xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 4aaa92578686176243a294eeb2ca5697a99edcaa)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/MDBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PatternMatch.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/Verifier.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using namespace llvm::PatternMatch;
71 using ProfileCount = Function::ProfileCount;
72 
73 #define DEBUG_TYPE "code-extractor"
74 
75 // Provide a command-line option to aggregate function arguments into a struct
76 // for functions produced by the code extractor. This is useful when converting
77 // extracted functions to pthread-based code, as only one argument (void*) can
78 // be passed in to pthread_create().
79 static cl::opt<bool>
80 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
81                  cl::desc("Aggregate arguments to code-extracted functions"));
82 
83 /// Test whether a block is valid for extraction.
84 static bool isBlockValidForExtraction(const BasicBlock &BB,
85                                       const SetVector<BasicBlock *> &Result,
86                                       bool AllowVarArgs, bool AllowAlloca) {
87   // taking the address of a basic block moved to another function is illegal
88   if (BB.hasAddressTaken())
89     return false;
90 
91   // don't hoist code that uses another basicblock address, as it's likely to
92   // lead to unexpected behavior, like cross-function jumps
93   SmallPtrSet<User const *, 16> Visited;
94   SmallVector<User const *, 16> ToVisit;
95 
96   for (Instruction const &Inst : BB)
97     ToVisit.push_back(&Inst);
98 
99   while (!ToVisit.empty()) {
100     User const *Curr = ToVisit.pop_back_val();
101     if (!Visited.insert(Curr).second)
102       continue;
103     if (isa<BlockAddress const>(Curr))
104       return false; // even a reference to self is likely to be not compatible
105 
106     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
107       continue;
108 
109     for (auto const &U : Curr->operands()) {
110       if (auto *UU = dyn_cast<User>(U))
111         ToVisit.push_back(UU);
112     }
113   }
114 
115   // If explicitly requested, allow vastart and alloca. For invoke instructions
116   // verify that extraction is valid.
117   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
118     if (isa<AllocaInst>(I)) {
119        if (!AllowAlloca)
120          return false;
121        continue;
122     }
123 
124     if (const auto *II = dyn_cast<InvokeInst>(I)) {
125       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
126       // must be a part of the subgraph which is being extracted.
127       if (auto *UBB = II->getUnwindDest())
128         if (!Result.count(UBB))
129           return false;
130       continue;
131     }
132 
133     // All catch handlers of a catchswitch instruction as well as the unwind
134     // destination must be in the subgraph.
135     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
136       if (auto *UBB = CSI->getUnwindDest())
137         if (!Result.count(UBB))
138           return false;
139       for (const auto *HBB : CSI->handlers())
140         if (!Result.count(const_cast<BasicBlock*>(HBB)))
141           return false;
142       continue;
143     }
144 
145     // Make sure that entire catch handler is within subgraph. It is sufficient
146     // to check that catch return's block is in the list.
147     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
148       for (const auto *U : CPI->users())
149         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
150           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
151             return false;
152       continue;
153     }
154 
155     // And do similar checks for cleanup handler - the entire handler must be
156     // in subgraph which is going to be extracted. For cleanup return should
157     // additionally check that the unwind destination is also in the subgraph.
158     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
159       for (const auto *U : CPI->users())
160         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
161           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
162             return false;
163       continue;
164     }
165     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
166       if (auto *UBB = CRI->getUnwindDest())
167         if (!Result.count(UBB))
168           return false;
169       continue;
170     }
171 
172     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
173       if (const Function *F = CI->getCalledFunction()) {
174         auto IID = F->getIntrinsicID();
175         if (IID == Intrinsic::vastart) {
176           if (AllowVarArgs)
177             continue;
178           else
179             return false;
180         }
181 
182         // Currently, we miscompile outlined copies of eh_typid_for. There are
183         // proposals for fixing this in llvm.org/PR39545.
184         if (IID == Intrinsic::eh_typeid_for)
185           return false;
186       }
187     }
188   }
189 
190   return true;
191 }
192 
193 /// Build a set of blocks to extract if the input blocks are viable.
194 static SetVector<BasicBlock *>
195 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
196                         bool AllowVarArgs, bool AllowAlloca) {
197   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
198   SetVector<BasicBlock *> Result;
199 
200   // Loop over the blocks, adding them to our set-vector, and aborting with an
201   // empty set if we encounter invalid blocks.
202   for (BasicBlock *BB : BBs) {
203     // If this block is dead, don't process it.
204     if (DT && !DT->isReachableFromEntry(BB))
205       continue;
206 
207     if (!Result.insert(BB))
208       llvm_unreachable("Repeated basic blocks in extraction input");
209   }
210 
211   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
212                     << '\n');
213 
214   for (auto *BB : Result) {
215     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
216       return {};
217 
218     // Make sure that the first block is not a landing pad.
219     if (BB == Result.front()) {
220       if (BB->isEHPad()) {
221         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
222         return {};
223       }
224       continue;
225     }
226 
227     // All blocks other than the first must not have predecessors outside of
228     // the subgraph which is being extracted.
229     for (auto *PBB : predecessors(BB))
230       if (!Result.count(PBB)) {
231         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
232                              "outside the region except for the first block!\n"
233                           << "Problematic source BB: " << BB->getName() << "\n"
234                           << "Problematic destination BB: " << PBB->getName()
235                           << "\n");
236         return {};
237       }
238   }
239 
240   return Result;
241 }
242 
243 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
244                              bool AggregateArgs, BlockFrequencyInfo *BFI,
245                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
246                              bool AllowVarArgs, bool AllowAlloca,
247                              BasicBlock *AllocationBlock, std::string Suffix,
248                              bool ArgsInZeroAddressSpace)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251       AllowVarArgs(AllowVarArgs),
252       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253       Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
254 
255 /// definedInRegion - Return true if the specified value is defined in the
256 /// extracted region.
257 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
258   if (Instruction *I = dyn_cast<Instruction>(V))
259     if (Blocks.count(I->getParent()))
260       return true;
261   return false;
262 }
263 
264 /// definedInCaller - Return true if the specified value is defined in the
265 /// function being code extracted, but not in the region being extracted.
266 /// These values must be passed in as live-ins to the function.
267 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
268   if (isa<Argument>(V)) return true;
269   if (Instruction *I = dyn_cast<Instruction>(V))
270     if (!Blocks.count(I->getParent()))
271       return true;
272   return false;
273 }
274 
275 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
276   BasicBlock *CommonExitBlock = nullptr;
277   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
278     for (auto *Succ : successors(Block)) {
279       // Internal edges, ok.
280       if (Blocks.count(Succ))
281         continue;
282       if (!CommonExitBlock) {
283         CommonExitBlock = Succ;
284         continue;
285       }
286       if (CommonExitBlock != Succ)
287         return true;
288     }
289     return false;
290   };
291 
292   if (any_of(Blocks, hasNonCommonExitSucc))
293     return nullptr;
294 
295   return CommonExitBlock;
296 }
297 
298 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
299   for (BasicBlock &BB : F) {
300     for (Instruction &II : BB.instructionsWithoutDebug())
301       if (auto *AI = dyn_cast<AllocaInst>(&II))
302         Allocas.push_back(AI);
303 
304     findSideEffectInfoForBlock(BB);
305   }
306 }
307 
308 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
309   for (Instruction &II : BB.instructionsWithoutDebug()) {
310     unsigned Opcode = II.getOpcode();
311     Value *MemAddr = nullptr;
312     switch (Opcode) {
313     case Instruction::Store:
314     case Instruction::Load: {
315       if (Opcode == Instruction::Store) {
316         StoreInst *SI = cast<StoreInst>(&II);
317         MemAddr = SI->getPointerOperand();
318       } else {
319         LoadInst *LI = cast<LoadInst>(&II);
320         MemAddr = LI->getPointerOperand();
321       }
322       // Global variable can not be aliased with locals.
