1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <map> 65 #include <set> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 using ProfileCount = Function::ProfileCount; 71 72 #define DEBUG_TYPE "code-extractor" 73 74 // Provide a command-line option to aggregate function arguments into a struct 75 // for functions produced by the code extractor. This is useful when converting 76 // extracted functions to pthread-based code, as only one argument (void*) can 77 // be passed in to pthread_create(). 78 static cl::opt<bool> 79 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 80 cl::desc("Aggregate arguments to code-extracted functions")); 81 82 /// Test whether a block is valid for extraction. 83 static bool isBlockValidForExtraction(const BasicBlock &BB, 84 const SetVector<BasicBlock *> &Result, 85 bool AllowVarArgs, bool AllowAlloca) { 86 // taking the address of a basic block moved to another function is illegal 87 if (BB.hasAddressTaken()) 88 return false; 89 90 // don't hoist code that uses another basicblock address, as it's likely to 91 // lead to unexpected behavior, like cross-function jumps 92 SmallPtrSet<User const *, 16> Visited; 93 SmallVector<User const *, 16> ToVisit; 94 95 for (Instruction const &Inst : BB) 96 ToVisit.push_back(&Inst); 97 98 while (!ToVisit.empty()) { 99 User const *Curr = ToVisit.pop_back_val(); 100 if (!Visited.insert(Curr).second) 101 continue; 102 if (isa<BlockAddress const>(Curr)) 103 return false; // even a reference to self is likely to be not compatible 104 105 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 106 continue; 107 108 for (auto const &U : Curr->operands()) { 109 if (auto *UU = dyn_cast<User>(U)) 110 ToVisit.push_back(UU); 111 } 112 } 113 114 // If explicitly requested, allow vastart and alloca. For invoke instructions 115 // verify that extraction is valid. 116 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 117 if (isa<AllocaInst>(I)) { 118 if (!AllowAlloca) 119 return false; 120 continue; 121 } 122 123 if (const auto *II = dyn_cast<InvokeInst>(I)) { 124 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 125 // must be a part of the subgraph which is being extracted. 126 if (auto *UBB = II->getUnwindDest()) 127 if (!Result.count(UBB)) 128 return false; 129 continue; 130 } 131 132 // All catch handlers of a catchswitch instruction as well as the unwind 133 // destination must be in the subgraph. 134 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 135 if (auto *UBB = CSI->getUnwindDest()) 136 if (!Result.count(UBB)) 137 return false; 138 for (auto *HBB : CSI->handlers()) 139 if (!Result.count(const_cast<BasicBlock*>(HBB))) 140 return false; 141 continue; 142 } 143 144 // Make sure that entire catch handler is within subgraph. It is sufficient 145 // to check that catch return's block is in the list. 146 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 147 for (const auto *U : CPI->users()) 148 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 149 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 150 return false; 151 continue; 152 } 153 154 // And do similar checks for cleanup handler - the entire handler must be 155 // in subgraph which is going to be extracted. For cleanup return should 156 // additionally check that the unwind destination is also in the subgraph. 157 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 158 for (const auto *U : CPI->users()) 159 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 160 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 161 return false; 162 continue; 163 } 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 165 if (auto *UBB = CRI->getUnwindDest()) 166 if (!Result.count(UBB)) 167 return false; 168 continue; 169 } 170 171 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 172 if (const Function *F = CI->getCalledFunction()) { 173 auto IID = F->getIntrinsicID(); 174 if (IID == Intrinsic::vastart) { 175 if (AllowVarArgs) 176 continue; 177 else 178 return false; 179 } 180 181 // Currently, we miscompile outlined copies of eh_typid_for. There are 182 // proposals for fixing this in llvm.org/PR39545. 183 if (IID == Intrinsic::eh_typeid_for) 184 return false; 185 } 186 } 187 } 188 189 return true; 190 } 191 192 /// Build a set of blocks to extract if the input blocks are viable. 193 static SetVector<BasicBlock *> 194 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 195 bool AllowVarArgs, bool AllowAlloca) { 196 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 197 SetVector<BasicBlock *> Result; 198 199 // Loop over the blocks, adding them to our set-vector, and aborting with an 200 // empty set if we encounter invalid blocks. 201 for (BasicBlock *BB : BBs) { 202 // If this block is dead, don't process it. 203 if (DT && !DT->isReachableFromEntry(BB)) 204 continue; 205 206 if (!Result.insert(BB)) 207 llvm_unreachable("Repeated basic blocks in extraction input"); 208 } 209 210 for (auto *BB : Result) { 211 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 212 return {}; 213 214 // Make sure that the first block is not a landing pad. 215 if (BB == Result.front()) { 216 if (BB->isEHPad()) { 217 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 218 return {}; 219 } 220 continue; 221 } 222 223 // All blocks other than the first must not have predecessors outside of 224 // the subgraph which is being extracted. 225 for (auto *PBB : predecessors(BB)) 226 if (!Result.count(PBB)) { 227 LLVM_DEBUG( 228 dbgs() << "No blocks in this region may have entries from " 229 "outside the region except for the first block!