1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include <algorithm> 33 #include <set> 34 using namespace llvm; 35 36 // Provide a command-line option to aggregate function arguments into a struct 37 // for functions produced by the code extractor. This is useful when converting 38 // extracted functions to pthread-based code, as only one argument (void*) can 39 // be passed in to pthread_create(). 40 static cl::opt<bool> 41 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 42 cl::desc("Aggregate arguments to code-extracted functions")); 43 44 namespace { 45 class VISIBILITY_HIDDEN CodeExtractor { 46 typedef std::vector<Value*> Values; 47 std::set<BasicBlock*> BlocksToExtract; 48 DominatorTree* DT; 49 bool AggregateArgs; 50 unsigned NumExitBlocks; 51 const Type *RetTy; 52 public: 53 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 54 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 55 56 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 57 58 bool isEligible(const std::vector<BasicBlock*> &code); 59 60 private: 61 /// definedInRegion - Return true if the specified value is defined in the 62 /// extracted region. 63 bool definedInRegion(Value *V) const { 64 if (Instruction *I = dyn_cast<Instruction>(V)) 65 if (BlocksToExtract.count(I->getParent())) 66 return true; 67 return false; 68 } 69 70 /// definedInCaller - Return true if the specified value is defined in the 71 /// function being code extracted, but not in the region being extracted. 72 /// These values must be passed in as live-ins to the function. 73 bool definedInCaller(Value *V) const { 74 if (isa<Argument>(V)) return true; 75 if (Instruction *I = dyn_cast<Instruction>(V)) 76 if (!BlocksToExtract.count(I->getParent())) 77 return true; 78 return false; 79 } 80 81 void severSplitPHINodes(BasicBlock *&Header); 82 void splitReturnBlocks(); 83 void findInputsOutputs(Values &inputs, Values &outputs); 84 85 Function *constructFunction(const Values &inputs, 86 const Values &outputs, 87 BasicBlock *header, 88 BasicBlock *newRootNode, BasicBlock *newHeader, 89 Function *oldFunction, Module *M); 90 91 void moveCodeToFunction(Function *newFunction); 92 93 void emitCallAndSwitchStatement(Function *newFunction, 94 BasicBlock *newHeader, 95 Values &inputs, 96 Values &outputs); 97 98 }; 99 } 100 101 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 102 /// region, we need to split the entry block of the region so that the PHI node 103 /// is easier to deal with. 104 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 105 bool HasPredsFromRegion = false; 106 unsigned NumPredsOutsideRegion = 0; 107 108 if (Header != &Header->getParent()->getEntryBlock()) { 109 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 110 if (!PN) return; // No PHI nodes. 111 112 // If the header node contains any PHI nodes, check to see if there is more 113 // than one entry from outside the region. If so, we need to sever the 114 // header block into two. 115 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 116 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 117 HasPredsFromRegion = true; 118 else 119 ++NumPredsOutsideRegion; 120 121 // If there is one (or fewer) predecessor from outside the region, we don't 122 // need to do anything special. 123 if (NumPredsOutsideRegion <= 1) return; 124 } 125 126 // Otherwise, we need to split the header block into two pieces: one 127 // containing PHI nodes merging values from outside of the region, and a 128 // second that contains all of the code for the block and merges back any 129 // incoming values from inside of the region. 130 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 131 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 132 Header->getName()+".ce"); 133 134 // We only want to code extract the second block now, and it becomes the new 135 // header of the region. 136 BasicBlock *OldPred = Header; 137 BlocksToExtract.erase(OldPred); 138 BlocksToExtract.insert(NewBB); 139 Header = NewBB; 140 141 // Okay, update dominator sets. The blocks that dominate the new one are the 142 // blocks that dominate TIBB plus the new block itself. 143 if (DT) 144 DT->splitBlock(NewBB); 145 146 // Okay, now we need to adjust the PHI nodes and any branches from within the 147 // region to go to the new header block instead of the old header block. 