323       if (isa<Constant>(MemAddr))
324         break;
325       Value *Base = MemAddr->stripInBoundsConstantOffsets();
326       if (!isa<AllocaInst>(Base)) {
327         SideEffectingBlocks.insert(&BB);
328         return;
329       }
330       BaseMemAddrs[&BB].insert(Base);
331       break;
332     }
333     default: {
334       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
335       if (IntrInst) {
336         if (IntrInst->isLifetimeStartOrEnd())
337           break;
338         SideEffectingBlocks.insert(&BB);
339         return;
340       }
341       // Treat all the other cases conservatively if it has side effects.
342       if (II.mayHaveSideEffects()) {
343         SideEffectingBlocks.insert(&BB);
344         return;
345       }
346     }
347     }
348   }
349 }
350 
351 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
352     BasicBlock &BB, AllocaInst *Addr) const {
353   if (SideEffectingBlocks.count(&BB))
354     return true;
355   auto It = BaseMemAddrs.find(&BB);
356   if (It != BaseMemAddrs.end())
357     return It->second.count(Addr);
358   return false;
359 }
360 
361 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
362     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
363   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
364   Function *Func = (*Blocks.begin())->getParent();
365   for (BasicBlock &BB : *Func) {
366     if (Blocks.count(&BB))
367       continue;
368     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
369       return false;
370   }
371   return true;
372 }
373 
374 BasicBlock *
375 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
376   BasicBlock *SinglePredFromOutlineRegion = nullptr;
377   assert(!Blocks.count(CommonExitBlock) &&
378          "Expect a block outside the region!");
379   for (auto *Pred : predecessors(CommonExitBlock)) {
380     if (!Blocks.count(Pred))
381       continue;
382     if (!SinglePredFromOutlineRegion) {
383       SinglePredFromOutlineRegion = Pred;
384     } else if (SinglePredFromOutlineRegion != Pred) {
385       SinglePredFromOutlineRegion = nullptr;
386       break;
387     }
388   }
389 
390   if (SinglePredFromOutlineRegion)
391     return SinglePredFromOutlineRegion;
392 
393 #ifndef NDEBUG
394   auto getFirstPHI = [](BasicBlock *BB) {
395     BasicBlock::iterator I = BB->begin();
396     PHINode *FirstPhi = nullptr;
397     while (I != BB->end()) {
398       PHINode *Phi = dyn_cast<PHINode>(I);
399       if (!Phi)
400         break;
401       if (!FirstPhi) {
402         FirstPhi = Phi;
403         break;
404       }
405     }
406     return FirstPhi;
407   };
408   // If there are any phi nodes, the single pred either exists or has already
409   // be created before code extraction.
410   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
411 #endif
412 
413   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
414       CommonExitBlock->getFirstNonPHI()->getIterator());
415 
416   for (BasicBlock *Pred :
417        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
418     if (Blocks.count(Pred))
419       continue;
420     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
421   }
422   // Now add the old exit block to the outline region.
423   Blocks.insert(CommonExitBlock);
424   OldTargets.push_back(NewExitBlock);
425   return CommonExitBlock;
426 }
427 
428 // Find the pair of life time markers for address 'Addr' that are either
429 // defined inside the outline region or can legally be shrinkwrapped into the
430 // outline region. If there are not other untracked uses of the address, return
431 // the pair of markers if found; otherwise return a pair of nullptr.
432 CodeExtractor::LifetimeMarkerInfo
433 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
434                                   Instruction *Addr,
435                                   BasicBlock *ExitBlock) const {
436   LifetimeMarkerInfo Info;
437 
438   for (User *U : Addr->users()) {
439     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
440     if (IntrInst) {
441       // We don't model addresses with multiple start/end markers, but the
442       // markers do not need to be in the region.
443       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
444         if (Info.LifeStart)
445           return {};
446         Info.LifeStart = IntrInst;
447         continue;
448       }
449       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
450         if (Info.LifeEnd)
451           return {};
452         Info.LifeEnd = IntrInst;
453         continue;
454       }
455       // At this point, permit debug uses outside of the region.
456       // This is fixed in a later call to fixupDebugInfoPostExtraction().
457       if (isa<DbgInfoIntrinsic>(IntrInst))
458         continue;
459     }
460     // Find untracked uses of the address, bail.
461     if (!definedInRegion(Blocks, U))
462       return {};
463   }
464 
465   if (!Info.LifeStart || !Info.LifeEnd)
466     return {};
467 
468   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
469   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
470   // Do legality check.
471   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
472       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
473     return {};
474 
475   // Check to see if we have a place to do hoisting, if not, bail.
476   if (Info.HoistLifeEnd && !ExitBlock)
477     return {};
478 
479   return Info;
480 }
481 
482 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
483                                 ValueSet &SinkCands, ValueSet &HoistCands,
484                                 BasicBlock *&ExitBlock) const {
485   Function *Func = (*Blocks.begin())->getParent();
486   ExitBlock = getCommonExitBlock(Blocks);
487 
488   auto moveOrIgnoreLifetimeMarkers =
489       [&](const LifetimeMarkerInfo &LMI) -> bool {
490     if (!LMI.LifeStart)
491       return false;
492     if (LMI.SinkLifeStart) {
493       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
494                         << "\n");
495       SinkCands.insert(LMI.LifeStart);
496     }
497     if (LMI.HoistLifeEnd) {
498       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
499       HoistCands.insert(LMI.LifeEnd);
500     }
501     return true;
502   };
503 
504   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
505   // this is much faster than walking all the instructions.
506   for (AllocaInst *AI : CEAC.getAllocas()) {
507     BasicBlock *BB = AI->getParent();
508     if (Blocks.count(BB))
509       continue;
510 
511     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
512     // check whether it is actually still in the original function.
513     Function *AIFunc = BB->getParent();
514     if (AIFunc != Func)
515       continue;
516 
517     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
518     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
519     if (Moved) {
520       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
521       SinkCands.insert(AI);
522       continue;
523     }
524 
525     // Find bitcasts in the outlined region that have lifetime marker users
526     // outside that region. Replace the lifetime marker use with an
527     // outside region bitcast to avoid unnecessary alloca/reload instructions
528     // and extra lifetime markers.
529     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
530     for (User *U : AI->users()) {
531       if (!definedInRegion(Blocks, U))
532         continue;
533 
534       if (U->stripInBoundsConstantOffsets() != AI)
535         continue;
536 
537       Instruction *Bitcast = cast<Instruction>(U);
538       for (User *BU : Bitcast->users()) {
539         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
540         if (!IntrInst)
541           continue;
542 
543         if (!IntrInst->isLifetimeStartOrEnd())
544           continue;
545 
546         if (definedInRegion(Blocks, IntrInst))
547           continue;
548 
549         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
550                           << *Bitcast << " in out-of-region lifetime marker "
551                           << *IntrInst << "\n");
552         LifetimeBitcastUsers.push_back(IntrInst);
553       }
554     }
555 
556     for (Instruction *I : LifetimeBitcastUsers) {
557       Module *M = AIFunc->getParent();
558       LLVMContext &Ctx = M->getContext();
559       auto *Int8PtrTy = PointerType::getUnqual(Ctx);
560       CastInst *CastI =
561           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
562       I->replaceUsesOfWith(I->getOperand(1), CastI);
563     }
564 
565     // Follow any bitcasts.
566     SmallVector<Instruction *, 2> Bitcasts;
567     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
568     for (User *U : AI->users()) {
569       if (U->stripInBoundsConstantOffsets() == AI) {
570         Instruction *Bitcast = cast<Instruction>(U);
571         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
572         if (LMI.LifeStart) {
573           Bitcasts.push_back(Bitcast);
574           BitcastLifetimeInfo.push_back(LMI);
575           continue;
576         }
577       }
578 
579       // Found unknown use of AI.
580       if (!definedInRegion(Blocks, U)) {
581         Bitcasts.clear();
582         break;
583       }
584     }
585 
586     // Either no bitcasts reference the alloca or there are unknown uses.
