xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 1e209e284fb3ba0112e34ce1d35fd1383ec82214)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <map>
65 #include <set>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 #define DEBUG_TYPE "code-extractor"
73 
74 // Provide a command-line option to aggregate function arguments into a struct
75 // for functions produced by the code extractor. This is useful when converting
76 // extracted functions to pthread-based code, as only one argument (void*) can
77 // be passed in to pthread_create().
78 static cl::opt<bool>
79 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
80                  cl::desc("Aggregate arguments to code-extracted functions"));
81 
82 /// Test whether a block is valid for extraction.
83 static bool isBlockValidForExtraction(const BasicBlock &BB,
84                                       const SetVector<BasicBlock *> &Result,
85                                       bool AllowVarArgs, bool AllowAlloca) {
86   // taking the address of a basic block moved to another function is illegal
87   if (BB.hasAddressTaken())
88     return false;
89 
90   // don't hoist code that uses another basicblock address, as it's likely to
91   // lead to unexpected behavior, like cross-function jumps
92   SmallPtrSet<User const *, 16> Visited;
93   SmallVector<User const *, 16> ToVisit;
94 
95   for (Instruction const &Inst : BB)
96     ToVisit.push_back(&Inst);
97 
98   while (!ToVisit.empty()) {
99     User const *Curr = ToVisit.pop_back_val();
100     if (!Visited.insert(Curr).second)
101       continue;
102     if (isa<BlockAddress const>(Curr))
103       return false; // even a reference to self is likely to be not compatible
104 
105     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
106       continue;
107 
108     for (auto const &U : Curr->operands()) {
109       if (auto *UU = dyn_cast<User>(U))
110         ToVisit.push_back(UU);
111     }
112   }
113 
114   // If explicitly requested, allow vastart and alloca. For invoke instructions
115   // verify that extraction is valid.
116   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
117     if (isa<AllocaInst>(I)) {
118        if (!AllowAlloca)
119          return false;
120        continue;
121     }
122 
123     if (const auto *II = dyn_cast<InvokeInst>(I)) {
124       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
125       // must be a part of the subgraph which is being extracted.
126       if (auto *UBB = II->getUnwindDest())
127         if (!Result.count(UBB))
128           return false;
129       continue;
130     }
131 
132     // All catch handlers of a catchswitch instruction as well as the unwind
133     // destination must be in the subgraph.
134     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
135       if (auto *UBB = CSI->getUnwindDest())
136         if (!Result.count(UBB))
137           return false;
138       for (auto *HBB : CSI->handlers())
139         if (!Result.count(const_cast<BasicBlock*>(HBB)))
140           return false;
141       continue;
142     }
143 
144     // Make sure that entire catch handler is within subgraph. It is sufficient
145     // to check that catch return's block is in the list.
146     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
147       for (const auto *U : CPI->users())
148         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
149           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
150             return false;
151       continue;
152     }
153 
154     // And do similar checks for cleanup handler - the entire handler must be
155     // in subgraph which is going to be extracted. For cleanup return should
156     // additionally check that the unwind destination is also in the subgraph.
157     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
158       for (const auto *U : CPI->users())
159         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
160           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
161             return false;
162       continue;
163     }
164     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
165       if (auto *UBB = CRI->getUnwindDest())
166         if (!Result.count(UBB))
167           return false;
168       continue;
169     }
170 
171     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
172       if (const Function *F = CI->getCalledFunction()) {
173         auto IID = F->getIntrinsicID();
174         if (IID == Intrinsic::vastart) {
175           if (AllowVarArgs)
176             continue;
177           else
178             return false;
179         }
180 
181         // Currently, we miscompile outlined copies of eh_typid_for. There are
182         // proposals for fixing this in llvm.org/PR39545.
183         if (IID == Intrinsic::eh_typeid_for)
184           return false;
185       }
186     }
187   }
188 
189   return true;
190 }
191 
192 /// Build a set of blocks to extract if the input blocks are viable.
193 static SetVector<BasicBlock *>
194 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
195                         bool AllowVarArgs, bool AllowAlloca) {
196   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
197   SetVector<BasicBlock *> Result;
198 
199   // Loop over the blocks, adding them to our set-vector, and aborting with an
200   // empty set if we encounter invalid blocks.
201   for (BasicBlock *BB : BBs) {
202     // If this block is dead, don't process it.
203     if (DT && !DT->isReachableFromEntry(BB))
204       continue;
205 
206     if (!Result.insert(BB))
207       llvm_unreachable("Repeated basic blocks in extraction input");
208   }
209 
210   for (auto *BB : Result) {
211     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
212       return {};
213 
214     // Make sure that the first block is not a landing pad.
215     if (BB == Result.front()) {
216       if (BB->isEHPad()) {
217         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
218         return {};
219       }
220       continue;
221     }
222 
223     // All blocks other than the first must not have predecessors outside of
224     // the subgraph which is being extracted.
