1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 using ProfileCount = Function::ProfileCount; 76 77 #define DEBUG_TYPE "code-extractor" 78 79 // Provide a command-line option to aggregate function arguments into a struct 80 // for functions produced by the code extractor. This is useful when converting 81 // extracted functions to pthread-based code, as only one argument (void*) can 82 // be passed in to pthread_create(). 83 static cl::opt<bool> 84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 85 cl::desc("Aggregate arguments to code-extracted functions")); 86 87 /// Test whether a block is valid for extraction. 88 static bool isBlockValidForExtraction(const BasicBlock &BB, 89 const SetVector<BasicBlock *> &Result, 90 bool AllowVarArgs, bool AllowAlloca) { 91 // taking the address of a basic block moved to another function is illegal 92 if (BB.hasAddressTaken()) 93 return false; 94 95 // don't hoist code that uses another basicblock address, as it's likely to 96 // lead to unexpected behavior, like cross-function jumps 97 SmallPtrSet<User const *, 16> Visited; 98 SmallVector<User const *, 16> ToVisit; 99 100 for (Instruction const &Inst : BB) 101 ToVisit.push_back(&Inst); 102 103 while (!ToVisit.empty()) { 104 User const *Curr = ToVisit.pop_back_val(); 105 if (!Visited.insert(Curr).second) 106 continue; 107 if (isa<BlockAddress const>(Curr)) 108 return false; // even a reference to self is likely to be not compatible 109 110 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 111 continue; 112 113 for (auto const &U : Curr->operands()) { 114 if (auto *UU = dyn_cast<User>(U)) 115 ToVisit.push_back(UU); 116 } 117 } 118 119 // If explicitly requested, allow vastart and alloca. For invoke instructions 120 // verify that extraction is valid. 121 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 122 if (isa<AllocaInst>(I)) { 123 if (!AllowAlloca) 124 return false; 125 continue; 126 } 127 128 if (const auto *II = dyn_cast<InvokeInst>(I)) { 129 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 130 // must be a part of the subgraph which is being extracted. 131 if (auto *UBB = II->getUnwindDest()) 132 if (!Result.count(UBB)) 133 return false; 134 continue; 135 } 136 137 // All catch handlers of a catchswitch instruction as well as the unwind 138 // destination must be in the subgraph. 139 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 140 if (auto *UBB = CSI->getUnwindDest()) 141 if (!Result.count(UBB)) 142 return false; 143 for (auto *HBB : CSI->handlers()) 144 if (!Result.count(const_cast<BasicBlock*>(HBB))) 145 return false; 146 continue; 147 } 148 149 // Make sure that entire catch handler is within subgraph. It is sufficient 150 // to check that catch return's block is in the list. 151 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 152 for (const auto *U : CPI->users()) 153 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 154 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 155 return false; 156 continue; 157 } 158 159 // And do similar checks for cleanup handler - the entire handler must be 160 // in subgraph which is going to be extracted. For cleanup return should 161 // additionally check that the unwind destination is also in the subgraph. 162 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 163 for (const auto *U : CPI->users()) 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 165 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 166 return false; 167 continue; 168 } 169 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 170 if (auto *UBB = CRI->getUnwindDest()) 171 if (!Result.count(UBB)) 172 return false; 173 continue; 174 } 175 176 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 177 if (const Function *F = CI->getCalledFunction()) { 178 auto IID = F->getIntrinsicID(); 179 if (IID == Intrinsic::vastart) { 180 if (AllowVarArgs) 181 continue; 182 else 183 return false; 184 } 185 186 // Currently, we miscompile outlined copies of eh_typid_for. There are 187 // proposals for fixing this in llvm.org/PR39545. 188 if (IID == Intrinsic::eh_typeid_for) 189 return false; 190 } 191 } 192 } 193 194 return true; 195 } 196 197 /// Build a set of blocks to extract if the input blocks are viable. 198 static SetVector<BasicBlock *> 199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 200 bool AllowVarArgs, bool AllowAlloca) { 201 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 202 SetVector<BasicBlock *> Result; 203 204 // Loop over the blocks, adding them to our set-vector, and aborting with an 205 // empty set if we encounter invalid blocks. 206 for (BasicBlock *BB : BBs) { 207 // If this block is dead, don't process it. 208 if (DT && !DT->isReachableFromEntry(BB)) 209 continue; 210 211 if (!Result.insert(BB)) 212 llvm_unreachable("Repeated basic blocks in extraction input"); 213 } 214 215 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 216 << '\n'); 217 218 for (auto *BB : Result) { 219 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 220 return {}; 221 222 // Make sure that the first block is not a landing pad. 223 if (BB == Result.front()) { 224 if (BB->isEHPad()) { 225 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 226 return {}; 227 } 228 continue; 229 } 230 231 // All blocks other than the first must not have predecessors outside of 232 // the subgraph which is being extracted. 233 for (auto *PBB : predecessors(BB)) 234 if (!Result.count(PBB)) { 235 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 236 "outside the region except for the first block!\n" 237 << "Problematic source BB: " << BB->getName() << "\n" 238 << "Problematic destination BB: " << PBB->getName() 239 << "\n"); 240 return {}; 241 } 242 } 243 244 return Result; 245 } 246 247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 248 bool AggregateArgs, BlockFrequencyInfo *BFI, 249 BranchProbabilityInfo *BPI, AssumptionCache *AC, 250 bool AllowVarArgs, bool AllowAlloca, 251 std::string Suffix) 252 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 253 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 254 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 255 Suffix(Suffix) {} 256 257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 258 BlockFrequencyInfo *BFI, 259 BranchProbabilityInfo *BPI, AssumptionCache *AC, 260 std::string Suffix) 261 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 262 BPI(BPI), AC(AC), AllowVarArgs(false), 263 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 264 /* AllowVarArgs */ false, 265 /* AllowAlloca */ false)), 266 Suffix(Suffix) {} 267 268 /// definedInRegion - Return true if the specified value is defined in the 269 /// extracted region. 270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 271 if (Instruction *I = dyn_cast<Instruction>(V)) 272 if (Blocks.count(I->getParent())) 273 return true; 274 return false; 275 } 276 277 /// definedInCaller - Return true if the specified value is defined in the 278 /// function being code extracted, but not in the region being extracted. 279 /// These values must be passed in as live-ins to the function. 280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 281 if (isa<Argument>(V)) return true; 282 if (Instruction *I = dyn_cast<Instruction>(V)) 283 if (!Blocks.count(I->getParent())) 284 return true; 285 return false; 286 } 287 288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 289 BasicBlock *CommonExitBlock = nullptr; 290 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 291 for (auto *Succ : successors(Block)) { 292 // Internal edges, ok. 293 if (Blocks.count(Succ)) 294 continue; 295 if (!CommonExitBlock) { 296 CommonExitBlock = Succ; 297 continue; 298 } 299 if (CommonExitBlock != Succ) 300 return true; 301 } 302 return false; 303 }; 304 305 if (any_of(Blocks, hasNonCommonExitSucc)) 306 return nullptr; 307 308 return CommonExitBlock; 309 } 310 311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 312 for (BasicBlock &BB : F) { 313 for (Instruction &II : BB.instructionsWithoutDebug()) 314 if (auto *AI = dyn_cast<AllocaInst>(&II)) 315 Allocas.push_back(AI); 316 317 findSideEffectInfoForBlock(BB); 318 } 319 } 320 321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 322 for (Instruction &II : BB.instructionsWithoutDebug()) { 323 unsigned Opcode = II.getOpcode(); 324 Value *MemAddr = nullptr; 325 switch (Opcode) { 326 case Instruction::Store: 327 case Instruction::Load: { 328 if (Opcode == Instruction::Store) { 329 StoreInst *SI = cast<StoreInst>(&II); 330 MemAddr = SI->getPointerOperand(); 331 } else { 332 LoadInst *LI = cast<LoadInst>(&II); 333 MemAddr = LI->getPointerOperand(); 334 } 335 // Global variable can not be aliased with locals. 