587     if (Bitcasts.empty())
588       continue;
589 
590     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
591     SinkCands.insert(AI);
592     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
593       Instruction *BitcastAddr = Bitcasts[I];
594       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
595       assert(LMI.LifeStart &&
596              "Unsafe to sink bitcast without lifetime markers");
597       moveOrIgnoreLifetimeMarkers(LMI);
598       if (!definedInRegion(Blocks, BitcastAddr)) {
599         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
600                           << "\n");
601         SinkCands.insert(BitcastAddr);
602       }
603     }
604   }
605 }
606 
607 bool CodeExtractor::isEligible() const {
608   if (Blocks.empty())
609     return false;
610   BasicBlock *Header = *Blocks.begin();
611   Function *F = Header->getParent();
612 
613   // For functions with varargs, check that varargs handling is only done in the
614   // outlined function, i.e vastart and vaend are only used in outlined blocks.
615   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
616     auto containsVarArgIntrinsic = [](const Instruction &I) {
617       if (const CallInst *CI = dyn_cast<CallInst>(&I))
618         if (const Function *Callee = CI->getCalledFunction())
619           return Callee->getIntrinsicID() == Intrinsic::vastart ||
620                  Callee->getIntrinsicID() == Intrinsic::vaend;
621       return false;
622     };
623 
624     for (auto &BB : *F) {
625       if (Blocks.count(&BB))
626         continue;
627       if (llvm::any_of(BB, containsVarArgIntrinsic))
628         return false;
629     }
630   }
631   return true;
632 }
633 
634 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
635                                       const ValueSet &SinkCands,
636                                       bool CollectGlobalInputs) const {
637   for (BasicBlock *BB : Blocks) {
638     // If a used value is defined outside the region, it's an input.  If an
639     // instruction is used outside the region, it's an output.
640     for (Instruction &II : *BB) {
641       for (auto &OI : II.operands()) {
642         Value *V = OI;
643         if (!SinkCands.count(V) &&
644             (definedInCaller(Blocks, V) ||
645              (CollectGlobalInputs && llvm::isa<llvm::GlobalVariable>(V))))
646           Inputs.insert(V);
647       }
648 
649       for (User *U : II.users())
650         if (!definedInRegion(Blocks, U)) {
651           Outputs.insert(&II);
652           break;
653         }
654     }
655   }
656 }
657 
658 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
659 /// of the region, we need to split the entry block of the region so that the
660 /// PHI node is easier to deal with.
661 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
662   unsigned NumPredsFromRegion = 0;
663   unsigned NumPredsOutsideRegion = 0;
664 
665   if (Header != &Header->getParent()->getEntryBlock()) {
666     PHINode *PN = dyn_cast<PHINode>(Header->begin());
667     if (!PN) return;  // No PHI nodes.
668 
669     // If the header node contains any PHI nodes, check to see if there is more
670     // than one entry from outside the region.  If so, we need to sever the
671     // header block into two.
672     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
673       if (Blocks.count(PN->getIncomingBlock(i)))
674         ++NumPredsFromRegion;
675       else
676         ++NumPredsOutsideRegion;
677 
678     // If there is one (or fewer) predecessor from outside the region, we don't
679     // need to do anything special.
680     if (NumPredsOutsideRegion <= 1) return;
681   }
682 
683   // Otherwise, we need to split the header block into two pieces: one
684   // containing PHI nodes merging values from outside of the region, and a
685   // second that contains all of the code for the block and merges back any
686   // incoming values from inside of the region.
687   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
688 
689   // We only want to code extract the second block now, and it becomes the new
690   // header of the region.
691   BasicBlock *OldPred = Header;
692   Blocks.remove(OldPred);
693   Blocks.insert(NewBB);
694   Header = NewBB;
695 
696   // Okay, now we need to adjust the PHI nodes and any branches from within the
697   // region to go to the new header block instead of the old header block.
698   if (NumPredsFromRegion) {
699     PHINode *PN = cast<PHINode>(OldPred->begin());
700     // Loop over all of the predecessors of OldPred that are in the region,
701     // changing them to branch to NewBB instead.
702     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
703       if (Blocks.count(PN->getIncomingBlock(i))) {
704         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
705         TI->replaceUsesOfWith(OldPred, NewBB);
706       }
707 
708     // Okay, everything within the region is now branching to the right block, we
709     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
710     BasicBlock::iterator AfterPHIs;
711     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
712       PHINode *PN = cast<PHINode>(AfterPHIs);
713       // Create a new PHI node in the new region, which has an incoming value
714       // from OldPred of PN.
715       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
716                                        PN->getName() + ".ce");
717       NewPN->insertBefore(NewBB->begin());
718       PN->replaceAllUsesWith(NewPN);
719       NewPN->addIncoming(PN, OldPred);
720 
721       // Loop over all of the incoming value in PN, moving them to NewPN if they
722       // are from the extracted region.
723       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
724         if (Blocks.count(PN->getIncomingBlock(i))) {
725           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
726           PN->removeIncomingValue(i);
727           --i;
728         }
729       }
730     }
731   }
732 }
733 
734 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
735 /// outlined region, we split these PHIs on two: one with inputs from region
736 /// and other with remaining incoming blocks; then first PHIs are placed in
737 /// outlined region.
738 void CodeExtractor::severSplitPHINodesOfExits(
739     const SetVector<BasicBlock *> &Exits) {
740   for (BasicBlock *ExitBB : Exits) {
741     BasicBlock *NewBB = nullptr;
742 
743     for (PHINode &PN : ExitBB->phis()) {
744       // Find all incoming values from the outlining region.
745       SmallVector<unsigned, 2> IncomingVals;
746       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
747         if (Blocks.count(PN.getIncomingBlock(i)))
748           IncomingVals.push_back(i);
749 
750       // Do not process PHI if there is one (or fewer) predecessor from region.
751       // If PHI has exactly one predecessor from region, only this one incoming
752       // will be replaced on codeRepl block, so it should be safe to skip PHI.
753       if (IncomingVals.size() <= 1)
754         continue;
755 
756       // Create block for new PHIs and add it to the list of outlined if it
757       // wasn't done before.
758       if (!NewBB) {
759         NewBB = BasicBlock::Create(ExitBB->getContext(),
760                                    ExitBB->getName() + ".split",
761                                    ExitBB->getParent(), ExitBB);
762         NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
763         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
764         for (BasicBlock *PredBB : Preds)
765           if (Blocks.count(PredBB))
766             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
767         BranchInst::Create(ExitBB, NewBB);
768         Blocks.insert(NewBB);
769       }
770 
771       // Split this PHI.
772       PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
773                                        PN.getName() + ".ce");
774       NewPN->insertBefore(NewBB->getFirstNonPHIIt());
775       for (unsigned i : IncomingVals)
776         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
777       for (unsigned i : reverse(IncomingVals))
778         PN.removeIncomingValue(i, false);
779       PN.addIncoming(NewPN, NewBB);
780     }
781   }
782 }
783 
784 void CodeExtractor::splitReturnBlocks() {
785   for (BasicBlock *Block : Blocks)
786     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
787       BasicBlock *New =
788           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
789       if (DT) {
790         // Old dominates New. New node dominates all other nodes dominated
791         // by Old.
792         DomTreeNode *OldNode = DT->getNode(Block);
793         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
794                                                OldNode->end());
795 
796         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
797 
798         for (DomTreeNode *I : Children)
799           DT->changeImmediateDominator(I, NewNode);
800       }
801     }
802 }
803 
804 /// constructFunction - make a function based on inputs and outputs, as follows:
805 /// f(in0, ..., inN, out0, ..., outN)
806 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
807                                            const ValueSet &outputs,
808                                            BasicBlock *header,
809                                            BasicBlock *newRootNode,
810                                            BasicBlock *newHeader,
811                                            Function *oldFunction,
812                                            Module *M) {
813   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
814   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
815 
816   // This function returns unsigned, outputs will go back by reference.