225     for (auto *PBB : predecessors(BB))
226       if (!Result.count(PBB)) {
227         LLVM_DEBUG(
228             dbgs() << "No blocks in this region may have entries from "
229                       "outside the region except for the first block!\n");
230         return {};
231       }
232   }
233 
234   return Result;
235 }
236 
237 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
238                              bool AggregateArgs, BlockFrequencyInfo *BFI,
239                              BranchProbabilityInfo *BPI, bool AllowVarArgs,
240                              bool AllowAlloca, std::string Suffix)
241     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
242       BPI(BPI), AllowVarArgs(AllowVarArgs),
243       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
244       Suffix(Suffix) {}
245 
246 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
247                              BlockFrequencyInfo *BFI,
248                              BranchProbabilityInfo *BPI, std::string Suffix)
249     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AllowVarArgs(false),
251       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
252                                      /* AllowVarArgs */ false,
253                                      /* AllowAlloca */ false)),
254       Suffix(Suffix) {}
255 
256 /// definedInRegion - Return true if the specified value is defined in the
257 /// extracted region.
258 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
259   if (Instruction *I = dyn_cast<Instruction>(V))
260     if (Blocks.count(I->getParent()))
261       return true;
262   return false;
263 }
264 
265 /// definedInCaller - Return true if the specified value is defined in the
266 /// function being code extracted, but not in the region being extracted.
267 /// These values must be passed in as live-ins to the function.
268 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
269   if (isa<Argument>(V)) return true;
270   if (Instruction *I = dyn_cast<Instruction>(V))
271     if (!Blocks.count(I->getParent()))
272       return true;
273   return false;
274 }
275 
276 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
277   BasicBlock *CommonExitBlock = nullptr;
278   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
279     for (auto *Succ : successors(Block)) {
280       // Internal edges, ok.
281       if (Blocks.count(Succ))
282         continue;
283       if (!CommonExitBlock) {
284         CommonExitBlock = Succ;
285         continue;
286       }
287       if (CommonExitBlock == Succ)
288         continue;
289 
290       return true;
291     }
292     return false;
293   };
294 
295   if (any_of(Blocks, hasNonCommonExitSucc))
296     return nullptr;
297 
298   return CommonExitBlock;
299 }
300 
301 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
302     Instruction *Addr) const {
303   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
304   Function *Func = (*Blocks.begin())->getParent();
305   for (BasicBlock &BB : *Func) {
306     if (Blocks.count(&BB))
307       continue;
308     for (Instruction &II : BB) {
309       if (isa<DbgInfoIntrinsic>(II))
310         continue;
311 
312       unsigned Opcode = II.getOpcode();
313       Value *MemAddr = nullptr;
314       switch (Opcode) {
315       case Instruction::Store:
316       case Instruction::Load: {
317         if (Opcode == Instruction::Store) {
318           StoreInst *SI = cast<StoreInst>(&II);
319           MemAddr = SI->getPointerOperand();
320         } else {
321           LoadInst *LI = cast<LoadInst>(&II);
322           MemAddr = LI->getPointerOperand();
323         }
324         // Global variable can not be aliased with locals.
325         if (dyn_cast<Constant>(MemAddr))
326           break;
327         Value *Base = MemAddr->stripInBoundsConstantOffsets();
328         if (!dyn_cast<AllocaInst>(Base) || Base == AI)
329           return false;
330         break;
331       }
332       default: {
333         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
334         if (IntrInst) {
335           if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
336               IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
337             break;
338           return false;
339         }
340         // Treat all the other cases conservatively if it has side effects.
341         if (II.mayHaveSideEffects())
342           return false;
343       }
344       }
345     }
346   }
347 
348   return true;
349 }
350 
351 BasicBlock *
352 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
353   BasicBlock *SinglePredFromOutlineRegion = nullptr;
354   assert(!Blocks.count(CommonExitBlock) &&
355          "Expect a block outside the region!");
356   for (auto *Pred : predecessors(CommonExitBlock)) {
357     if (!Blocks.count(Pred))
358       continue;
359     if (!SinglePredFromOutlineRegion) {
360       SinglePredFromOutlineRegion = Pred;
361     } else if (SinglePredFromOutlineRegion != Pred) {
362       SinglePredFromOutlineRegion = nullptr;
363       break;
364     }
365   }
366 
367   if (SinglePredFromOutlineRegion)
368     return SinglePredFromOutlineRegion;
369 
370 #ifndef NDEBUG
371   auto getFirstPHI = [](BasicBlock *BB) {
372     BasicBlock::iterator I = BB->begin();
373     PHINode *FirstPhi = nullptr;
374     while (I != BB->end()) {
375       PHINode *Phi = dyn_cast<PHINode>(I);
376       if (!Phi)
377         break;
378       if (!FirstPhi) {
379         FirstPhi = Phi;
380         break;
381       }
382     }
383     return FirstPhi;
384   };
385   // If there are any phi nodes, the single pred either exists or has already
386   // be created before code extraction.
387   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
388 #endif
389 
390   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
391       CommonExitBlock->getFirstNonPHI()->getIterator());
392 
393   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
394        PI != PE;) {
395     BasicBlock *Pred = *PI++;
396     if (Blocks.count(Pred))
397       continue;
398     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
399   }
400   // Now add the old exit block to the outline region.
