xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 587495ffa1a4240179c0f0959c1709f23cc52513)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 using namespace llvm::PatternMatch;
75 using ProfileCount = Function::ProfileCount;
76 
77 #define DEBUG_TYPE "code-extractor"
78 
79 // Provide a command-line option to aggregate function arguments into a struct
80 // for functions produced by the code extractor. This is useful when converting
81 // extracted functions to pthread-based code, as only one argument (void*) can
82 // be passed in to pthread_create().
83 static cl::opt<bool>
84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85                  cl::desc("Aggregate arguments to code-extracted functions"));
86 
87 /// Test whether a block is valid for extraction.
88 static bool isBlockValidForExtraction(const BasicBlock &BB,
89                                       const SetVector<BasicBlock *> &Result,
90                                       bool AllowVarArgs, bool AllowAlloca) {
91   // taking the address of a basic block moved to another function is illegal
92   if (BB.hasAddressTaken())
93     return false;
94 
95   // don't hoist code that uses another basicblock address, as it's likely to
96   // lead to unexpected behavior, like cross-function jumps
97   SmallPtrSet<User const *, 16> Visited;
98   SmallVector<User const *, 16> ToVisit;
99 
100   for (Instruction const &Inst : BB)
101     ToVisit.push_back(&Inst);
102 
103   while (!ToVisit.empty()) {
104     User const *Curr = ToVisit.pop_back_val();
105     if (!Visited.insert(Curr).second)
106       continue;
107     if (isa<BlockAddress const>(Curr))
108       return false; // even a reference to self is likely to be not compatible
109 
110     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111       continue;
112 
113     for (auto const &U : Curr->operands()) {
114       if (auto *UU = dyn_cast<User>(U))
115         ToVisit.push_back(UU);
116     }
117   }
118 
119   // If explicitly requested, allow vastart and alloca. For invoke instructions
120   // verify that extraction is valid.
121   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122     if (isa<AllocaInst>(I)) {
123        if (!AllowAlloca)
124          return false;
125        continue;
126     }
127 
128     if (const auto *II = dyn_cast<InvokeInst>(I)) {
129       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130       // must be a part of the subgraph which is being extracted.
131       if (auto *UBB = II->getUnwindDest())
132         if (!Result.count(UBB))
133           return false;
134       continue;
135     }
136 
137     // All catch handlers of a catchswitch instruction as well as the unwind
138     // destination must be in the subgraph.
139     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140       if (auto *UBB = CSI->getUnwindDest())
141         if (!Result.count(UBB))
142           return false;
143       for (auto *HBB : CSI->handlers())
144         if (!Result.count(const_cast<BasicBlock*>(HBB)))
145           return false;
146       continue;
147     }
148 
149     // Make sure that entire catch handler is within subgraph. It is sufficient
150     // to check that catch return's block is in the list.
151     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152       for (const auto *U : CPI->users())
153         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155             return false;
156       continue;
157     }
158 
159     // And do similar checks for cleanup handler - the entire handler must be
160     // in subgraph which is going to be extracted. For cleanup return should
161     // additionally check that the unwind destination is also in the subgraph.
162     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163       for (const auto *U : CPI->users())
164         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166             return false;
167       continue;
168     }
169     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170       if (auto *UBB = CRI->getUnwindDest())
171         if (!Result.count(UBB))
172           return false;
173       continue;
174     }
175 
176     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177       if (const Function *F = CI->getCalledFunction()) {
178         auto IID = F->getIntrinsicID();
179         if (IID == Intrinsic::vastart) {
180           if (AllowVarArgs)
181             continue;
182           else
183             return false;
184         }
185 
186         // Currently, we miscompile outlined copies of eh_typid_for. There are
187         // proposals for fixing this in llvm.org/PR39545.
188         if (IID == Intrinsic::eh_typeid_for)
189           return false;
190       }
191     }
192   }
193 
194   return true;
195 }
196 
197 /// Build a set of blocks to extract if the input blocks are viable.
198 static SetVector<BasicBlock *>
199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200                         bool AllowVarArgs, bool AllowAlloca) {
201   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
202   SetVector<BasicBlock *> Result;
203 
204   // Loop over the blocks, adding them to our set-vector, and aborting with an
205   // empty set if we encounter invalid blocks.
206   for (BasicBlock *BB : BBs) {
207     // If this block is dead, don't process it.
208     if (DT && !DT->isReachableFromEntry(BB))
209       continue;
210 
211     if (!Result.insert(BB))
212       llvm_unreachable("Repeated basic blocks in extraction input");
213   }
214 
215   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
216                     << '\n');
217 
218   for (auto *BB : Result) {
219     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220       return {};
221 
222     // Make sure that the first block is not a landing pad.
223     if (BB == Result.front()) {
224       if (BB->isEHPad()) {
225         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
226         return {};
227       }
228       continue;
229     }
230 
231     // All blocks other than the first must not have predecessors outside of
232     // the subgraph which is being extracted.
233     for (auto *PBB : predecessors(BB))
234       if (!Result.count(PBB)) {
235         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
236                              "outside the region except for the first block!\n"
237                           << "Problematic source BB: " << BB->getName() << "\n"
238                           << "Problematic destination BB: " << PBB->getName()
239                           << "\n");
240         return {};
241       }
242   }
243 
244   return Result;
245 }
246 
247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248                              bool AggregateArgs, BlockFrequencyInfo *BFI,
249                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
250                              bool AllowVarArgs, bool AllowAlloca,
251                              std::string Suffix)
252     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255       Suffix(Suffix) {}
256 
257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258                              BlockFrequencyInfo *BFI,
259                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
260                              std::string Suffix)
261     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262       BPI(BPI), AC(AC), AllowVarArgs(false),
263       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264                                      /* AllowVarArgs */ false,
265                                      /* AllowAlloca */ false)),
266       Suffix(Suffix) {}
267 
268 /// definedInRegion - Return true if the specified value is defined in the
269 /// extracted region.
270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271   if (Instruction *I = dyn_cast<Instruction>(V))
272     if (Blocks.count(I->getParent()))
273       return true;
274   return false;
275 }
276 
277 /// definedInCaller - Return true if the specified value is defined in the
278 /// function being code extracted, but not in the region being extracted.
279 /// These values must be passed in as live-ins to the function.
280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281   if (isa<Argument>(V)) return true;
282   if (Instruction *I = dyn_cast<Instruction>(V))
283     if (!Blocks.count(I->getParent()))
284       return true;
285   return false;
286 }
287 
288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289   BasicBlock *CommonExitBlock = nullptr;
290   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291     for (auto *Succ : successors(Block)) {
292       // Internal edges, ok.
