 234 BasicBlock *header, 235 BasicBlock *newRootNode, 236 BasicBlock *newHeader, 237 Function *oldFunction, 238 Module *M) { 239 DOUT << "inputs: " << inputs.size() << "\n"; 240 DOUT << "outputs: " << outputs.size() << "\n"; 241 242 // This function returns unsigned, outputs will go back by reference. 243 switch (NumExitBlocks) { 244 case 0: 245 case 1: RetTy = Type::VoidTy; break; 246 case 2: RetTy = Type::Int1Ty; break; 247 default: RetTy = Type::Int16Ty; break; 248 } 249 250 std::vector<const Type*> paramTy; 251 252 // Add the types of the input values to the function's argument list 253 for (Values::const_iterator i = inputs.begin(), 254 e = inputs.end(); i != e; ++i) { 255 const Value *value = *i; 256 DOUT << "value used in func: " << *value << "\n"; 257 paramTy.push_back(value->getType()); 258 } 259 260 // Add the types of the output values to the function's argument list. 261 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 262 I != E; ++I) { 263 DOUT << "instr used in func: " << **I << "\n"; 264 if (AggregateArgs) 265 paramTy.push_back((*I)->getType()); 266 else 267 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 268 } 269 270 DOUT << "Function type: " << *RetTy << " f("; 271 for (std::vector<const Type*>::iterator i = paramTy.begin(), 272 e = paramTy.end(); i != e; ++i) 273 DOUT << **i << ", "; 274 DOUT << ")\n"; 275 276 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 277 PointerType *StructPtr = 278 PointerType::getUnqual(StructType::get(paramTy)); 279 paramTy.clear(); 280 paramTy.push_back(StructPtr); 281 } 282 const FunctionType *funcType = 283 FunctionType::get(RetTy, paramTy, false); 284 285 // Create the new function 286 Function *newFunction = Function::Create(funcType, 287 GlobalValue::InternalLinkage, 288 oldFunction->getName() + "_" + 289 header->getName(), M); 290 // If the old function is no-throw, so is the new one. 291 if (oldFunction->doesNotThrow()) 292 newFunction->setDoesNotThrow(true); 293 294 newFunction->getBasicBlockList().push_back(newRootNode); 295 296 // Create an iterator to name all of the arguments we inserted. 297 Function::arg_iterator AI = newFunction->arg_begin(); 298 299 // Rewrite all users of the inputs in the extracted region to use the 300 // arguments (or appropriate addressing into struct) instead. 301 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 302 Value *RewriteVal; 303 if (AggregateArgs) { 304 Value *Idx[2]; 305 Idx[0] = Constant::getNullValue(Type::Int32Ty); 306 Idx[1] = ConstantInt::get(Type::Int32Ty, i); 307 TerminatorInst *TI = newFunction->begin()->getTerminator(); 308 GetElementPtrInst *GEP = 309 GetElementPtrInst::Create(AI, Idx, Idx+2, 310 "gep_" + inputs[i]->getName(), TI); 311 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 312 } else 313 RewriteVal = AI++; 314 315 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 316 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 317 use != useE; ++use) 318 if (Instruction* inst = dyn_cast<Instruction>(*use)) 319 if (BlocksToExtract.count(inst->getParent())) 320 inst->replaceUsesOfWith(inputs[i], RewriteVal); 321 } 322 323 // Set names for input and output arguments. 324 if (!AggregateArgs) { 325 AI = newFunction->arg_begin(); 326 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 327 AI->setName(inputs[i]->getName()); 328 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 329 AI->setName(outputs[i]->getName()+".out"); 330 } 331 332 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 333 // within the new function. This must be done before we lose track of which 334 // blocks were originally in the code region. 335 std::vector<User*> Users(header->use_begin(), header->use_end()); 336 for (unsigned i = 0, e = Users.size(); i != e; ++i) 337 // The BasicBlock which contains the branch is not in the region 338 // modify the branch target to a new block 339 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 340 if (!BlocksToExtract.count(TI->getParent()) && 341 TI->getParent()->getParent() == oldFunction) 342 TI->replaceUsesOfWith(header, newHeader); 343 344 return newFunction; 345 } 346 347 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 348 /// the call instruction, splitting any PHI nodes in the header block as 349 /// necessary. 