1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <map> 65 #include <set> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 using ProfileCount = Function::ProfileCount; 71 72 #define DEBUG_TYPE "code-extractor" 73 74 // Provide a command-line option to aggregate function arguments into a struct 75 // for functions produced by the code extractor. This is useful when converting 76 // extracted functions to pthread-based code, as only one argument (void*) can 77 // be passed in to pthread_create(). 78 static cl::opt<bool> 79 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 80 cl::desc("Aggregate arguments to code-extracted functions")); 81 82 /// Test whether a block is valid for extraction. 83 static bool isBlockValidForExtraction(const BasicBlock &BB, 84 const SetVector<BasicBlock *> &Result, 85 bool AllowVarArgs, bool AllowAlloca) { 86 // taking the address of a basic block moved to another function is illegal 87 if (BB.hasAddressTaken()) 88 return false; 89 90 // don't hoist code that uses another basicblock address, as it's likely to 91 // lead to unexpected behavior, like cross-function jumps 92 SmallPtrSet<User const *, 16> Visited; 93 SmallVector<User const *, 16> ToVisit; 94 95 for (Instruction const &Inst : BB) 96 ToVisit.push_back(&Inst); 97 98 while (!ToVisit.empty()) { 99 User const *Curr = ToVisit.pop_back_val(); 100 if (!Visited.insert(Curr).second) 101 continue; 102 if (isa<BlockAddress const>(Curr)) 103 return false; // even a reference to self is likely to be not compatible 104 105 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 106 continue; 107 108 for (auto const &U : Curr->operands()) { 109 if (auto *UU = dyn_cast<User>(U)) 110 ToVisit.push_back(UU); 111 } 112 } 113 114 // If explicitly requested, allow vastart and alloca. For invoke instructions 115 // verify that extraction is valid. 116 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 117 if (isa<AllocaInst>(I)) { 118 if (!AllowAlloca) 119 return false; 120 continue; 121 } 122 123 if (const auto *II = dyn_cast<InvokeInst>(I)) { 124 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 125 // must be a part of the subgraph which is being extracted. 126 if (auto *UBB = II->getUnwindDest()) 127 if (!Result.count(UBB)) 128 return false; 129 continue; 130 } 131 132 // All catch handlers of a catchswitch instruction as well as the unwind 133 // destination must be in the subgraph. 134 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 135 if (auto *UBB = CSI->getUnwindDest()) 136 if (!Result.count(UBB)) 137 return false; 138 for (auto *HBB : CSI->handlers()) 139 if (!Result.count(const_cast<BasicBlock*>(HBB))) 140 return false; 141 continue; 142 } 143 144 // Make sure that entire catch handler is within subgraph. It is sufficient 145 // to check that catch return's block is in the list. 146 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 147 for (const auto *U : CPI->users()) 148 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 149 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 150 return false; 151 continue; 152 } 153 154 // And do similar checks for cleanup handler - the entire handler must be 155 // in subgraph which is going to be extracted. For cleanup return should 156 // additionally check that the unwind destination is also in the subgraph. 157 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 158 for (const auto *U : CPI->users()) 159 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 160 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 161 return false; 162 continue; 163 } 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 165 if (auto *UBB = CRI->getUnwindDest()) 166 if (!Result.count(UBB)) 167 return false; 168 continue; 169 } 170 171 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 172 if (const Function *F = CI->getCalledFunction()) { 173 auto IID = F->getIntrinsicID(); 174 if (IID == Intrinsic::vastart) { 175 if (AllowVarArgs) 176 continue; 177 else 178 return false; 179 } 180 181 // Currently, we miscompile outlined copies of eh_typid_for. There are 182 // proposals for fixing this in llvm.org/PR39545. 183 if (IID == Intrinsic::eh_typeid_for) 184 return false; 185 } 186 } 187 } 188 189 return true; 190 } 191 192 /// Build a set of blocks to extract if the input blocks are viable. 