\n"); 230 return {}; 231 } 232 } 233 234 return Result; 235 } 236 237 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 238 bool AggregateArgs, BlockFrequencyInfo *BFI, 239 BranchProbabilityInfo *BPI, bool AllowVarArgs, 240 bool AllowAlloca, std::string Suffix) 241 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 242 BPI(BPI), AllowVarArgs(AllowVarArgs), 243 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 244 Suffix(Suffix) {} 245 246 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 247 BlockFrequencyInfo *BFI, 248 BranchProbabilityInfo *BPI, std::string Suffix) 249 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AllowVarArgs(false), 251 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 252 /* AllowVarArgs */ false, 253 /* AllowAlloca */ false)), 254 Suffix(Suffix) {} 255 256 /// definedInRegion - Return true if the specified value is defined in the 257 /// extracted region. 258 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 259 if (Instruction *I = dyn_cast<Instruction>(V)) 260 if (Blocks.count(I->getParent())) 261 return true; 262 return false; 263 } 264 265 /// definedInCaller - Return true if the specified value is defined in the 266 /// function being code extracted, but not in the region being extracted. 267 /// These values must be passed in as live-ins to the function. 268 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 269 if (isa<Argument>(V)) return true; 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (!Blocks.count(I->getParent())) 272 return true; 273 return false; 274 } 275 276 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 277 BasicBlock *CommonExitBlock = nullptr; 278 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 279 for (auto *Succ : successors(Block)) { 280 // Internal edges, ok. 281 if (Blocks.count(Succ)) 282 continue; 283 if (!CommonExitBlock) { 284 CommonExitBlock = Succ; 285 continue; 286 } 287 if (CommonExitBlock == Succ) 288 continue; 289 290 return true; 291 } 292 return false; 293 }; 294 295 if (any_of(Blocks, hasNonCommonExitSucc)) 296 return nullptr; 297 298 return CommonExitBlock; 299 } 300 301 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 302 Instruction *Addr) const { 303 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 304 Function *Func = (*Blocks.begin())->getParent(); 305 for (BasicBlock &BB : *Func) { 306 if (Blocks.count(&BB)) 307 continue; 308 for (Instruction &II : BB) { 309 if (isa<DbgInfoIntrinsic>(II)) 310 continue; 311 312 unsigned Opcode = II.getOpcode(); 313 Value *MemAddr = nullptr; 314 switch (Opcode) { 315 case Instruction::Store: 316 case Instruction::Load: { 317 if (Opcode == Instruction::Store) { 318 StoreInst *SI = cast<StoreInst>(&II); 319 MemAddr = SI->getPointerOperand(); 320 } else { 321 LoadInst *LI = cast<LoadInst>(&II); 322 MemAddr = LI->getPointerOperand(); 323 } 324 // Global variable can not be aliased with locals. 325 if (dyn_cast<Constant>(MemAddr)) 326 break; 327 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 328 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 329 return false; 330 break; 331 } 332 default: { 333 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 334 if (IntrInst) { 335 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 336 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 337 break; 338 return false; 339 } 340 // Treat all the other cases conservatively if it has side effects. 341 if (II.mayHaveSideEffects()) 342 return false; 343 } 344 } 345 } 346 } 347 348 return true; 349 } 350 351 BasicBlock * 352 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 353 BasicBlock *SinglePredFromOutlineRegion = nullptr; 354 assert(!Blocks.count(CommonExitBlock) && 355 "Expect a block outside the region!"); 356 for (auto *Pred : predecessors(CommonExitBlock)) { 357 if (!Blocks.count(Pred)) 358 continue; 359 if (!SinglePredFromOutlineRegion) { 360 SinglePredFromOutlineRegion = Pred; 361 } else if (SinglePredFromOutlineRegion != Pred) { 362 SinglePredFromOutlineRegion = nullptr; 363 break; 364 } 365 } 366 367 if (SinglePredFromOutlineRegion) 368 return SinglePredFromOutlineRegion; 369 370 #ifndef NDEBUG 371 auto getFirstPHI = [](BasicBlock *BB) { 372 BasicBlock::iterator I = BB->begin(); 373 PHINode *FirstPhi = nullptr; 374 while (I != BB->end()) { 375 PHINode *Phi = dyn_cast<PHINode>(I); 376 if (!Phi) 377 break; 378 if (!FirstPhi) { 379 FirstPhi = Phi; 380 break; 381 } 382 } 383 return FirstPhi; 384 }; 385 // If there are any phi nodes, the single pred either exists or has already 386 // be created before code extraction. 387 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 388 #endif 389 390 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 391 CommonExitBlock->getFirstNonPHI()->getIterator()); 392 393 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 394 PI != PE;) { 395 BasicBlock *Pred = *PI++; 396 if (Blocks.count(Pred)) 397 continue; 398 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 399 } 400 // Now add the old exit block to the outline region. 401 Blocks.insert(CommonExitBlock); 402 return CommonExitBlock; 403 } 404 405 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 406 BasicBlock *&ExitBlock) const { 407 Function *Func = (*Blocks.begin())->getParent(); 408 ExitBlock = getCommonExitBlock(Blocks); 409 410 for (BasicBlock &BB : *Func) { 411 if (Blocks.count(&BB)) 412 continue; 413 for (Instruction &II : BB) { 414 auto *AI = dyn_cast<AllocaInst>(&II); 415 if (!AI) 416 continue; 417 418 // Find the pair of life time markers for address 'Addr' that are either 419 // defined inside the outline region or can legally be shrinkwrapped into 420 // the outline region. If there are not other untracked uses of the 421 // address, return the pair of markers if found; otherwise return a pair 422 // of nullptr. 