293       if (Blocks.count(Succ))
294         continue;
295       if (!CommonExitBlock) {
296         CommonExitBlock = Succ;
297         continue;
298       }
299       if (CommonExitBlock != Succ)
300         return true;
301     }
302     return false;
303   };
304 
305   if (any_of(Blocks, hasNonCommonExitSucc))
306     return nullptr;
307 
308   return CommonExitBlock;
309 }
310 
311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312   for (BasicBlock &BB : F) {
313     for (Instruction &II : BB.instructionsWithoutDebug())
314       if (auto *AI = dyn_cast<AllocaInst>(&II))
315         Allocas.push_back(AI);
316 
317     findSideEffectInfoForBlock(BB);
318   }
319 }
320 
321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322   for (Instruction &II : BB.instructionsWithoutDebug()) {
323     unsigned Opcode = II.getOpcode();
324     Value *MemAddr = nullptr;
325     switch (Opcode) {
326     case Instruction::Store:
327     case Instruction::Load: {
328       if (Opcode == Instruction::Store) {
329         StoreInst *SI = cast<StoreInst>(&II);
330         MemAddr = SI->getPointerOperand();
331       } else {
332         LoadInst *LI = cast<LoadInst>(&II);
333         MemAddr = LI->getPointerOperand();
334       }
335       // Global variable can not be aliased with locals.
336       if (isa<Constant>(MemAddr))
337         break;
338       Value *Base = MemAddr->stripInBoundsConstantOffsets();
339       if (!isa<AllocaInst>(Base)) {
340         SideEffectingBlocks.insert(&BB);
341         return;
342       }
343       BaseMemAddrs[&BB].insert(Base);
344       break;
345     }
346     default: {
347       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348       if (IntrInst) {
349         if (IntrInst->isLifetimeStartOrEnd())
350           break;
351         SideEffectingBlocks.insert(&BB);
352         return;
353       }
354       // Treat all the other cases conservatively if it has side effects.
355       if (II.mayHaveSideEffects()) {
356         SideEffectingBlocks.insert(&BB);
357         return;
358       }
359     }
360     }
361   }
362 }
363 
364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365     BasicBlock &BB, AllocaInst *Addr) const {
366   if (SideEffectingBlocks.count(&BB))
367     return true;
368   auto It = BaseMemAddrs.find(&BB);
369   if (It != BaseMemAddrs.end())
370     return It->second.count(Addr);
371   return false;
372 }
373 
374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377   Function *Func = (*Blocks.begin())->getParent();
378   for (BasicBlock &BB : *Func) {
379     if (Blocks.count(&BB))
380       continue;
381     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382       return false;
383   }
384   return true;
385 }
386 
387 BasicBlock *
388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389   BasicBlock *SinglePredFromOutlineRegion = nullptr;
390   assert(!Blocks.count(CommonExitBlock) &&
391          "Expect a block outside the region!");
392   for (auto *Pred : predecessors(CommonExitBlock)) {
393     if (!Blocks.count(Pred))
394       continue;
395     if (!SinglePredFromOutlineRegion) {
396       SinglePredFromOutlineRegion = Pred;
397     } else if (SinglePredFromOutlineRegion != Pred) {
398       SinglePredFromOutlineRegion = nullptr;
399       break;
400     }
401   }
402 
403   if (SinglePredFromOutlineRegion)
404     return SinglePredFromOutlineRegion;
405 
406 #ifndef NDEBUG
407   auto getFirstPHI = [](BasicBlock *BB) {
408     BasicBlock::iterator I = BB->begin();
409     PHINode *FirstPhi = nullptr;
410     while (I != BB->end()) {
411       PHINode *Phi = dyn_cast<PHINode>(I);
412       if (!Phi)
413         break;
414       if (!FirstPhi) {
415         FirstPhi = Phi;
416         break;
417       }
418     }
419     return FirstPhi;
420   };
421   // If there are any phi nodes, the single pred either exists or has already
422   // be created before code extraction.
423   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
424 #endif
425 
426   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427       CommonExitBlock->getFirstNonPHI()->getIterator());
428 
429   for (BasicBlock *Pred :
430        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
431     if (Blocks.count(Pred))
432       continue;
433     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
434   }
435   // Now add the old exit block to the outline region.
436   Blocks.insert(CommonExitBlock);
437   OldTargets.push_back(NewExitBlock);
438   return CommonExitBlock;
439 }
440 
441 // Find the pair of life time markers for address 'Addr' that are either
442 // defined inside the outline region or can legally be shrinkwrapped into the
443 // outline region. If there are not other untracked uses of the address, return
444 // the pair of markers if found; otherwise return a pair of nullptr.
445 CodeExtractor::LifetimeMarkerInfo
446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447                                   Instruction *Addr,
448                                   BasicBlock *ExitBlock) const {
449   LifetimeMarkerInfo Info;
450 
451   for (User *U : Addr->users()) {
452     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453     if (IntrInst) {
454       // We don't model addresses with multiple start/end markers, but the
455       // markers do not need to be in the region.
456       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
457         if (Info.LifeStart)
458           return {};
459         Info.LifeStart = IntrInst;
460         continue;
461       }
462       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
463         if (Info.LifeEnd)
464           return {};
465         Info.LifeEnd = IntrInst;
466         continue;
467       }
468       // At this point, permit debug uses outside of the region.
469       // This is fixed in a later call to fixupDebugInfoPostExtraction().
470       if (isa<DbgInfoIntrinsic>(IntrInst))
471         continue;
472     }
473     // Find untracked uses of the address, bail.
474     if (!definedInRegion(Blocks, U))
475       return {};
476   }
477 
478   if (!Info.LifeStart || !Info.LifeEnd)
479     return {};
480 
481   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
482   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
483   // Do legality check.
484   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
485       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
486     return {};
487 
488   // Check to see if we have a place to do hoisting, if not, bail.
489   if (Info.HoistLifeEnd && !ExitBlock)
490     return {};
491 
492   return Info;
493 }
494 
495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
496                                 ValueSet &SinkCands, ValueSet &HoistCands,
497                                 BasicBlock *&ExitBlock) const {
498   Function *Func = (*Blocks.begin())->getParent();
499   ExitBlock = getCommonExitBlock(Blocks);
500 
501   auto moveOrIgnoreLifetimeMarkers =
502       [&](const LifetimeMarkerInfo &LMI) -> bool {
503     if (!LMI.LifeStart)
504       return false;
505     if (LMI.SinkLifeStart) {
506       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
507                         << "\n");
508       SinkCands.insert(LMI.LifeStart);
509     }
510     if (LMI.HoistLifeEnd) {
511       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
512       HoistCands.insert(LMI.LifeEnd);
513     }
514     return true;
515   };
516 
517   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
518   // this is much faster than walking all the instructions.
519   for (AllocaInst *AI : CEAC.getAllocas()) {
520     BasicBlock *BB = AI->getParent();
521     if (Blocks.count(BB))
522       continue;
523 
524     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
525     // check whether it is actually still in the original function.
526     Function *AIFunc = BB->getParent();
527     if (AIFunc != Func)
528       continue;
529 
530     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
531     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
532     if (Moved) {
533       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
534       SinkCands.insert(AI);
535       continue;
536     }
537 
538     // Find bitcasts in the outlined region that have lifetime marker users
539     // outside that region. Replace the lifetime marker use with an
540     // outside region bitcast to avoid unnecessary alloca/reload instructions
541     // and extra lifetime markers.