350 void CodeExtractor:: 351 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 352 Values &inputs, Values &outputs) { 353 // Emit a call to the new function, passing in: *pointer to struct (if 354 // aggregating parameters), or plan inputs and allocated memory for outputs 355 std::vector<Value*> params, StructValues, ReloadOutputs; 356 357 // Add inputs as params, or to be filled into the struct 358 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 359 if (AggregateArgs) 360 StructValues.push_back(*i); 361 else 362 params.push_back(*i); 363 364 // Create allocas for the outputs 365 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 366 if (AggregateArgs) { 367 StructValues.push_back(*i); 368 } else { 369 AllocaInst *alloca = 370 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 371 codeReplacer->getParent()->begin()->begin()); 372 ReloadOutputs.push_back(alloca); 373 params.push_back(alloca); 374 } 375 } 376 377 AllocaInst *Struct = 0; 378 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 379 std::vector<const Type*> ArgTypes; 380 for (Values::iterator v = StructValues.begin(), 381 ve = StructValues.end(); v != ve; ++v) 382 ArgTypes.push_back((*v)->getType()); 383 384 // Allocate a struct at the beginning of this function 385 Type *StructArgTy = StructType::get(ArgTypes); 386 Struct = 387 new AllocaInst(StructArgTy, 0, "structArg", 388 codeReplacer->getParent()->begin()->begin()); 389 params.push_back(Struct); 390 391 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 392 Value *Idx[2]; 393 Idx[0] = Constant::getNullValue(Type::Int32Ty); 394 Idx[1] = ConstantInt::get(Type::Int32Ty, i); 395 GetElementPtrInst *GEP = 396 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 397 "gep_" + StructValues[i]->getName()); 398 codeReplacer->getInstList().push_back(GEP); 399 StoreInst *SI = new StoreInst(StructValues[i], GEP); 400 codeReplacer->getInstList().push_back(SI); 401 } 402 } 403 404 // Emit the call to the function 405 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 406 NumExitBlocks > 1 ? "targetBlock" : ""); 407 codeReplacer->getInstList().push_back(call); 408 409 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 410 unsigned FirstOut = inputs.size(); 411 if (!AggregateArgs) 412 std::advance(OutputArgBegin, inputs.size()); 413 414 // Reload the outputs passed in by reference 415 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 416 Value *Output = 0; 417 if (AggregateArgs) { 418 Value *Idx[2]; 419 Idx[0] = Constant::getNullValue(Type::Int32Ty); 420 Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i); 421 GetElementPtrInst *GEP 422 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 423 "gep_reload_" + outputs[i]->getName()); 424 codeReplacer->getInstList().push_back(GEP); 425 Output = GEP; 426 } else { 427 Output = ReloadOutputs[i]; 428 } 429 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 430 codeReplacer->getInstList().push_back(load); 431 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 432 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 433 Instruction *inst = cast<Instruction>(Users[u]); 434 if (!BlocksToExtract.count(inst->getParent())) 435 inst->replaceUsesOfWith(outputs[i], load); 436 } 437 } 438 439 // Now we can emit a switch statement using the call as a value. 440 SwitchInst *TheSwitch = 441 SwitchInst::Create(Constant::getNullValue(Type::Int16Ty), 442 codeReplacer, 0, codeReplacer); 443 444 // Since there may be multiple exits from the original region, make the new 445 // function return an unsigned, switch on that number. This loop iterates 446 // over all of the blocks in the extracted region, updating any terminator 447 // instructions in the to-be-extracted region that branch to blocks that are 448 // not in the region to be extracted. 449 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 450 451 unsigned switchVal = 0; 452 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 453 e = BlocksToExtract.end(); i != e; ++i) { 454 TerminatorInst *TI = (*i)->getTerminator(); 455 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 456 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 457 BasicBlock *OldTarget = TI->getSuccessor(i); 458 // add a new basic block which returns the appropriate value 459 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 460 if (!NewTarget) { 461 // If we don't already have an exit stub for this non-extracted 462 // destination, create one now! 463 NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub", 464 newFunction); 465 unsigned SuccNum = switchVal++; 466 467 Value *brVal = 0; 468 switch (NumExitBlocks) { 469 case 0: 470 case 1: break; // No value needed. 471 case 2: // Conditional branch, return a bool 472 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 473 break; 474 default: 475 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 476 break; 477 } 478 479 ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget); 480 481 // Update the switch instruction. 