401   Blocks.insert(CommonExitBlock);
402   return CommonExitBlock;
403 }
404 
405 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
406                                 BasicBlock *&ExitBlock) const {
407   Function *Func = (*Blocks.begin())->getParent();
408   ExitBlock = getCommonExitBlock(Blocks);
409 
410   for (BasicBlock &BB : *Func) {
411     if (Blocks.count(&BB))
412       continue;
413     for (Instruction &II : BB) {
414       auto *AI = dyn_cast<AllocaInst>(&II);
415       if (!AI)
416         continue;
417 
418       // Find the pair of life time markers for address 'Addr' that are either
419       // defined inside the outline region or can legally be shrinkwrapped into
420       // the outline region. If there are not other untracked uses of the
421       // address, return the pair of markers if found; otherwise return a pair
422       // of nullptr.
423       auto GetLifeTimeMarkers =
424           [&](Instruction *Addr, bool &SinkLifeStart,
425               bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
426         Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
427 
428         for (User *U : Addr->users()) {
429           IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
430           if (IntrInst) {
431             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
432               // Do not handle the case where AI has multiple start markers.
433               if (LifeStart)
434                 return std::make_pair<Instruction *>(nullptr, nullptr);
435               LifeStart = IntrInst;
436             }
437             if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
438               if (LifeEnd)
439                 return std::make_pair<Instruction *>(nullptr, nullptr);
440               LifeEnd = IntrInst;
441             }
442             continue;
443           }
444           // Find untracked uses of the address, bail.
445           if (!definedInRegion(Blocks, U))
446             return std::make_pair<Instruction *>(nullptr, nullptr);
447         }
448 
449         if (!LifeStart || !LifeEnd)
450           return std::make_pair<Instruction *>(nullptr, nullptr);
451 
452         SinkLifeStart = !definedInRegion(Blocks, LifeStart);
453         HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
454         // Do legality Check.
455         if ((SinkLifeStart || HoistLifeEnd) &&
456             !isLegalToShrinkwrapLifetimeMarkers(Addr))
457           return std::make_pair<Instruction *>(nullptr, nullptr);
458 
459         // Check to see if we have a place to do hoisting, if not, bail.
460         if (HoistLifeEnd && !ExitBlock)
461           return std::make_pair<Instruction *>(nullptr, nullptr);
462 
463         return std::make_pair(LifeStart, LifeEnd);
464       };
465 
466       bool SinkLifeStart = false, HoistLifeEnd = false;
467       auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
468 
469       if (Markers.first) {
470         if (SinkLifeStart)
471           SinkCands.insert(Markers.first);
472         SinkCands.insert(AI);
473         if (HoistLifeEnd)
474           HoistCands.insert(Markers.second);
475         continue;
476       }
477 
478       // Follow the bitcast.
479       Instruction *MarkerAddr = nullptr;
480       for (User *U : AI->users()) {
481         if (U->stripInBoundsConstantOffsets() == AI) {
482           SinkLifeStart = false;
483           HoistLifeEnd = false;
484           Instruction *Bitcast = cast<Instruction>(U);
485           Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
486           if (Markers.first) {
487             MarkerAddr = Bitcast;
488             continue;
489           }
490         }
491 
492         // Found unknown use of AI.
493         if (!definedInRegion(Blocks, U)) {
494           MarkerAddr = nullptr;
495           break;
496         }
497       }
498 
499       if (MarkerAddr) {
500         if (SinkLifeStart)
501           SinkCands.insert(Markers.first);
502         if (!definedInRegion(Blocks, MarkerAddr))
503           SinkCands.insert(MarkerAddr);
504         SinkCands.insert(AI);
505         if (HoistLifeEnd)
506           HoistCands.insert(Markers.second);
507       }
508     }
509   }
510 }
511 
512 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
513                                       const ValueSet &SinkCands) const {
514   for (BasicBlock *BB : Blocks) {
515     // If a used value is defined outside the region, it's an input.  If an
516     // instruction is used outside the region, it's an output.
517     for (Instruction &II : *BB) {
518       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
519            ++OI) {
520         Value *V = *OI;
521         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
522           Inputs.insert(V);
523       }
524 
525       for (User *U : II.users())
526         if (!definedInRegion(Blocks, U)) {
527           Outputs.insert(&II);
528           break;
529         }
530     }
531   }
532 }
533 
534 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
535 /// region, we need to split the entry block of the region so that the PHI node
536 /// is easier to deal with.
537 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
538   unsigned NumPredsFromRegion = 0;
539   unsigned NumPredsOutsideRegion = 0;
540 
541   if (Header != &Header->getParent()->getEntryBlock()) {
542     PHINode *PN = dyn_cast<PHINode>(Header->begin());
543     if (!PN) return;  // No PHI nodes.
544 
545     // If the header node contains any PHI nodes, check to see if there is more
546     // than one entry from outside the region.  If so, we need to sever the
547     // header block into two.
548     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
549       if (Blocks.count(PN->getIncomingBlock(i)))
550         ++NumPredsFromRegion;
551       else
552         ++NumPredsOutsideRegion;
553 
554     // If there is one (or fewer) predecessor from outside the region, we don't
555     // need to do anything special.
556     if (NumPredsOutsideRegion <= 1) return;
557   }
558 
559   // Otherwise, we need to split the header block into two pieces: one
560   // containing PHI nodes merging values from outside of the region, and a
561   // second that contains all of the code for the block and merges back any
562   // incoming values from inside of the region.
563   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
564 
565   // We only want to code extract the second block now, and it becomes the new
566   // header of the region.