193 static SetVector<BasicBlock *> 194 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 195 bool AllowVarArgs, bool AllowAlloca) { 196 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 197 SetVector<BasicBlock *> Result; 198 199 // Loop over the blocks, adding them to our set-vector, and aborting with an 200 // empty set if we encounter invalid blocks. 201 for (BasicBlock *BB : BBs) { 202 // If this block is dead, don't process it. 203 if (DT && !DT->isReachableFromEntry(BB)) 204 continue; 205 206 if (!Result.insert(BB)) 207 llvm_unreachable("Repeated basic blocks in extraction input"); 208 } 209 210 for (auto *BB : Result) { 211 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 212 return {}; 213 214 // Make sure that the first block is not a landing pad. 215 if (BB == Result.front()) { 216 if (BB->isEHPad()) { 217 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 218 return {}; 219 } 220 continue; 221 } 222 223 // All blocks other than the first must not have predecessors outside of 224 // the subgraph which is being extracted. 225 for (auto *PBB : predecessors(BB)) 226 if (!Result.count(PBB)) { 227 LLVM_DEBUG( 228 dbgs() << "No blocks in this region may have entries from " 229 "outside the region except for the first block!\n"); 230 return {}; 231 } 232 } 233 234 return Result; 235 } 236 237 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 238 bool AggregateArgs, BlockFrequencyInfo *BFI, 239 BranchProbabilityInfo *BPI, bool AllowVarArgs, 240 bool AllowAlloca, std::string Suffix) 241 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 242 BPI(BPI), AllowVarArgs(AllowVarArgs), 243 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 244 Suffix(Suffix) {} 245 246 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 247 BlockFrequencyInfo *BFI, 248 BranchProbabilityInfo *BPI, std::string Suffix) 249 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AllowVarArgs(false), 251 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 252 /* AllowVarArgs */ false, 253 /* AllowAlloca */ false)), 254 Suffix(Suffix) {} 255 256 /// definedInRegion - Return true if the specified value is defined in the 257 /// extracted region. 258 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 259 if (Instruction *I = dyn_cast<Instruction>(V)) 260 if (Blocks.count(I->getParent())) 261 return true; 262 return false; 263 } 264 265 /// definedInCaller - Return true if the specified value is defined in the 266 /// function being code extracted, but not in the region being extracted. 267 /// These values must be passed in as live-ins to the function. 268 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 269 if (isa<Argument>(V)) return true; 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (!Blocks.count(I->getParent())) 272 return true; 273 return false; 274 } 275 276 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 277 BasicBlock *CommonExitBlock = nullptr; 278 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 279 for (auto *Succ : successors(Block)) { 280 // Internal edges, ok. 281 if (Blocks.count(Succ)) 282 continue; 283 if (!CommonExitBlock) { 284 CommonExitBlock = Succ; 285 continue; 286 } 287 if (CommonExitBlock == Succ) 288 continue; 289 290 return true; 291 } 292 return false; 293 }; 294 295 if (any_of(Blocks, hasNonCommonExitSucc)) 296 return nullptr; 297 298 return CommonExitBlock; 299 } 300 301 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 302 Instruction *Addr) const { 303 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 304 Function *Func = (*Blocks.begin())->getParent(); 305 for (BasicBlock &BB : *Func) { 306 if (Blocks.count(&BB)) 307 continue; 308 for (Instruction &II : BB) { 309 if (isa<DbgInfoIntrinsic>(II)) 310 continue; 311 312 unsigned Opcode = II.getOpcode(); 313 Value *MemAddr = nullptr; 314 switch (Opcode) { 315 case Instruction::Store: 316 case Instruction::Load: { 317 if (Opcode == Instruction::Store) { 318 StoreInst *SI = cast<StoreInst>(&II); 319 MemAddr = SI->getPointerOperand(); 320 } else { 321 LoadInst *LI = cast<LoadInst>(&II); 322 MemAddr = LI->getPointerOperand(); 323 } 324 // Global variable can not be aliased with locals. 