542     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
543     for (User *U : AI->users()) {
544       if (!definedInRegion(Blocks, U))
545         continue;
546 
547       if (U->stripInBoundsConstantOffsets() != AI)
548         continue;
549 
550       Instruction *Bitcast = cast<Instruction>(U);
551       for (User *BU : Bitcast->users()) {
552         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
553         if (!IntrInst)
554           continue;
555 
556         if (!IntrInst->isLifetimeStartOrEnd())
557           continue;
558 
559         if (definedInRegion(Blocks, IntrInst))
560           continue;
561 
562         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
563                           << *Bitcast << " in out-of-region lifetime marker "
564                           << *IntrInst << "\n");
565         LifetimeBitcastUsers.push_back(IntrInst);
566       }
567     }
568 
569     for (Instruction *I : LifetimeBitcastUsers) {
570       Module *M = AIFunc->getParent();
571       LLVMContext &Ctx = M->getContext();
572       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
573       CastInst *CastI =
574           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
575       I->replaceUsesOfWith(I->getOperand(1), CastI);
576     }
577 
578     // Follow any bitcasts.
579     SmallVector<Instruction *, 2> Bitcasts;
580     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
581     for (User *U : AI->users()) {
582       if (U->stripInBoundsConstantOffsets() == AI) {
583         Instruction *Bitcast = cast<Instruction>(U);
584         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
585         if (LMI.LifeStart) {
586           Bitcasts.push_back(Bitcast);
587           BitcastLifetimeInfo.push_back(LMI);
588           continue;
589         }
590       }
591 
592       // Found unknown use of AI.
593       if (!definedInRegion(Blocks, U)) {
594         Bitcasts.clear();
595         break;
596       }
597     }
598 
599     // Either no bitcasts reference the alloca or there are unknown uses.
600     if (Bitcasts.empty())
601       continue;
602 
603     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
604     SinkCands.insert(AI);
605     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
606       Instruction *BitcastAddr = Bitcasts[I];
607       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
608       assert(LMI.LifeStart &&
609              "Unsafe to sink bitcast without lifetime markers");
610       moveOrIgnoreLifetimeMarkers(LMI);
611       if (!definedInRegion(Blocks, BitcastAddr)) {
612         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
613                           << "\n");
614         SinkCands.insert(BitcastAddr);
615       }
616     }
617   }
618 }
619 
620 bool CodeExtractor::isEligible() const {
621   if (Blocks.empty())
622     return false;
623   BasicBlock *Header = *Blocks.begin();
624   Function *F = Header->getParent();
625 
626   // For functions with varargs, check that varargs handling is only done in the
627   // outlined function, i.e vastart and vaend are only used in outlined blocks.
628   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
629     auto containsVarArgIntrinsic = [](const Instruction &I) {
630       if (const CallInst *CI = dyn_cast<CallInst>(&I))
631         if (const Function *Callee = CI->getCalledFunction())
632           return Callee->getIntrinsicID() == Intrinsic::vastart ||
633                  Callee->getIntrinsicID() == Intrinsic::vaend;
634       return false;
635     };
636 
637     for (auto &BB : *F) {
638       if (Blocks.count(&BB))
639         continue;
640       if (llvm::any_of(BB, containsVarArgIntrinsic))
641         return false;
642     }
643   }
644   return true;
645 }
646 
647 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
648                                       const ValueSet &SinkCands) const {
649   for (BasicBlock *BB : Blocks) {
650     // If a used value is defined outside the region, it's an input.  If an
651     // instruction is used outside the region, it's an output.
652     for (Instruction &II : *BB) {
653       for (auto &OI : II.operands()) {
654         Value *V = OI;
655         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
656           Inputs.insert(V);
657       }
658 
659       for (User *U : II.users())
660         if (!definedInRegion(Blocks, U)) {
661           Outputs.insert(&II);
662           break;
663         }
664     }
665   }
666 }
667 
668 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
669 /// of the region, we need to split the entry block of the region so that the
670 /// PHI node is easier to deal with.
671 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
672   unsigned NumPredsFromRegion = 0;
673   unsigned NumPredsOutsideRegion = 0;
674 
675   if (Header != &Header->getParent()->getEntryBlock()) {
676     PHINode *PN = dyn_cast<PHINode>(Header->begin());
677     if (!PN) return;  // No PHI nodes.
678 
679     // If the header node contains any PHI nodes, check to see if there is more
680     // than one entry from outside the region.  If so, we need to sever the
681     // header block into two.
682     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
683       if (Blocks.count(PN->getIncomingBlock(i)))
684         ++NumPredsFromRegion;
685       else
686         ++NumPredsOutsideRegion;
687 
688     // If there is one (or fewer) predecessor from outside the region, we don't
689     // need to do anything special.
690     if (NumPredsOutsideRegion <= 1) return;
691   }
692 
693   // Otherwise, we need to split the header block into two pieces: one
694   // containing PHI nodes merging values from outside of the region, and a
695   // second that contains all of the code for the block and merges back any
696   // incoming values from inside of the region.
697   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
698 
699   // We only want to code extract the second block now, and it becomes the new
700   // header of the region.
701   BasicBlock *OldPred = Header;
702   Blocks.remove(OldPred);
703   Blocks.insert(NewBB);
704   Header = NewBB;
705 
706   // Okay, now we need to adjust the PHI nodes and any branches from within the
707   // region to go to the new header block instead of the old header block.
708   if (NumPredsFromRegion) {
709     PHINode *PN = cast<PHINode>(OldPred->begin());
710     // Loop over all of the predecessors of OldPred that are in the region,
711     // changing them to branch to NewBB instead.
712     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
713       if (Blocks.count(PN->getIncomingBlock(i))) {
714         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
715         TI->replaceUsesOfWith(OldPred, NewBB);
716       }
717 
718     // Okay, everything within the region is now branching to the right block, we
719     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
720     BasicBlock::iterator AfterPHIs;
721     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
722       PHINode *PN = cast<PHINode>(AfterPHIs);
723       // Create a new PHI node in the new region, which has an incoming value
724       // from OldPred of PN.
725       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
726                                        PN->getName() + ".ce", &NewBB->front());
727       PN->replaceAllUsesWith(NewPN);
728       NewPN->addIncoming(PN, OldPred);
729 
730       // Loop over all of the incoming value in PN, moving them to NewPN if they
731       // are from the extracted region.
732       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733         if (Blocks.count(PN->getIncomingBlock(i))) {
734           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735           PN->removeIncomingValue(i);
736           --i;
737         }
738       }
739     }
740   }
741 }
742 
743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744 /// outlined region, we split these PHIs on two: one with inputs from region
745 /// and other with remaining incoming blocks; then first PHIs are placed in
746 /// outlined region.
747 void CodeExtractor::severSplitPHINodesOfExits(
748     const SmallPtrSetImpl<BasicBlock *> &Exits) {
749   for (BasicBlock *ExitBB : Exits) {
750     BasicBlock *NewBB = nullptr;
751 
752     for (PHINode &PN : ExitBB->phis()) {
753       // Find all incoming values from the outlining region.
754       SmallVector<unsigned, 2> IncomingVals;
755       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756         if (Blocks.count(PN.getIncomingBlock(i)))
757           IncomingVals.push_back(i);
758 
759       // Do not process PHI if there is one (or fewer) predecessor from region.