336 if (isa<Constant>(MemAddr)) 337 break; 338 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 339 if (!isa<AllocaInst>(Base)) { 340 SideEffectingBlocks.insert(&BB); 341 return; 342 } 343 BaseMemAddrs[&BB].insert(Base); 344 break; 345 } 346 default: { 347 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 348 if (IntrInst) { 349 if (IntrInst->isLifetimeStartOrEnd()) 350 break; 351 SideEffectingBlocks.insert(&BB); 352 return; 353 } 354 // Treat all the other cases conservatively if it has side effects. 355 if (II.mayHaveSideEffects()) { 356 SideEffectingBlocks.insert(&BB); 357 return; 358 } 359 } 360 } 361 } 362 } 363 364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 365 BasicBlock &BB, AllocaInst *Addr) const { 366 if (SideEffectingBlocks.count(&BB)) 367 return true; 368 auto It = BaseMemAddrs.find(&BB); 369 if (It != BaseMemAddrs.end()) 370 return It->second.count(Addr); 371 return false; 372 } 373 374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 375 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 376 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 377 Function *Func = (*Blocks.begin())->getParent(); 378 for (BasicBlock &BB : *Func) { 379 if (Blocks.count(&BB)) 380 continue; 381 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 382 return false; 383 } 384 return true; 385 } 386 387 BasicBlock * 388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 389 BasicBlock *SinglePredFromOutlineRegion = nullptr; 390 assert(!Blocks.count(CommonExitBlock) && 391 "Expect a block outside the region!"); 392 for (auto *Pred : predecessors(CommonExitBlock)) { 393 if (!Blocks.count(Pred)) 394 continue; 395 if (!SinglePredFromOutlineRegion) { 396 SinglePredFromOutlineRegion = Pred; 397 } else if (SinglePredFromOutlineRegion != Pred) { 398 SinglePredFromOutlineRegion = nullptr; 399 break; 400 } 401 } 402 403 if (SinglePredFromOutlineRegion) 404 return SinglePredFromOutlineRegion; 405 406 #ifndef NDEBUG 407 auto getFirstPHI = [](BasicBlock *BB) { 408 BasicBlock::iterator I = BB->begin(); 409 PHINode *FirstPhi = nullptr; 410 while (I != BB->end()) { 411 PHINode *Phi = dyn_cast<PHINode>(I); 412 if (!Phi) 413 break; 414 if (!FirstPhi) { 415 FirstPhi = Phi; 416 break; 417 } 418 } 419 return FirstPhi; 420 }; 421 // If there are any phi nodes, the single pred either exists or has already 422 // be created before code extraction. 423 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 424 #endif 425 426 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 427 CommonExitBlock->getFirstNonPHI()->getIterator()); 428 429 for (BasicBlock *Pred : 430 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 431 if (Blocks.count(Pred)) 432 continue; 433 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 434 } 435 // Now add the old exit block to the outline region. 436 Blocks.insert(CommonExitBlock); 437 OldTargets.push_back(NewExitBlock); 438 return CommonExitBlock; 439 } 440 441 // Find the pair of life time markers for address 'Addr' that are either 442 // defined inside the outline region or can legally be shrinkwrapped into the 443 // outline region. If there are not other untracked uses of the address, return 444 // the pair of markers if found; otherwise return a pair of nullptr. 445 CodeExtractor::LifetimeMarkerInfo 446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 447 Instruction *Addr, 448 BasicBlock *ExitBlock) const { 449 LifetimeMarkerInfo Info; 450 451 for (User *U : Addr->users()) { 452 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 453 if (IntrInst) { 454 // We don't model addresses with multiple start/end markers, but the 455 // markers do not need to be in the region. 456 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 457 if (Info.LifeStart) 458 return {}; 459 Info.LifeStart = IntrInst; 460 continue; 461 } 462 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 463 if (Info.LifeEnd) 464 return {}; 465 Info.LifeEnd = IntrInst; 466 continue; 467 } 468 // At this point, permit debug uses outside of the region. 469 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 470 if (isa<DbgInfoIntrinsic>(IntrInst)) 471 continue; 472 } 473 // Find untracked uses of the address, bail. 474 if (!definedInRegion(Blocks, U)) 475 return {}; 476 } 477 478 if (!Info.LifeStart || !Info.LifeEnd) 479 return {}; 480 481 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 482 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 483 // Do legality check. 484 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 485 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 486 return {}; 487 488 // Check to see if we have a place to do hoisting, if not, bail. 489 if (Info.HoistLifeEnd && !ExitBlock) 490 return {}; 491 492 return Info; 493 } 494 495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 496 ValueSet &SinkCands, ValueSet &HoistCands, 497 BasicBlock *&ExitBlock) const { 498 Function *Func = (*Blocks.begin())->getParent(); 499 ExitBlock = getCommonExitBlock(Blocks); 500 501 auto moveOrIgnoreLifetimeMarkers = 502 [&](const LifetimeMarkerInfo &LMI) -> bool { 503 if (!LMI.LifeStart) 504 return false; 505 if (LMI.SinkLifeStart) { 506 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 507 << "\n"); 508 SinkCands.insert(LMI.LifeStart); 509 } 510 if (LMI.HoistLifeEnd) { 511 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 512 HoistCands.insert(LMI.LifeEnd); 513 } 514 return true; 515 }; 516 517 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 518 // this is much faster than walking all the instructions. 519 for (AllocaInst *AI : CEAC.getAllocas()) { 520 BasicBlock *BB = AI->getParent(); 521 if (Blocks.count(BB)) 522 continue; 523 524 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 525 // check whether it is actually still in the original function. 526 Function *AIFunc = BB->getParent(); 527 if (AIFunc != Func) 528 continue; 529 530 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 531 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 532 if (Moved) { 533 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 534 SinkCands.insert(AI); 535 continue; 536 } 537 538 // Find bitcasts in the outlined region that have lifetime marker users 539 // outside that region. Replace the lifetime marker use with an 540 // outside region bitcast to avoid unnecessary alloca/reload instructions 541 // and extra lifetime markers. 542 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 543 for (User *U : AI->users()) { 544 if (!definedInRegion(Blocks, U)) 545 continue; 546 547 if (U->stripInBoundsConstantOffsets() != AI) 548 continue; 549 550 Instruction *Bitcast = cast<Instruction>(U); 551 for (User *BU : Bitcast->users()) { 552 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 553 if (!IntrInst) 554 continue; 555 556 if (!IntrInst->isLifetimeStartOrEnd()) 557 continue; 558 559 if (definedInRegion(Blocks, IntrInst)) 560 continue; 561 562 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 563 << *Bitcast << " in out-of-region lifetime marker " 564 << *IntrInst << "\n"); 565 LifetimeBitcastUsers.push_back(IntrInst); 566 } 567 } 568 569 for (Instruction *I : LifetimeBitcastUsers) { 570 Module *M = AIFunc->getParent(); 571 LLVMContext &Ctx = M->getContext(); 572 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 573 CastInst *CastI = 574 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 575 I->replaceUsesOfWith(I->getOperand(1), CastI); 576 } 577 578 // Follow any bitcasts. 