325 if (dyn_cast<Constant>(MemAddr)) 326 break; 327 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 328 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 329 return false; 330 break; 331 } 332 default: { 333 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 334 if (IntrInst) { 335 if (IntrInst->isLifetimeStartOrEnd()) 336 break; 337 return false; 338 } 339 // Treat all the other cases conservatively if it has side effects. 340 if (II.mayHaveSideEffects()) 341 return false; 342 } 343 } 344 } 345 } 346 347 return true; 348 } 349 350 BasicBlock * 351 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 352 BasicBlock *SinglePredFromOutlineRegion = nullptr; 353 assert(!Blocks.count(CommonExitBlock) && 354 "Expect a block outside the region!"); 355 for (auto *Pred : predecessors(CommonExitBlock)) { 356 if (!Blocks.count(Pred)) 357 continue; 358 if (!SinglePredFromOutlineRegion) { 359 SinglePredFromOutlineRegion = Pred; 360 } else if (SinglePredFromOutlineRegion != Pred) { 361 SinglePredFromOutlineRegion = nullptr; 362 break; 363 } 364 } 365 366 if (SinglePredFromOutlineRegion) 367 return SinglePredFromOutlineRegion; 368 369 #ifndef NDEBUG 370 auto getFirstPHI = [](BasicBlock *BB) { 371 BasicBlock::iterator I = BB->begin(); 372 PHINode *FirstPhi = nullptr; 373 while (I != BB->end()) { 374 PHINode *Phi = dyn_cast<PHINode>(I); 375 if (!Phi) 376 break; 377 if (!FirstPhi) { 378 FirstPhi = Phi; 379 break; 380 } 381 } 382 return FirstPhi; 383 }; 384 // If there are any phi nodes, the single pred either exists or has already 385 // be created before code extraction. 386 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 387 #endif 388 389 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 390 CommonExitBlock->getFirstNonPHI()->getIterator()); 391 392 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 393 PI != PE;) { 394 BasicBlock *Pred = *PI++; 395 if (Blocks.count(Pred)) 396 continue; 397 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 398 } 399 // Now add the old exit block to the outline region. 400 Blocks.insert(CommonExitBlock); 401 return CommonExitBlock; 402 } 403 404 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 405 BasicBlock *&ExitBlock) const { 406 Function *Func = (*Blocks.begin())->getParent(); 407 ExitBlock = getCommonExitBlock(Blocks); 408 409 for (BasicBlock &BB : *Func) { 410 if (Blocks.count(&BB)) 411 continue; 412 for (Instruction &II : BB) { 413 auto *AI = dyn_cast<AllocaInst>(&II); 414 if (!AI) 415 continue; 416 417 // Find the pair of life time markers for address 'Addr' that are either 418 // defined inside the outline region or can legally be shrinkwrapped into 419 // the outline region. If there are not other untracked uses of the 420 // address, return the pair of markers if found; otherwise return a pair 421 // of nullptr. 422 auto GetLifeTimeMarkers = 423 [&](Instruction *Addr, bool &SinkLifeStart, 424 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 425 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 426 427 for (User *U : Addr->users()) { 428 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 429 if (IntrInst) { 430 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 431 // Do not handle the case where AI has multiple start markers. 432 if (LifeStart) 433 return std::make_pair<Instruction *>(nullptr, nullptr); 434 LifeStart = IntrInst; 435 } 436 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 437 if (LifeEnd) 438 return std::make_pair<Instruction *>(nullptr, nullptr); 439 LifeEnd = IntrInst; 440 } 441 continue; 442 } 443 // Find untracked uses of the address, bail. 444 if (!definedInRegion(Blocks, U)) 445 return std::make_pair<Instruction *>(nullptr, nullptr); 446 } 447 448 if (!LifeStart || !LifeEnd) 449 return std::make_pair<Instruction *>(nullptr, nullptr); 450 451 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 452 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 453 // Do legality Check. 454 if ((SinkLifeStart || HoistLifeEnd) && 455 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 456 return std::make_pair<Instruction *>(nullptr, nullptr); 457 458 // Check to see if we have a place to do hoisting, if not, bail. 459 if (HoistLifeEnd && !ExitBlock) 460 return std::make_pair<Instruction *>(nullptr, nullptr); 461 462 return std::make_pair(LifeStart, LifeEnd); 463 }; 464 465 bool SinkLifeStart = false, HoistLifeEnd = false; 466 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 467 468 if (Markers.first) { 469 if (SinkLifeStart) 470 SinkCands.insert(Markers.first); 471 SinkCands.insert(AI); 472 if (HoistLifeEnd) 473 HoistCands.insert(Markers.second); 474 continue; 475 } 476 477 // Follow the bitcast. 