423 auto GetLifeTimeMarkers = 424 [&](Instruction *Addr, bool &SinkLifeStart, 425 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 426 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 427 428 for (User *U : Addr->users()) { 429 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 430 if (IntrInst) { 431 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 432 // Do not handle the case where AI has multiple start markers. 433 if (LifeStart) 434 return std::make_pair<Instruction *>(nullptr, nullptr); 435 LifeStart = IntrInst; 436 } 437 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 438 if (LifeEnd) 439 return std::make_pair<Instruction *>(nullptr, nullptr); 440 LifeEnd = IntrInst; 441 } 442 continue; 443 } 444 // Find untracked uses of the address, bail. 445 if (!definedInRegion(Blocks, U)) 446 return std::make_pair<Instruction *>(nullptr, nullptr); 447 } 448 449 if (!LifeStart || !LifeEnd) 450 return std::make_pair<Instruction *>(nullptr, nullptr); 451 452 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 453 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 454 // Do legality Check. 455 if ((SinkLifeStart || HoistLifeEnd) && 456 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 457 return std::make_pair<Instruction *>(nullptr, nullptr); 458 459 // Check to see if we have a place to do hoisting, if not, bail. 460 if (HoistLifeEnd && !ExitBlock) 461 return std::make_pair<Instruction *>(nullptr, nullptr); 462 463 return std::make_pair(LifeStart, LifeEnd); 464 }; 465 466 bool SinkLifeStart = false, HoistLifeEnd = false; 467 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 468 469 if (Markers.first) { 470 if (SinkLifeStart) 471 SinkCands.insert(Markers.first); 472 SinkCands.insert(AI); 473 if (HoistLifeEnd) 474 HoistCands.insert(Markers.second); 475 continue; 476 } 477 478 // Follow the bitcast. 479 Instruction *MarkerAddr = nullptr; 480 for (User *U : AI->users()) { 481 if (U->stripInBoundsConstantOffsets() == AI) { 482 SinkLifeStart = false; 483 HoistLifeEnd = false; 484 Instruction *Bitcast = cast<Instruction>(U); 485 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 486 if (Markers.first) { 487 MarkerAddr = Bitcast; 488 continue; 489 } 490 } 491 492 // Found unknown use of AI. 493 if (!definedInRegion(Blocks, U)) { 494 MarkerAddr = nullptr; 495 break; 496 } 497 } 498 499 if (MarkerAddr) { 500 if (SinkLifeStart) 501 SinkCands.insert(Markers.first); 502 if (!definedInRegion(Blocks, MarkerAddr)) 503 SinkCands.insert(MarkerAddr); 504 SinkCands.insert(AI); 505 if (HoistLifeEnd) 506 HoistCands.insert(Markers.second); 507 } 508 } 509 } 510 } 511 512 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 513 const ValueSet &SinkCands) const { 514 for (BasicBlock *BB : Blocks) { 515 // If a used value is defined outside the region, it's an input. If an 516 // instruction is used outside the region, it's an output. 517 for (Instruction &II : *BB) { 518 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 519 ++OI) { 520 Value *V = *OI; 521 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 522 Inputs.insert(V); 523 } 524 525 for (User *U : II.users()) 526 if (!definedInRegion(Blocks, U)) { 527 Outputs.insert(&II); 528 break; 529 } 530 } 531 } 532 } 533 534 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 535 /// region, we need to split the entry block of the region so that the PHI node 536 /// is easier to deal with. 537 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 538 unsigned NumPredsFromRegion = 0; 539 unsigned NumPredsOutsideRegion = 0; 540 541 if (Header != &Header->getParent()->getEntryBlock()) { 542 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 543 if (!PN) return; // No PHI nodes. 544 545 // If the header node contains any PHI nodes, check to see if there is more 546 // than one entry from outside the region. If so, we need to sever the 547 // header block into two. 548 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 549 if (Blocks.count(PN->getIncomingBlock(i))) 550 ++NumPredsFromRegion; 551 else 552 ++NumPredsOutsideRegion; 553 554 // If there is one (or fewer) predecessor from outside the region, we don't 555 // need to do anything special. 556 if (NumPredsOutsideRegion <= 1) return; 557 } 558 559 // Otherwise, we need to split the header block into two pieces: one 560 // containing PHI nodes merging values from outside of the region, and a 561 // second that contains all of the code for the block and merges back any 562 // incoming values from inside of the region. 563 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 564 565 // We only want to code extract the second block now, and it becomes the new 566 // header of the region. 567 BasicBlock *OldPred = Header; 568 Blocks.remove(OldPred); 569 Blocks.insert(NewBB); 570 Header = NewBB; 571 572 // Okay, now we need to adjust the PHI nodes and any branches from within the 573 // region to go to the new header block instead of the old header block. 574 if (NumPredsFromRegion) { 575 PHINode *PN = cast<PHINode>(OldPred->begin()); 576 // Loop over all of the predecessors of OldPred that are in the region, 577 // changing them to branch to NewBB instead. 