567   BasicBlock *OldPred = Header;
568   Blocks.remove(OldPred);
569   Blocks.insert(NewBB);
570   Header = NewBB;
571 
572   // Okay, now we need to adjust the PHI nodes and any branches from within the
573   // region to go to the new header block instead of the old header block.
574   if (NumPredsFromRegion) {
575     PHINode *PN = cast<PHINode>(OldPred->begin());
576     // Loop over all of the predecessors of OldPred that are in the region,
577     // changing them to branch to NewBB instead.
578     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
579       if (Blocks.count(PN->getIncomingBlock(i))) {
580         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
581         TI->replaceUsesOfWith(OldPred, NewBB);
582       }
583 
584     // Okay, everything within the region is now branching to the right block, we
585     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
586     BasicBlock::iterator AfterPHIs;
587     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
588       PHINode *PN = cast<PHINode>(AfterPHIs);
589       // Create a new PHI node in the new region, which has an incoming value
590       // from OldPred of PN.
591       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
592                                        PN->getName() + ".ce", &NewBB->front());
593       PN->replaceAllUsesWith(NewPN);
594       NewPN->addIncoming(PN, OldPred);
595 
596       // Loop over all of the incoming value in PN, moving them to NewPN if they
597       // are from the extracted region.
598       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
599         if (Blocks.count(PN->getIncomingBlock(i))) {
600           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
601           PN->removeIncomingValue(i);
602           --i;
603         }
604       }
605     }
606   }
607 }
608 
609 void CodeExtractor::splitReturnBlocks() {
610   for (BasicBlock *Block : Blocks)
611     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
612       BasicBlock *New =
613           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
614       if (DT) {
615         // Old dominates New. New node dominates all other nodes dominated
616         // by Old.
617         DomTreeNode *OldNode = DT->getNode(Block);
618         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
619                                                OldNode->end());
620 
621         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
622 
623         for (DomTreeNode *I : Children)
624           DT->changeImmediateDominator(I, NewNode);
625       }
626     }
627 }
628 
629 /// constructFunction - make a function based on inputs and outputs, as follows:
630 /// f(in0, ..., inN, out0, ..., outN)
631 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
632                                            const ValueSet &outputs,
633                                            BasicBlock *header,
634                                            BasicBlock *newRootNode,
635                                            BasicBlock *newHeader,
636                                            Function *oldFunction,
637                                            Module *M) {
638   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
639   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
640 
641   // This function returns unsigned, outputs will go back by reference.
642   switch (NumExitBlocks) {
643   case 0:
644   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
645   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
646   default: RetTy = Type::getInt16Ty(header->getContext()); break;
647   }
648 
649   std::vector<Type *> paramTy;
650 
651   // Add the types of the input values to the function's argument list
652   for (Value *value : inputs) {
653     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
654     paramTy.push_back(value->getType());
655   }
656 
657   // Add the types of the output values to the function's argument list.
658   for (Value *output : outputs) {
659     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
660     if (AggregateArgs)
661       paramTy.push_back(output->getType());
662     else
663       paramTy.push_back(PointerType::getUnqual(output->getType()));
664   }
665 
666   LLVM_DEBUG({
667     dbgs() << "Function type: " << *RetTy << " f(";
668     for (Type *i : paramTy)
669       dbgs() << *i << ", ";
670     dbgs() << ")\n";
671   });
672 
673   StructType *StructTy;
674   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
675     StructTy = StructType::get(M->getContext(), paramTy);
676     paramTy.clear();
677     paramTy.push_back(PointerType::getUnqual(StructTy));
678   }
679   FunctionType *funcType =
680                   FunctionType::get(RetTy, paramTy,
681                                     AllowVarArgs && oldFunction->isVarArg());
682 
683   std::string SuffixToUse =
684       Suffix.empty()
685           ? (header->getName().empty() ? "extracted" : header->getName().str())
686           : Suffix;
687   // Create the new function
688   Function *newFunction = Function::Create(
689       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
690       oldFunction->getName() + "." + SuffixToUse, M);
691   // If the old function is no-throw, so is the new one.
692   if (oldFunction->doesNotThrow())
693     newFunction->setDoesNotThrow();
694 
695   // Inherit the uwtable attribute if we need to.
696   if (oldFunction->hasUWTable())
697     newFunction->setHasUWTable();
698 
699   // Inherit all of the target dependent attributes and white-listed
700   // target independent attributes.
701   //  (e.g. If the extracted region contains a call to an x86.sse
702   //  instruction we need to make sure that the extracted region has the
703   //  "target-features" attribute allowing it to be lowered.
704   // FIXME: This should be changed to check to see if a specific
705   //           attribute can not be inherited.
706   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
707     if (Attr.isStringAttribute()) {
708       if (Attr.getKindAsString() == "thunk")
709         continue;
710     } else
711       switch (Attr.getKindAsEnum()) {
712       // Those attributes cannot be propagated safely. Explicitly list them
713       // here so we get a warning if new attributes are added. This list also
714       // includes non-function attributes.