579 SmallVector<Instruction *, 2> Bitcasts; 580 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 581 for (User *U : AI->users()) { 582 if (U->stripInBoundsConstantOffsets() == AI) { 583 Instruction *Bitcast = cast<Instruction>(U); 584 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 585 if (LMI.LifeStart) { 586 Bitcasts.push_back(Bitcast); 587 BitcastLifetimeInfo.push_back(LMI); 588 continue; 589 } 590 } 591 592 // Found unknown use of AI. 593 if (!definedInRegion(Blocks, U)) { 594 Bitcasts.clear(); 595 break; 596 } 597 } 598 599 // Either no bitcasts reference the alloca or there are unknown uses. 600 if (Bitcasts.empty()) 601 continue; 602 603 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 604 SinkCands.insert(AI); 605 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 606 Instruction *BitcastAddr = Bitcasts[I]; 607 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 608 assert(LMI.LifeStart && 609 "Unsafe to sink bitcast without lifetime markers"); 610 moveOrIgnoreLifetimeMarkers(LMI); 611 if (!definedInRegion(Blocks, BitcastAddr)) { 612 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 613 << "\n"); 614 SinkCands.insert(BitcastAddr); 615 } 616 } 617 } 618 } 619 620 bool CodeExtractor::isEligible() const { 621 if (Blocks.empty()) 622 return false; 623 BasicBlock *Header = *Blocks.begin(); 624 Function *F = Header->getParent(); 625 626 // For functions with varargs, check that varargs handling is only done in the 627 // outlined function, i.e vastart and vaend are only used in outlined blocks. 628 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 629 auto containsVarArgIntrinsic = [](const Instruction &I) { 630 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 631 if (const Function *Callee = CI->getCalledFunction()) 632 return Callee->getIntrinsicID() == Intrinsic::vastart || 633 Callee->getIntrinsicID() == Intrinsic::vaend; 634 return false; 635 }; 636 637 for (auto &BB : *F) { 638 if (Blocks.count(&BB)) 639 continue; 640 if (llvm::any_of(BB, containsVarArgIntrinsic)) 641 return false; 642 } 643 } 644 return true; 645 } 646 647 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 648 const ValueSet &SinkCands) const { 649 for (BasicBlock *BB : Blocks) { 650 // If a used value is defined outside the region, it's an input. If an 651 // instruction is used outside the region, it's an output. 652 for (Instruction &II : *BB) { 653 for (auto &OI : II.operands()) { 654 Value *V = OI; 655 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 656 Inputs.insert(V); 657 } 658 659 for (User *U : II.users()) 660 if (!definedInRegion(Blocks, U)) { 661 Outputs.insert(&II); 662 break; 663 } 664 } 665 } 666 } 667 668 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 669 /// of the region, we need to split the entry block of the region so that the 670 /// PHI node is easier to deal with. 671 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 672 unsigned NumPredsFromRegion = 0; 673 unsigned NumPredsOutsideRegion = 0; 674 675 if (Header != &Header->getParent()->getEntryBlock()) { 676 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 677 if (!PN) return; // No PHI nodes. 678 679 // If the header node contains any PHI nodes, check to see if there is more 680 // than one entry from outside the region. If so, we need to sever the 681 // header block into two. 682 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 683 if (Blocks.count(PN->getIncomingBlock(i))) 684 ++NumPredsFromRegion; 685 else 686 ++NumPredsOutsideRegion; 687 688 // If there is one (or fewer) predecessor from outside the region, we don't 689 // need to do anything special. 690 if (NumPredsOutsideRegion <= 1) return; 691 } 692 693 // Otherwise, we need to split the header block into two pieces: one 694 // containing PHI nodes merging values from outside of the region, and a 695 // second that contains all of the code for the block and merges back any 696 // incoming values from inside of the region. 697 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 698 699 // We only want to code extract the second block now, and it becomes the new 700 // header of the region. 701 BasicBlock *OldPred = Header; 702 Blocks.remove(OldPred); 703 Blocks.insert(NewBB); 704 Header = NewBB; 705 706 // Okay, now we need to adjust the PHI nodes and any branches from within the 707 // region to go to the new header block instead of the old header block. 708 if (NumPredsFromRegion) { 709 PHINode *PN = cast<PHINode>(OldPred->begin()); 710 // Loop over all of the predecessors of OldPred that are in the region, 711 // changing them to branch to NewBB instead. 712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 713 if (Blocks.count(PN->getIncomingBlock(i))) { 714 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 715 TI->replaceUsesOfWith(OldPred, NewBB); 716 } 717 718 // Okay, everything within the region is now branching to the right block, we 719 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 720 BasicBlock::iterator AfterPHIs; 721 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 722 PHINode *PN = cast<PHINode>(AfterPHIs); 723 // Create a new PHI node in the new region, which has an incoming value 724 // from OldPred of PN. 725 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 726 PN->getName() + ".ce", &NewBB->front()); 727 PN->replaceAllUsesWith(NewPN); 728 NewPN->addIncoming(PN, OldPred); 729 730 // Loop over all of the incoming value in PN, moving them to NewPN if they 731 // are from the extracted region. 732 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 733 if (Blocks.count(PN->getIncomingBlock(i))) { 734 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 735 PN->removeIncomingValue(i); 736 --i; 737 } 738 } 739 } 740 } 741 } 742 743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 744 /// outlined region, we split these PHIs on two: one with inputs from region 745 /// and other with remaining incoming blocks; then first PHIs are placed in 746 /// outlined region. 747 void CodeExtractor::severSplitPHINodesOfExits( 748 const SmallPtrSetImpl<BasicBlock *> &Exits) { 749 for (BasicBlock *ExitBB : Exits) { 750 BasicBlock *NewBB = nullptr; 751 752 for (PHINode &PN : ExitBB->phis()) { 753 // Find all incoming values from the outlining region. 754 SmallVector<unsigned, 2> IncomingVals; 755 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 756 if (Blocks.count(PN.getIncomingBlock(i))) 757 IncomingVals.push_back(i); 758 759 // Do not process PHI if there is one (or fewer) predecessor from region. 760 // If PHI has exactly one predecessor from region, only this one incoming 761 // will be replaced on codeRepl block, so it should be safe to skip PHI. 762 if (IncomingVals.size() <= 1) 763 continue; 764 765 // Create block for new PHIs and add it to the list of outlined if it 766 // wasn't done before. 