578 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 579 if (Blocks.count(PN->getIncomingBlock(i))) { 580 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 581 TI->replaceUsesOfWith(OldPred, NewBB); 582 } 583 584 // Okay, everything within the region is now branching to the right block, we 585 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 586 BasicBlock::iterator AfterPHIs; 587 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 588 PHINode *PN = cast<PHINode>(AfterPHIs); 589 // Create a new PHI node in the new region, which has an incoming value 590 // from OldPred of PN. 591 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 592 PN->getName() + ".ce", &NewBB->front()); 593 PN->replaceAllUsesWith(NewPN); 594 NewPN->addIncoming(PN, OldPred); 595 596 // Loop over all of the incoming value in PN, moving them to NewPN if they 597 // are from the extracted region. 598 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 599 if (Blocks.count(PN->getIncomingBlock(i))) { 600 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 601 PN->removeIncomingValue(i); 602 --i; 603 } 604 } 605 } 606 } 607 } 608 609 void CodeExtractor::splitReturnBlocks() { 610 for (BasicBlock *Block : Blocks) 611 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 612 BasicBlock *New = 613 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 614 if (DT) { 615 // Old dominates New. New node dominates all other nodes dominated 616 // by Old. 617 DomTreeNode *OldNode = DT->getNode(Block); 618 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 619 OldNode->end()); 620 621 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 622 623 for (DomTreeNode *I : Children) 624 DT->changeImmediateDominator(I, NewNode); 625 } 626 } 627 } 628 629 /// constructFunction - make a function based on inputs and outputs, as follows: 630 /// f(in0, ..., inN, out0, ..., outN) 631 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 632 const ValueSet &outputs, 633 BasicBlock *header, 634 BasicBlock *newRootNode, 635 BasicBlock *newHeader, 636 Function *oldFunction, 637 Module *M) { 638 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 639 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 640 641 // This function returns unsigned, outputs will go back by reference. 642 switch (NumExitBlocks) { 643 case 0: 644 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 645 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 646 default: RetTy = Type::getInt16Ty(header->getContext()); break; 647 } 648 649 std::vector<Type *> paramTy; 650 651 // Add the types of the input values to the function's argument list 652 for (Value *value : inputs) { 653 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 654 paramTy.push_back(value->getType()); 655 } 656 657 // Add the types of the output values to the function's argument list. 658 for (Value *output : outputs) { 659 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 660 if (AggregateArgs) 661 paramTy.push_back(output->getType()); 662 else 663 paramTy.push_back(PointerType::getUnqual(output->getType())); 664 } 665 666 LLVM_DEBUG({ 667 dbgs() << "Function type: " << *RetTy << " f("; 668 for (Type *i : paramTy) 669 dbgs() << *i << ", "; 670 dbgs() << ")\n"; 671 }); 672 673 StructType *StructTy; 674 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 675 StructTy = StructType::get(M->getContext(), paramTy); 676 paramTy.clear(); 677 paramTy.push_back(PointerType::getUnqual(StructTy)); 678 } 679 FunctionType *funcType = 680 FunctionType::get(RetTy, paramTy, 681 AllowVarArgs && oldFunction->isVarArg()); 682 683 std::string SuffixToUse = 684 Suffix.empty() 685 ? (header->getName().empty() ? "extracted" : header->getName().str()) 686 : Suffix; 687 // Create the new function 688 Function *newFunction = Function::Create( 689 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 690 oldFunction->getName() + "." + SuffixToUse, M); 691 // If the old function is no-throw, so is the new one. 692 if (oldFunction->doesNotThrow()) 693 newFunction->setDoesNotThrow(); 694 695 // Inherit the uwtable attribute if we need to. 696 if (oldFunction->hasUWTable()) 697 newFunction->setHasUWTable(); 698 699 // Inherit all of the target dependent attributes and white-listed 700 // target independent attributes. 701 // (e.g. If the extracted region contains a call to an x86.sse 702 // instruction we need to make sure that the extracted region has the 703 // "target-features" attribute allowing it to be lowered. 704 // FIXME: This should be changed to check to see if a specific 705 // attribute can not be inherited. 706 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 707 if (Attr.isStringAttribute()) { 708 if (Attr.getKindAsString() == "thunk") 709 continue; 710 } else 711 switch (Attr.getKindAsEnum()) { 712 // Those attributes cannot be propagated safely. Explicitly list them 713 // here so we get a warning if new attributes are added. This list also 714 // includes non-function attributes. 715 case Attribute::Alignment: 716 case Attribute::AllocSize: 717 case Attribute::ArgMemOnly: 718 case Attribute::Builtin: 719 case Attribute::ByVal: 720 case Attribute::Convergent: 721 case Attribute::Dereferenceable: 722 case Attribute::DereferenceableOrNull: 723 case Attribute::InAlloca: 724 case Attribute::InReg: 725 case Attribute::InaccessibleMemOnly: 726 case Attribute::InaccessibleMemOrArgMemOnly: 727 case Attribute::JumpTable: 728 case Attribute::Naked: 729 case Attribute::Nest: 730 case Attribute::NoAlias: 731 case Attribute::NoBuiltin: 732 case Attribute::NoCapture: 733 case Attribute::NoReturn: 734 case Attribute::None: 735 case Attribute::NonNull: 736 case Attribute::ReadNone: 737 case Attribute::ReadOnly: 738 case Attribute::Returned: 739 case Attribute::ReturnsTwice: 740 case Attribute::SExt: 741 case Attribute::Speculatable: 742 case Attribute::StackAlignment: 743 case Attribute::StructRet: 744 case Attribute::SwiftError: 745 case Attribute::SwiftSelf: 746 case Attribute::WriteOnly: 747 case Attribute::ZExt: 748 case Attribute::EndAttrKinds: 749 continue; 750 // Those attributes should be safe to propagate to the extracted function. 