1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "Support/CommandLine.h" 28 #include "Support/Debug.h" 29 #include "Support/StringExtras.h" 30 #include <algorithm> 31 #include <set> 32 using namespace llvm; 33 34 // Provide a command-line option to aggregate function arguments into a struct 35 // for functions produced by the code extrator. This is useful when converting 36 // extracted functions to pthread-based code, as only one argument (void*) can 37 // be passed in to pthread_create(). 38 static cl::opt<bool> 39 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 40 cl::desc("Aggregate arguments to code-extracted functions")); 41 42 namespace { 43 class CodeExtractor { 44 typedef std::vector<Value*> Values; 45 std::set<BasicBlock*> BlocksToExtract; 46 DominatorSet *DS; 47 bool AggregateArgs; 48 unsigned NumExitBlocks; 49 const Type *RetTy; 50 public: 51 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 52 : DS(ds), AggregateArgs(AggregateArgsOpt), NumExitBlocks(~0U) {} 53 54 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 55 56 bool isEligible(const std::vector<BasicBlock*> &code); 57 58 private: 59 /// definedInRegion - Return true if the specified value is defined in the 60 /// extracted region. 61 bool definedInRegion(Value *V) const { 62 if (Instruction *I = dyn_cast<Instruction>(V)) 63 if (BlocksToExtract.count(I->getParent())) 64 return true; 65 return false; 66 } 67 68 /// definedInCaller - Return true if the specified value is defined in the 69 /// function being code extracted, but not in the region being extracted. 70 /// These values must be passed in as live-ins to the function. 71 bool definedInCaller(Value *V) const { 72 if (isa<Argument>(V)) return true; 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 if (!BlocksToExtract.count(I->getParent())) 75 return true; 76 return false; 77 } 78 79 void severSplitPHINodes(BasicBlock *&Header); 80 void findInputsOutputs(Values &inputs, Values &outputs); 81 82 Function *constructFunction(const Values &inputs, 83 const Values &outputs, 84 BasicBlock *header, 85 BasicBlock *newRootNode, BasicBlock *newHeader, 86 Function *oldFunction, Module *M); 87 88 void moveCodeToFunction(Function *newFunction); 89 90 void emitCallAndSwitchStatement(Function *newFunction, 91 BasicBlock *newHeader, 92 Values &inputs, 93 Values &outputs); 94 95 }; 96 } 97 98 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 99 /// region, we need to split the entry block of the region so that the PHI node 100 /// is easier to deal with. 101 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 102 103 104 105 } 106 107 // findInputsOutputs - Find inputs to, outputs from the code region. 108 // 109 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 110 std::set<BasicBlock*> ExitBlocks; 111 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 112 ce = BlocksToExtract.end(); ci != ce; ++ci) { 113 BasicBlock *BB = *ci; 114 115 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 116 // If a used value is defined outside the region, it's an input. If an 117 // instruction is used outside the region, it's an output. 118 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 119 if (definedInCaller(*O)) 120 inputs.push_back(*O); 121 122 // Consider uses of this instruction (outputs). 123 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 124 UI != E; ++UI) 125 if (!definedInRegion(*UI)) { 126 outputs.push_back(I); 127 break; 128 } 129 } // for: insts 130 131 // Keep track of the exit blocks from the region. 132 TerminatorInst *TI = BB->getTerminator(); 133 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 134 if (!BlocksToExtract.count(TI->getSuccessor(i))) 135 ExitBlocks.insert(TI->getSuccessor(i)); 136 } // for: basic blocks 137 138 NumExitBlocks = ExitBlocks.size(); 139 } 140 141 /// constructFunction - make a function based on inputs and outputs, as follows: 142 /// f(in0, ..., inN, out0, ..., outN) 143 /// 144 Function *CodeExtractor::constructFunction(const Values &inputs, 145 const Values &outputs, 146 BasicBlock *header, 147 BasicBlock *newRootNode, 148 BasicBlock *newHeader, 149 Function *oldFunction, 150 Module *M) { 151 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 152 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 153 154 // This function returns unsigned, outputs will go back by reference. 155 switch (NumExitBlocks) { 156 case 0: 157 case 1: RetTy = Type::VoidTy; break; 158 case 2: RetTy = Type::BoolTy; break; 159 default: RetTy = Type::UShortTy; break; 160 } 161 162 std::vector<const Type*> paramTy; 163 164 // Add the types of the input values to the function's argument list 165 for (Values::const_iterator i = inputs.begin(), 166 e = inputs.end(); i != e; ++i) { 167 const Value *value = *i; 168 DEBUG(std::cerr << "value used in func: " << value << "\n"); 169 paramTy.push_back(value->getType()); 170 } 171 172 // Add the types of the output values to the function's argument list. 173 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 174 I != E; ++I) { 175 DEBUG(std::cerr << "instr used in func: " << *I << "\n"); 176 if (AggregateArgs) 177 paramTy.push_back((*I)->getType()); 178 else 179 paramTy.push_back(PointerType::get((*I)->getType())); 180 } 181 182 DEBUG(std::cerr << "Function type: " << RetTy << " f("); 183 DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(), 184 e = paramTy.end(); i != e; ++i) std::cerr << *i << ", "); 185 DEBUG(std::cerr << ")\n"); 186 187 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 188 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 189 paramTy.clear(); 190 paramTy.push_back(StructPtr); 191 } 192 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 193 194 // Create the new function 195 Function *newFunction = new Function(funcType, 196 GlobalValue::InternalLinkage, 197 oldFunction->getName() + "_code", M); 198 newFunction->getBasicBlockList().push_back(newRootNode); 199 200 // Create an iterator to name all of the arguments we inserted. 