767 if (!NewBB) { 768 NewBB = BasicBlock::Create(ExitBB->getContext(), 769 ExitBB->getName() + ".split", 770 ExitBB->getParent(), ExitBB); 771 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 772 for (BasicBlock *PredBB : Preds) 773 if (Blocks.count(PredBB)) 774 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 775 BranchInst::Create(ExitBB, NewBB); 776 Blocks.insert(NewBB); 777 } 778 779 // Split this PHI. 780 PHINode *NewPN = 781 PHINode::Create(PN.getType(), IncomingVals.size(), 782 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 783 for (unsigned i : IncomingVals) 784 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 785 for (unsigned i : reverse(IncomingVals)) 786 PN.removeIncomingValue(i, false); 787 PN.addIncoming(NewPN, NewBB); 788 } 789 } 790 } 791 792 void CodeExtractor::splitReturnBlocks() { 793 for (BasicBlock *Block : Blocks) 794 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 795 BasicBlock *New = 796 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 797 if (DT) { 798 // Old dominates New. New node dominates all other nodes dominated 799 // by Old. 800 DomTreeNode *OldNode = DT->getNode(Block); 801 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 802 OldNode->end()); 803 804 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 805 806 for (DomTreeNode *I : Children) 807 DT->changeImmediateDominator(I, NewNode); 808 } 809 } 810 } 811 812 /// constructFunction - make a function based on inputs and outputs, as follows: 813 /// f(in0, ..., inN, out0, ..., outN) 814 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 815 const ValueSet &outputs, 816 BasicBlock *header, 817 BasicBlock *newRootNode, 818 BasicBlock *newHeader, 819 Function *oldFunction, 820 Module *M) { 821 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 822 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 823 824 // This function returns unsigned, outputs will go back by reference. 825 switch (NumExitBlocks) { 826 case 0: 827 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 828 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 829 default: RetTy = Type::getInt16Ty(header->getContext()); break; 830 } 831 832 std::vector<Type *> paramTy; 833 834 // Add the types of the input values to the function's argument list 835 for (Value *value : inputs) { 836 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 837 paramTy.push_back(value->getType()); 838 } 839 840 // Add the types of the output values to the function's argument list. 841 for (Value *output : outputs) { 842 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 843 if (AggregateArgs) 844 paramTy.push_back(output->getType()); 845 else 846 paramTy.push_back(PointerType::getUnqual(output->getType())); 847 } 848 849 LLVM_DEBUG({ 850 dbgs() << "Function type: " << *RetTy << " f("; 851 for (Type *i : paramTy) 852 dbgs() << *i << ", "; 853 dbgs() << ")\n"; 854 }); 855 856 StructType *StructTy = nullptr; 857 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 858 StructTy = StructType::get(M->getContext(), paramTy); 859 paramTy.clear(); 860 paramTy.push_back(PointerType::getUnqual(StructTy)); 861 } 862 FunctionType *funcType = 863 FunctionType::get(RetTy, paramTy, 864 AllowVarArgs && oldFunction->isVarArg()); 865 866 std::string SuffixToUse = 867 Suffix.empty() 868 ? (header->getName().empty() ? "extracted" : header->getName().str()) 869 : Suffix; 870 // Create the new function 871 Function *newFunction = Function::Create( 872 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 873 oldFunction->getName() + "." + SuffixToUse, M); 874 // If the old function is no-throw, so is the new one. 875 if (oldFunction->doesNotThrow()) 876 newFunction->setDoesNotThrow(); 877 878 // Inherit the uwtable attribute if we need to. 879 if (oldFunction->hasUWTable()) 880 newFunction->setHasUWTable(); 881 882 // Inherit all of the target dependent attributes and white-listed 883 // target independent attributes. 884 // (e.g. If the extracted region contains a call to an x86.sse 885 // instruction we need to make sure that the extracted region has the 886 // "target-features" attribute allowing it to be lowered. 887 // FIXME: This should be changed to check to see if a specific 888 // attribute can not be inherited. 889 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 890 if (Attr.isStringAttribute()) { 891 if (Attr.getKindAsString() == "thunk") 892 continue; 893 } else 894 switch (Attr.getKindAsEnum()) { 895 // Those attributes cannot be propagated safely. Explicitly list them 896 // here so we get a warning if new attributes are added. 897 case Attribute::AllocSize: 898 case Attribute::ArgMemOnly: 899 case Attribute::Builtin: 900 case Attribute::Convergent: 901 case Attribute::InaccessibleMemOnly: 902 case Attribute::InaccessibleMemOrArgMemOnly: 903 case Attribute::JumpTable: 904 case Attribute::Naked: 905 case Attribute::NoBuiltin: 906 case Attribute::NoMerge: 907 case Attribute::NoReturn: 908 case Attribute::NoSync: 909 case Attribute::ReadNone: 910 case Attribute::ReadOnly: 911 case Attribute::ReturnsTwice: 912 case Attribute::Speculatable: 913 case Attribute::StackAlignment: 914 case Attribute::WillReturn: 915 case Attribute::WriteOnly: 916 continue; 917 // Those attributes should be safe to propagate to the extracted function. 918 case Attribute::AlwaysInline: 919 case Attribute::Cold: 920 case Attribute::DisableSanitizerInstrumentation: 921 case Attribute::Hot: 922 case Attribute::NoRecurse: 923 case Attribute::InlineHint: 924 case Attribute::MinSize: 925 case Attribute::NoCallback: 926 case Attribute::NoDuplicate: 927 case Attribute::NoFree: 928 case Attribute::NoImplicitFloat: 929 case Attribute::NoInline: 930 case Attribute::NonLazyBind: 931 case Attribute::NoRedZone: 932 case Attribute::NoUnwind: 933 case Attribute::NoSanitizeCoverage: 934 case Attribute::NullPointerIsValid: 935 case Attribute::OptForFuzzing: 936 case Attribute::OptimizeNone: 937 case Attribute::OptimizeForSize: 938 case Attribute::SafeStack: 939 case Attribute::ShadowCallStack: 940 case Attribute::SanitizeAddress: 941 case Attribute::SanitizeMemory: 942 case Attribute::SanitizeThread: 943 case Attribute::SanitizeHWAddress: 944 case Attribute::SanitizeMemTag: 945 case Attribute::SpeculativeLoadHardening: 946 case Attribute::StackProtect: 947 case Attribute::StackProtectReq: 948 case Attribute::StackProtectStrong: 949 case Attribute::StrictFP: 950 case Attribute::UWTable: 951 case Attribute::VScaleRange: 952 case Attribute::NoCfCheck: 953 case Attribute::MustProgress: 954 case Attribute::NoProfile: 955 break; 956 // These attributes cannot be applied to functions. 957 case Attribute::Alignment: 958 case Attribute::ByVal: 959 case Attribute::Dereferenceable: 960 case Attribute::DereferenceableOrNull: 961 case Attribute::ElementType: 962 case Attribute::InAlloca: 963 case Attribute::InReg: 964 case Attribute::Nest: 965 case Attribute::NoAlias: 966 case Attribute::NoCapture: 967 case Attribute::NoUndef: 968 case Attribute::NonNull: 969 case Attribute::Preallocated: 970 case Attribute::Returned: 971 case Attribute::SExt: 972 case Attribute::StructRet: 973 case Attribute::SwiftError: 974 case Attribute::SwiftSelf: 975 case Attribute::SwiftAsync: 976 case Attribute::ZExt: 977 case Attribute::ImmArg: 978 case Attribute::ByRef: 979 // These are not really attributes. 980 case Attribute::None: 981 case Attribute::EndAttrKinds: 982 case Attribute::EmptyKey: 983 case Attribute::TombstoneKey: 984 llvm_unreachable("Not a function attribute"); 985 } 986 987 newFunction->addFnAttr(Attr); 988 } 989 newFunction->getBasicBlockList().push_back(newRootNode); 990 991 // Create an iterator to name all of the arguments we inserted. 992 Function::arg_iterator AI = newFunction->arg_begin(); 993 994 // Rewrite all users of the inputs in the extracted region to use the 995 // arguments (or appropriate addressing into struct) instead. 996 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 997 Value *RewriteVal; 998 if (AggregateArgs) { 999 Value *Idx[2]; 1000 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1001 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 1002 Instruction *TI = newFunction->begin()->getTerminator(); 1003 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1004 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 1005 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 1006 "loadgep_" + inputs[i]->getName(), TI); 1007 } else 1008 RewriteVal = &*AI++; 1009 1010 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1011 for (User *use : Users) 1012 if (Instruction *inst = dyn_cast<Instruction>(use)) 1013 if (Blocks.count(inst->getParent())) 1014 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1015 } 1016 1017 // Set names for input and output arguments. 