751 case Attribute::AlwaysInline: 752 case Attribute::Cold: 753 case Attribute::NoRecurse: 754 case Attribute::InlineHint: 755 case Attribute::MinSize: 756 case Attribute::NoDuplicate: 757 case Attribute::NoImplicitFloat: 758 case Attribute::NoInline: 759 case Attribute::NonLazyBind: 760 case Attribute::NoRedZone: 761 case Attribute::NoUnwind: 762 case Attribute::OptForFuzzing: 763 case Attribute::OptimizeNone: 764 case Attribute::OptimizeForSize: 765 case Attribute::SafeStack: 766 case Attribute::ShadowCallStack: 767 case Attribute::SanitizeAddress: 768 case Attribute::SanitizeMemory: 769 case Attribute::SanitizeThread: 770 case Attribute::SanitizeHWAddress: 771 case Attribute::SpeculativeLoadHardening: 772 case Attribute::StackProtect: 773 case Attribute::StackProtectReq: 774 case Attribute::StackProtectStrong: 775 case Attribute::StrictFP: 776 case Attribute::UWTable: 777 case Attribute::NoCfCheck: 778 break; 779 } 780 781 newFunction->addFnAttr(Attr); 782 } 783 newFunction->getBasicBlockList().push_back(newRootNode); 784 785 // Create an iterator to name all of the arguments we inserted. 786 Function::arg_iterator AI = newFunction->arg_begin(); 787 788 // Rewrite all users of the inputs in the extracted region to use the 789 // arguments (or appropriate addressing into struct) instead. 790 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 791 Value *RewriteVal; 792 if (AggregateArgs) { 793 Value *Idx[2]; 794 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 795 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 796 Instruction *TI = newFunction->begin()->getTerminator(); 797 GetElementPtrInst *GEP = GetElementPtrInst::Create( 798 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 799 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 800 } else 801 RewriteVal = &*AI++; 802 803 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 804 for (User *use : Users) 805 if (Instruction *inst = dyn_cast<Instruction>(use)) 806 if (Blocks.count(inst->getParent())) 807 inst->replaceUsesOfWith(inputs[i], RewriteVal); 808 } 809 810 // Set names for input and output arguments. 811 if (!AggregateArgs) { 812 AI = newFunction->arg_begin(); 813 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 814 AI->setName(inputs[i]->getName()); 815 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 816 AI->setName(outputs[i]->getName()+".out"); 817 } 818 819 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 820 // within the new function. This must be done before we lose track of which 821 // blocks were originally in the code region. 822 std::vector<User *> Users(header->user_begin(), header->user_end()); 823 for (unsigned i = 0, e = Users.size(); i != e; ++i) 824 // The BasicBlock which contains the branch is not in the region 825 // modify the branch target to a new block 826 if (Instruction *I = dyn_cast<Instruction>(Users[i])) 827 if (I->isTerminator() && !Blocks.count(I->getParent()) && 828 I->getParent()->getParent() == oldFunction) 829 I->replaceUsesOfWith(header, newHeader); 830 831 return newFunction; 832 } 833 834 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 835 /// the call instruction, splitting any PHI nodes in the header block as 836 /// necessary. 837 void CodeExtractor:: 838 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 839 ValueSet &inputs, ValueSet &outputs) { 840 // Emit a call to the new function, passing in: *pointer to struct (if 841 // aggregating parameters), or plan inputs and allocated memory for outputs 842 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 843 844 Module *M = newFunction->getParent(); 845 LLVMContext &Context = M->getContext(); 846 const DataLayout &DL = M->getDataLayout(); 847 848 // Add inputs as params, or to be filled into the struct 849 for (Value *input : inputs) 850 if (AggregateArgs) 851 StructValues.push_back(input); 852 else 853 params.push_back(input); 854 855 // Create allocas for the outputs 856 for (Value *output : outputs) { 857 if (AggregateArgs) { 858 StructValues.push_back(output); 859 } else { 860 AllocaInst *alloca = 861 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 862 nullptr, output->getName() + ".loc", 863 &codeReplacer->getParent()->front().front()); 864 ReloadOutputs.push_back(alloca); 865 params.push_back(alloca); 866 } 867 } 868 869 StructType *StructArgTy = nullptr; 870 AllocaInst *Struct = nullptr; 871 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 872 std::vector<Type *> ArgTypes; 873 for (ValueSet::iterator v = StructValues.begin(), 874 ve = StructValues.end(); v != ve; ++v) 875 ArgTypes.push_back((*v)->getType()); 876 877 // Allocate a struct at the beginning of this function 878 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 879 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 880 "structArg", 881 &codeReplacer->getParent()->front().front()); 882 params.push_back(Struct); 883 884 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 885 Value *Idx[2]; 886 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 887 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 888 GetElementPtrInst *GEP = GetElementPtrInst::Create( 889 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 890 codeReplacer->getInstList().push_back(GEP); 891 StoreInst *SI = new StoreInst(StructValues[i], GEP); 892 codeReplacer->getInstList().push_back(SI); 893 } 894 } 895 896 // Emit the call to the function 897 CallInst *call = CallInst::Create(newFunction, params, 898 NumExitBlocks > 1 ? "targetBlock" : ""); 899 // Add debug location to the new call, if the original function has debug 900 // info. In that case, the terminator of the entry block of the extracted 901 // function contains the first debug location of the extracted function, 902 // set in extractCodeRegion. 