817   switch (NumExitBlocks) {
818   case 0:
819   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
820   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
821   default: RetTy = Type::getInt16Ty(header->getContext()); break;
822   }
823 
824   std::vector<Type *> ParamTy;
825   std::vector<Type *> AggParamTy;
826   std::vector<std::tuple<unsigned, Value *>> NumberedInputs;
827   std::vector<std::tuple<unsigned, Value *>> NumberedOutputs;
828   ValueSet StructValues;
829   const DataLayout &DL = M->getDataLayout();
830 
831   // Add the types of the input values to the function's argument list
832   unsigned ArgNum = 0;
833   for (Value *value : inputs) {
834     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
835     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
836       AggParamTy.push_back(value->getType());
837       StructValues.insert(value);
838     } else {
839       ParamTy.push_back(value->getType());
840       NumberedInputs.emplace_back(ArgNum++, value);
841     }
842   }
843 
844   // Add the types of the output values to the function's argument list.
845   for (Value *output : outputs) {
846     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
847     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
848       AggParamTy.push_back(output->getType());
849       StructValues.insert(output);
850     } else {
851       ParamTy.push_back(
852           PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
853       NumberedOutputs.emplace_back(ArgNum++, output);
854     }
855   }
856 
857   assert(
858       (ParamTy.size() + AggParamTy.size()) ==
859           (inputs.size() + outputs.size()) &&
860       "Number of scalar and aggregate params does not match inputs, outputs");
861   assert((StructValues.empty() || AggregateArgs) &&
862          "Expeced StructValues only with AggregateArgs set");
863 
864   // Concatenate scalar and aggregate params in ParamTy.
865   size_t NumScalarParams = ParamTy.size();
866   StructType *StructTy = nullptr;
867   if (AggregateArgs && !AggParamTy.empty()) {
868     StructTy = StructType::get(M->getContext(), AggParamTy);
869     ParamTy.push_back(PointerType::get(
870         StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
871   }
872 
873   LLVM_DEBUG({
874     dbgs() << "Function type: " << *RetTy << " f(";
875     for (Type *i : ParamTy)
876       dbgs() << *i << ", ";
877     dbgs() << ")\n";
878   });
879 
880   FunctionType *funcType = FunctionType::get(
881       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
882 
883   std::string SuffixToUse =
884       Suffix.empty()
885           ? (header->getName().empty() ? "extracted" : header->getName().str())
886           : Suffix;
887   // Create the new function
888   Function *newFunction = Function::Create(
889       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
890       oldFunction->getName() + "." + SuffixToUse, M);
891   newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
892 
893   // Inherit all of the target dependent attributes and white-listed
894   // target independent attributes.
895   //  (e.g. If the extracted region contains a call to an x86.sse
896   //  instruction we need to make sure that the extracted region has the
897   //  "target-features" attribute allowing it to be lowered.
898   // FIXME: This should be changed to check to see if a specific
899   //           attribute can not be inherited.
900   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
901     if (Attr.isStringAttribute()) {
902       if (Attr.getKindAsString() == "thunk")
903         continue;
904     } else
905       switch (Attr.getKindAsEnum()) {
906       // Those attributes cannot be propagated safely. Explicitly list them
907       // here so we get a warning if new attributes are added.
908       case Attribute::AllocSize:
909       case Attribute::Builtin:
910       case Attribute::Convergent:
911       case Attribute::JumpTable:
912       case Attribute::Naked:
913       case Attribute::NoBuiltin:
914       case Attribute::NoMerge:
915       case Attribute::NoReturn:
916       case Attribute::NoSync:
917       case Attribute::ReturnsTwice:
918       case Attribute::Speculatable:
919       case Attribute::StackAlignment:
920       case Attribute::WillReturn:
921       case Attribute::AllocKind:
922       case Attribute::PresplitCoroutine:
923       case Attribute::Memory:
924       case Attribute::NoFPClass:
925       case Attribute::CoroDestroyOnlyWhenComplete:
926       case Attribute::CoroElideSafe:
927       case Attribute::NoDivergenceSource:
928         continue;
929       // Those attributes should be safe to propagate to the extracted function.
930       case Attribute::AlwaysInline:
931       case Attribute::Cold:
932       case Attribute::DisableSanitizerInstrumentation:
933       case Attribute::FnRetThunkExtern:
934       case Attribute::Hot:
935       case Attribute::HybridPatchable:
936       case Attribute::NoRecurse:
937       case Attribute::InlineHint:
938       case Attribute::MinSize:
939       case Attribute::NoCallback:
940       case Attribute::NoDuplicate:
941       case Attribute::NoFree:
942       case Attribute::NoImplicitFloat:
943       case Attribute::NoInline:
944       case Attribute::NonLazyBind:
945       case Attribute::NoRedZone:
946       case Attribute::NoUnwind:
947       case Attribute::NoSanitizeBounds:
948       case Attribute::NoSanitizeCoverage:
949       case Attribute::NullPointerIsValid:
950       case Attribute::OptimizeForDebugging:
951       case Attribute::OptForFuzzing:
952       case Attribute::OptimizeNone:
953       case Attribute::OptimizeForSize:
954       case Attribute::SafeStack:
955       case Attribute::ShadowCallStack:
956       case Attribute::SanitizeAddress:
957       case Attribute::SanitizeMemory:
958       case Attribute::SanitizeNumericalStability:
959       case Attribute::SanitizeThread:
960       case Attribute::SanitizeHWAddress:
961       case Attribute::SanitizeMemTag:
962       case Attribute::SanitizeRealtime:
963       case Attribute::SanitizeRealtimeBlocking:
964       case Attribute::SpeculativeLoadHardening:
965       case Attribute::StackProtect:
966       case Attribute::StackProtectReq:
967       case Attribute::StackProtectStrong:
968       case Attribute::StrictFP:
969       case Attribute::UWTable:
970       case Attribute::VScaleRange:
971       case Attribute::NoCfCheck:
972       case Attribute::MustProgress:
973       case Attribute::NoProfile:
974       case Attribute::SkipProfile:
975         break;
976       // These attributes cannot be applied to functions.
977       case Attribute::Alignment:
978       case Attribute::AllocatedPointer:
979       case Attribute::AllocAlign:
980       case Attribute::ByVal:
981       case Attribute::Dereferenceable:
982       case Attribute::DereferenceableOrNull:
983       case Attribute::ElementType:
984       case Attribute::InAlloca:
985       case Attribute::InReg:
986       case Attribute::Nest:
987       case Attribute::NoAlias:
988       case Attribute::NoCapture:
989       case Attribute::NoUndef:
990       case Attribute::NonNull:
991       case Attribute::Preallocated:
992       case Attribute::ReadNone:
993       case Attribute::ReadOnly:
994       case Attribute::Returned:
995       case Attribute::SExt:
996       case Attribute::StructRet:
997       case Attribute::SwiftError:
998       case Attribute::SwiftSelf:
999       case Attribute::SwiftAsync:
1000       case Attribute::ZExt:
1001       case Attribute::ImmArg:
1002       case Attribute::ByRef:
1003       case Attribute::WriteOnly:
1004       case Attribute::Writable:
1005       case Attribute::DeadOnUnwind:
1006       case Attribute::Range:
1007       case Attribute::Initializes:
1008       case Attribute::NoExt:
1009       //  These are not really attributes.
1010       case Attribute::None:
1011       case Attribute::EndAttrKinds:
1012       case Attribute::EmptyKey:
1013       case Attribute::TombstoneKey:
1014         llvm_unreachable("Not a function attribute");
1015       }
1016 
1017     newFunction->addFnAttr(Attr);
1018   }
1019 
1020   if (NumExitBlocks == 0) {
1021     // Mark the new function `noreturn` if applicable. Terminators which resume
1022     // exception propagation are treated as returning instructions. This is to
1023     // avoid inserting traps after calls to outlined functions which unwind.