482 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 483 OldTarget); 484 485 // Restore values just before we exit 486 Function::arg_iterator OAI = OutputArgBegin; 487 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 488 // For an invoke, the normal destination is the only one that is 489 // dominated by the result of the invocation 490 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 491 492 bool DominatesDef = true; 493 494 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 495 DefBlock = Invoke->getNormalDest(); 496 497 // Make sure we are looking at the original successor block, not 498 // at a newly inserted exit block, which won't be in the dominator 499 // info. 500 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 501 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 502 if (DefBlock == I->second) { 503 DefBlock = I->first; 504 break; 505 } 506 507 // In the extract block case, if the block we are extracting ends 508 // with an invoke instruction, make sure that we don't emit a 509 // store of the invoke value for the unwind block. 510 if (!DT && DefBlock != OldTarget) 511 DominatesDef = false; 512 } 513 514 if (DT) 515 DominatesDef = DT->dominates(DefBlock, OldTarget); 516 517 if (DominatesDef) { 518 if (AggregateArgs) { 519 Value *Idx[2]; 520 Idx[0] = Constant::getNullValue(Type::Int32Ty); 521 Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out); 522 GetElementPtrInst *GEP = 523 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 524 "gep_" + outputs[out]->getName(), 525 NTRet); 526 new StoreInst(outputs[out], GEP, NTRet); 527 } else { 528 new StoreInst(outputs[out], OAI, NTRet); 529 } 530 } 531 // Advance output iterator even if we don't emit a store 532 if (!AggregateArgs) ++OAI; 533 } 534 } 535 536 // rewrite the original branch instruction with this new target 537 TI->setSuccessor(i, NewTarget); 538 } 539 } 540 541 // Now that we've done the deed, simplify the switch instruction. 542 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 543 switch (NumExitBlocks) { 544 case 0: 545 // There are no successors (the block containing the switch itself), which 546 // means that previously this was the last part of the function, and hence 547 // this should be rewritten as a `ret' 548 549 // Check if the function should return a value 550 if (OldFnRetTy == Type::VoidTy) { 551 ReturnInst::Create(0, TheSwitch); // Return void 552 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 553 // return what we have 554 ReturnInst::Create(TheSwitch->getCondition(), TheSwitch); 555 } else { 556 // Otherwise we must have code extracted an unwind or something, just 557 // return whatever we want. 558 ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch); 559 } 560 561 TheSwitch->eraseFromParent(); 562 break; 563 case 1: 564 // Only a single destination, change the switch into an unconditional 565 // branch. 566 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 567 TheSwitch->eraseFromParent(); 568 break; 569 case 2: 570 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 571 call, TheSwitch); 572 TheSwitch->eraseFromParent(); 573 break; 574 default: 575 // Otherwise, make the default destination of the switch instruction be one 576 // of the other successors. 577 TheSwitch->setOperand(0, call); 578 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 579 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 580 break; 581 } 582 } 583 584 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 585 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 586 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 587 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 588 589 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 590 e = BlocksToExtract.end(); i != e; ++i) { 591 // Delete the basic block from the old function, and the list of blocks 592 oldBlocks.remove(*i); 593 594 // Insert this basic block into the new function 595 newBlocks.push_back(*i); 596 } 597 } 598 599 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 600 /// new function. Returns pointer to the new function. 601 /// 602 /// algorithm: 603 /// 604 /// find inputs and outputs for the region 605 /// 606 /// for inputs: add to function as args, map input instr* to arg# 607 /// for outputs: add allocas for scalars, 608 /// add to func as args, map output instr* to arg# 609 /// 610 /// rewrite func to use argument #s instead of instr* 611 /// 612 /// for each scalar output in the function: at every exit, store intermediate 613 /// computed result back into memory. 614 /// 615 Function *CodeExtractor:: 616 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 617 if (!isEligible(code)) 618 return 0; 619 620 // 1) Find inputs, outputs 621 // 2) Construct new function 622 // * Add allocas for defs, pass as args by reference 623 // * Pass in uses as args 624 // 3) Move code region, add call instr to func 625 // 626 BlocksToExtract.insert(code.begin(), code.end()); 627 628 Values inputs, outputs; 629 630 // Assumption: this is a single-entry code region, and the header is the first 631 // block in the region. 