201 Function::aiterator AI = newFunction->abegin(); 202 203 // Rewrite all users of the inputs in the extracted region to use the 204 // arguments (or appropriate addressing into struct) instead. 205 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 206 Value *RewriteVal; 207 if (AggregateArgs) { 208 std::vector<Value*> Indices; 209 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 210 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 211 std::string GEPname = "gep_" + inputs[i]->getName(); 212 TerminatorInst *TI = newFunction->begin()->getTerminator(); 213 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); 214 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 215 } else 216 RewriteVal = AI++; 217 218 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 219 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 220 use != useE; ++use) 221 if (Instruction* inst = dyn_cast<Instruction>(*use)) 222 if (BlocksToExtract.count(inst->getParent())) 223 inst->replaceUsesOfWith(inputs[i], RewriteVal); 224 } 225 226 // Set names for input and output arguments. 227 if (!AggregateArgs) { 228 AI = newFunction->abegin(); 229 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 230 AI->setName(inputs[i]->getName()); 231 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 232 AI->setName(outputs[i]->getName()+".out"); 233 } 234 235 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 236 // within the new function. This must be done before we lose track of which 237 // blocks were originally in the code region. 238 std::vector<User*> Users(header->use_begin(), header->use_end()); 239 for (unsigned i = 0, e = Users.size(); i != e; ++i) 240 // The BasicBlock which contains the branch is not in the region 241 // modify the branch target to a new block 242 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 243 if (!BlocksToExtract.count(TI->getParent()) && 244 TI->getParent()->getParent() == oldFunction) 245 TI->replaceUsesOfWith(header, newHeader); 246 247 return newFunction; 248 } 249 250 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 251 /// the call instruction, splitting any PHI nodes in the header block as 252 /// necessary. 253 void CodeExtractor:: 254 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 255 Values &inputs, Values &outputs) { 256 // Emit a call to the new function, passing in: *pointer to struct (if 257 // aggregating parameters), or plan inputs and allocated memory for outputs 258 std::vector<Value*> params, StructValues, ReloadOutputs; 259 260 // Add inputs as params, or to be filled into the struct 261 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 262 if (AggregateArgs) 263 StructValues.push_back(*i); 264 else 265 params.push_back(*i); 266 267 // Create allocas for the outputs 268 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 269 if (AggregateArgs) { 270 StructValues.push_back(*i); 271 } else { 272 AllocaInst *alloca = 273 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 274 codeReplacer->getParent()->begin()->begin()); 275 ReloadOutputs.push_back(alloca); 276 params.push_back(alloca); 277 } 278 } 279 280 AllocaInst *Struct = 0; 281 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 282 std::vector<const Type*> ArgTypes; 283 for (Values::iterator v = StructValues.begin(), 284 ve = StructValues.end(); v != ve; ++v) 285 ArgTypes.push_back((*v)->getType()); 286 287 // Allocate a struct at the beginning of this function 288 Type *StructArgTy = StructType::get(ArgTypes); 289 Struct = 290 new AllocaInst(StructArgTy, 0, "structArg", 291 codeReplacer->getParent()->begin()->begin()); 292 params.push_back(Struct); 293 294 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 295 std::vector<Value*> Indices; 296 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 297 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 298 GetElementPtrInst *GEP = 299 new GetElementPtrInst(Struct, Indices, 300 "gep_" + StructValues[i]->getName(), 0); 301 codeReplacer->getInstList().push_back(GEP); 302 StoreInst *SI = new StoreInst(StructValues[i], GEP); 303 codeReplacer->getInstList().push_back(SI); 304 } 305 } 306 307 // Emit the call to the function 308 CallInst *call = new CallInst(newFunction, params, 309 NumExitBlocks > 1 ? "targetBlock": ""); 310 codeReplacer->getInstList().push_back(call); 311 312 Function::aiterator OutputArgBegin = newFunction->abegin(); 313 unsigned FirstOut = inputs.size(); 314 if (!AggregateArgs) 315 std::advance(OutputArgBegin, inputs.size()); 316 317 // Reload the outputs passed in by reference 318 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 