1018 if (!AggregateArgs) { 1019 AI = newFunction->arg_begin(); 1020 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 1021 AI->setName(inputs[i]->getName()); 1022 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 1023 AI->setName(outputs[i]->getName()+".out"); 1024 } 1025 1026 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1027 // within the new function. This must be done before we lose track of which 1028 // blocks were originally in the code region. 1029 std::vector<User *> Users(header->user_begin(), header->user_end()); 1030 for (auto &U : Users) 1031 // The BasicBlock which contains the branch is not in the region 1032 // modify the branch target to a new block 1033 if (Instruction *I = dyn_cast<Instruction>(U)) 1034 if (I->isTerminator() && I->getFunction() == oldFunction && 1035 !Blocks.count(I->getParent())) 1036 I->replaceUsesOfWith(header, newHeader); 1037 1038 return newFunction; 1039 } 1040 1041 /// Erase lifetime.start markers which reference inputs to the extraction 1042 /// region, and insert the referenced memory into \p LifetimesStart. 1043 /// 1044 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1045 /// of allocas which will be moved from the caller function into the extracted 1046 /// function (\p SunkAllocas). 1047 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1048 const SetVector<Value *> &SunkAllocas, 1049 SetVector<Value *> &LifetimesStart) { 1050 for (BasicBlock *BB : Blocks) { 1051 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1052 auto *II = dyn_cast<IntrinsicInst>(&I); 1053 if (!II || !II->isLifetimeStartOrEnd()) 1054 continue; 1055 1056 // Get the memory operand of the lifetime marker. If the underlying 1057 // object is a sunk alloca, or is otherwise defined in the extraction 1058 // region, the lifetime marker must not be erased. 1059 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1060 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1061 continue; 1062 1063 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1064 LifetimesStart.insert(Mem); 1065 II->eraseFromParent(); 1066 } 1067 } 1068 } 1069 1070 /// Insert lifetime start/end markers surrounding the call to the new function 1071 /// for objects defined in the caller. 1072 static void insertLifetimeMarkersSurroundingCall( 1073 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1074 CallInst *TheCall) { 1075 LLVMContext &Ctx = M->getContext(); 1076 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1077 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1078 Instruction *Term = TheCall->getParent()->getTerminator(); 1079 1080 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1081 // needed to satisfy this requirement so they may be reused. 1082 DenseMap<Value *, Value *> Bitcasts; 1083 1084 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1085 // markers before the call if \p InsertBefore, and after the call otherwise. 1086 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1087 bool InsertBefore) { 1088 for (Value *Mem : Objects) { 1089 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1090 TheCall->getFunction()) && 1091 "Input memory not defined in original function"); 1092 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1093 if (!MemAsI8Ptr) { 1094 if (Mem->getType() == Int8PtrTy) 1095 MemAsI8Ptr = Mem; 1096 else 1097 MemAsI8Ptr = 1098 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1099 } 1100 1101 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1102 if (InsertBefore) 1103 Marker->insertBefore(TheCall); 1104 else 1105 Marker->insertBefore(Term); 1106 } 1107 }; 1108 1109 if (!LifetimesStart.empty()) { 1110 auto StartFn = llvm::Intrinsic::getDeclaration( 1111 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1112 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1113 } 1114 1115 if (!LifetimesEnd.empty()) { 1116 auto EndFn = llvm::Intrinsic::getDeclaration( 1117 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1118 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1119 } 1120 } 1121 1122 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1123 /// the call instruction, splitting any PHI nodes in the header block as 1124 /// necessary. 1125 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1126 BasicBlock *codeReplacer, 1127 ValueSet &inputs, 1128 ValueSet &outputs) { 1129 // Emit a call to the new function, passing in: *pointer to struct (if 1130 // aggregating parameters), or plan inputs and allocated memory for outputs 1131 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1132 1133 Module *M = newFunction->getParent(); 1134 LLVMContext &Context = M->getContext(); 1135 const DataLayout &DL = M->getDataLayout(); 1136 CallInst *call = nullptr; 1137 1138 // Add inputs as params, or to be filled into the struct 1139 unsigned ArgNo = 0; 1140 SmallVector<unsigned, 1> SwiftErrorArgs; 1141 for (Value *input : inputs) { 1142 if (AggregateArgs) 1143 StructValues.push_back(input); 1144 else { 1145 params.push_back(input); 1146 if (input->isSwiftError()) 1147 SwiftErrorArgs.push_back(ArgNo); 1148 } 1149 ++ArgNo; 1150 } 1151 1152 // Create allocas for the outputs 1153 for (Value *output : outputs) { 1154 if (AggregateArgs) { 1155 StructValues.push_back(output); 1156 } else { 1157 AllocaInst *alloca = 1158 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1159 nullptr, output->getName() + ".loc", 1160 &codeReplacer->getParent()->front().front()); 1161 ReloadOutputs.push_back(alloca); 1162 params.push_back(alloca); 1163 } 1164 } 1165 1166 StructType *StructArgTy = nullptr; 1167 AllocaInst *Struct = nullptr; 1168 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1169 std::vector<Type *> ArgTypes; 1170 for (Value *V : StructValues) 1171 ArgTypes.push_back(V->getType()); 1172 1173 // Allocate a struct at the beginning of this function 1174 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1175 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1176 "structArg", 1177 &codeReplacer->getParent()->front().front()); 1178 params.push_back(Struct); 1179 1180 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1181 Value *Idx[2]; 1182 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1183 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1184 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1185 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1186 codeReplacer->getInstList().push_back(GEP); 1187 new StoreInst(StructValues[i], GEP, codeReplacer); 1188 } 1189 } 1190 1191 // Emit the call to the function 1192 call = CallInst::Create(newFunction, params, 1193 NumExitBlocks > 1 ? "targetBlock" : ""); 1194 // Add debug location to the new call, if the original function has debug 1195 // info. In that case, the terminator of the entry block of the extracted 1196 // function contains the first debug location of the extracted function, 1197 // set in extractCodeRegion. 1198 if (codeReplacer->getParent()->getSubprogram()) { 1199 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1200 call->setDebugLoc(DL); 1201 } 1202 codeReplacer->getInstList().push_back(call); 1203 1204 // Set swifterror parameter attributes. 1205 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1206 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1207 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1208 } 1209 1210 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1211 unsigned FirstOut = inputs.size(); 1212 if (!AggregateArgs) 1213 std::advance(OutputArgBegin, inputs.size()); 1214 1215 // Reload the outputs passed in by reference. 