148 if (HasPredsFromRegion) { 149 PHINode *PN = cast<PHINode>(OldPred->begin()); 150 // Loop over all of the predecessors of OldPred that are in the region, 151 // changing them to branch to NewBB instead. 152 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 153 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 154 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 155 TI->replaceUsesOfWith(OldPred, NewBB); 156 } 157 158 // Okay, everthing within the region is now branching to the right block, we 159 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 160 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 161 PHINode *PN = cast<PHINode>(AfterPHIs); 162 // Create a new PHI node in the new region, which has an incoming value 163 // from OldPred of PN. 164 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 165 NewBB->begin()); 166 NewPN->addIncoming(PN, OldPred); 167 168 // Loop over all of the incoming value in PN, moving them to NewPN if they 169 // are from the extracted region. 170 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 171 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 172 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 173 PN->removeIncomingValue(i); 174 --i; 175 } 176 } 177 } 178 } 179 } 180 181 void CodeExtractor::splitReturnBlocks() { 182 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 183 E = BlocksToExtract.end(); I != E; ++I) 184 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 185 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 186 } 187 188 // findInputsOutputs - Find inputs to, outputs from the code region. 189 // 190 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 191 std::set<BasicBlock*> ExitBlocks; 192 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 193 ce = BlocksToExtract.end(); ci != ce; ++ci) { 194 BasicBlock *BB = *ci; 195 196 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 197 // If a used value is defined outside the region, it's an input. If an 198 // instruction is used outside the region, it's an output. 199 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 200 if (definedInCaller(*O)) 201 inputs.push_back(*O); 202 203 // Consider uses of this instruction (outputs). 204 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 205 UI != E; ++UI) 206 if (!definedInRegion(*UI)) { 207 outputs.push_back(I); 208 break; 209 } 210 } // for: insts 211 212 // Keep track of the exit blocks from the region. 213 TerminatorInst *TI = BB->getTerminator(); 214 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 215 if (!BlocksToExtract.count(TI->getSuccessor(i))) 216 ExitBlocks.insert(TI->getSuccessor(i)); 217 } // for: basic blocks 218 219 NumExitBlocks = ExitBlocks.size(); 220 221 // Eliminate duplicates. 222 std::sort(inputs.begin(), inputs.end()); 223 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 224 std::sort(outputs.begin(), outputs.end()); 225 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 226 } 227 228 /// constructFunction - make a function based on inputs and outputs, as follows: 229 /// f(in0, ..., inN, out0, ..., outN) 230 /// 231 Function *CodeExtractor::constructFunction(const Values &inputs, 232 const Values &outputs, 233 BasicBlock *header, 234 BasicBlock *newRootNode, 235 BasicBlock *newHeader, 236 Function *oldFunction, 237 Module *M) { 238 DOUT << "inputs: " << inputs.size() << "\n"; 239 DOUT << "outputs: " << outputs.size() << "\n"; 240 241 LLVMContext *Context = header->getContext(); 242 243 // This function returns unsigned, outputs will go back by reference. 244 switch (NumExitBlocks) { 245 case 0: 246 case 1: RetTy = Type::VoidTy; break; 247 case 2: RetTy = Type::Int1Ty; break; 248 default: RetTy = Type::Int16Ty; break; 249 } 250 251 std::vector<const Type*> paramTy; 252 253 // Add the types of the input values to the function's argument list 254 for (Values::const_iterator i = inputs.begin(), 255 e = inputs.end(); i != e; ++i) { 256 const Value *value = *i; 257 DOUT << "value used in func: " << *value << "\n"; 258 paramTy.push_back(value->getType()); 259 } 260 261 // Add the types of the output values to the function's argument list. 262 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 263 I != E; ++I) { 264 DOUT << "instr used in func: " << **I << "\n"; 265 if (AggregateArgs) 266 paramTy.push_back((*I)->getType()); 267 else 268 paramTy.push_back( 269 header->getContext()->getPointerTypeUnqual((*I)->getType())); 270 } 271 272 DOUT << "Function type: " << *RetTy << " f("; 273 