715       case Attribute::Alignment:
716       case Attribute::AllocSize:
717       case Attribute::ArgMemOnly:
718       case Attribute::Builtin:
719       case Attribute::ByVal:
720       case Attribute::Convergent:
721       case Attribute::Dereferenceable:
722       case Attribute::DereferenceableOrNull:
723       case Attribute::InAlloca:
724       case Attribute::InReg:
725       case Attribute::InaccessibleMemOnly:
726       case Attribute::InaccessibleMemOrArgMemOnly:
727       case Attribute::JumpTable:
728       case Attribute::Naked:
729       case Attribute::Nest:
730       case Attribute::NoAlias:
731       case Attribute::NoBuiltin:
732       case Attribute::NoCapture:
733       case Attribute::NoReturn:
734       case Attribute::None:
735       case Attribute::NonNull:
736       case Attribute::ReadNone:
737       case Attribute::ReadOnly:
738       case Attribute::Returned:
739       case Attribute::ReturnsTwice:
740       case Attribute::SExt:
741       case Attribute::Speculatable:
742       case Attribute::StackAlignment:
743       case Attribute::StructRet:
744       case Attribute::SwiftError:
745       case Attribute::SwiftSelf:
746       case Attribute::WriteOnly:
747       case Attribute::ZExt:
748       case Attribute::EndAttrKinds:
749         continue;
750       // Those attributes should be safe to propagate to the extracted function.
751       case Attribute::AlwaysInline:
752       case Attribute::Cold:
753       case Attribute::NoRecurse:
754       case Attribute::InlineHint:
755       case Attribute::MinSize:
756       case Attribute::NoDuplicate:
757       case Attribute::NoImplicitFloat:
758       case Attribute::NoInline:
759       case Attribute::NonLazyBind:
760       case Attribute::NoRedZone:
761       case Attribute::NoUnwind:
762       case Attribute::OptForFuzzing:
763       case Attribute::OptimizeNone:
764       case Attribute::OptimizeForSize:
765       case Attribute::SafeStack:
766       case Attribute::ShadowCallStack:
767       case Attribute::SanitizeAddress:
768       case Attribute::SanitizeMemory:
769       case Attribute::SanitizeThread:
770       case Attribute::SanitizeHWAddress:
771       case Attribute::SpeculativeLoadHardening:
772       case Attribute::StackProtect:
773       case Attribute::StackProtectReq:
774       case Attribute::StackProtectStrong:
775       case Attribute::StrictFP:
776       case Attribute::UWTable:
777       case Attribute::NoCfCheck:
778         break;
779       }
780 
781     newFunction->addFnAttr(Attr);
782   }
783   newFunction->getBasicBlockList().push_back(newRootNode);
784 
785   // Create an iterator to name all of the arguments we inserted.
786   Function::arg_iterator AI = newFunction->arg_begin();
787 
788   // Rewrite all users of the inputs in the extracted region to use the
789   // arguments (or appropriate addressing into struct) instead.
790   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
791     Value *RewriteVal;
792     if (AggregateArgs) {
793       Value *Idx[2];
794       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
795       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
796       Instruction *TI = newFunction->begin()->getTerminator();
797       GetElementPtrInst *GEP = GetElementPtrInst::Create(
798           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
799       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
800     } else
801       RewriteVal = &*AI++;
802 
803     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
804     for (User *use : Users)
805       if (Instruction *inst = dyn_cast<Instruction>(use))
806         if (Blocks.count(inst->getParent()))
807           inst->replaceUsesOfWith(inputs[i], RewriteVal);
808   }
809 
810   // Set names for input and output arguments.
811   if (!AggregateArgs) {
812     AI = newFunction->arg_begin();
813     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
814       AI->setName(inputs[i]->getName());
815     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
816       AI->setName(outputs[i]->getName()+".out");
817   }
818 
819   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
820   // within the new function. This must be done before we lose track of which
821   // blocks were originally in the code region.
822   std::vector<User *> Users(header->user_begin(), header->user_end());
823   for (unsigned i = 0, e = Users.size(); i != e; ++i)
824     // The BasicBlock which contains the branch is not in the region
825     // modify the branch target to a new block
826     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
827       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
828           I->getParent()->getParent() == oldFunction)
829         I->replaceUsesOfWith(header, newHeader);
830 
831   return newFunction;
832 }
833 
834 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
835 /// the call instruction, splitting any PHI nodes in the header block as
836 /// necessary.
837 void CodeExtractor::
838 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
839                            ValueSet &inputs, ValueSet &outputs) {
840   // Emit a call to the new function, passing in: *pointer to struct (if
841   // aggregating parameters), or plan inputs and allocated memory for outputs
842   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
843 
844   Module *M = newFunction->getParent();
845   LLVMContext &Context = M->getContext();
846   const DataLayout &DL = M->getDataLayout();
847 
848   // Add inputs as params, or to be filled into the struct
849   for (Value *input : inputs)
850     if (AggregateArgs)
851       StructValues.push_back(input);
852     else
853       params.push_back(input);
854 
855   // Create allocas for the outputs
856   for (Value *output : outputs) {
857     if (AggregateArgs) {
858       StructValues.push_back(output);
859     } else {
860       AllocaInst *alloca =
861         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
862                        nullptr, output->getName() + ".loc",
863                        &codeReplacer->getParent()->front().front());
864       ReloadOutputs.push_back(alloca);
865       params.push_back(alloca);
866     }
867   }
868 
869   StructType *StructArgTy = nullptr;
870   AllocaInst *Struct = nullptr;
871   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
872     std::vector<Type *> ArgTypes;
873     for (ValueSet::iterator v = StructValues.begin(),
874            ve = StructValues.end(); v != ve; ++v)
875       ArgTypes.push_back((*v)->getType());
876 
877     // Allocate a struct at the beginning of this function
878     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
879     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
880                             "structArg",
881                             &codeReplacer->getParent()->front().front());
882     params.push_back(Struct);
883 
884     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
885       Value *Idx[2];
886       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
887       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
888       GetElementPtrInst *GEP = GetElementPtrInst::Create(
889           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
890       codeReplacer->getInstList().push_back(GEP);
891       StoreInst *SI = new StoreInst(StructValues[i], GEP);
892       codeReplacer->getInstList().push_back(SI);
893     }
894   }
895 
896   // Emit the call to the function
897   CallInst *call = CallInst::Create(newFunction, params,
898                                     NumExitBlocks > 1 ? "targetBlock" : "");
899   // Add debug location to the new call, if the original function has debug
900   // info. In that case, the terminator of the entry block of the extracted
901   // function contains the first debug location of the extracted function,
902   // set in extractCodeRegion.