1024     if (none_of(Blocks, [](const BasicBlock *BB) {
1025           const Instruction *Term = BB->getTerminator();
1026           return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1027         }))
1028       newFunction->setDoesNotReturn();
1029   }
1030 
1031   newFunction->insert(newFunction->end(), newRootNode);
1032 
1033   // Create scalar and aggregate iterators to name all of the arguments we
1034   // inserted.
1035   Function::arg_iterator ScalarAI = newFunction->arg_begin();
1036   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1037 
1038   // Rewrite all users of the inputs in the extracted region to use the
1039   // arguments (or appropriate addressing into struct) instead.
1040   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1041     Value *RewriteVal;
1042     if (AggregateArgs && StructValues.contains(inputs[i])) {
1043       Value *Idx[2];
1044       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1045       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1046       BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator();
1047       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1048           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1049       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1050                                 "loadgep_" + inputs[i]->getName(), TI);
1051       ++aggIdx;
1052     } else
1053       RewriteVal = &*ScalarAI++;
1054 
1055     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1056     for (User *use : Users)
1057       if (Instruction *inst = dyn_cast<Instruction>(use))
1058         if (Blocks.count(inst->getParent()))
1059           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1060   }
1061 
1062   // Set names for input and output arguments.
1063   for (auto [i, argVal] : NumberedInputs)
1064     newFunction->getArg(i)->setName(argVal->getName());
1065   for (auto [i, argVal] : NumberedOutputs)
1066     newFunction->getArg(i)->setName(argVal->getName() + ".out");
1067 
1068   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1069   // within the new function. This must be done before we lose track of which
1070   // blocks were originally in the code region.
1071   std::vector<User *> Users(header->user_begin(), header->user_end());
1072   for (auto &U : Users)
1073     // The BasicBlock which contains the branch is not in the region
1074     // modify the branch target to a new block
1075     if (Instruction *I = dyn_cast<Instruction>(U))
1076       if (I->isTerminator() && I->getFunction() == oldFunction &&
1077           !Blocks.count(I->getParent()))
1078         I->replaceUsesOfWith(header, newHeader);
1079 
1080   return newFunction;
1081 }
1082 
1083 /// Erase lifetime.start markers which reference inputs to the extraction
1084 /// region, and insert the referenced memory into \p LifetimesStart.
1085 ///
1086 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1087 /// of allocas which will be moved from the caller function into the extracted
1088 /// function (\p SunkAllocas).
1089 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1090                                          const SetVector<Value *> &SunkAllocas,
1091                                          SetVector<Value *> &LifetimesStart) {
1092   for (BasicBlock *BB : Blocks) {
1093     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1094       auto *II = dyn_cast<IntrinsicInst>(&I);
1095       if (!II || !II->isLifetimeStartOrEnd())
1096         continue;
1097 
1098       // Get the memory operand of the lifetime marker. If the underlying
1099       // object is a sunk alloca, or is otherwise defined in the extraction
1100       // region, the lifetime marker must not be erased.
1101       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1102       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1103         continue;
1104 
1105       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1106         LifetimesStart.insert(Mem);
1107       II->eraseFromParent();
1108     }
1109   }
1110 }
1111 
1112 /// Insert lifetime start/end markers surrounding the call to the new function
1113 /// for objects defined in the caller.
1114 static void insertLifetimeMarkersSurroundingCall(
1115     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1116     CallInst *TheCall) {
1117   LLVMContext &Ctx = M->getContext();
1118   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1119   Instruction *Term = TheCall->getParent()->getTerminator();
1120 
1121   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1122   // markers before the call if \p InsertBefore, and after the call otherwise.
1123   auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1124                            bool InsertBefore) {
1125     for (Value *Mem : Objects) {
1126       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1127                                             TheCall->getFunction()) &&
1128              "Input memory not defined in original function");
1129 
1130       Function *Func =
1131           Intrinsic::getOrInsertDeclaration(M, MarkerFunc, Mem->getType());
1132       auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1133       if (InsertBefore)
1134         Marker->insertBefore(TheCall);
1135       else
1136         Marker->insertBefore(Term);
1137     }
1138   };
1139 
1140   if (!LifetimesStart.empty()) {
1141     insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1142                   /*InsertBefore=*/true);
1143   }
1144 
1145   if (!LifetimesEnd.empty()) {
1146     insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1147                   /*InsertBefore=*/false);
1148   }
1149 }
1150 
1151 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1152 /// the call instruction, splitting any PHI nodes in the header block as
1153 /// necessary.
1154 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1155                                                     BasicBlock *codeReplacer,
1156                                                     ValueSet &inputs,
1157                                                     ValueSet &outputs) {
1158   // Emit a call to the new function, passing in: *pointer to struct (if
1159   // aggregating parameters), or plan inputs and allocated memory for outputs
1160   std::vector<Value *> params, ReloadOutputs, Reloads;
1161   ValueSet StructValues;
1162 
1163   Module *M = newFunction->getParent();
1164   LLVMContext &Context = M->getContext();
1165   const DataLayout &DL = M->getDataLayout();
1166   CallInst *call = nullptr;
1167 
1168   // Add inputs as params, or to be filled into the struct
1169   unsigned ScalarInputArgNo = 0;
1170   SmallVector<unsigned, 1> SwiftErrorArgs;
1171   for (Value *input : inputs) {
1172     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1173       StructValues.insert(input);
1174     else {
1175       params.push_back(input);
1176       if (input->isSwiftError())
1177         SwiftErrorArgs.push_back(ScalarInputArgNo);
1178     }
1179     ++ScalarInputArgNo;
1180   }
1181 
1182   // Create allocas for the outputs
1183   unsigned ScalarOutputArgNo = 0;
1184   for (Value *output : outputs) {
1185     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1186       StructValues.insert(output);
1187     } else {
1188       AllocaInst *alloca =
1189         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1190                        nullptr, output->getName() + ".loc",
1191                        codeReplacer->getParent()->front().begin());
1192       ReloadOutputs.push_back(alloca);
1193       params.push_back(alloca);
1194       ++ScalarOutputArgNo;
1195     }
1196   }
1197 
1198   StructType *StructArgTy = nullptr;
1199   AllocaInst *Struct = nullptr;
1200   unsigned NumAggregatedInputs = 0;
1201   if (AggregateArgs && !StructValues.empty()) {
1202     std::vector<Type *> ArgTypes;
1203     for (Value *V : StructValues)
1204       ArgTypes.push_back(V->getType());
1205 
1206     // Allocate a struct at the beginning of this function
1207     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1208     Struct = new AllocaInst(
1209         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1210         AllocationBlock ? AllocationBlock->getFirstInsertionPt()
1211                         : codeReplacer->getParent()->front().begin());
1212 
1213     if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1214       auto *StructSpaceCast = new AddrSpaceCastInst(
1215           Struct, PointerType ::get(Context, 0), "structArg.ascast");
1216       StructSpaceCast->insertAfter(Struct);
1217       params.push_back(StructSpaceCast);
1218     } else {
1219       params.push_back(Struct);
1220     }
1221     // Store aggregated inputs in the struct.
1222     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1223       if (inputs.contains(StructValues[i])) {
1224         Value *Idx[2];
1225         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1226         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1227         GetElementPtrInst *GEP = GetElementPtrInst::Create(
1228             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1229         GEP->insertInto(codeReplacer, codeReplacer->end());
1230         new StoreInst(StructValues[i], GEP, codeReplacer);
1231         NumAggregatedInputs++;
1232       }
1233     }
1234   }
1235 
1236   // Emit the call to the function
1237   call = CallInst::Create(newFunction, params,
1238                           NumExitBlocks > 1 ? "targetBlock" : "");
1239   // Add debug location to the new call, if the original function has debug
1240   // info. In that case, the terminator of the entry block of the extracted
1241   // function contains the first debug location of the extracted function,
1242   // set in extractCodeRegion.