760       // If PHI has exactly one predecessor from region, only this one incoming
761       // will be replaced on codeRepl block, so it should be safe to skip PHI.
762       if (IncomingVals.size() <= 1)
763         continue;
764 
765       // Create block for new PHIs and add it to the list of outlined if it
766       // wasn't done before.
767       if (!NewBB) {
768         NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                    ExitBB->getName() + ".split",
770                                    ExitBB->getParent(), ExitBB);
771         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
772         for (BasicBlock *PredBB : Preds)
773           if (Blocks.count(PredBB))
774             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
775         BranchInst::Create(ExitBB, NewBB);
776         Blocks.insert(NewBB);
777       }
778 
779       // Split this PHI.
780       PHINode *NewPN =
781           PHINode::Create(PN.getType(), IncomingVals.size(),
782                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
783       for (unsigned i : IncomingVals)
784         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
785       for (unsigned i : reverse(IncomingVals))
786         PN.removeIncomingValue(i, false);
787       PN.addIncoming(NewPN, NewBB);
788     }
789   }
790 }
791 
792 void CodeExtractor::splitReturnBlocks() {
793   for (BasicBlock *Block : Blocks)
794     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
795       BasicBlock *New =
796           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
797       if (DT) {
798         // Old dominates New. New node dominates all other nodes dominated
799         // by Old.
800         DomTreeNode *OldNode = DT->getNode(Block);
801         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
802                                                OldNode->end());
803 
804         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
805 
806         for (DomTreeNode *I : Children)
807           DT->changeImmediateDominator(I, NewNode);
808       }
809     }
810 }
811 
812 /// constructFunction - make a function based on inputs and outputs, as follows:
813 /// f(in0, ..., inN, out0, ..., outN)
814 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
815                                            const ValueSet &outputs,
816                                            BasicBlock *header,
817                                            BasicBlock *newRootNode,
818                                            BasicBlock *newHeader,
819                                            Function *oldFunction,
820                                            Module *M) {
821   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
822   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
823 
824   // This function returns unsigned, outputs will go back by reference.
825   switch (NumExitBlocks) {
826   case 0:
827   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
828   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
829   default: RetTy = Type::getInt16Ty(header->getContext()); break;
830   }
831 
832   std::vector<Type *> paramTy;
833 
834   // Add the types of the input values to the function's argument list
835   for (Value *value : inputs) {
836     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
837     paramTy.push_back(value->getType());
838   }
839 
840   // Add the types of the output values to the function's argument list.
841   for (Value *output : outputs) {
842     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
843     if (AggregateArgs)
844       paramTy.push_back(output->getType());
845     else
846       paramTy.push_back(PointerType::getUnqual(output->getType()));
847   }
848 
849   LLVM_DEBUG({
850     dbgs() << "Function type: " << *RetTy << " f(";
851     for (Type *i : paramTy)
852       dbgs() << *i << ", ";
853     dbgs() << ")\n";
854   });
855 
856   StructType *StructTy = nullptr;
857   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
858     StructTy = StructType::get(M->getContext(), paramTy);
859     paramTy.clear();
860     paramTy.push_back(PointerType::getUnqual(StructTy));
861   }
862   FunctionType *funcType =
863                   FunctionType::get(RetTy, paramTy,
864                                     AllowVarArgs && oldFunction->isVarArg());
865 
866   std::string SuffixToUse =
867       Suffix.empty()
868           ? (header->getName().empty() ? "extracted" : header->getName().str())
869           : Suffix;
870   // Create the new function
871   Function *newFunction = Function::Create(
872       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
873       oldFunction->getName() + "." + SuffixToUse, M);
874   // If the old function is no-throw, so is the new one.
875   if (oldFunction->doesNotThrow())
876     newFunction->setDoesNotThrow();
877 
878   // Inherit the uwtable attribute if we need to.
879   if (oldFunction->hasUWTable())
880     newFunction->setHasUWTable();
881 
882   // Inherit all of the target dependent attributes and white-listed
883   // target independent attributes.
884   //  (e.g. If the extracted region contains a call to an x86.sse
885   //  instruction we need to make sure that the extracted region has the
886   //  "target-features" attribute allowing it to be lowered.
887   // FIXME: This should be changed to check to see if a specific
888   //           attribute can not be inherited.
889   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
890     if (Attr.isStringAttribute()) {
891       if (Attr.getKindAsString() == "thunk")
892         continue;
893     } else
894       switch (Attr.getKindAsEnum()) {
895       // Those attributes cannot be propagated safely. Explicitly list them
896       // here so we get a warning if new attributes are added.
897       case Attribute::AllocSize:
898       case Attribute::ArgMemOnly:
899       case Attribute::Builtin:
900       case Attribute::Convergent:
901       case Attribute::InaccessibleMemOnly:
902       case Attribute::InaccessibleMemOrArgMemOnly:
903       case Attribute::JumpTable:
904       case Attribute::Naked:
905       case Attribute::NoBuiltin:
906       case Attribute::NoMerge:
907       case Attribute::NoReturn:
908       case Attribute::NoSync:
909       case Attribute::ReadNone:
910       case Attribute::ReadOnly:
911       case Attribute::ReturnsTwice:
912       case Attribute::Speculatable:
913       case Attribute::StackAlignment:
914       case Attribute::WillReturn:
915       case Attribute::WriteOnly:
916         continue;
917       // Those attributes should be safe to propagate to the extracted function.
918       case Attribute::AlwaysInline:
919       case Attribute::Cold:
920       case Attribute::DisableSanitizerInstrumentation:
921       case Attribute::Hot:
922       case Attribute::NoRecurse:
923       case Attribute::InlineHint:
924       case Attribute::MinSize:
925       case Attribute::NoCallback:
926       case Attribute::NoDuplicate:
927       case Attribute::NoFree:
928       case Attribute::NoImplicitFloat:
929       case Attribute::NoInline:
930       case Attribute::NonLazyBind:
931       case Attribute::NoRedZone:
932       case Attribute::NoUnwind:
933       case Attribute::NoSanitizeCoverage:
934       case Attribute::NullPointerIsValid:
935       case Attribute::OptForFuzzing:
936       case Attribute::OptimizeNone:
937       case Attribute::OptimizeForSize:
938       case Attribute::SafeStack:
939       case Attribute::ShadowCallStack:
940       case Attribute::SanitizeAddress:
941       case Attribute::SanitizeMemory:
942       case Attribute::SanitizeThread:
943       case Attribute::SanitizeHWAddress:
944       case Attribute::SanitizeMemTag:
945       case Attribute::SpeculativeLoadHardening:
946       case Attribute::StackProtect:
947       case Attribute::StackProtectReq:
948       case Attribute::StackProtectStrong:
949       case Attribute::StrictFP:
950       case Attribute::UWTable:
951       case Attribute::VScaleRange:
952       case Attribute::NoCfCheck:
953       case Attribute::MustProgress:
954       case Attribute::NoProfile:
955         break;
956       // These attributes cannot be applied to functions.