478 Instruction *MarkerAddr = nullptr; 479 for (User *U : AI->users()) { 480 if (U->stripInBoundsConstantOffsets() == AI) { 481 SinkLifeStart = false; 482 HoistLifeEnd = false; 483 Instruction *Bitcast = cast<Instruction>(U); 484 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 485 if (Markers.first) { 486 MarkerAddr = Bitcast; 487 continue; 488 } 489 } 490 491 // Found unknown use of AI. 492 if (!definedInRegion(Blocks, U)) { 493 MarkerAddr = nullptr; 494 break; 495 } 496 } 497 498 if (MarkerAddr) { 499 if (SinkLifeStart) 500 SinkCands.insert(Markers.first); 501 if (!definedInRegion(Blocks, MarkerAddr)) 502 SinkCands.insert(MarkerAddr); 503 SinkCands.insert(AI); 504 if (HoistLifeEnd) 505 HoistCands.insert(Markers.second); 506 } 507 } 508 } 509 } 510 511 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 512 const ValueSet &SinkCands) const { 513 for (BasicBlock *BB : Blocks) { 514 // If a used value is defined outside the region, it's an input. If an 515 // instruction is used outside the region, it's an output. 516 for (Instruction &II : *BB) { 517 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 518 ++OI) { 519 Value *V = *OI; 520 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 521 Inputs.insert(V); 522 } 523 524 for (User *U : II.users()) 525 if (!definedInRegion(Blocks, U)) { 526 Outputs.insert(&II); 527 break; 528 } 529 } 530 } 531 } 532 533 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 534 /// of the region, we need to split the entry block of the region so that the 535 /// PHI node is easier to deal with. 536 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 537 unsigned NumPredsFromRegion = 0; 538 unsigned NumPredsOutsideRegion = 0; 539 540 if (Header != &Header->getParent()->getEntryBlock()) { 541 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 542 if (!PN) return; // No PHI nodes. 543 544 // If the header node contains any PHI nodes, check to see if there is more 545 // than one entry from outside the region. If so, we need to sever the 546 // header block into two. 547 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 548 if (Blocks.count(PN->getIncomingBlock(i))) 549 ++NumPredsFromRegion; 550 else 551 ++NumPredsOutsideRegion; 552 553 // If there is one (or fewer) predecessor from outside the region, we don't 554 // need to do anything special. 555 if (NumPredsOutsideRegion <= 1) return; 556 } 557 558 // Otherwise, we need to split the header block into two pieces: one 559 // containing PHI nodes merging values from outside of the region, and a 560 // second that contains all of the code for the block and merges back any 561 // incoming values from inside of the region. 562 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 563 564 // We only want to code extract the second block now, and it becomes the new 565 // header of the region. 566 BasicBlock *OldPred = Header; 567 Blocks.remove(OldPred); 568 Blocks.insert(NewBB); 569 Header = NewBB; 570 571 // Okay, now we need to adjust the PHI nodes and any branches from within the 572 // region to go to the new header block instead of the old header block. 573 if (NumPredsFromRegion) { 574 PHINode *PN = cast<PHINode>(OldPred->begin()); 575 // Loop over all of the predecessors of OldPred that are in the region, 576 // changing them to branch to NewBB instead. 577 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 578 if (Blocks.count(PN->getIncomingBlock(i))) { 579 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 580 TI->replaceUsesOfWith(OldPred, NewBB); 581 } 582 583 // Okay, everything within the region is now branching to the right block, we 584 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 585 BasicBlock::iterator AfterPHIs; 586 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 587 PHINode *PN = cast<PHINode>(AfterPHIs); 588 // Create a new PHI node in the new region, which has an incoming value 589 // from OldPred of PN. 590 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 591 PN->getName() + ".ce", &NewBB->front()); 592 PN->replaceAllUsesWith(NewPN); 593 NewPN->addIncoming(PN, OldPred); 594 595 // Loop over all of the incoming value in PN, moving them to NewPN if they 596 // are from the extracted region. 