1243   if (codeReplacer->getParent()->getSubprogram()) {
1244     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1245       call->setDebugLoc(DL);
1246   }
1247   call->insertInto(codeReplacer, codeReplacer->end());
1248 
1249   // Set swifterror parameter attributes.
1250   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1251     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1252     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1253   }
1254 
1255   // Reload the outputs passed in by reference, use the struct if output is in
1256   // the aggregate or reload from the scalar argument.
1257   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1258                 aggIdx = NumAggregatedInputs;
1259        i != e; ++i) {
1260     Value *Output = nullptr;
1261     if (AggregateArgs && StructValues.contains(outputs[i])) {
1262       Value *Idx[2];
1263       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1264       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1265       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1266           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1267       GEP->insertInto(codeReplacer, codeReplacer->end());
1268       Output = GEP;
1269       ++aggIdx;
1270     } else {
1271       Output = ReloadOutputs[scalarIdx];
1272       ++scalarIdx;
1273     }
1274     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1275                                   outputs[i]->getName() + ".reload",
1276                                   codeReplacer);
1277     Reloads.push_back(load);
1278     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1279     for (User *U : Users) {
1280       Instruction *inst = cast<Instruction>(U);
1281       if (!Blocks.count(inst->getParent()))
1282         inst->replaceUsesOfWith(outputs[i], load);
1283     }
1284   }
1285 
1286   // Now we can emit a switch statement using the call as a value.
1287   SwitchInst *TheSwitch =
1288       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1289                          codeReplacer, 0, codeReplacer);
1290 
1291   // Since there may be multiple exits from the original region, make the new
1292   // function return an unsigned, switch on that number.  This loop iterates
1293   // over all of the blocks in the extracted region, updating any terminator
1294   // instructions in the to-be-extracted region that branch to blocks that are
1295   // not in the region to be extracted.
1296   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1297 
1298   // Iterate over the previously collected targets, and create new blocks inside
1299   // the function to branch to.
1300   unsigned switchVal = 0;
1301   for (BasicBlock *OldTarget : OldTargets) {
1302     if (Blocks.count(OldTarget))
1303       continue;
1304     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1305     if (NewTarget)
1306       continue;
1307 
1308     // If we don't already have an exit stub for this non-extracted
1309     // destination, create one now!
1310     NewTarget = BasicBlock::Create(Context,
1311                                     OldTarget->getName() + ".exitStub",
1312                                     newFunction);
1313     unsigned SuccNum = switchVal++;
1314 
1315     Value *brVal = nullptr;
1316     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1317     switch (NumExitBlocks) {
1318     case 0:
1319     case 1: break;  // No value needed.
1320     case 2:         // Conditional branch, return a bool
1321       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1322       break;
1323     default:
1324       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1325       break;
1326     }
1327 
1328     ReturnInst::Create(Context, brVal, NewTarget);
1329 
1330     // Update the switch instruction.
1331     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1332                                         SuccNum),
1333                         OldTarget);
1334   }
1335 
1336   for (BasicBlock *Block : Blocks) {
1337     Instruction *TI = Block->getTerminator();
1338     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1339       if (Blocks.count(TI->getSuccessor(i)))
1340         continue;
1341       BasicBlock *OldTarget = TI->getSuccessor(i);
1342       // add a new basic block which returns the appropriate value
1343       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1344       assert(NewTarget && "Unknown target block!");
1345 
1346       // rewrite the original branch instruction with this new target
1347       TI->setSuccessor(i, NewTarget);
1348    }
1349   }
1350 
1351   // Store the arguments right after the definition of output value.
1352   // This should be proceeded after creating exit stubs to be ensure that invoke
1353   // result restore will be placed in the outlined function.
1354   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1355   std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1356   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1357   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1358 
1359   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1360        ++i) {
1361     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1362     if (!OutI)
1363       continue;
1364 
1365     // Find proper insertion point.
1366     BasicBlock::iterator InsertPt;
1367     // In case OutI is an invoke, we insert the store at the beginning in the
1368     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1369     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1370       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1371     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1372       InsertPt = Phi->getParent()->getFirstInsertionPt();
1373     else
1374       InsertPt = std::next(OutI->getIterator());
1375 
1376     assert((InsertPt->getFunction() == newFunction ||
1377             Blocks.count(InsertPt->getParent())) &&
1378            "InsertPt should be in new function");
1379     if (AggregateArgs && StructValues.contains(outputs[i])) {
1380       assert(AggOutputArgBegin != newFunction->arg_end() &&
1381              "Number of aggregate output arguments should match "
1382              "the number of defined values");
1383       Value *Idx[2];
1384       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1385       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1386       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1387           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1388           InsertPt);
1389       new StoreInst(outputs[i], GEP, InsertPt);
1390       ++aggIdx;
1391       // Since there should be only one struct argument aggregating
1392       // all the output values, we shouldn't increment AggOutputArgBegin, which
1393       // always points to the struct argument, in this case.
1394     } else {
1395       assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1396              "Number of scalar output arguments should match "
1397              "the number of defined values");
1398       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt);
1399       ++ScalarOutputArgBegin;
1400     }
1401   }
1402 
1403   // Now that we've done the deed, simplify the switch instruction.
1404   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1405   switch (NumExitBlocks) {
1406   case 0:
1407     // There are no successors (the block containing the switch itself), which
1408     // means that previously this was the last part of the function, and hence
1409     // this should be rewritten as a `ret` or `unreachable`.
1410     if (newFunction->doesNotReturn()) {
1411       // If fn is no return, end with an unreachable terminator.
1412       (void)new UnreachableInst(Context, TheSwitch->getIterator());
1413     } else if (OldFnRetTy->isVoidTy()) {
1414       // We have no return value.
1415       ReturnInst::Create(Context, nullptr,
1416                          TheSwitch->getIterator()); // Return void
1417     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1418       // return what we have
1419       ReturnInst::Create(Context, TheSwitch->getCondition(),
1420                          TheSwitch->getIterator());
1421     } else {
1422       // Otherwise we must have code extracted an unwind or something, just
1423       // return whatever we want.
1424       ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1425                          TheSwitch->getIterator());
1426     }
1427 
1428     TheSwitch->eraseFromParent();
1429     break;
1430   case 1:
1431     // Only a single destination, change the switch into an unconditional
1432     // branch.
1433     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1434     TheSwitch->eraseFromParent();
1435     break;
1436   case 2:
1437     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1438                        call, TheSwitch->getIterator());
1439     TheSwitch->eraseFromParent();
1440     break;
1441   default:
1442     // Otherwise, make the default destination of the switch instruction be one
1443     // of the other successors.
1444     TheSwitch->setCondition(call);
1445     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1446     // Remove redundant case
1447     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1448     break;
1449   }
1450 
1451   // Insert lifetime markers around the reloads of any output values. The
1452   // allocas output values are stored in are only in-use in the codeRepl block.
1453   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1454 
1455   return call;
1456 }
1457 
1458 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1459   auto newFuncIt = newFunction->front().getIterator();
1460   for (BasicBlock *Block : Blocks) {
1461     // Delete the basic block from the old function, and the list of blocks
1462     Block->removeFromParent();
1463 
1464     // Insert this basic block into the new function
1465     // Insert the original blocks after the entry block created
1466     // for the new function. The entry block may be followed
1467     // by a set of exit blocks at this point, but these exit
1468     // blocks better be placed at the end of the new function.
1469     newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1470   }
1471 }
1472 
1473 void CodeExtractor::calculateNewCallTerminatorWeights(
1474     BasicBlock *CodeReplacer,
1475     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1476     BranchProbabilityInfo *BPI) {
1477   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1478   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1479 
1480   // Update the branch weights for the exit block.
1481   Instruction *TI = CodeReplacer->getTerminator();
1482   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1483 
1484   // Block Frequency distribution with dummy node.