1216 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1217 Value *Output = nullptr; 1218 if (AggregateArgs) { 1219 Value *Idx[2]; 1220 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1221 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1222 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1223 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1224 codeReplacer->getInstList().push_back(GEP); 1225 Output = GEP; 1226 } else { 1227 Output = ReloadOutputs[i]; 1228 } 1229 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1230 outputs[i]->getName() + ".reload", 1231 codeReplacer); 1232 Reloads.push_back(load); 1233 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1234 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1235 Instruction *inst = cast<Instruction>(Users[u]); 1236 if (!Blocks.count(inst->getParent())) 1237 inst->replaceUsesOfWith(outputs[i], load); 1238 } 1239 } 1240 1241 // Now we can emit a switch statement using the call as a value. 1242 SwitchInst *TheSwitch = 1243 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1244 codeReplacer, 0, codeReplacer); 1245 1246 // Since there may be multiple exits from the original region, make the new 1247 // function return an unsigned, switch on that number. This loop iterates 1248 // over all of the blocks in the extracted region, updating any terminator 1249 // instructions in the to-be-extracted region that branch to blocks that are 1250 // not in the region to be extracted. 1251 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1252 1253 // Iterate over the previously collected targets, and create new blocks inside 1254 // the function to branch to. 1255 unsigned switchVal = 0; 1256 for (BasicBlock *OldTarget : OldTargets) { 1257 if (Blocks.count(OldTarget)) 1258 continue; 1259 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1260 if (NewTarget) 1261 continue; 1262 1263 // If we don't already have an exit stub for this non-extracted 1264 // destination, create one now! 1265 NewTarget = BasicBlock::Create(Context, 1266 OldTarget->getName() + ".exitStub", 1267 newFunction); 1268 unsigned SuccNum = switchVal++; 1269 1270 Value *brVal = nullptr; 1271 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1272 switch (NumExitBlocks) { 1273 case 0: 1274 case 1: break; // No value needed. 1275 case 2: // Conditional branch, return a bool 1276 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1277 break; 1278 default: 1279 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1280 break; 1281 } 1282 1283 ReturnInst::Create(Context, brVal, NewTarget); 1284 1285 // Update the switch instruction. 1286 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1287 SuccNum), 1288 OldTarget); 1289 } 1290 1291 for (BasicBlock *Block : Blocks) { 1292 Instruction *TI = Block->getTerminator(); 1293 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1294 if (Blocks.count(TI->getSuccessor(i))) 1295 continue; 1296 BasicBlock *OldTarget = TI->getSuccessor(i); 1297 // add a new basic block which returns the appropriate value 1298 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1299 assert(NewTarget && "Unknown target block!"); 1300 1301 // rewrite the original branch instruction with this new target 1302 TI->setSuccessor(i, NewTarget); 1303 } 1304 } 1305 1306 // Store the arguments right after the definition of output value. 1307 // This should be proceeded after creating exit stubs to be ensure that invoke 1308 // result restore will be placed in the outlined function. 1309 Function::arg_iterator OAI = OutputArgBegin; 1310 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1311 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1312 if (!OutI) 1313 continue; 1314 1315 // Find proper insertion point. 1316 BasicBlock::iterator InsertPt; 1317 // In case OutI is an invoke, we insert the store at the beginning in the 1318 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1319 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1320 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1321 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1322 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1323 else 1324 InsertPt = std::next(OutI->getIterator()); 1325 1326 Instruction *InsertBefore = &*InsertPt; 1327 assert((InsertBefore->getFunction() == newFunction || 1328 Blocks.count(InsertBefore->getParent())) && 1329 "InsertPt should be in new function"); 1330 assert(OAI != newFunction->arg_end() && 1331 "Number of output arguments should match " 1332 "the amount of defined values"); 1333 if (AggregateArgs) { 1334 Value *Idx[2]; 1335 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1336 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1337 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1338 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1339 InsertBefore); 1340 new StoreInst(outputs[i], GEP, InsertBefore); 1341 // Since there should be only one struct argument aggregating 1342 // all the output values, we shouldn't increment OAI, which always 1343 // points to the struct argument, in this case. 1344 } else { 1345 new StoreInst(outputs[i], &*OAI, InsertBefore); 1346 ++OAI; 1347 } 1348 } 1349 1350 // Now that we've done the deed, simplify the switch instruction. 1351 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1352 switch (NumExitBlocks) { 1353 case 0: 1354 // There are no successors (the block containing the switch itself), which 1355 // means that previously this was the last part of the function, and hence 1356 // this should be rewritten as a `ret' 1357 1358 // Check if the function should return a value 1359 if (OldFnRetTy->isVoidTy()) { 1360 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1361 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1362 // return what we have 1363 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1364 } else { 1365 // Otherwise we must have code extracted an unwind or something, just 1366 // return whatever we want. 1367 ReturnInst::Create(Context, 1368 Constant::getNullValue(OldFnRetTy), TheSwitch); 1369 } 1370 1371 TheSwitch->eraseFromParent(); 1372 break; 1373 case 1: 1374 // Only a single destination, change the switch into an unconditional 1375 // branch. 1376 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1377 TheSwitch->eraseFromParent(); 1378 break; 1379 case 2: 1380 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1381 call, TheSwitch); 1382 TheSwitch->eraseFromParent(); 1383 break; 1384 default: 1385 // Otherwise, make the default destination of the switch instruction be one 1386 // of the other successors. 1387 TheSwitch->setCondition(call); 1388 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1389 // Remove redundant case 1390 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1391 break; 1392 } 1393 1394 // Insert lifetime markers around the reloads of any output values. The 1395 // allocas output values are stored in are only in-use in the codeRepl block. 1396 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1397 1398 return call; 1399 } 1400 1401 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1402 Function *oldFunc = (*Blocks.begin())->getParent(); 1403 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1404 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1405 1406 auto newFuncIt = newFunction->front().getIterator(); 1407 for (BasicBlock *Block : Blocks) { 1408 // Delete the basic block from the old function, and the list of blocks 1409 oldBlocks.remove(Block); 1410 1411 // Insert this basic block into the new function 1412 // Insert the original blocks after the entry block created 1413 // for the new function. The entry block may be followed 1414 // by a set of exit blocks at this point, but these exit 1415 // blocks better be placed at the end of the new function. 1416 newFuncIt = newBlocks.insertAfter(newFuncIt, Block); 1417 } 1418 } 1419 1420 void CodeExtractor::calculateNewCallTerminatorWeights( 1421 BasicBlock *CodeReplacer, 1422 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1423 BranchProbabilityInfo *BPI) { 1424 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1425 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1426 1427 // Update the branch weights for the exit block. 