903 if (codeReplacer->getParent()->getSubprogram()) { 904 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 905 call->setDebugLoc(DL); 906 } 907 codeReplacer->getInstList().push_back(call); 908 909 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 910 unsigned FirstOut = inputs.size(); 911 if (!AggregateArgs) 912 std::advance(OutputArgBegin, inputs.size()); 913 914 // Reload the outputs passed in by reference. 915 Function::arg_iterator OAI = OutputArgBegin; 916 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 917 Value *Output = nullptr; 918 if (AggregateArgs) { 919 Value *Idx[2]; 920 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 921 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 922 GetElementPtrInst *GEP = GetElementPtrInst::Create( 923 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 924 codeReplacer->getInstList().push_back(GEP); 925 Output = GEP; 926 } else { 927 Output = ReloadOutputs[i]; 928 } 929 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 930 Reloads.push_back(load); 931 codeReplacer->getInstList().push_back(load); 932 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 933 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 934 Instruction *inst = cast<Instruction>(Users[u]); 935 if (!Blocks.count(inst->getParent())) 936 inst->replaceUsesOfWith(outputs[i], load); 937 } 938 939 // Store to argument right after the definition of output value. 940 auto *OutI = dyn_cast<Instruction>(outputs[i]); 941 if (!OutI) 942 continue; 943 944 // Find proper insertion point. 945 Instruction *InsertPt; 946 // In case OutI is an invoke, we insert the store at the beginning in the 947 // 'normal destination' BB. Otherwise we insert the store right after OutI. 948 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 949 InsertPt = InvokeI->getNormalDest()->getFirstNonPHI(); 950 else 951 InsertPt = OutI->getNextNode(); 952 953 // Let's assume that there is no other guy interleave non-PHI in PHIs. 954 if (isa<PHINode>(InsertPt)) 955 InsertPt = InsertPt->getParent()->getFirstNonPHI(); 956 957 assert(OAI != newFunction->arg_end() && 958 "Number of output arguments should match " 959 "the amount of defined values"); 960 if (AggregateArgs) { 961 Value *Idx[2]; 962 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 963 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 964 GetElementPtrInst *GEP = GetElementPtrInst::Create( 965 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); 966 new StoreInst(outputs[i], GEP, InsertPt); 967 // Since there should be only one struct argument aggregating 968 // all the output values, we shouldn't increment OAI, which always 969 // points to the struct argument, in this case. 970 } else { 971 new StoreInst(outputs[i], &*OAI, InsertPt); 972 ++OAI; 973 } 974 } 975 976 // Now we can emit a switch statement using the call as a value. 977 SwitchInst *TheSwitch = 978 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 979 codeReplacer, 0, codeReplacer); 980 981 // Since there may be multiple exits from the original region, make the new 982 // function return an unsigned, switch on that number. This loop iterates 983 // over all of the blocks in the extracted region, updating any terminator 984 // instructions in the to-be-extracted region that branch to blocks that are 985 // not in the region to be extracted. 986 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 987 988 unsigned switchVal = 0; 989 for (BasicBlock *Block : Blocks) { 990 Instruction *TI = Block->getTerminator(); 991 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 992 if (!Blocks.count(TI->getSuccessor(i))) { 993 BasicBlock *OldTarget = TI->getSuccessor(i); 994 // add a new basic block which returns the appropriate value 995 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 996 if (!NewTarget) { 997 // If we don't already have an exit stub for this non-extracted 998 // destination, create one now! 999 NewTarget = BasicBlock::Create(Context, 1000 OldTarget->getName() + ".exitStub", 1001 newFunction); 1002 unsigned SuccNum = switchVal++; 1003 1004 Value *brVal = nullptr; 1005 switch (NumExitBlocks) { 1006 case 0: 1007 case 1: break; // No value needed. 1008 case 2: // Conditional branch, return a bool 1009 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1010 break; 1011 default: 1012 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1013 break; 1014 } 1015 1016 ReturnInst::Create(Context, brVal, NewTarget); 1017 1018 // Update the switch instruction. 1019 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1020 SuccNum), 1021 OldTarget); 1022 } 1023 1024 // rewrite the original branch instruction with this new target 1025 TI->setSuccessor(i, NewTarget); 1026 } 1027 } 1028 1029 // Now that we've done the deed, simplify the switch instruction. 