957       case Attribute::Alignment:
958       case Attribute::ByVal:
959       case Attribute::Dereferenceable:
960       case Attribute::DereferenceableOrNull:
961       case Attribute::ElementType:
962       case Attribute::InAlloca:
963       case Attribute::InReg:
964       case Attribute::Nest:
965       case Attribute::NoAlias:
966       case Attribute::NoCapture:
967       case Attribute::NoUndef:
968       case Attribute::NonNull:
969       case Attribute::Preallocated:
970       case Attribute::Returned:
971       case Attribute::SExt:
972       case Attribute::StructRet:
973       case Attribute::SwiftError:
974       case Attribute::SwiftSelf:
975       case Attribute::SwiftAsync:
976       case Attribute::ZExt:
977       case Attribute::ImmArg:
978       case Attribute::ByRef:
979       //  These are not really attributes.
980       case Attribute::None:
981       case Attribute::EndAttrKinds:
982       case Attribute::EmptyKey:
983       case Attribute::TombstoneKey:
984         llvm_unreachable("Not a function attribute");
985       }
986 
987     newFunction->addFnAttr(Attr);
988   }
989   newFunction->getBasicBlockList().push_back(newRootNode);
990 
991   // Create an iterator to name all of the arguments we inserted.
992   Function::arg_iterator AI = newFunction->arg_begin();
993 
994   // Rewrite all users of the inputs in the extracted region to use the
995   // arguments (or appropriate addressing into struct) instead.
996   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
997     Value *RewriteVal;
998     if (AggregateArgs) {
999       Value *Idx[2];
1000       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1001       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
1002       Instruction *TI = newFunction->begin()->getTerminator();
1003       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1004           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
1005       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
1006                                 "loadgep_" + inputs[i]->getName(), TI);
1007     } else
1008       RewriteVal = &*AI++;
1009 
1010     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1011     for (User *use : Users)
1012       if (Instruction *inst = dyn_cast<Instruction>(use))
1013         if (Blocks.count(inst->getParent()))
1014           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1015   }
1016 
1017   // Set names for input and output arguments.
1018   if (!AggregateArgs) {
1019     AI = newFunction->arg_begin();
1020     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
1021       AI->setName(inputs[i]->getName());
1022     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
1023       AI->setName(outputs[i]->getName()+".out");
1024   }
1025 
1026   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1027   // within the new function. This must be done before we lose track of which
1028   // blocks were originally in the code region.
1029   std::vector<User *> Users(header->user_begin(), header->user_end());
1030   for (auto &U : Users)
1031     // The BasicBlock which contains the branch is not in the region
1032     // modify the branch target to a new block
1033     if (Instruction *I = dyn_cast<Instruction>(U))
1034       if (I->isTerminator() && I->getFunction() == oldFunction &&
1035           !Blocks.count(I->getParent()))
1036         I->replaceUsesOfWith(header, newHeader);
1037 
1038   return newFunction;
1039 }
1040 
1041 /// Erase lifetime.start markers which reference inputs to the extraction
1042 /// region, and insert the referenced memory into \p LifetimesStart.
1043 ///
1044 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1045 /// of allocas which will be moved from the caller function into the extracted
1046 /// function (\p SunkAllocas).
1047 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1048                                          const SetVector<Value *> &SunkAllocas,
1049                                          SetVector<Value *> &LifetimesStart) {
1050   for (BasicBlock *BB : Blocks) {
1051     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1052       auto *II = dyn_cast<IntrinsicInst>(&I);
1053       if (!II || !II->isLifetimeStartOrEnd())
1054         continue;
1055 
1056       // Get the memory operand of the lifetime marker. If the underlying
1057       // object is a sunk alloca, or is otherwise defined in the extraction
1058       // region, the lifetime marker must not be erased.
1059       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1060       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1061         continue;
1062 
1063       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1064         LifetimesStart.insert(Mem);
1065       II->eraseFromParent();
1066     }
1067   }
1068 }
1069 
1070 /// Insert lifetime start/end markers surrounding the call to the new function
1071 /// for objects defined in the caller.
1072 static void insertLifetimeMarkersSurroundingCall(
1073     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1074     CallInst *TheCall) {
1075   LLVMContext &Ctx = M->getContext();
1076   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1077   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1078   Instruction *Term = TheCall->getParent()->getTerminator();
1079 
1080   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1081   // needed to satisfy this requirement so they may be reused.
1082   DenseMap<Value *, Value *> Bitcasts;
1083 
1084   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1085   // markers before the call if \p InsertBefore, and after the call otherwise.
1086   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1087                            bool InsertBefore) {
1088     for (Value *Mem : Objects) {
1089       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1090                                             TheCall->getFunction()) &&
1091              "Input memory not defined in original function");
1092       Value *&MemAsI8Ptr = Bitcasts[Mem];
1093       if (!MemAsI8Ptr) {
1094         if (Mem->getType() == Int8PtrTy)
1095           MemAsI8Ptr = Mem;
1096         else
1097           MemAsI8Ptr =
1098               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1099       }
1100 
1101       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1102       if (InsertBefore)
1103         Marker->insertBefore(TheCall);
1104       else
1105         Marker->insertBefore(Term);
1106     }
1107   };
1108 
1109   if (!LifetimesStart.empty()) {
1110     auto StartFn = llvm::Intrinsic::getDeclaration(
1111         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1112     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1113   }
1114 
1115   if (!LifetimesEnd.empty()) {
1116     auto EndFn = llvm::Intrinsic::getDeclaration(
1117         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1118     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1119   }
1120 }
1121 
1122 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1123 /// the call instruction, splitting any PHI nodes in the header block as
1124 /// necessary.
1125 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1126                                                     BasicBlock *codeReplacer,
1127                                                     ValueSet &inputs,
1128                                                     ValueSet &outputs) {
1129   // Emit a call to the new function, passing in: *pointer to struct (if
1130   // aggregating parameters), or plan inputs and allocated memory for outputs
1131   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1132 
1133   Module *M = newFunction->getParent();
1134   LLVMContext &Context = M->getContext();
1135   const DataLayout &DL = M->getDataLayout();
1136   CallInst *call = nullptr;
1137 
1138   // Add inputs as params, or to be filled into the struct
1139   unsigned ArgNo = 0;
1140   SmallVector<unsigned, 1> SwiftErrorArgs;
1141   for (Value *input : inputs) {
1142     if (AggregateArgs)
1143       StructValues.push_back(input);
1144     else {
1145       params.push_back(input);
1146       if (input->isSwiftError())
1147         SwiftErrorArgs.push_back(ArgNo);
1148     }
1149     ++ArgNo;
1150   }
1151 
1152   // Create allocas for the outputs
1153   for (Value *output : outputs) {
1154     if (AggregateArgs) {
1155       StructValues.push_back(output);
1156     } else {
1157       AllocaInst *alloca =
1158         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1159                        nullptr, output->getName() + ".loc",
1160                        &codeReplacer->getParent()->front().front());
1161       ReloadOutputs.push_back(alloca);
1162       params.push_back(alloca);
1163     }
1164   }
1165 
1166   StructType *StructArgTy = nullptr;
1167   AllocaInst *Struct = nullptr;
1168   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1169     std::vector<Type *> ArgTypes;
1170     for (Value *V : StructValues)
1171       ArgTypes.push_back(V->getType());
1172 
1173     // Allocate a struct at the beginning of this function
1174     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1175     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1176                             "structArg",
1177                             &codeReplacer->getParent()->front().front());
1178     params.push_back(Struct);
1179 
1180     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1181       Value *Idx[2];
1182       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1183       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1184       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1185           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1186       codeReplacer->getInstList().push_back(GEP);
1187       new StoreInst(StructValues[i], GEP, codeReplacer);
1188     }
1189   }
1190 
1191   // Emit the call to the function
1192   call = CallInst::Create(newFunction, params,
1193                           NumExitBlocks > 1 ? "targetBlock" : "");
1194   // Add debug location to the new call, if the original function has debug
1195   // info. In that case, the terminator of the entry block of the extracted
1196   // function contains the first debug location of the extracted function,
1197   // set in extractCodeRegion.