1485   Distribution BranchDist;
1486 
1487   SmallVector<BranchProbability, 4> EdgeProbabilities(
1488       TI->getNumSuccessors(), BranchProbability::getUnknown());
1489 
1490   // Add each of the frequencies of the successors.
1491   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1492     BlockNode ExitNode(i);
1493     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1494     if (ExitFreq != 0)
1495       BranchDist.addExit(ExitNode, ExitFreq);
1496     else
1497       EdgeProbabilities[i] = BranchProbability::getZero();
1498   }
1499 
1500   // Check for no total weight.
1501   if (BranchDist.Total == 0) {
1502     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1503     return;
1504   }
1505 
1506   // Normalize the distribution so that they can fit in unsigned.
1507   BranchDist.normalize();
1508 
1509   // Create normalized branch weights and set the metadata.
1510   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1511     const auto &Weight = BranchDist.Weights[I];
1512 
1513     // Get the weight and update the current BFI.
1514     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1515     BranchProbability BP(Weight.Amount, BranchDist.Total);
1516     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1517   }
1518   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1519   TI->setMetadata(
1520       LLVMContext::MD_prof,
1521       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1522 }
1523 
1524 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1525 /// \p F.
1526 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1527   for (Instruction &I : instructions(F)) {
1528     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1529     SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1530     findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1531     for (DbgVariableIntrinsic *DVI : DbgUsers)
1532       if (DVI->getFunction() != &F)
1533         DVI->eraseFromParent();
1534     for (DbgVariableRecord *DVR : DbgVariableRecords)
1535       if (DVR->getFunction() != &F)
1536         DVR->eraseFromParent();
1537   }
1538 }
1539 
1540 /// Fix up the debug info in the old and new functions by pointing line
1541 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1542 /// intrinsics which point to values outside of the new function.
1543 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1544                                          CallInst &TheCall) {
1545   DISubprogram *OldSP = OldFunc.getSubprogram();
1546   LLVMContext &Ctx = OldFunc.getContext();
1547 
1548   if (!OldSP) {
1549     // Erase any debug info the new function contains.
1550     stripDebugInfo(NewFunc);
1551     // Make sure the old function doesn't contain any non-local metadata refs.
1552     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1553     return;
1554   }
1555 
1556   // Create a subprogram for the new function. Leave out a description of the
1557   // function arguments, as the parameters don't correspond to anything at the
1558   // source level.
1559   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1560   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1561                 OldSP->getUnit());
1562   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray({}));
1563   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1564                                     DISubprogram::SPFlagOptimized |
1565                                     DISubprogram::SPFlagLocalToUnit;
1566   auto NewSP = DIB.createFunction(
1567       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1568       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1569   NewFunc.setSubprogram(NewSP);
1570 
1571   auto IsInvalidLocation = [&NewFunc](Value *Location) {
1572     // Location is invalid if it isn't a constant or an instruction, or is an
1573     // instruction but isn't in the new function.
1574     if (!Location ||
1575         (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1576       return true;
1577     Instruction *LocationInst = dyn_cast<Instruction>(Location);
1578     return LocationInst && LocationInst->getFunction() != &NewFunc;
1579   };
1580 
1581   // Debug intrinsics in the new function need to be updated in one of two
1582   // ways:
1583   //  1) They need to be deleted, because they describe a value in the old
1584   //     function.
1585   //  2) They need to point to fresh metadata, e.g. because they currently
1586   //     point to a variable in the wrong scope.
1587   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1588   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1589   SmallVector<DbgVariableRecord *, 4> DVRsToDelete;
1590   DenseMap<const MDNode *, MDNode *> Cache;
1591 
1592   auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1593     DINode *&NewVar = RemappedMetadata[OldVar];
1594     if (!NewVar) {
1595       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1596           *OldVar->getScope(), *NewSP, Ctx, Cache);
1597       NewVar = DIB.createAutoVariable(
1598           NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1599           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1600           OldVar->getAlignInBits());
1601     }
1602     return cast<DILocalVariable>(NewVar);
1603   };
1604 
1605   auto UpdateDbgLabel = [&](auto *LabelRecord) {
1606     // Point the label record to a fresh label within the new function if
1607     // the record was not inlined from some other function.
1608     if (LabelRecord->getDebugLoc().getInlinedAt())
1609       return;
1610     DILabel *OldLabel = LabelRecord->getLabel();
1611     DINode *&NewLabel = RemappedMetadata[OldLabel];
1612     if (!NewLabel) {
1613       DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1614           *OldLabel->getScope(), *NewSP, Ctx, Cache);
1615       NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1616                               OldLabel->getFile(), OldLabel->getLine());
1617     }
1618     LabelRecord->setLabel(cast<DILabel>(NewLabel));
1619   };
1620 
1621   auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1622     for (DbgRecord &DR : I.getDbgRecordRange()) {
1623       if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1624         UpdateDbgLabel(DLR);
1625         continue;
1626       }
1627 
1628       DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1629       // Apply the two updates that dbg.values get: invalid operands, and
1630       // variable metadata fixup.
1631       if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1632         DVRsToDelete.push_back(&DVR);
1633         continue;
1634       }
1635       if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1636         DVRsToDelete.push_back(&DVR);
1637         continue;
1638       }
1639       if (!DVR.getDebugLoc().getInlinedAt())
1640         DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1641     }
1642   };
1643 
1644   for (Instruction &I : instructions(NewFunc)) {
1645     UpdateDbgRecordsOnInst(I);
1646 
1647     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1648     if (!DII)
1649       continue;
1650 
1651     // Point the intrinsic to a fresh label within the new function if the
1652     // intrinsic was not inlined from some other function.
1653     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1654       UpdateDbgLabel(DLI);
1655       continue;
1656     }
1657 
1658     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1659     // If any of the used locations are invalid, delete the intrinsic.
1660     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1661       DebugIntrinsicsToDelete.push_back(DVI);
1662       continue;
1663     }
1664     // DbgAssign intrinsics have an extra Value argument:
1665     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1666         DAI && IsInvalidLocation(DAI->getAddress())) {
1667       DebugIntrinsicsToDelete.push_back(DVI);
1668       continue;
1669     }
1670     // If the variable was in the scope of the old function, i.e. it was not
1671     // inlined, point the intrinsic to a fresh variable within the new function.
1672     if (!DVI->getDebugLoc().getInlinedAt())
1673       DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1674   }
1675 
1676   for (auto *DII : DebugIntrinsicsToDelete)
1677     DII->eraseFromParent();
1678   for (auto *DVR : DVRsToDelete)
1679     DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1680   DIB.finalizeSubprogram(NewSP);
1681 
1682   // Fix up the scope information attached to the line locations and the
1683   // debug assignment metadata in the new function.
1684   DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap;
1685   for (Instruction &I : instructions(NewFunc)) {
1686     if (const DebugLoc &DL = I.getDebugLoc())
1687       I.setDebugLoc(
1688           DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1689     for (DbgRecord &DR : I.getDbgRecordRange())
1690       DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1691                                                           *NewSP, Ctx, Cache));
1692 
1693     // Loop info metadata may contain line locations. Fix them up.
1694     auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1695       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1696         return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1697       return MD;
1698     };
1699     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1700     at::remapAssignID(AssignmentIDMap, I);
1701   }
1702   if (!TheCall.getDebugLoc())
1703     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1704 
1705   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1706 }
1707 
1708 Function *
1709 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1710   ValueSet Inputs, Outputs;
1711   return extractCodeRegion(CEAC, Inputs, Outputs);
1712 }
1713 
1714 Function *
1715 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1716                                  ValueSet &inputs, ValueSet &outputs) {
1717   if (!isEligible())
1718     return nullptr;
1719 
1720   // Assumption: this is a single-entry code region, and the header is the first
1721   // block in the region.