1030 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1031 switch (NumExitBlocks) { 1032 case 0: 1033 // There are no successors (the block containing the switch itself), which 1034 // means that previously this was the last part of the function, and hence 1035 // this should be rewritten as a `ret' 1036 1037 // Check if the function should return a value 1038 if (OldFnRetTy->isVoidTy()) { 1039 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1040 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1041 // return what we have 1042 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1043 } else { 1044 // Otherwise we must have code extracted an unwind or something, just 1045 // return whatever we want. 1046 ReturnInst::Create(Context, 1047 Constant::getNullValue(OldFnRetTy), TheSwitch); 1048 } 1049 1050 TheSwitch->eraseFromParent(); 1051 break; 1052 case 1: 1053 // Only a single destination, change the switch into an unconditional 1054 // branch. 1055 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1056 TheSwitch->eraseFromParent(); 1057 break; 1058 case 2: 1059 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1060 call, TheSwitch); 1061 TheSwitch->eraseFromParent(); 1062 break; 1063 default: 1064 // Otherwise, make the default destination of the switch instruction be one 1065 // of the other successors. 1066 TheSwitch->setCondition(call); 1067 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1068 // Remove redundant case 1069 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1070 break; 1071 } 1072 } 1073 1074 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1075 Function *oldFunc = (*Blocks.begin())->getParent(); 1076 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1077 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1078 1079 for (BasicBlock *Block : Blocks) { 1080 // Delete the basic block from the old function, and the list of blocks 1081 oldBlocks.remove(Block); 1082 1083 // Insert this basic block into the new function 1084 newBlocks.push_back(Block); 1085 } 1086 } 1087 1088 void CodeExtractor::calculateNewCallTerminatorWeights( 1089 BasicBlock *CodeReplacer, 1090 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1091 BranchProbabilityInfo *BPI) { 1092 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1093 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1094 1095 // Update the branch weights for the exit block. 1096 Instruction *TI = CodeReplacer->getTerminator(); 1097 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1098 1099 // Block Frequency distribution with dummy node. 1100 Distribution BranchDist; 1101 1102 // Add each of the frequencies of the successors. 1103 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1104 BlockNode ExitNode(i); 1105 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1106 if (ExitFreq != 0) 1107 BranchDist.addExit(ExitNode, ExitFreq); 1108 else 1109 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1110 } 1111 1112 // Check for no total weight. 1113 if (BranchDist.Total == 0) 1114 return; 1115 1116 // Normalize the distribution so that they can fit in unsigned. 1117 BranchDist.normalize(); 1118 1119 // Create normalized branch weights and set the metadata. 1120 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1121 const auto &Weight = BranchDist.Weights[I]; 1122 1123 // Get the weight and update the current BFI. 1124 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1125 BranchProbability BP(Weight.Amount, BranchDist.Total); 1126 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1127 } 1128 TI->setMetadata( 1129 LLVMContext::MD_prof, 1130 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1131 } 1132 1133 Function *CodeExtractor::extractCodeRegion() { 1134 if (!isEligible()) 1135 return nullptr; 1136 1137 // Assumption: this is a single-entry code region, and the header is the first 1138 // block in the region. 1139 BasicBlock *header = *Blocks.begin(); 1140 Function *oldFunction = header->getParent(); 1141 1142 // For functions with varargs, check that varargs handling is only done in the 1143 // outlined function, i.e vastart and vaend are only used in outlined blocks. 1144 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { 1145 auto containsVarArgIntrinsic = [](Instruction &I) { 1146 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1147 if (const Function *F = CI->getCalledFunction()) 1148 return F->getIntrinsicID() == Intrinsic::vastart || 1149 F->getIntrinsicID() == Intrinsic::vaend; 1150 return false; 1151 }; 1152 1153 for (auto &BB : *oldFunction) { 1154 if (Blocks.count(&BB)) 1155 continue; 1156 if (llvm::any_of(BB, containsVarArgIntrinsic)) 1157 return nullptr; 1158 } 1159 } 1160 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1161 BasicBlock *CommonExit = nullptr; 1162 1163 // Calculate the entry frequency of the new function before we change the root 1164 // block. 1165 BlockFrequency EntryFreq; 1166 if (BFI) { 1167 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1168 for (BasicBlock *Pred : predecessors(header)) { 1169 if (Blocks.count(Pred)) 1170 continue; 1171 EntryFreq += 1172 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1173 } 1174 } 1175 1176 // If we have to split PHI nodes or the entry block, do so now. 1177 severSplitPHINodes(header); 1178 1179 // If we have any return instructions in the region, split those blocks so 1180 // that the return is not in the region. 1181 splitReturnBlocks(); 1182 1183 // This takes place of the original loop 1184 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1185 "codeRepl", oldFunction, 1186 header); 1187 1188 // The new function needs a root node because other nodes can branch to the 1189 // head of the region, but the entry node of a function cannot have preds. 