1428 Instruction *TI = CodeReplacer->getTerminator(); 1429 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1430 1431 // Block Frequency distribution with dummy node. 1432 Distribution BranchDist; 1433 1434 SmallVector<BranchProbability, 4> EdgeProbabilities( 1435 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1436 1437 // Add each of the frequencies of the successors. 1438 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1439 BlockNode ExitNode(i); 1440 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1441 if (ExitFreq != 0) 1442 BranchDist.addExit(ExitNode, ExitFreq); 1443 else 1444 EdgeProbabilities[i] = BranchProbability::getZero(); 1445 } 1446 1447 // Check for no total weight. 1448 if (BranchDist.Total == 0) { 1449 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1450 return; 1451 } 1452 1453 // Normalize the distribution so that they can fit in unsigned. 1454 BranchDist.normalize(); 1455 1456 // Create normalized branch weights and set the metadata. 1457 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1458 const auto &Weight = BranchDist.Weights[I]; 1459 1460 // Get the weight and update the current BFI. 1461 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1462 BranchProbability BP(Weight.Amount, BranchDist.Total); 1463 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1464 } 1465 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1466 TI->setMetadata( 1467 LLVMContext::MD_prof, 1468 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1469 } 1470 1471 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1472 /// \p F. 1473 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1474 for (Instruction &I : instructions(F)) { 1475 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1476 findDbgUsers(DbgUsers, &I); 1477 for (DbgVariableIntrinsic *DVI : DbgUsers) 1478 if (DVI->getFunction() != &F) 1479 DVI->eraseFromParent(); 1480 } 1481 } 1482 1483 /// Fix up the debug info in the old and new functions by pointing line 1484 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1485 /// intrinsics which point to values outside of the new function. 1486 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1487 CallInst &TheCall) { 1488 DISubprogram *OldSP = OldFunc.getSubprogram(); 1489 LLVMContext &Ctx = OldFunc.getContext(); 1490 1491 if (!OldSP) { 1492 // Erase any debug info the new function contains. 1493 stripDebugInfo(NewFunc); 1494 // Make sure the old function doesn't contain any non-local metadata refs. 1495 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1496 return; 1497 } 1498 1499 // Create a subprogram for the new function. Leave out a description of the 1500 // function arguments, as the parameters don't correspond to anything at the 1501 // source level. 1502 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1503 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1504 OldSP->getUnit()); 1505 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1506 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1507 DISubprogram::SPFlagOptimized | 1508 DISubprogram::SPFlagLocalToUnit; 1509 auto NewSP = DIB.createFunction( 1510 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1511 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1512 NewFunc.setSubprogram(NewSP); 1513 1514 // Debug intrinsics in the new function need to be updated in one of two 1515 // ways: 1516 // 1) They need to be deleted, because they describe a value in the old 1517 // function. 1518 // 2) They need to point to fresh metadata, e.g. because they currently 1519 // point to a variable in the wrong scope. 1520 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1521 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1522 for (Instruction &I : instructions(NewFunc)) { 1523 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1524 if (!DII) 1525 continue; 1526 1527 // Point the intrinsic to a fresh label within the new function. 1528 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1529 DILabel *OldLabel = DLI->getLabel(); 1530 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1531 if (!NewLabel) 1532 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1533 OldLabel->getFile(), OldLabel->getLine()); 1534 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1535 continue; 1536 } 1537 1538 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1539 // Location is invalid if it isn't a constant or an instruction, or is an 1540 // instruction but isn't in the new function. 1541 if (!Location || 1542 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1543 return true; 1544 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1545 return LocationInst && LocationInst->getFunction() != &NewFunc; 1546 }; 1547 1548 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1549 // If any of the used locations are invalid, delete the intrinsic. 1550 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1551 DebugIntrinsicsToDelete.push_back(DVI); 1552 continue; 1553 } 1554 1555 // Point the intrinsic to a fresh variable within the new function. 1556 DILocalVariable *OldVar = DVI->getVariable(); 1557 DINode *&NewVar = RemappedMetadata[OldVar]; 1558 if (!NewVar) 1559 NewVar = DIB.createAutoVariable( 1560 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1561 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1562 OldVar->getAlignInBits()); 1563 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1564 } 1565 for (auto *DII : DebugIntrinsicsToDelete) 1566 DII->eraseFromParent(); 1567 DIB.finalizeSubprogram(NewSP); 1568 1569 // Fix up the scope information attached to the line locations in the new 1570 // function. 1571 for (Instruction &I : instructions(NewFunc)) { 1572 if (const DebugLoc &DL = I.getDebugLoc()) 1573 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1574 1575 // Loop info metadata may contain line locations. Fix them up. 1576 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1577 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1578 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1579 nullptr); 1580 return MD; 1581 }; 1582 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1583 } 1584 if (!TheCall.getDebugLoc()) 1585 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1586 1587 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1588 } 1589 1590 Function * 1591 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1592 ValueSet Inputs, Outputs; 1593 return extractCodeRegion(CEAC, Inputs, Outputs); 1594 } 1595 1596 Function * 1597 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1598 ValueSet &inputs, ValueSet &outputs) { 1599 if (!isEligible()) 1600 return nullptr; 1601 1602 // Assumption: this is a single-entry code region, and the header is the first 1603 // block in the region. 1604 BasicBlock *header = *Blocks.begin(); 1605 Function *oldFunction = header->getParent(); 1606 1607 // Calculate the entry frequency of the new function before we change the root 1608 // block. 1609 BlockFrequency EntryFreq; 1610 if (BFI) { 1611 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1612 for (BasicBlock *Pred : predecessors(header)) { 1613 if (Blocks.count(Pred)) 1614 continue; 1615 EntryFreq += 1616 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1617 } 1618 } 1619 1620 // Remove @llvm.assume calls that will be moved to the new function from the 1621 // old function's assumption cache. 1622 for (BasicBlock *Block : Blocks) { 1623 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1624 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1625 if (AC) 1626 AC->unregisterAssumption(AI); 1627 AI->eraseFromParent(); 1628 } 1629 } 1630 } 1631 1632 // If we have any return instructions in the region, split those blocks so 1633 // that the return is not in the region. 1634 splitReturnBlocks(); 1635 1636 // Calculate the exit blocks for the extracted region and the total exit 1637 // weights for each of those blocks. 