1722   BasicBlock *header = *Blocks.begin();
1723   Function *oldFunction = header->getParent();
1724 
1725   // Calculate the entry frequency of the new function before we change the root
1726   //   block.
1727   BlockFrequency EntryFreq;
1728   if (BFI) {
1729     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1730     for (BasicBlock *Pred : predecessors(header)) {
1731       if (Blocks.count(Pred))
1732         continue;
1733       EntryFreq +=
1734           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1735     }
1736   }
1737 
1738   // Remove @llvm.assume calls that will be moved to the new function from the
1739   // old function's assumption cache.
1740   for (BasicBlock *Block : Blocks) {
1741     for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1742       if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1743         if (AC)
1744           AC->unregisterAssumption(AI);
1745         AI->eraseFromParent();
1746       }
1747     }
1748   }
1749 
1750   // If we have any return instructions in the region, split those blocks so
1751   // that the return is not in the region.
1752   splitReturnBlocks();
1753 
1754   // Calculate the exit blocks for the extracted region and the total exit
1755   // weights for each of those blocks.
1756   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1757   SetVector<BasicBlock *> ExitBlocks;
1758   for (BasicBlock *Block : Blocks) {
1759     for (BasicBlock *Succ : successors(Block)) {
1760       if (!Blocks.count(Succ)) {
1761         // Update the branch weight for this successor.
1762         if (BFI) {
1763           BlockFrequency &BF = ExitWeights[Succ];
1764           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1765         }
1766         ExitBlocks.insert(Succ);
1767       }
1768     }
1769   }
1770   NumExitBlocks = ExitBlocks.size();
1771 
1772   for (BasicBlock *Block : Blocks) {
1773     for (BasicBlock *OldTarget : successors(Block))
1774       if (!Blocks.contains(OldTarget))
1775         OldTargets.push_back(OldTarget);
1776   }
1777 
1778   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1779   severSplitPHINodesOfEntry(header);
1780   severSplitPHINodesOfExits(ExitBlocks);
1781 
1782   // This takes place of the original loop
1783   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1784                                                 "codeRepl", oldFunction,
1785                                                 header);
1786   codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1787 
1788   // The new function needs a root node because other nodes can branch to the
1789   // head of the region, but the entry node of a function cannot have preds.
1790   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1791                                                "newFuncRoot");
1792   newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1793 
1794   auto *BranchI = BranchInst::Create(header);
1795   // If the original function has debug info, we have to add a debug location
1796   // to the new branch instruction from the artificial entry block.
1797   // We use the debug location of the first instruction in the extracted
1798   // blocks, as there is no other equivalent line in the source code.
1799   if (oldFunction->getSubprogram()) {
1800     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1801       return any_of(*BB, [&BranchI](const Instruction &I) {
1802         if (!I.getDebugLoc())
1803           return false;
1804         // Don't use source locations attached to debug-intrinsics: they could
1805         // be from completely unrelated scopes.
1806         if (isa<DbgInfoIntrinsic>(I))
1807           return false;
1808         BranchI->setDebugLoc(I.getDebugLoc());
1809         return true;
1810       });
1811     });
1812   }
1813   BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1814 
1815   ValueSet SinkingCands, HoistingCands;
1816   BasicBlock *CommonExit = nullptr;
1817   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1818   assert(HoistingCands.empty() || CommonExit);
1819 
1820   // Find inputs to, outputs from the code region.
1821   findInputsOutputs(inputs, outputs, SinkingCands);
1822 
1823   // Now sink all instructions which only have non-phi uses inside the region.
1824   // Group the allocas at the start of the block, so that any bitcast uses of
1825   // the allocas are well-defined.
1826   AllocaInst *FirstSunkAlloca = nullptr;
1827   for (auto *II : SinkingCands) {
1828     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1829       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1830       if (!FirstSunkAlloca)
1831         FirstSunkAlloca = AI;
1832     }
1833   }
1834   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1835          "Did not expect a sink candidate without any allocas");
1836   for (auto *II : SinkingCands) {
1837     if (!isa<AllocaInst>(II)) {
1838       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1839     }
1840   }
1841 
1842   if (!HoistingCands.empty()) {
1843     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1844     Instruction *TI = HoistToBlock->getTerminator();
1845     for (auto *II : HoistingCands)
1846       cast<Instruction>(II)->moveBefore(TI);
1847   }
1848 
1849   // Collect objects which are inputs to the extraction region and also
1850   // referenced by lifetime start markers within it. The effects of these
1851   // markers must be replicated in the calling function to prevent the stack
1852   // coloring pass from merging slots which store input objects.
1853   ValueSet LifetimesStart;
1854   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1855 
1856   // Construct new function based on inputs/outputs & add allocas for all defs.
1857   Function *newFunction =
1858       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1859                         oldFunction, oldFunction->getParent());
1860 
1861   // Update the entry count of the function.
1862   if (BFI) {
1863     auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1864     if (Count)
1865       newFunction->setEntryCount(
1866           ProfileCount(*Count, Function::PCT_Real)); // FIXME
1867     BFI->setBlockFreq(codeReplacer, EntryFreq);
1868   }
1869 
1870   CallInst *TheCall =
1871       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1872 
1873   moveCodeToFunction(newFunction);
1874 
1875   // Replicate the effects of any lifetime start/end markers which referenced
1876   // input objects in the extraction region by placing markers around the call.
1877   insertLifetimeMarkersSurroundingCall(
1878       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1879 
1880   // Propagate personality info to the new function if there is one.
1881   if (oldFunction->hasPersonalityFn())
1882     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1883 
1884   // Update the branch weights for the exit block.
1885   if (BFI && NumExitBlocks > 1)
1886     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1887 
1888   // Loop over all of the PHI nodes in the header and exit blocks, and change
1889   // any references to the old incoming edge to be the new incoming edge.
1890   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1891     PHINode *PN = cast<PHINode>(I);
1892     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1893       if (!Blocks.count(PN->getIncomingBlock(i)))
1894         PN->setIncomingBlock(i, newFuncRoot);
1895   }
1896 
1897   for (BasicBlock *ExitBB : ExitBlocks)
1898     for (PHINode &PN : ExitBB->phis()) {
1899       Value *IncomingCodeReplacerVal = nullptr;
1900       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1901         // Ignore incoming values from outside of the extracted region.
1902         if (!Blocks.count(PN.getIncomingBlock(i)))
1903           continue;
1904 
1905         // Ensure that there is only one incoming value from codeReplacer.
1906         if (!IncomingCodeReplacerVal) {
1907           PN.setIncomingBlock(i, codeReplacer);
1908           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1909         } else
1910           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1911                  "PHI has two incompatbile incoming values from codeRepl");
1912       }
1913     }
1914 
1915   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1916 
1917   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1918     newFunction->dump();
1919     report_fatal_error("verification of newFunction failed!");
1920   });
1921   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1922              report_fatal_error("verification of oldFunction failed!"));
1923   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1924                  report_fatal_error("Stale Asumption cache for old Function!"));
1925   return newFunction;
1926 }
1927 
1928 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1929                                           const Function &NewFunc,
1930                                           AssumptionCache *AC) {
1931   for (auto AssumeVH : AC->assumptions()) {
1932     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1933     if (!I)
1934       continue;
1935 
1936     // There shouldn't be any llvm.assume intrinsics in the new function.
1937     if (I->getFunction() != &OldFunc)
1938       return true;
1939 
1940     // There shouldn't be any stale affected values in the assumption cache
1941     // that were previously in the old function, but that have now been moved
1942     // to the new function.
1943     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1944       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1945       if (!AffectedCI)
1946         continue;
1947       if (AffectedCI->getFunction() != &OldFunc)
1948         return true;
1949       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1950       if (AssumedInst->getFunction() != &OldFunc)
1951         return true;
1952     }
1953   }
1954   return false;
1955 }
1956 
1957 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1958   ExcludeArgsFromAggregate.insert(Arg);
1959 }
1960