597 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 598 if (Blocks.count(PN->getIncomingBlock(i))) { 599 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 600 PN->removeIncomingValue(i); 601 --i; 602 } 603 } 604 } 605 } 606 } 607 608 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 609 /// outlined region, we split these PHIs on two: one with inputs from region 610 /// and other with remaining incoming blocks; then first PHIs are placed in 611 /// outlined region. 612 void CodeExtractor::severSplitPHINodesOfExits( 613 const SmallPtrSetImpl<BasicBlock *> &Exits) { 614 for (BasicBlock *ExitBB : Exits) { 615 BasicBlock *NewBB = nullptr; 616 617 for (PHINode &PN : ExitBB->phis()) { 618 // Find all incoming values from the outlining region. 619 SmallVector<unsigned, 2> IncomingVals; 620 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 621 if (Blocks.count(PN.getIncomingBlock(i))) 622 IncomingVals.push_back(i); 623 624 // Do not process PHI if there is one (or fewer) predecessor from region. 625 // If PHI has exactly one predecessor from region, only this one incoming 626 // will be replaced on codeRepl block, so it should be safe to skip PHI. 627 if (IncomingVals.size() <= 1) 628 continue; 629 630 // Create block for new PHIs and add it to the list of outlined if it 631 // wasn't done before. 632 if (!NewBB) { 633 NewBB = BasicBlock::Create(ExitBB->getContext(), 634 ExitBB->getName() + ".split", 635 ExitBB->getParent(), ExitBB); 636 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 637 pred_end(ExitBB)); 638 for (BasicBlock *PredBB : Preds) 639 if (Blocks.count(PredBB)) 640 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 641 BranchInst::Create(ExitBB, NewBB); 642 Blocks.insert(NewBB); 643 } 644 645 // Split this PHI. 646 PHINode *NewPN = 647 PHINode::Create(PN.getType(), IncomingVals.size(), 648 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 649 for (unsigned i : IncomingVals) 650 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 651 for (unsigned i : reverse(IncomingVals)) 652 PN.removeIncomingValue(i, false); 653 PN.addIncoming(NewPN, NewBB); 654 } 655 } 656 } 657 658 void CodeExtractor::splitReturnBlocks() { 659 for (BasicBlock *Block : Blocks) 660 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 661 BasicBlock *New = 662 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 663 if (DT) { 664 // Old dominates New. New node dominates all other nodes dominated 665 // by Old. 666 DomTreeNode *OldNode = DT->getNode(Block); 667 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 668 OldNode->end()); 669 670 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 671 672 for (DomTreeNode *I : Children) 673 DT->changeImmediateDominator(I, NewNode); 674 } 675 } 676 } 677 678 /// constructFunction - make a function based on inputs and outputs, as follows: 679 /// f(in0, ..., inN, out0, ..., outN) 680 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 681 const ValueSet &outputs, 682 BasicBlock *header, 683 BasicBlock *newRootNode, 684 BasicBlock *newHeader, 685 Function *oldFunction, 686 Module *M) { 687 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 688 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 689 690 // This function returns unsigned, outputs will go back by reference. 691 switch (NumExitBlocks) { 692 case 0: 693 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 694 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 695 default: RetTy = Type::getInt16Ty(header->getContext()); break; 696 } 697 698 std::vector<Type *> paramTy; 699 700 // Add the types of the input values to the function's argument list 701 for (Value *value : inputs) { 702 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 703 paramTy.push_back(value->getType()); 704 } 705 706 // Add the types of the output values to the function's argument list. 707 for (Value *output : outputs) { 708 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 709 if (AggregateArgs) 710 paramTy.push_back(output->getType()); 711 else 712 