1638 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1639 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1640 for (BasicBlock *Block : Blocks) { 1641 for (BasicBlock *Succ : successors(Block)) { 1642 if (!Blocks.count(Succ)) { 1643 // Update the branch weight for this successor. 1644 if (BFI) { 1645 BlockFrequency &BF = ExitWeights[Succ]; 1646 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1647 } 1648 ExitBlocks.insert(Succ); 1649 } 1650 } 1651 } 1652 NumExitBlocks = ExitBlocks.size(); 1653 1654 for (BasicBlock *Block : Blocks) { 1655 Instruction *TI = Block->getTerminator(); 1656 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1657 if (Blocks.count(TI->getSuccessor(i))) 1658 continue; 1659 BasicBlock *OldTarget = TI->getSuccessor(i); 1660 OldTargets.push_back(OldTarget); 1661 } 1662 } 1663 1664 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1665 severSplitPHINodesOfEntry(header); 1666 severSplitPHINodesOfExits(ExitBlocks); 1667 1668 // This takes place of the original loop 1669 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1670 "codeRepl", oldFunction, 1671 header); 1672 1673 // The new function needs a root node because other nodes can branch to the 1674 // head of the region, but the entry node of a function cannot have preds. 1675 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1676 "newFuncRoot"); 1677 auto *BranchI = BranchInst::Create(header); 1678 // If the original function has debug info, we have to add a debug location 1679 // to the new branch instruction from the artificial entry block. 1680 // We use the debug location of the first instruction in the extracted 1681 // blocks, as there is no other equivalent line in the source code. 1682 if (oldFunction->getSubprogram()) { 1683 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1684 return any_of(*BB, [&BranchI](const Instruction &I) { 1685 if (!I.getDebugLoc()) 1686 return false; 1687 BranchI->setDebugLoc(I.getDebugLoc()); 1688 return true; 1689 }); 1690 }); 1691 } 1692 newFuncRoot->getInstList().push_back(BranchI); 1693 1694 ValueSet SinkingCands, HoistingCands; 1695 BasicBlock *CommonExit = nullptr; 1696 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1697 assert(HoistingCands.empty() || CommonExit); 1698 1699 // Find inputs to, outputs from the code region. 1700 findInputsOutputs(inputs, outputs, SinkingCands); 1701 1702 // Now sink all instructions which only have non-phi uses inside the region. 1703 // Group the allocas at the start of the block, so that any bitcast uses of 1704 // the allocas are well-defined. 1705 AllocaInst *FirstSunkAlloca = nullptr; 1706 for (auto *II : SinkingCands) { 1707 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1708 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1709 if (!FirstSunkAlloca) 1710 FirstSunkAlloca = AI; 1711 } 1712 } 1713 assert((SinkingCands.empty() || FirstSunkAlloca) && 1714 "Did not expect a sink candidate without any allocas"); 1715 for (auto *II : SinkingCands) { 1716 if (!isa<AllocaInst>(II)) { 1717 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1718 } 1719 } 1720 1721 if (!HoistingCands.empty()) { 1722 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1723 Instruction *TI = HoistToBlock->getTerminator(); 1724 for (auto *II : HoistingCands) 1725 cast<Instruction>(II)->moveBefore(TI); 1726 } 1727 1728 // Collect objects which are inputs to the extraction region and also 1729 // referenced by lifetime start markers within it. The effects of these 1730 // markers must be replicated in the calling function to prevent the stack 1731 // coloring pass from merging slots which store input objects. 1732 ValueSet LifetimesStart; 1733 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1734 1735 // Construct new function based on inputs/outputs & add allocas for all defs. 1736 Function *newFunction = 1737 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1738 oldFunction, oldFunction->getParent()); 1739 1740 // Update the entry count of the function. 1741 if (BFI) { 1742 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1743 if (Count.hasValue()) 1744 newFunction->setEntryCount( 1745 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1746 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1747 } 1748 1749 CallInst *TheCall = 1750 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1751 1752 moveCodeToFunction(newFunction); 1753 1754 // Replicate the effects of any lifetime start/end markers which referenced 1755 // input objects in the extraction region by placing markers around the call. 1756 insertLifetimeMarkersSurroundingCall( 1757 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1758 1759 // Propagate personality info to the new function if there is one. 1760 if (oldFunction->hasPersonalityFn()) 1761 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1762 1763 // Update the branch weights for the exit block. 1764 if (BFI && NumExitBlocks > 1) 1765 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1766 1767 // Loop over all of the PHI nodes in the header and exit blocks, and change 1768 // any references to the old incoming edge to be the new incoming edge. 1769 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1770 PHINode *PN = cast<PHINode>(I); 1771 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1772 if (!Blocks.count(PN->getIncomingBlock(i))) 1773 PN->setIncomingBlock(i, newFuncRoot); 1774 } 1775 1776 for (BasicBlock *ExitBB : ExitBlocks) 1777 for (PHINode &PN : ExitBB->phis()) { 1778 Value *IncomingCodeReplacerVal = nullptr; 1779 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1780 // Ignore incoming values from outside of the extracted region. 1781 if (!Blocks.count(PN.getIncomingBlock(i))) 1782 continue; 1783 1784 // Ensure that there is only one incoming value from codeReplacer. 1785 if (!IncomingCodeReplacerVal) { 1786 PN.setIncomingBlock(i, codeReplacer); 1787 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1788 } else 1789 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1790 "PHI has two incompatbile incoming values from codeRepl"); 1791 } 1792 } 1793 1794 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1795 1796 // Mark the new function `noreturn` if applicable. Terminators which resume 1797 // exception propagation are treated as returning instructions. This is to 1798 // avoid inserting traps after calls to outlined functions which unwind. 1799 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1800 const Instruction *Term = BB.getTerminator(); 1801 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1802 }); 1803 if (doesNotReturn) 1804 newFunction->setDoesNotReturn(); 1805 1806 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1807 newFunction->dump(); 1808 report_fatal_error("verification of newFunction failed!"); 1809 }); 1810 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1811 report_fatal_error("verification of oldFunction failed!")); 1812 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1813 report_fatal_error("Stale Asumption cache for old Function!")); 1814 return newFunction; 1815 } 1816 1817 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1818 const Function &NewFunc, 1819 AssumptionCache *AC) { 1820 for (auto AssumeVH : AC->assumptions()) { 1821 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1822 if (!I) 1823 continue; 1824 1825 // There shouldn't be any llvm.assume intrinsics in the new function. 1826 if (I->getFunction() != &OldFunc) 1827 return true; 1828 1829 // There shouldn't be any stale affected values in the assumption cache 1830 // that were previously in the old function, but that have now been moved 1831 // to the new function. 1832 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1833 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1834 if (!AffectedCI) 1835 continue; 1836 if (AffectedCI->getFunction() != &OldFunc) 1837 return true; 1838 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1839 if (AssumedInst->getFunction() != &OldFunc) 1840 return true; 1841 } 1842 } 1843 return false; 1844 } 1845