for (std::vector<const Type*>::iterator i = paramTy.begin(), 274 e = paramTy.end(); i != e; ++i) 275 DOUT << **i << ", "; 276 DOUT << ")\n"; 277 278 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 279 PointerType *StructPtr = 280 Context->getPointerTypeUnqual(Context->getStructType(paramTy)); 281 paramTy.clear(); 282 paramTy.push_back(StructPtr); 283 } 284 const FunctionType *funcType = 285 Context->getFunctionType(RetTy, paramTy, false); 286 287 // Create the new function 288 Function *newFunction = Function::Create(funcType, 289 GlobalValue::InternalLinkage, 290 oldFunction->getName() + "_" + 291 header->getName(), M); 292 // If the old function is no-throw, so is the new one. 293 if (oldFunction->doesNotThrow()) 294 newFunction->setDoesNotThrow(true); 295 296 newFunction->getBasicBlockList().push_back(newRootNode); 297 298 // Create an iterator to name all of the arguments we inserted. 299 Function::arg_iterator AI = newFunction->arg_begin(); 300 301 // Rewrite all users of the inputs in the extracted region to use the 302 // arguments (or appropriate addressing into struct) instead. 303 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 304 Value *RewriteVal; 305 if (AggregateArgs) { 306 Value *Idx[2]; 307 Idx[0] = Context->getNullValue(Type::Int32Ty); 308 Idx[1] = Context->getConstantInt(Type::Int32Ty, i); 309 std::string GEPname = "gep_" + inputs[i]->getName(); 310 TerminatorInst *TI = newFunction->begin()->getTerminator(); 311 GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2, 312 GEPname, TI); 313 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 314 } else 315 RewriteVal = AI++; 316 317 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 318 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 319 use != useE; ++use) 320 if (Instruction* inst = dyn_cast<Instruction>(*use)) 321 if (BlocksToExtract.count(inst->getParent())) 322 inst->replaceUsesOfWith(inputs[i], RewriteVal); 323 } 324 325 // Set names for input and output arguments. 326 if (!AggregateArgs) { 327 AI = newFunction->arg_begin(); 328 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 329 AI->setName(inputs[i]->getName()); 330 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 331 AI->setName(outputs[i]->getName()+".out"); 332 } 333 334 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 335 // within the new function. This must be done before we lose track of which 336 // blocks were originally in the code region. 337 std::vector<User*> Users(header->use_begin(), header->use_end()); 338 for (unsigned i = 0, e = Users.size(); i != e; ++i) 339 // The BasicBlock which contains the branch is not in the region 340 // modify the branch target to a new block 341 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 342 if (!BlocksToExtract.count(TI->getParent()) && 343 TI->getParent()->getParent() == oldFunction) 344 TI->replaceUsesOfWith(header, newHeader); 345 346 return newFunction; 347 } 348 349 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 350 /// the call instruction, splitting any PHI nodes in the header block as 351 /// necessary. 352 void CodeExtractor:: 353 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 354 Values &inputs, Values &outputs) { 355 LLVMContext *Context = codeReplacer->getContext(); 356 357 // Emit a call to the new function, passing in: *pointer to struct (if 358 // aggregating parameters), or plan inputs and allocated memory for outputs 359 std::vector<Value*> params, StructValues, ReloadOutputs; 360 361 // Add inputs as params, or to be filled into the struct 362 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 363 if (AggregateArgs) 364 StructValues.push_back(*i); 365 else 366 params.push_back(*i); 367 368 // Create allocas for the outputs 369 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 370 if (AggregateArgs) { 371 StructValues.push_back(*i); 372 } else { 373 AllocaInst *alloca = 374 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 375 codeReplacer->getParent()->begin()->begin()); 376 ReloadOutputs.push_back(alloca); 377 params.push_back(alloca); 378 } 379 } 380 381 AllocaInst *Struct = 0; 382 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 383 std::vector<const Type*> ArgTypes; 384 for (Values::iterator v = StructValues.begin(), 385 ve = StructValues.end(); v != ve; ++v) 386 ArgTypes.push_back((*v)->getType()); 387 388 // Allocate a struct at the beginning of this function 