319 Value *Output = 0; 320 if (AggregateArgs) { 321 std::vector<Value*> Indices; 322 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 323 Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); 324 GetElementPtrInst *GEP 325 = new GetElementPtrInst(Struct, Indices, 326 "gep_reload_" + outputs[i]->getName(), 0); 327 codeReplacer->getInstList().push_back(GEP); 328 Output = GEP; 329 } else { 330 Output = ReloadOutputs[i]; 331 } 332 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 333 codeReplacer->getInstList().push_back(load); 334 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 335 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 336 Instruction *inst = cast<Instruction>(Users[u]); 337 if (!BlocksToExtract.count(inst->getParent())) 338 inst->replaceUsesOfWith(outputs[i], load); 339 } 340 } 341 342 // Now we can emit a switch statement using the call as a value. 343 SwitchInst *TheSwitch = 344 new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy), 345 codeReplacer, codeReplacer); 346 347 // Since there may be multiple exits from the original region, make the new 348 // function return an unsigned, switch on that number. This loop iterates 349 // over all of the blocks in the extracted region, updating any terminator 350 // instructions in the to-be-extracted region that branch to blocks that are 351 // not in the region to be extracted. 352 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 353 354 unsigned switchVal = 0; 355 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 356 e = BlocksToExtract.end(); i != e; ++i) { 357 TerminatorInst *TI = (*i)->getTerminator(); 358 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 359 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 360 BasicBlock *OldTarget = TI->getSuccessor(i); 361 // add a new basic block which returns the appropriate value 362 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 363 if (!NewTarget) { 364 // If we don't already have an exit stub for this non-extracted 365 // destination, create one now! 366 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 367 newFunction); 368 unsigned SuccNum = switchVal++; 369 370 Value *brVal = 0; 371 switch (NumExitBlocks) { 372 case 0: 373 case 1: break; // No value needed. 374 case 2: // Conditional branch, return a bool 375 brVal = SuccNum ? ConstantBool::False : ConstantBool::True; 376 break; 377 default: 378 brVal = ConstantUInt::get(Type::UShortTy, SuccNum); 379 break; 380 } 381 382 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 383 384 // Update the switch instruction. 385 TheSwitch->addCase(ConstantUInt::get(Type::UShortTy, SuccNum), 386 OldTarget); 387 388 // Restore values just before we exit 389 Function::aiterator OAI = OutputArgBegin; 390 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 391 // For an invoke, the normal destination is the only one that is 392 // dominated by the result of the invocation 393 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 394 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) 395 DefBlock = Invoke->getNormalDest(); 396 if (!DS || DS->dominates(DefBlock, TI->getParent())) 397 if (AggregateArgs) { 398 std::vector<Value*> Indices; 399 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 400 Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); 401 GetElementPtrInst *GEP = 402 new GetElementPtrInst(OAI, Indices, 403 "gep_" + outputs[out]->getName(), 404 NTRet); 405 new StoreInst(outputs[out], GEP, NTRet); 406 } else 407 new StoreInst(outputs[out], OAI, NTRet); 408 // Advance output iterator even if we don't emit a store 409 if (!AggregateArgs) ++OAI; 410 } 411 } 412 413 // rewrite the original branch instruction with this new target 414 TI->setSuccessor(i, NewTarget); 415 } 416 } 417 418 // Now that we've done the deed, simplify the switch instruction. 419 switch (NumExitBlocks) { 420 case 0: 421 // There is only 1 successor (the block containing the switch itself), which 422 // means that previously this was the last part of the function, and hence 423 // this should be rewritten as a `ret' 424 425 // Check if the function should return a value 426 if (TheSwitch->getParent()->getParent()->getReturnType() != Type::VoidTy && 427 TheSwitch->getParent()->getParent()->getReturnType() == 428 TheSwitch->getCondition()->getType()) 429 // return what we have 430 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 431 else 432 // just return 433 new ReturnInst(0, TheSwitch); 434 435 TheSwitch->getParent()->getInstList().erase(TheSwitch); 436 break; 437 case 1: 438 // Only a single destination, change the switch into an unconditional 439 // branch. 440 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 441 TheSwitch->getParent()->getInstList().erase(TheSwitch); 442 break; 443 case 2: 444 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 445 call, TheSwitch); 446 TheSwitch->getParent()->getInstList().erase(TheSwitch); 447 break; 448 default: 449 // Otherwise, make the default destination of the switch instruction be one 450 // of the other successors. 