903   if (codeReplacer->getParent()->getSubprogram()) {
904     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
905       call->setDebugLoc(DL);
906   }
907   codeReplacer->getInstList().push_back(call);
908 
909   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
910   unsigned FirstOut = inputs.size();
911   if (!AggregateArgs)
912     std::advance(OutputArgBegin, inputs.size());
913 
914   // Reload the outputs passed in by reference.
915   Function::arg_iterator OAI = OutputArgBegin;
916   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
917     Value *Output = nullptr;
918     if (AggregateArgs) {
919       Value *Idx[2];
920       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
921       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
922       GetElementPtrInst *GEP = GetElementPtrInst::Create(
923           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
924       codeReplacer->getInstList().push_back(GEP);
925       Output = GEP;
926     } else {
927       Output = ReloadOutputs[i];
928     }
929     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
930     Reloads.push_back(load);
931     codeReplacer->getInstList().push_back(load);
932     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
933     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
934       Instruction *inst = cast<Instruction>(Users[u]);
935       if (!Blocks.count(inst->getParent()))
936         inst->replaceUsesOfWith(outputs[i], load);
937     }
938 
939     // Store to argument right after the definition of output value.
940     auto *OutI = dyn_cast<Instruction>(outputs[i]);
941     if (!OutI)
942       continue;
943 
944     // Find proper insertion point.
945     Instruction *InsertPt;
946     // In case OutI is an invoke, we insert the store at the beginning in the
947     // 'normal destination' BB. Otherwise we insert the store right after OutI.
948     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
949       InsertPt = InvokeI->getNormalDest()->getFirstNonPHI();
950     else
951       InsertPt = OutI->getNextNode();
952 
953     // Let's assume that there is no other guy interleave non-PHI in PHIs.
954     if (isa<PHINode>(InsertPt))
955       InsertPt = InsertPt->getParent()->getFirstNonPHI();
956 
957     assert(OAI != newFunction->arg_end() &&
958            "Number of output arguments should match "
959            "the amount of defined values");
960     if (AggregateArgs) {
961       Value *Idx[2];
962       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
963       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
964       GetElementPtrInst *GEP = GetElementPtrInst::Create(
965           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
966       new StoreInst(outputs[i], GEP, InsertPt);
967       // Since there should be only one struct argument aggregating
968       // all the output values, we shouldn't increment OAI, which always
969       // points to the struct argument, in this case.
970     } else {
971       new StoreInst(outputs[i], &*OAI, InsertPt);
972       ++OAI;
973     }
974   }
975 
976   // Now we can emit a switch statement using the call as a value.
977   SwitchInst *TheSwitch =
978       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
979                          codeReplacer, 0, codeReplacer);
980 
981   // Since there may be multiple exits from the original region, make the new
982   // function return an unsigned, switch on that number.  This loop iterates
983   // over all of the blocks in the extracted region, updating any terminator
984   // instructions in the to-be-extracted region that branch to blocks that are
985   // not in the region to be extracted.
986   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
987 
988   unsigned switchVal = 0;
989   for (BasicBlock *Block : Blocks) {
990     Instruction *TI = Block->getTerminator();
991     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
992       if (!Blocks.count(TI->getSuccessor(i))) {
993         BasicBlock *OldTarget = TI->getSuccessor(i);
994         // add a new basic block which returns the appropriate value
995         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
996         if (!NewTarget) {
997           // If we don't already have an exit stub for this non-extracted
998           // destination, create one now!
999           NewTarget = BasicBlock::Create(Context,
1000                                          OldTarget->getName() + ".exitStub",
1001                                          newFunction);
1002           unsigned SuccNum = switchVal++;
1003 
1004           Value *brVal = nullptr;
1005           switch (NumExitBlocks) {
1006           case 0:
1007           case 1: break;  // No value needed.
1008           case 2:         // Conditional branch, return a bool
1009             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1010             break;
1011           default:
1012             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1013             break;
1014           }
1015 
1016           ReturnInst::Create(Context, brVal, NewTarget);
1017 
1018           // Update the switch instruction.
1019           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1020                                               SuccNum),
1021                              OldTarget);
1022         }
1023 
1024         // rewrite the original branch instruction with this new target
1025         TI->setSuccessor(i, NewTarget);
1026       }
1027   }
1028 
1029   // Now that we've done the deed, simplify the switch instruction.