1198   if (codeReplacer->getParent()->getSubprogram()) {
1199     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1200       call->setDebugLoc(DL);
1201   }
1202   codeReplacer->getInstList().push_back(call);
1203 
1204   // Set swifterror parameter attributes.
1205   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1206     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1207     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1208   }
1209 
1210   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1211   unsigned FirstOut = inputs.size();
1212   if (!AggregateArgs)
1213     std::advance(OutputArgBegin, inputs.size());
1214 
1215   // Reload the outputs passed in by reference.
1216   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1217     Value *Output = nullptr;
1218     if (AggregateArgs) {
1219       Value *Idx[2];
1220       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1221       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1222       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1223           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1224       codeReplacer->getInstList().push_back(GEP);
1225       Output = GEP;
1226     } else {
1227       Output = ReloadOutputs[i];
1228     }
1229     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1230                                   outputs[i]->getName() + ".reload",
1231                                   codeReplacer);
1232     Reloads.push_back(load);
1233     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1234     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1235       Instruction *inst = cast<Instruction>(Users[u]);
1236       if (!Blocks.count(inst->getParent()))
1237         inst->replaceUsesOfWith(outputs[i], load);
1238     }
1239   }
1240 
1241   // Now we can emit a switch statement using the call as a value.
1242   SwitchInst *TheSwitch =
1243       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1244                          codeReplacer, 0, codeReplacer);
1245 
1246   // Since there may be multiple exits from the original region, make the new
1247   // function return an unsigned, switch on that number.  This loop iterates
1248   // over all of the blocks in the extracted region, updating any terminator
1249   // instructions in the to-be-extracted region that branch to blocks that are
1250   // not in the region to be extracted.
1251   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1252 
1253   // Iterate over the previously collected targets, and create new blocks inside
1254   // the function to branch to.
1255   unsigned switchVal = 0;
1256   for (BasicBlock *OldTarget : OldTargets) {
1257     if (Blocks.count(OldTarget))
1258       continue;
1259     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1260     if (NewTarget)
1261       continue;
1262 
1263     // If we don't already have an exit stub for this non-extracted
1264     // destination, create one now!
1265     NewTarget = BasicBlock::Create(Context,
1266                                     OldTarget->getName() + ".exitStub",
1267                                     newFunction);
1268     unsigned SuccNum = switchVal++;
1269 
1270     Value *brVal = nullptr;
1271     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1272     switch (NumExitBlocks) {
1273     case 0:
1274     case 1: break;  // No value needed.
1275     case 2:         // Conditional branch, return a bool
1276       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1277       break;
1278     default:
1279       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1280       break;
1281     }
1282 
1283     ReturnInst::Create(Context, brVal, NewTarget);
1284 
1285     // Update the switch instruction.
1286     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1287                                         SuccNum),
1288                         OldTarget);
1289   }
1290 
1291   for (BasicBlock *Block : Blocks) {
1292     Instruction *TI = Block->getTerminator();
1293     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1294       if (Blocks.count(TI->getSuccessor(i)))
1295         continue;
1296       BasicBlock *OldTarget = TI->getSuccessor(i);
1297       // add a new basic block which returns the appropriate value
1298       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1299       assert(NewTarget && "Unknown target block!");
1300 
1301       // rewrite the original branch instruction with this new target
1302       TI->setSuccessor(i, NewTarget);
1303    }
1304   }
1305 
1306   // Store the arguments right after the definition of output value.
1307   // This should be proceeded after creating exit stubs to be ensure that invoke
1308   // result restore will be placed in the outlined function.
1309   Function::arg_iterator OAI = OutputArgBegin;
1310   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1311     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1312     if (!OutI)
1313       continue;
1314 
1315     // Find proper insertion point.
1316     BasicBlock::iterator InsertPt;
1317     // In case OutI is an invoke, we insert the store at the beginning in the
1318     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1319     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1320       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1321     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1322       InsertPt = Phi->getParent()->getFirstInsertionPt();
1323     else
1324       InsertPt = std::next(OutI->getIterator());
1325 
1326     Instruction *InsertBefore = &*InsertPt;
1327     assert((InsertBefore->getFunction() == newFunction ||
1328             Blocks.count(InsertBefore->getParent())) &&
1329            "InsertPt should be in new function");
1330     assert(OAI != newFunction->arg_end() &&
1331            "Number of output arguments should match "
1332            "the amount of defined values");
1333     if (AggregateArgs) {
1334       Value *Idx[2];
1335       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1336       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1337       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1338           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1339           InsertBefore);
1340       new StoreInst(outputs[i], GEP, InsertBefore);
1341       // Since there should be only one struct argument aggregating
1342       // all the output values, we shouldn't increment OAI, which always
1343       // points to the struct argument, in this case.
1344     } else {
1345       new StoreInst(outputs[i], &*OAI, InsertBefore);
1346       ++OAI;
1347     }
1348   }
1349 
1350   // Now that we've done the deed, simplify the switch instruction.
1351   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1352   switch (NumExitBlocks) {
1353   case 0:
1354     // There are no successors (the block containing the switch itself), which
1355     // means that previously this was the last part of the function, and hence
1356     // this should be rewritten as a `ret'
1357 
1358     // Check if the function should return a value
1359     if (OldFnRetTy->isVoidTy()) {
1360       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1361     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1362       // return what we have
1363       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1364     } else {
1365       // Otherwise we must have code extracted an unwind or something, just
1366       // return whatever we want.
1367       ReturnInst::Create(Context,
1368                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1369     }
1370 
1371     TheSwitch->eraseFromParent();
1372     break;
1373   case 1:
1374     // Only a single destination, change the switch into an unconditional
1375     // branch.
1376     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1377     TheSwitch->eraseFromParent();
1378     break;
1379   case 2:
1380     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1381                        call, TheSwitch);
1382     TheSwitch->eraseFromParent();
1383     break;
1384   default:
1385     // Otherwise, make the default destination of the switch instruction be one
1386     // of the other successors.
1387     TheSwitch->setCondition(call);
1388     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1389     // Remove redundant case
1390     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1391     break;
1392   }
1393 
1394   // Insert lifetime markers around the reloads of any output values. The
1395   // allocas output values are stored in are only in-use in the codeRepl block.