paramTy.push_back(PointerType::getUnqual(output->getType())); 713 } 714 715 LLVM_DEBUG({ 716 dbgs() << "Function type: " << *RetTy << " f("; 717 for (Type *i : paramTy) 718 dbgs() << *i << ", "; 719 dbgs() << ")\n"; 720 }); 721 722 StructType *StructTy; 723 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 724 StructTy = StructType::get(M->getContext(), paramTy); 725 paramTy.clear(); 726 paramTy.push_back(PointerType::getUnqual(StructTy)); 727 } 728 FunctionType *funcType = 729 FunctionType::get(RetTy, paramTy, 730 AllowVarArgs && oldFunction->isVarArg()); 731 732 std::string SuffixToUse = 733 Suffix.empty() 734 ? (header->getName().empty() ? "extracted" : header->getName().str()) 735 : Suffix; 736 // Create the new function 737 Function *newFunction = Function::Create( 738 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 739 oldFunction->getName() + "." + SuffixToUse, M); 740 // If the old function is no-throw, so is the new one. 741 if (oldFunction->doesNotThrow()) 742 newFunction->setDoesNotThrow(); 743 744 // Inherit the uwtable attribute if we need to. 745 if (oldFunction->hasUWTable()) 746 newFunction->setHasUWTable(); 747 748 // Inherit all of the target dependent attributes and white-listed 749 // target independent attributes. 750 // (e.g. If the extracted region contains a call to an x86.sse 751 // instruction we need to make sure that the extracted region has the 752 // "target-features" attribute allowing it to be lowered. 753 // FIXME: This should be changed to check to see if a specific 754 // attribute can not be inherited. 755 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 756 if (Attr.isStringAttribute()) { 757 if (Attr.getKindAsString() == "thunk") 758 continue; 759 } else 760 switch (Attr.getKindAsEnum()) { 761 // Those attributes cannot be propagated safely. Explicitly list them 762 // here so we get a warning if new attributes are added. This list also 763 // includes non-function attributes. 764 case Attribute::Alignment: 765 case Attribute::AllocSize: 766 case Attribute::ArgMemOnly: 767 case Attribute::Builtin: 768 case Attribute::ByVal: 769 case Attribute::Convergent: 770 case Attribute::Dereferenceable: 771 case Attribute::DereferenceableOrNull: 772 case Attribute::InAlloca: 773 case Attribute::InReg: 774 case Attribute::InaccessibleMemOnly: 775 case Attribute::InaccessibleMemOrArgMemOnly: 776 case Attribute::JumpTable: 777 case Attribute::Naked: 778 case Attribute::Nest: 779 case Attribute::NoAlias: 780 case Attribute::NoBuiltin: 781 case Attribute::NoCapture: 782 case Attribute::NoReturn: 783 case Attribute::None: 784 case Attribute::NonNull: 785 case Attribute::ReadNone: 786 case Attribute::ReadOnly: 787 case Attribute::Returned: 788 case Attribute::ReturnsTwice: 789 case Attribute::SExt: 790 case Attribute::Speculatable: 791 case Attribute::StackAlignment: 792 case Attribute::StructRet: 793 case Attribute::SwiftError: 794 case Attribute::SwiftSelf: 795 case Attribute::WriteOnly: 796 case Attribute::ZExt: 797 case Attribute::EndAttrKinds: 798 continue; 799 // Those attributes should be safe to propagate to the extracted function. 800 case Attribute::AlwaysInline: 801 case Attribute::Cold: 802 case Attribute::NoRecurse: 803 case Attribute::InlineHint: 804 case Attribute::MinSize: 805 case Attribute::NoDuplicate: 806 case Attribute::NoImplicitFloat: 807 case Attribute::NoInline: 808 case Attribute::NonLazyBind: 809 case Attribute::NoRedZone: 810 case Attribute::NoUnwind: 811 case Attribute::OptForFuzzing: 812 case Attribute::OptimizeNone: 813 case Attribute::OptimizeForSize: 814 case Attribute::SafeStack: 815 case Attribute::ShadowCallStack: 816 case Attribute::SanitizeAddress: 817 case Attribute::SanitizeMemory: 818 case Attribute::SanitizeThread: 819 case Attribute::SanitizeHWAddress: 820 case Attribute::SpeculativeLoadHardening: 821 case Attribute::StackProtect: 822 case Attribute::StackProtectReq: 823 case Attribute::StackProtectStrong: 824 case Attribute::StrictFP: 825 case Attribute::UWTable: 826 case Attribute::NoCfCheck: 827 break; 828 } 829 830 newFunction->addFnAttr(Attr); 831 } 832 newFunction->getBasicBlockList().push_back(newRootNode); 833 834 // Create an iterator to name all of the arguments we inserted. 