1030   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1031   switch (NumExitBlocks) {
1032   case 0:
1033     // There are no successors (the block containing the switch itself), which
1034     // means that previously this was the last part of the function, and hence
1035     // this should be rewritten as a `ret'
1036 
1037     // Check if the function should return a value
1038     if (OldFnRetTy->isVoidTy()) {
1039       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1040     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1041       // return what we have
1042       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1043     } else {
1044       // Otherwise we must have code extracted an unwind or something, just
1045       // return whatever we want.
1046       ReturnInst::Create(Context,
1047                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1048     }
1049 
1050     TheSwitch->eraseFromParent();
1051     break;
1052   case 1:
1053     // Only a single destination, change the switch into an unconditional
1054     // branch.
1055     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1056     TheSwitch->eraseFromParent();
1057     break;
1058   case 2:
1059     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1060                        call, TheSwitch);
1061     TheSwitch->eraseFromParent();
1062     break;
1063   default:
1064     // Otherwise, make the default destination of the switch instruction be one
1065     // of the other successors.
1066     TheSwitch->setCondition(call);
1067     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1068     // Remove redundant case
1069     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1070     break;
1071   }
1072 }
1073 
1074 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1075   Function *oldFunc = (*Blocks.begin())->getParent();
1076   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1077   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1078 
1079   for (BasicBlock *Block : Blocks) {
1080     // Delete the basic block from the old function, and the list of blocks
1081     oldBlocks.remove(Block);
1082 
1083     // Insert this basic block into the new function
1084     newBlocks.push_back(Block);
1085   }
1086 }
1087 
1088 void CodeExtractor::calculateNewCallTerminatorWeights(
1089     BasicBlock *CodeReplacer,
1090     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1091     BranchProbabilityInfo *BPI) {
1092   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1093   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1094 
1095   // Update the branch weights for the exit block.
1096   Instruction *TI = CodeReplacer->getTerminator();
1097   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1098 
1099   // Block Frequency distribution with dummy node.
1100   Distribution BranchDist;
1101 
1102   // Add each of the frequencies of the successors.
1103   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1104     BlockNode ExitNode(i);
1105     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1106     if (ExitFreq != 0)
1107       BranchDist.addExit(ExitNode, ExitFreq);
1108     else
1109       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1110   }
1111 
1112   // Check for no total weight.
1113   if (BranchDist.Total == 0)
1114     return;
1115 
1116   // Normalize the distribution so that they can fit in unsigned.
1117   BranchDist.normalize();
1118 
1119   // Create normalized branch weights and set the metadata.
1120   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1121     const auto &Weight = BranchDist.Weights[I];
1122 
1123     // Get the weight and update the current BFI.
1124     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1125     BranchProbability BP(Weight.Amount, BranchDist.Total);
1126     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1127   }
1128   TI->setMetadata(
1129       LLVMContext::MD_prof,
1130       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1131 }
1132 
1133 Function *CodeExtractor::extractCodeRegion() {
1134   if (!isEligible())
1135     return nullptr;
1136 
1137   // Assumption: this is a single-entry code region, and the header is the first
1138   // block in the region.
1139   BasicBlock *header = *Blocks.begin();
1140   Function *oldFunction = header->getParent();
1141 
1142   // For functions with varargs, check that varargs handling is only done in the
1143   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1144   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1145     auto containsVarArgIntrinsic = [](Instruction &I) {
1146       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1147         if (const Function *F = CI->getCalledFunction())
1148           return F->getIntrinsicID() == Intrinsic::vastart ||
1149                  F->getIntrinsicID() == Intrinsic::vaend;
1150       return false;
1151     };
1152 
1153     for (auto &BB : *oldFunction) {
1154       if (Blocks.count(&BB))
1155         continue;
1156       if (llvm::any_of(BB, containsVarArgIntrinsic))
1157         return nullptr;
1158     }
1159   }
1160   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1161   BasicBlock *CommonExit = nullptr;
1162 
1163   // Calculate the entry frequency of the new function before we change the root
1164   //   block.
1165   BlockFrequency EntryFreq;
1166   if (BFI) {
1167     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1168     for (BasicBlock *Pred : predecessors(header)) {
1169       if (Blocks.count(Pred))
1170         continue;
1171       EntryFreq +=
1172           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1173     }
1174   }
1175 
1176   // If we have to split PHI nodes or the entry block, do so now.
1177   severSplitPHINodes(header);
1178 
1179   // If we have any return instructions in the region, split those blocks so
1180   // that the return is not in the region.
1181   splitReturnBlocks();
1182 
1183   // This takes place of the original loop
1184   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1185                                                 "codeRepl", oldFunction,
1186                                                 header);
1187 
1188   // The new function needs a root node because other nodes can branch to the
1189   // head of the region, but the entry node of a function cannot have preds.
1190   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1191                                                "newFuncRoot");
1192   auto *BranchI = BranchInst::Create(header);
1193   // If the original function has debug info, we have to add a debug location
1194   // to the new branch instruction from the artificial entry block.
1195   // We use the debug location of the first instruction in the extracted
1196   // blocks, as there is no other equivalent line in the source code.