451 TheSwitch->setOperand(0, call); 452 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 453 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 454 break; 455 } 456 } 457 458 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 459 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 460 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 461 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 462 463 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 464 e = BlocksToExtract.end(); i != e; ++i) { 465 // Delete the basic block from the old function, and the list of blocks 466 oldBlocks.remove(*i); 467 468 // Insert this basic block into the new function 469 newBlocks.push_back(*i); 470 } 471 } 472 473 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 474 /// new function. Returns pointer to the new function. 475 /// 476 /// algorithm: 477 /// 478 /// find inputs and outputs for the region 479 /// 480 /// for inputs: add to function as args, map input instr* to arg# 481 /// for outputs: add allocas for scalars, 482 /// add to func as args, map output instr* to arg# 483 /// 484 /// rewrite func to use argument #s instead of instr* 485 /// 486 /// for each scalar output in the function: at every exit, store intermediate 487 /// computed result back into memory. 488 /// 489 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 490 { 491 if (!isEligible(code)) 492 return 0; 493 494 // 1) Find inputs, outputs 495 // 2) Construct new function 496 // * Add allocas for defs, pass as args by reference 497 // * Pass in uses as args 498 // 3) Move code region, add call instr to func 499 // 500 BlocksToExtract.insert(code.begin(), code.end()); 501 502 Values inputs, outputs; 503 504 // Assumption: this is a single-entry code region, and the header is the first 505 // block in the region. 506 BasicBlock *header = code[0]; 507 508 // If we have to split PHI nodes, do so now. 509 severSplitPHINodes(header); 510 511 for (unsigned i = 1, e = code.size(); i != e; ++i) 512 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 513 PI != E; ++PI) 514 assert(BlocksToExtract.count(*PI) && 515 "No blocks in this region may have entries from outside the region" 516 " except for the first block!"); 517 518 Function *oldFunction = header->getParent(); 519 520 // This takes place of the original loop 521 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 522 523 // The new function needs a root node because other nodes can branch to the 524 // head of the region, but the entry node of a function cannot have preds. 525 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 526 newFuncRoot->getInstList().push_back(new BranchInst(header)); 527 528 // Find inputs to, outputs from the code region. 529 findInputsOutputs(inputs, outputs); 530 531 // Construct new function based on inputs/outputs & add allocas for all defs. 532 Function *newFunction = constructFunction(inputs, outputs, code[0], 533 newFuncRoot, 534 codeReplacer, oldFunction, 535 oldFunction->getParent()); 536 537 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 538 539 moveCodeToFunction(newFunction); 540 541 // Loop over all of the PHI nodes in the entry block (code[0]), and change any 542 // references to the old incoming edge to be the new incoming edge. 543 for (BasicBlock::iterator I = code[0]->begin(); 544 PHINode *PN = dyn_cast<PHINode>(I); ++I) 545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 546 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 547 PN->setIncomingBlock(i, newFuncRoot); 548 549 // Look at all successors of the codeReplacer block. If any of these blocks 550 // had PHI nodes in them, we need to update the "from" block to be the code 551 // replacer, not the original block in the extracted region. 552 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 553 succ_end(codeReplacer)); 554 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 555 for (BasicBlock::iterator I = Succs[i]->begin(); 556 PHINode *PN = dyn_cast<PHINode>(I); ++I) 557 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 558 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 559 PN->setIncomingBlock(i, codeReplacer); 560 561 562 DEBUG(if (verifyFunction(*newFunction)) abort()); 563 return newFunction; 564 } 565 566 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 567 // Deny code region if it contains allocas or vastarts. 568 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 569 BB != e; ++BB) 570 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 571 I != Ie; ++I) 572 if (isa<AllocaInst>(*I)) 573 return false; 574 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 575 if (const Function *F = CI->getCalledFunction()) 576 if (F->getIntrinsicID() == Intrinsic::vastart) 577 return false; 578 return true; 579 } 580 581 582 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 583 /// function 584 /// 585 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 586 const std::vector<BasicBlock*> &code, 587 bool AggregateArgs) { 588 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 589 } 590 591 /// ExtractBasicBlock - slurp a natural loop into a brand new function 592 /// 593 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 594 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 595 } 596 597 /// ExtractBasicBlock - slurp a basic block into a brand new function 598 /// 599 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 600 std::vector<BasicBlock*> Blocks; 601 Blocks.push_back(BB); 602 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 603 } 604