835 Function::arg_iterator AI = newFunction->arg_begin(); 836 837 // Rewrite all users of the inputs in the extracted region to use the 838 // arguments (or appropriate addressing into struct) instead. 839 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 840 Value *RewriteVal; 841 if (AggregateArgs) { 842 Value *Idx[2]; 843 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 844 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 845 Instruction *TI = newFunction->begin()->getTerminator(); 846 GetElementPtrInst *GEP = GetElementPtrInst::Create( 847 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 848 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 849 } else 850 RewriteVal = &*AI++; 851 852 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 853 for (User *use : Users) 854 if (Instruction *inst = dyn_cast<Instruction>(use)) 855 if (Blocks.count(inst->getParent())) 856 inst->replaceUsesOfWith(inputs[i], RewriteVal); 857 } 858 859 // Set names for input and output arguments. 860 if (!AggregateArgs) { 861 AI = newFunction->arg_begin(); 862 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 863 AI->setName(inputs[i]->getName()); 864 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 865 AI->setName(outputs[i]->getName()+".out"); 866 } 867 868 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 869 // within the new function. This must be done before we lose track of which 870 // blocks were originally in the code region. 871 std::vector<User *> Users(header->user_begin(), header->user_end()); 872 for (unsigned i = 0, e = Users.size(); i != e; ++i) 873 // The BasicBlock which contains the branch is not in the region 874 // modify the branch target to a new block 875 if (Instruction *I = dyn_cast<Instruction>(Users[i])) 876 if (I->isTerminator() && !Blocks.count(I->getParent()) && 877 I->getParent()->getParent() == oldFunction) 878 I->replaceUsesOfWith(header, newHeader); 879 880 return newFunction; 881 } 882 883 /// Scan the extraction region for lifetime markers which reference inputs. 884 /// Erase these markers. Return the inputs which were referenced. 885 /// 886 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 887 /// of allocas which will be moved from the caller function into the extracted 888 /// function (\p SunkAllocas). 889 static SetVector<Value *> 890 eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 891 const SetVector<Value *> &SunkAllocas) { 892 SetVector<Value *> InputObjectsWithLifetime; 893 for (BasicBlock *BB : Blocks) { 894 for (auto It = BB->begin(), End = BB->end(); It != End;) { 895 auto *II = dyn_cast<IntrinsicInst>(&*It); 896 ++It; 897 if (!II || !II->isLifetimeStartOrEnd()) 898 continue; 899 900 // Get the memory operand of the lifetime marker. If the underlying 901 // object is a sunk alloca, or is otherwise defined in the extraction 902 // region, the lifetime marker must not be erased. 903 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 904 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 905 continue; 906 907 InputObjectsWithLifetime.insert(Mem); 908 II->eraseFromParent(); 909 } 910 } 911 return InputObjectsWithLifetime; 912 } 913 914 /// Insert lifetime start/end markers surrounding the call to the new function 915 /// for objects defined in the caller. 916 static void insertLifetimeMarkersSurroundingCall(Module *M, 917 ArrayRef<Value *> Objects, 918 CallInst *TheCall) { 919 if (Objects.empty()) 920 return; 921 922 LLVMContext &Ctx = M->getContext(); 923 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 924 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 925 auto StartFn = llvm::Intrinsic::getDeclaration( 926 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 927 auto EndFn = llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::lifetime_end, 928 Int8PtrTy); 929 Instruction *Term = TheCall->getParent()->getTerminator(); 930 for (Value *Mem : Objects) { 931 assert((!isa<Instruction>(Mem) || 932 cast<Instruction>(Mem)->getFunction() == TheCall->getFunction()) && 933 "Input memory not defined in original function"); 934 Value *MemAsI8Ptr = nullptr; 935 if (Mem->getType() == Int8PtrTy) 936 MemAsI8Ptr = Mem; 937 else 938 MemAsI8Ptr = 939 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 940 941 auto StartMarker = CallInst::Create(StartFn, {NegativeOne, MemAsI8Ptr}); 942 StartMarker->insertBefore(TheCall); 943 auto EndMarker = CallInst::Create(EndFn, {NegativeOne, MemAsI8Ptr}); 944 EndMarker->insertBefore(Term); 945 } 946 } 947 948 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 949 /// the call instruction, splitting any PHI nodes in the header block as 950 /// necessary. 