389 Type *StructArgTy = Context->getStructType(ArgTypes); 390 Struct = 391 new AllocaInst(StructArgTy, 0, "structArg", 392 codeReplacer->getParent()->begin()->begin()); 393 params.push_back(Struct); 394 395 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 396 Value *Idx[2]; 397 Idx[0] = Context->getNullValue(Type::Int32Ty); 398 Idx[1] = Context->getConstantInt(Type::Int32Ty, i); 399 GetElementPtrInst *GEP = 400 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 401 "gep_" + StructValues[i]->getName()); 402 codeReplacer->getInstList().push_back(GEP); 403 StoreInst *SI = new StoreInst(StructValues[i], GEP); 404 codeReplacer->getInstList().push_back(SI); 405 } 406 } 407 408 // Emit the call to the function 409 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 410 NumExitBlocks > 1 ? "targetBlock" : ""); 411 codeReplacer->getInstList().push_back(call); 412 413 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 414 unsigned FirstOut = inputs.size(); 415 if (!AggregateArgs) 416 std::advance(OutputArgBegin, inputs.size()); 417 418 // Reload the outputs passed in by reference 419 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 420 Value *Output = 0; 421 if (AggregateArgs) { 422 Value *Idx[2]; 423 Idx[0] = Context->getNullValue(Type::Int32Ty); 424 Idx[1] = Context->getConstantInt(Type::Int32Ty, FirstOut + i); 425 GetElementPtrInst *GEP 426 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 427 "gep_reload_" + outputs[i]->getName()); 428 codeReplacer->getInstList().push_back(GEP); 429 Output = GEP; 430 } else { 431 Output = ReloadOutputs[i]; 432 } 433 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 434 codeReplacer->getInstList().push_back(load); 435 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 436 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 437 Instruction *inst = cast<Instruction>(Users[u]); 438 if (!BlocksToExtract.count(inst->getParent())) 439 inst->replaceUsesOfWith(outputs[i], load); 440 } 441 } 442 443 // Now we can emit a switch statement using the call as a value. 444 SwitchInst *TheSwitch = 445 SwitchInst::Create(Context->getNullValue(Type::Int16Ty), 446 codeReplacer, 0, codeReplacer); 447 448 // Since there may be multiple exits from the original region, make the new 449 // function return an unsigned, switch on that number. This loop iterates 450 // over all of the blocks in the extracted region, updating any terminator 451 // instructions in the to-be-extracted region that branch to blocks that are 452 // not in the region to be extracted. 453 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 454 455 unsigned switchVal = 0; 456 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 457 e = BlocksToExtract.end(); i != e; ++i) { 458 TerminatorInst *TI = (*i)->getTerminator(); 459 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 460 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 461 BasicBlock *OldTarget = TI->getSuccessor(i); 462 // add a new basic block which returns the appropriate value 463 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 464 if (!NewTarget) { 465 // If we don't already have an exit stub for this non-extracted 466 // destination, create one now! 467 NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub", 468 newFunction); 469 unsigned SuccNum = switchVal++; 470 471 Value *brVal = 0; 472 switch (NumExitBlocks) { 473 case 0: 474 case 1: break; // No value needed. 475 case 2: // Conditional branch, return a bool 476 brVal = Context->getConstantInt(Type::Int1Ty, !SuccNum); 477 break; 478 default: 479 brVal = Context->getConstantInt(Type::Int16Ty, SuccNum); 480 break; 481 } 482 483 ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget); 484 485 // Update the switch instruction. 486 TheSwitch->addCase(Context->getConstantInt(Type::Int16Ty, SuccNum), 487 OldTarget); 488 489 // Restore values just before we exit 490 Function::arg_iterator OAI = OutputArgBegin; 491 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 492 // For an invoke, the normal destination is the only one that is 493 // dominated by the result of the invocation 494 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 495 496 bool DominatesDef = true; 497 498 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 499 DefBlock = Invoke->getNormalDest(); 500 501 // Make sure we are looking at the original successor block, not 502 // at a newly inserted exit block, which won't be in the dominator 503 // info. 504 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 505 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 506 if (DefBlock == I->second) { 507 DefBlock = I->first; 508 break; 509 } 510 511 // In the extract block case, if the block we are extracting ends 512 // with an invoke instruction, make sure that we don't emit a 513 // store of the invoke value for the unwind block. 