1396   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1397 
1398   return call;
1399 }
1400 
1401 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1402   Function *oldFunc = (*Blocks.begin())->getParent();
1403   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1404   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1405 
1406   auto newFuncIt = newFunction->front().getIterator();
1407   for (BasicBlock *Block : Blocks) {
1408     // Delete the basic block from the old function, and the list of blocks
1409     oldBlocks.remove(Block);
1410 
1411     // Insert this basic block into the new function
1412     // Insert the original blocks after the entry block created
1413     // for the new function. The entry block may be followed
1414     // by a set of exit blocks at this point, but these exit
1415     // blocks better be placed at the end of the new function.
1416     newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1417   }
1418 }
1419 
1420 void CodeExtractor::calculateNewCallTerminatorWeights(
1421     BasicBlock *CodeReplacer,
1422     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1423     BranchProbabilityInfo *BPI) {
1424   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1425   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1426 
1427   // Update the branch weights for the exit block.
1428   Instruction *TI = CodeReplacer->getTerminator();
1429   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1430 
1431   // Block Frequency distribution with dummy node.
1432   Distribution BranchDist;
1433 
1434   SmallVector<BranchProbability, 4> EdgeProbabilities(
1435       TI->getNumSuccessors(), BranchProbability::getUnknown());
1436 
1437   // Add each of the frequencies of the successors.
1438   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1439     BlockNode ExitNode(i);
1440     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1441     if (ExitFreq != 0)
1442       BranchDist.addExit(ExitNode, ExitFreq);
1443     else
1444       EdgeProbabilities[i] = BranchProbability::getZero();
1445   }
1446 
1447   // Check for no total weight.
1448   if (BranchDist.Total == 0) {
1449     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1450     return;
1451   }
1452 
1453   // Normalize the distribution so that they can fit in unsigned.
1454   BranchDist.normalize();
1455 
1456   // Create normalized branch weights and set the metadata.
1457   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1458     const auto &Weight = BranchDist.Weights[I];
1459 
1460     // Get the weight and update the current BFI.
1461     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1462     BranchProbability BP(Weight.Amount, BranchDist.Total);
1463     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1464   }
1465   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1466   TI->setMetadata(
1467       LLVMContext::MD_prof,
1468       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1469 }
1470 
1471 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1472 /// \p F.
1473 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1474   for (Instruction &I : instructions(F)) {
1475     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1476     findDbgUsers(DbgUsers, &I);
1477     for (DbgVariableIntrinsic *DVI : DbgUsers)
1478       if (DVI->getFunction() != &F)
1479         DVI->eraseFromParent();
1480   }
1481 }
1482 
1483 /// Fix up the debug info in the old and new functions by pointing line
1484 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1485 /// intrinsics which point to values outside of the new function.
1486 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1487                                          CallInst &TheCall) {
1488   DISubprogram *OldSP = OldFunc.getSubprogram();
1489   LLVMContext &Ctx = OldFunc.getContext();
1490 
1491   if (!OldSP) {
1492     // Erase any debug info the new function contains.
1493     stripDebugInfo(NewFunc);
1494     // Make sure the old function doesn't contain any non-local metadata refs.
1495     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1496     return;
1497   }
1498 
1499   // Create a subprogram for the new function. Leave out a description of the
1500   // function arguments, as the parameters don't correspond to anything at the
1501   // source level.
1502   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1503   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1504                 OldSP->getUnit());
1505   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1506   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1507                                     DISubprogram::SPFlagOptimized |
1508                                     DISubprogram::SPFlagLocalToUnit;
1509   auto NewSP = DIB.createFunction(
1510       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1511       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1512   NewFunc.setSubprogram(NewSP);
1513 
1514   // Debug intrinsics in the new function need to be updated in one of two
1515   // ways:
1516   //  1) They need to be deleted, because they describe a value in the old
1517   //     function.
1518   //  2) They need to point to fresh metadata, e.g. because they currently
1519   //     point to a variable in the wrong scope.
1520   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1521   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1522   for (Instruction &I : instructions(NewFunc)) {
1523     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1524     if (!DII)
1525       continue;
1526 
1527     // Point the intrinsic to a fresh label within the new function.
1528     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1529       DILabel *OldLabel = DLI->getLabel();
1530       DINode *&NewLabel = RemappedMetadata[OldLabel];
1531       if (!NewLabel)
1532         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1533                                 OldLabel->getFile(), OldLabel->getLine());
1534       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1535       continue;
1536     }
1537 
1538     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1539       // Location is invalid if it isn't a constant or an instruction, or is an
1540       // instruction but isn't in the new function.
1541       if (!Location ||
1542           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1543         return true;
1544       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1545       return LocationInst && LocationInst->getFunction() != &NewFunc;
1546     };
1547 
1548     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1549     // If any of the used locations are invalid, delete the intrinsic.
1550     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1551       DebugIntrinsicsToDelete.push_back(DVI);
1552       continue;
1553     }
1554 
1555     // Point the intrinsic to a fresh variable within the new function.
1556     DILocalVariable *OldVar = DVI->getVariable();
1557     DINode *&NewVar = RemappedMetadata[OldVar];
1558     if (!NewVar)
1559       NewVar = DIB.createAutoVariable(
1560           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1561           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1562           OldVar->getAlignInBits());
1563     DVI->setVariable(cast<DILocalVariable>(NewVar));
1564   }
1565   for (auto *DII : DebugIntrinsicsToDelete)
1566     DII->eraseFromParent();
1567   DIB.finalizeSubprogram(NewSP);
1568 
1569   // Fix up the scope information attached to the line locations in the new
1570   // function.
1571   for (Instruction &I : instructions(NewFunc)) {
1572     if (const DebugLoc &DL = I.getDebugLoc())
1573       I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1574 
1575     // Loop info metadata may contain line locations. Fix them up.
1576     auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1577       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1578         return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1579                                nullptr);
1580       return MD;
1581     };
1582     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1583   }
1584   if (!TheCall.getDebugLoc())
1585     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1586 
1587   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1588 }
1589 
1590 Function *
1591 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1592   ValueSet Inputs, Outputs;
1593   return extractCodeRegion(CEAC, Inputs, Outputs);
1594 }
1595 
1596 Function *
1597 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1598                                  ValueSet &inputs, ValueSet &outputs) {
1599   if (!isEligible())
1600     return nullptr;
1601 
1602   // Assumption: this is a single-entry code region, and the header is the first
1603   // block in the region.
1604   BasicBlock *header = *Blocks.begin();
1605   Function *oldFunction = header->getParent();
1606 
1607   // Calculate the entry frequency of the new function before we change the root
1608   //   block.
1609   BlockFrequency EntryFreq;
1610   if (BFI) {
1611     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1612     for (BasicBlock *Pred : predecessors(header)) {
1613       if (Blocks.count(Pred))
1614         continue;
1615       EntryFreq +=
1616           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1617     }
1618   }
1619 
1620   // Remove @llvm.assume calls that will be moved to the new function from the
1621   // old function's assumption cache.
1622   for (BasicBlock *Block : Blocks) {
1623     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1624       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1625         if (AC)
1626           AC->unregisterAssumption(AI);
1627         AI->eraseFromParent();
1628       }
1629     }
1630   }
1631 
1632   // If we have any return instructions in the region, split those blocks so
1633   // that the return is not in the region.