1190 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1191 "newFuncRoot"); 1192 auto *BranchI = BranchInst::Create(header); 1193 // If the original function has debug info, we have to add a debug location 1194 // to the new branch instruction from the artificial entry block. 1195 // We use the debug location of the first instruction in the extracted 1196 // blocks, as there is no other equivalent line in the source code. 1197 if (oldFunction->getSubprogram()) { 1198 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1199 return any_of(*BB, [&BranchI](const Instruction &I) { 1200 if (!I.getDebugLoc()) 1201 return false; 1202 BranchI->setDebugLoc(I.getDebugLoc()); 1203 return true; 1204 }); 1205 }); 1206 } 1207 newFuncRoot->getInstList().push_back(BranchI); 1208 1209 findAllocas(SinkingCands, HoistingCands, CommonExit); 1210 assert(HoistingCands.empty() || CommonExit); 1211 1212 // Find inputs to, outputs from the code region. 1213 findInputsOutputs(inputs, outputs, SinkingCands); 1214 1215 // Now sink all instructions which only have non-phi uses inside the region 1216 for (auto *II : SinkingCands) 1217 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1218 newFuncRoot->getFirstInsertionPt()); 1219 1220 if (!HoistingCands.empty()) { 1221 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1222 Instruction *TI = HoistToBlock->getTerminator(); 1223 for (auto *II : HoistingCands) 1224 cast<Instruction>(II)->moveBefore(TI); 1225 } 1226 1227 // Calculate the exit blocks for the extracted region and the total exit 1228 // weights for each of those blocks. 1229 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1230 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1231 for (BasicBlock *Block : Blocks) { 1232 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1233 ++SI) { 1234 if (!Blocks.count(*SI)) { 1235 // Update the branch weight for this successor. 1236 if (BFI) { 1237 BlockFrequency &BF = ExitWeights[*SI]; 1238 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1239 } 1240 ExitBlocks.insert(*SI); 1241 } 1242 } 1243 } 1244 NumExitBlocks = ExitBlocks.size(); 1245 1246 // Construct new function based on inputs/outputs & add allocas for all defs. 1247 Function *newFunction = constructFunction(inputs, outputs, header, 1248 newFuncRoot, 1249 codeReplacer, oldFunction, 1250 oldFunction->getParent()); 1251 1252 // Update the entry count of the function. 1253 if (BFI) { 1254 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1255 if (Count.hasValue()) 1256 newFunction->setEntryCount( 1257 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1258 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1259 } 1260 1261 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1262 1263 moveCodeToFunction(newFunction); 1264 1265 // Propagate personality info to the new function if there is one. 1266 if (oldFunction->hasPersonalityFn()) 1267 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1268 1269 // Update the branch weights for the exit block. 1270 if (BFI && NumExitBlocks > 1) 1271 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1272 1273 // Loop over all of the PHI nodes in the header block, and change any 1274 // references to the old incoming edge to be the new incoming edge. 1275 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1276 PHINode *PN = cast<PHINode>(I); 1277 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1278 if (!Blocks.count(PN->getIncomingBlock(i))) 1279 PN->setIncomingBlock(i, newFuncRoot); 1280 } 1281 1282 // Look at all successors of the codeReplacer block. If any of these blocks 1283 // had PHI nodes in them, we need to update the "from" block to be the code 1284 // replacer, not the original block in the extracted region. 1285 for (BasicBlock *SuccBB : successors(codeReplacer)) { 1286 for (PHINode &PN : SuccBB->phis()) { 1287 Value *IncomingCodeReplacerVal = nullptr; 1288 SmallVector<unsigned, 2> IncomingValsToRemove; 1289 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { 1290 BasicBlock *IncomingBB = PN.getIncomingBlock(I); 1291 1292 // Ignore incoming values from outside of the extracted region. 1293 if (!Blocks.count(IncomingBB)) 1294 continue; 1295 1296 // Ensure that there is only one incoming value from codeReplacer. 1297 if (!IncomingCodeReplacerVal) { 1298 PN.setIncomingBlock(I, codeReplacer); 1299 IncomingCodeReplacerVal = PN.getIncomingValue(I); 1300 } else { 1301 assert(IncomingCodeReplacerVal == PN.getIncomingValue(I) && 1302 "PHI has two incompatbile incoming values from codeRepl"); 1303 IncomingValsToRemove.push_back(I); 1304 } 1305 } 1306 1307 for (unsigned I : reverse(IncomingValsToRemove)) 1308 PN.removeIncomingValue(I, /*DeletePHIIfEmpty=*/false); 1309 } 1310 } 1311 1312 // Erase debug info intrinsics. Variable updates within the new function are 1313 // invisible to debuggers. This could be improved by defining a DISubprogram 1314 // for the new function. 1315 for (BasicBlock &BB : *newFunction) { 1316 auto BlockIt = BB.begin(); 1317 // Remove debug info intrinsics from the new function. 1318 while (BlockIt != BB.end()) { 1319 Instruction *Inst = &*BlockIt; 1320 ++BlockIt; 1321 if (isa<DbgInfoIntrinsic>(Inst)) 1322 Inst->eraseFromParent(); 1323 } 1324 // Remove debug info intrinsics which refer to values in the new function 1325 // from the old function. 1326 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1327 for (Instruction &I : BB) 1328 findDbgUsers(DbgUsers, &I); 1329 for (DbgVariableIntrinsic *DVI : DbgUsers) 1330 DVI->eraseFromParent(); 1331 } 1332 1333 LLVM_DEBUG(if (verifyFunction(*newFunction)) 1334 report_fatal_error("verifyFunction failed!")); 1335 return newFunction; 1336 } 1337