514 if (!DT && DefBlock != OldTarget) 515 DominatesDef = false; 516 } 517 518 if (DT) 519 DominatesDef = DT->dominates(DefBlock, OldTarget); 520 521 if (DominatesDef) { 522 if (AggregateArgs) { 523 Value *Idx[2]; 524 Idx[0] = Context->getNullValue(Type::Int32Ty); 525 Idx[1] = Context->getConstantInt(Type::Int32Ty,FirstOut+out); 526 GetElementPtrInst *GEP = 527 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 528 "gep_" + outputs[out]->getName(), 529 NTRet); 530 new StoreInst(outputs[out], GEP, NTRet); 531 } else { 532 new StoreInst(outputs[out], OAI, NTRet); 533 } 534 } 535 // Advance output iterator even if we don't emit a store 536 if (!AggregateArgs) ++OAI; 537 } 538 } 539 540 // rewrite the original branch instruction with this new target 541 TI->setSuccessor(i, NewTarget); 542 } 543 } 544 545 // Now that we've done the deed, simplify the switch instruction. 546 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 547 switch (NumExitBlocks) { 548 case 0: 549 // There are no successors (the block containing the switch itself), which 550 // means that previously this was the last part of the function, and hence 551 // this should be rewritten as a `ret' 552 553 // Check if the function should return a value 554 if (OldFnRetTy == Type::VoidTy) { 555 ReturnInst::Create(0, TheSwitch); // Return void 556 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 557 // return what we have 558 ReturnInst::Create(TheSwitch->getCondition(), TheSwitch); 559 } else { 560 // Otherwise we must have code extracted an unwind or something, just 561 // return whatever we want. 562 ReturnInst::Create(Context->getNullValue(OldFnRetTy), TheSwitch); 563 } 564 565 TheSwitch->eraseFromParent(); 566 break; 567 case 1: 568 // Only a single destination, change the switch into an unconditional 569 // branch. 570 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 571 TheSwitch->eraseFromParent(); 572 break; 573 case 2: 574 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 575 call, TheSwitch); 576 TheSwitch->eraseFromParent(); 577 break; 578 default: 579 // Otherwise, make the default destination of the switch instruction be one 580 // of the other successors. 581 TheSwitch->setOperand(0, call); 582 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 583 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 584 break; 585 } 586 } 587 588 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 589 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 590 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 591 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 592 593 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 594 e = BlocksToExtract.end(); i != e; ++i) { 595 // Delete the basic block from the old function, and the list of blocks 596 oldBlocks.remove(*i); 597 598 // Insert this basic block into the new function 599 newBlocks.push_back(*i); 600 } 601 } 602 603 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 604 /// new function. Returns pointer to the new function. 605 /// 606 /// algorithm: 607 /// 608 /// find inputs and outputs for the region 609 /// 610 /// for inputs: add to function as args, map input instr* to arg# 611 /// for outputs: add allocas for scalars, 612 /// add to func as args, map output instr* to arg# 613 /// 614 /// rewrite func to use argument #s instead of instr* 615 /// 616 /// for each scalar output in the function: at every exit, store intermediate 617 /// computed result back into memory. 618 /// 619 Function *CodeExtractor:: 620 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 621 if (!isEligible(code)) 622 return 0; 623 624 // 1) Find inputs, outputs 625 // 2) Construct new function 626 // * Add allocas for defs, pass as args by reference 627 // * Pass in uses as args 628 // 3) Move code region, add call instr to func 629 // 630 BlocksToExtract.insert(code.begin(), code.end()); 631 632 Values inputs, outputs; 633 634 // Assumption: this is a single-entry code region, and the header is the first 635 // block in the region. 