1634   splitReturnBlocks();
1635 
1636   // Calculate the exit blocks for the extracted region and the total exit
1637   // weights for each of those blocks.
1638   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1639   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1640   for (BasicBlock *Block : Blocks) {
1641     for (BasicBlock *Succ : successors(Block)) {
1642       if (!Blocks.count(Succ)) {
1643         // Update the branch weight for this successor.
1644         if (BFI) {
1645           BlockFrequency &BF = ExitWeights[Succ];
1646           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1647         }
1648         ExitBlocks.insert(Succ);
1649       }
1650     }
1651   }
1652   NumExitBlocks = ExitBlocks.size();
1653 
1654   for (BasicBlock *Block : Blocks) {
1655     Instruction *TI = Block->getTerminator();
1656     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1657       if (Blocks.count(TI->getSuccessor(i)))
1658         continue;
1659       BasicBlock *OldTarget = TI->getSuccessor(i);
1660       OldTargets.push_back(OldTarget);
1661     }
1662   }
1663 
1664   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1665   severSplitPHINodesOfEntry(header);
1666   severSplitPHINodesOfExits(ExitBlocks);
1667 
1668   // This takes place of the original loop
1669   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1670                                                 "codeRepl", oldFunction,
1671                                                 header);
1672 
1673   // The new function needs a root node because other nodes can branch to the
1674   // head of the region, but the entry node of a function cannot have preds.
1675   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1676                                                "newFuncRoot");
1677   auto *BranchI = BranchInst::Create(header);
1678   // If the original function has debug info, we have to add a debug location
1679   // to the new branch instruction from the artificial entry block.
1680   // We use the debug location of the first instruction in the extracted
1681   // blocks, as there is no other equivalent line in the source code.
1682   if (oldFunction->getSubprogram()) {
1683     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1684       return any_of(*BB, [&BranchI](const Instruction &I) {
1685         if (!I.getDebugLoc())
1686           return false;
1687         BranchI->setDebugLoc(I.getDebugLoc());
1688         return true;
1689       });
1690     });
1691   }
1692   newFuncRoot->getInstList().push_back(BranchI);
1693 
1694   ValueSet SinkingCands, HoistingCands;
1695   BasicBlock *CommonExit = nullptr;
1696   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1697   assert(HoistingCands.empty() || CommonExit);
1698 
1699   // Find inputs to, outputs from the code region.
1700   findInputsOutputs(inputs, outputs, SinkingCands);
1701 
1702   // Now sink all instructions which only have non-phi uses inside the region.
1703   // Group the allocas at the start of the block, so that any bitcast uses of
1704   // the allocas are well-defined.
1705   AllocaInst *FirstSunkAlloca = nullptr;
1706   for (auto *II : SinkingCands) {
1707     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1708       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1709       if (!FirstSunkAlloca)
1710         FirstSunkAlloca = AI;
1711     }
1712   }
1713   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1714          "Did not expect a sink candidate without any allocas");
1715   for (auto *II : SinkingCands) {
1716     if (!isa<AllocaInst>(II)) {
1717       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1718     }
1719   }
1720 
1721   if (!HoistingCands.empty()) {
1722     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1723     Instruction *TI = HoistToBlock->getTerminator();
1724     for (auto *II : HoistingCands)
1725       cast<Instruction>(II)->moveBefore(TI);
1726   }
1727 
1728   // Collect objects which are inputs to the extraction region and also
1729   // referenced by lifetime start markers within it. The effects of these
1730   // markers must be replicated in the calling function to prevent the stack
1731   // coloring pass from merging slots which store input objects.
1732   ValueSet LifetimesStart;
1733   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1734 
1735   // Construct new function based on inputs/outputs & add allocas for all defs.
1736   Function *newFunction =
1737       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1738                         oldFunction, oldFunction->getParent());
1739 
1740   // Update the entry count of the function.
1741   if (BFI) {
1742     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1743     if (Count.hasValue())
1744       newFunction->setEntryCount(
1745           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1746     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1747   }
1748 
1749   CallInst *TheCall =
1750       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1751 
1752   moveCodeToFunction(newFunction);
1753 
1754   // Replicate the effects of any lifetime start/end markers which referenced
1755   // input objects in the extraction region by placing markers around the call.
1756   insertLifetimeMarkersSurroundingCall(
1757       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1758 
1759   // Propagate personality info to the new function if there is one.
1760   if (oldFunction->hasPersonalityFn())
1761     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1762 
1763   // Update the branch weights for the exit block.
1764   if (BFI && NumExitBlocks > 1)
1765     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1766 
1767   // Loop over all of the PHI nodes in the header and exit blocks, and change
1768   // any references to the old incoming edge to be the new incoming edge.
1769   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1770     PHINode *PN = cast<PHINode>(I);
1771     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1772       if (!Blocks.count(PN->getIncomingBlock(i)))
1773         PN->setIncomingBlock(i, newFuncRoot);
1774   }
1775 
1776   for (BasicBlock *ExitBB : ExitBlocks)
1777     for (PHINode &PN : ExitBB->phis()) {
1778       Value *IncomingCodeReplacerVal = nullptr;
1779       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1780         // Ignore incoming values from outside of the extracted region.
1781         if (!Blocks.count(PN.getIncomingBlock(i)))
1782           continue;
1783 
1784         // Ensure that there is only one incoming value from codeReplacer.
1785         if (!IncomingCodeReplacerVal) {
1786           PN.setIncomingBlock(i, codeReplacer);
1787           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1788         } else
1789           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1790                  "PHI has two incompatbile incoming values from codeRepl");
1791       }
1792     }
1793 
1794   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1795 
1796   // Mark the new function `noreturn` if applicable. Terminators which resume
1797   // exception propagation are treated as returning instructions. This is to
1798   // avoid inserting traps after calls to outlined functions which unwind.
1799   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1800     const Instruction *Term = BB.getTerminator();
1801     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1802   });
1803   if (doesNotReturn)
1804     newFunction->setDoesNotReturn();
1805 
1806   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1807     newFunction->dump();
1808     report_fatal_error("verification of newFunction failed!");
1809   });
1810   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1811              report_fatal_error("verification of oldFunction failed!"));
1812   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1813                  report_fatal_error("Stale Asumption cache for old Function!"));
1814   return newFunction;
1815 }
1816 
1817 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1818                                           const Function &NewFunc,
1819                                           AssumptionCache *AC) {
1820   for (auto AssumeVH : AC->assumptions()) {
1821     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1822     if (!I)
1823       continue;
1824 
1825     // There shouldn't be any llvm.assume intrinsics in the new function.
1826     if (I->getFunction() != &OldFunc)
1827       return true;
1828 
1829     // There shouldn't be any stale affected values in the assumption cache
1830     // that were previously in the old function, but that have now been moved
1831     // to the new function.
1832     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1833       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1834       if (!AffectedCI)
1835         continue;
1836       if (AffectedCI->getFunction() != &OldFunc)
1837         return true;
1838       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1839       if (AssumedInst->getFunction() != &OldFunc)
1840         return true;
1841     }
1842   }
1843   return false;
1844 }
1845