1197   if (oldFunction->getSubprogram()) {
1198     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1199       return any_of(*BB, [&BranchI](const Instruction &I) {
1200         if (!I.getDebugLoc())
1201           return false;
1202         BranchI->setDebugLoc(I.getDebugLoc());
1203         return true;
1204       });
1205     });
1206   }
1207   newFuncRoot->getInstList().push_back(BranchI);
1208 
1209   findAllocas(SinkingCands, HoistingCands, CommonExit);
1210   assert(HoistingCands.empty() || CommonExit);
1211 
1212   // Find inputs to, outputs from the code region.
1213   findInputsOutputs(inputs, outputs, SinkingCands);
1214 
1215   // Now sink all instructions which only have non-phi uses inside the region
1216   for (auto *II : SinkingCands)
1217     cast<Instruction>(II)->moveBefore(*newFuncRoot,
1218                                       newFuncRoot->getFirstInsertionPt());
1219 
1220   if (!HoistingCands.empty()) {
1221     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1222     Instruction *TI = HoistToBlock->getTerminator();
1223     for (auto *II : HoistingCands)
1224       cast<Instruction>(II)->moveBefore(TI);
1225   }
1226 
1227   // Calculate the exit blocks for the extracted region and the total exit
1228   // weights for each of those blocks.
1229   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1230   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1231   for (BasicBlock *Block : Blocks) {
1232     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1233          ++SI) {
1234       if (!Blocks.count(*SI)) {
1235         // Update the branch weight for this successor.
1236         if (BFI) {
1237           BlockFrequency &BF = ExitWeights[*SI];
1238           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1239         }
1240         ExitBlocks.insert(*SI);
1241       }
1242     }
1243   }
1244   NumExitBlocks = ExitBlocks.size();
1245 
1246   // Construct new function based on inputs/outputs & add allocas for all defs.
1247   Function *newFunction = constructFunction(inputs, outputs, header,
1248                                             newFuncRoot,
1249                                             codeReplacer, oldFunction,
1250                                             oldFunction->getParent());
1251 
1252   // Update the entry count of the function.
1253   if (BFI) {
1254     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1255     if (Count.hasValue())
1256       newFunction->setEntryCount(
1257           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1258     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1259   }
1260 
1261   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1262 
1263   moveCodeToFunction(newFunction);
1264 
1265   // Propagate personality info to the new function if there is one.
1266   if (oldFunction->hasPersonalityFn())
1267     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1268 
1269   // Update the branch weights for the exit block.
1270   if (BFI && NumExitBlocks > 1)
1271     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1272 
1273   // Loop over all of the PHI nodes in the header block, and change any
1274   // references to the old incoming edge to be the new incoming edge.
1275   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1276     PHINode *PN = cast<PHINode>(I);
1277     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1278       if (!Blocks.count(PN->getIncomingBlock(i)))
1279         PN->setIncomingBlock(i, newFuncRoot);
1280   }
1281 
1282   // Look at all successors of the codeReplacer block.  If any of these blocks
1283   // had PHI nodes in them, we need to update the "from" block to be the code
1284   // replacer, not the original block in the extracted region.
1285   for (BasicBlock *SuccBB : successors(codeReplacer)) {
1286     for (PHINode &PN : SuccBB->phis()) {
1287       Value *IncomingCodeReplacerVal = nullptr;
1288       SmallVector<unsigned, 2> IncomingValsToRemove;
1289       for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1290         BasicBlock *IncomingBB = PN.getIncomingBlock(I);
1291 
1292         // Ignore incoming values from outside of the extracted region.
1293         if (!Blocks.count(IncomingBB))
1294           continue;
1295 
1296         // Ensure that there is only one incoming value from codeReplacer.
1297         if (!IncomingCodeReplacerVal) {
1298           PN.setIncomingBlock(I, codeReplacer);
1299           IncomingCodeReplacerVal = PN.getIncomingValue(I);
1300         } else {
1301           assert(IncomingCodeReplacerVal == PN.getIncomingValue(I) &&
1302                  "PHI has two incompatbile incoming values from codeRepl");
1303           IncomingValsToRemove.push_back(I);
1304         }
1305       }
1306 
1307       for (unsigned I : reverse(IncomingValsToRemove))
1308         PN.removeIncomingValue(I, /*DeletePHIIfEmpty=*/false);
1309     }
1310   }
1311 
1312   // Erase debug info intrinsics. Variable updates within the new function are
1313   // invisible to debuggers. This could be improved by defining a DISubprogram
1314   // for the new function.
1315   for (BasicBlock &BB : *newFunction) {
1316     auto BlockIt = BB.begin();
1317     // Remove debug info intrinsics from the new function.
1318     while (BlockIt != BB.end()) {
1319       Instruction *Inst = &*BlockIt;
1320       ++BlockIt;
1321       if (isa<DbgInfoIntrinsic>(Inst))
1322         Inst->eraseFromParent();
1323     }
1324     // Remove debug info intrinsics which refer to values in the new function
1325     // from the old function.
1326     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1327     for (Instruction &I : BB)
1328       findDbgUsers(DbgUsers, &I);
1329     for (DbgVariableIntrinsic *DVI : DbgUsers)
1330       DVI->eraseFromParent();
1331   }
1332 
1333   LLVM_DEBUG(if (verifyFunction(*newFunction))
1334                  report_fatal_error("verifyFunction failed!"));
1335   return newFunction;
1336 }
1337