636 BasicBlock *header = code[0]; 637 638 for (unsigned i = 1, e = code.size(); i != e; ++i) 639 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 640 PI != E; ++PI) 641 assert(BlocksToExtract.count(*PI) && 642 "No blocks in this region may have entries from outside the region" 643 " except for the first block!"); 644 645 // If we have to split PHI nodes or the entry block, do so now. 646 severSplitPHINodes(header); 647 648 // If we have any return instructions in the region, split those blocks so 649 // that the return is not in the region. 650 splitReturnBlocks(); 651 652 Function *oldFunction = header->getParent(); 653 654 // This takes place of the original loop 655 BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction, 656 header); 657 658 // The new function needs a root node because other nodes can branch to the 659 // head of the region, but the entry node of a function cannot have preds. 660 BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot"); 661 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 662 663 // Find inputs to, outputs from the code region. 664 findInputsOutputs(inputs, outputs); 665 666 // Construct new function based on inputs/outputs & add allocas for all defs. 667 Function *newFunction = constructFunction(inputs, outputs, header, 668 newFuncRoot, 669 codeReplacer, oldFunction, 670 oldFunction->getParent()); 671 672 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 673 674 moveCodeToFunction(newFunction); 675 676 // Loop over all of the PHI nodes in the header block, and change any 677 // references to the old incoming edge to be the new incoming edge. 678 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 679 PHINode *PN = cast<PHINode>(I); 680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 681 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 682 PN->setIncomingBlock(i, newFuncRoot); 683 } 684 685 // Look at all successors of the codeReplacer block. If any of these blocks 686 // had PHI nodes in them, we need to update the "from" block to be the code 687 // replacer, not the original block in the extracted region. 688 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 689 succ_end(codeReplacer)); 690 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 691 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 692 PHINode *PN = cast<PHINode>(I); 693 std::set<BasicBlock*> ProcessedPreds; 694 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 695 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 696 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 697 PN->setIncomingBlock(i, codeReplacer); 698 else { 699 // There were multiple entries in the PHI for this block, now there 700 // is only one, so remove the duplicated entries. 701 PN->removeIncomingValue(i, false); 702 --i; --e; 703 } 704 } 705 } 706 707 //cerr << "NEW FUNCTION: " << *newFunction; 708 // verifyFunction(*newFunction); 709 710 // cerr << "OLD FUNCTION: " << *oldFunction; 711 // verifyFunction(*oldFunction); 712 713 DEBUG(if (verifyFunction(*newFunction)) abort()); 714 return newFunction; 715 } 716 717 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 718 // Deny code region if it contains allocas or vastarts. 719 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 720 BB != e; ++BB) 721 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 722 I != Ie; ++I) 723 if (isa<AllocaInst>(*I)) 724 return false; 725 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 726 if (const Function *F = CI->getCalledFunction()) 727 if (F->getIntrinsicID() == Intrinsic::vastart) 728 return false; 729 return true; 730 } 731 732 733 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 734 /// function 735 /// 736 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 737 const std::vector<BasicBlock*> &code, 738 bool AggregateArgs) { 739 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 740 } 741 742 /// ExtractBasicBlock - slurp a natural loop into a brand new function 743 /// 744 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 745 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 746 } 747 748 /// ExtractBasicBlock - slurp a basic block into a brand new function 749 /// 750 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 751 std::vector<BasicBlock*> Blocks; 752 Blocks.push_back(BB); 753 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 754 } 755