632 BasicBlock *header = code[0]; 633 634 for (unsigned i = 1, e = code.size(); i != e; ++i) 635 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 636 PI != E; ++PI) 637 assert(BlocksToExtract.count(*PI) && 638 "No blocks in this region may have entries from outside the region" 639 " except for the first block!"); 640 641 // If we have to split PHI nodes or the entry block, do so now. 642 severSplitPHINodes(header); 643 644 // If we have any return instructions in the region, split those blocks so 645 // that the return is not in the region. 646 splitReturnBlocks(); 647 648 Function *oldFunction = header->getParent(); 649 650 // This takes place of the original loop 651 BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction, 652 header); 653 654 // The new function needs a root node because other nodes can branch to the 655 // head of the region, but the entry node of a function cannot have preds. 656 BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot"); 657 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 658 659 // Find inputs to, outputs from the code region. 660 findInputsOutputs(inputs, outputs); 661 662 // Construct new function based on inputs/outputs & add allocas for all defs. 663 Function *newFunction = constructFunction(inputs, outputs, header, 664 newFuncRoot, 665 codeReplacer, oldFunction, 666 oldFunction->getParent()); 667 668 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 669 670 moveCodeToFunction(newFunction); 671 672 // Loop over all of the PHI nodes in the header block, and change any 673 // references to the old incoming edge to be the new incoming edge. 674 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 675 PHINode *PN = cast<PHINode>(I); 676 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 677 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 678 PN->setIncomingBlock(i, newFuncRoot); 679 } 680 681 // Look at all successors of the codeReplacer block. If any of these blocks 682 // had PHI nodes in them, we need to update the "from" block to be the code 683 // replacer, not the original block in the extracted region. 684 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 685 succ_end(codeReplacer)); 686 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 687 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 688 PHINode *PN = cast<PHINode>(I); 689 std::set<BasicBlock*> ProcessedPreds; 690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 691 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 692 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 693 PN->setIncomingBlock(i, codeReplacer); 694 else { 695 // There were multiple entries in the PHI for this block, now there 696 // is only one, so remove the duplicated entries. 697 PN->removeIncomingValue(i, false); 698 --i; --e; 699 } 700 } 701 } 702 703 //cerr << "NEW FUNCTION: " << *newFunction; 704 // verifyFunction(*newFunction); 705 706 // cerr << "OLD FUNCTION: " << *oldFunction; 707 // verifyFunction(*oldFunction); 708 709 DEBUG(if (verifyFunction(*newFunction)) 710 llvm_report_error("verifyFunction failed!")); 711 return newFunction; 712 } 713 714 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 715 // Deny code region if it contains allocas or vastarts. 716 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 717 BB != e; ++BB) 718 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 719 I != Ie; ++I) 720 if (isa<AllocaInst>(*I)) 721 return false; 722 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 723 if (const Function *F = CI->getCalledFunction()) 724 if (F->getIntrinsicID() == Intrinsic::vastart) 725 return false; 726 return true; 727 } 728 729 730 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 731 /// function 732 /// 733 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 734 const std::vector<BasicBlock*> &code, 735 bool AggregateArgs) { 736 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 737 } 738 739 /// ExtractBasicBlock - slurp a natural loop into a brand new function 740 /// 741 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 742 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 743 } 744 745 /// ExtractBasicBlock - slurp a basic block into a brand new function 746 /// 747 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 748 std::vector<BasicBlock*> Blocks; 749 Blocks.push_back(BB); 750 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 751 } 752