951 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 952 BasicBlock *codeReplacer, 953 ValueSet &inputs, 954 ValueSet &outputs) { 955 // Emit a call to the new function, passing in: *pointer to struct (if 956 // aggregating parameters), or plan inputs and allocated memory for outputs 957 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 958 959 Module *M = newFunction->getParent(); 960 LLVMContext &Context = M->getContext(); 961 const DataLayout &DL = M->getDataLayout(); 962 CallInst *call = nullptr; 963 964 // Add inputs as params, or to be filled into the struct 965 for (Value *input : inputs) 966 if (AggregateArgs) 967 StructValues.push_back(input); 968 else 969 params.push_back(input); 970 971 // Create allocas for the outputs 972 for (Value *output : outputs) { 973 if (AggregateArgs) { 974 StructValues.push_back(output); 975 } else { 976 AllocaInst *alloca = 977 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 978 nullptr, output->getName() + ".loc", 979 &codeReplacer->getParent()->front().front()); 980 ReloadOutputs.push_back(alloca); 981 params.push_back(alloca); 982 } 983 } 984 985 StructType *StructArgTy = nullptr; 986 AllocaInst *Struct = nullptr; 987 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 988 std::vector<Type *> ArgTypes; 989 for (ValueSet::iterator v = StructValues.begin(), 990 ve = StructValues.end(); v != ve; ++v) 991 ArgTypes.push_back((*v)->getType()); 992 993 // Allocate a struct at the beginning of this function 994 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 995 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 996 "structArg", 997 &codeReplacer->getParent()->front().front()); 998 params.push_back(Struct); 999 1000 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1001 Value *Idx[2]; 1002 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1003 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1004 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1005 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1006 codeReplacer->getInstList().push_back(GEP); 1007 StoreInst *SI = new StoreInst(StructValues[i], GEP); 1008 codeReplacer->getInstList().push_back(SI); 1009 } 1010 } 1011 1012 // Emit the call to the function 1013 call = CallInst::Create(newFunction, params, 1014 NumExitBlocks > 1 ? "targetBlock" : ""); 1015 // Add debug location to the new call, if the original function has debug 1016 // info. In that case, the terminator of the entry block of the extracted 1017 // function contains the first debug location of the extracted function, 1018 // set in extractCodeRegion. 1019 if (codeReplacer->getParent()->getSubprogram()) { 1020 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1021 call->setDebugLoc(DL); 1022 } 1023 codeReplacer->getInstList().push_back(call); 1024 1025 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1026 unsigned FirstOut = inputs.size(); 1027 if (!AggregateArgs) 1028 std::advance(OutputArgBegin, inputs.size()); 1029 1030 // Reload the outputs passed in by reference. 1031 Function::arg_iterator OAI = OutputArgBegin; 1032 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1033 Value *Output = nullptr; 1034 if (AggregateArgs) { 1035 Value *Idx[2]; 1036 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1037 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1038 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1039 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1040 codeReplacer->getInstList().push_back(GEP); 1041 Output = GEP; 1042 } else { 1043 Output = ReloadOutputs[i]; 1044 } 1045 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 1046 Reloads.push_back(load); 1047 codeReplacer->getInstList().push_back(load); 1048 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1049 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1050 Instruction *inst = cast<Instruction>(Users[u]); 1051 if (!Blocks.count(inst->getParent())) 1052 inst->replaceUsesOfWith(outputs[i], load); 1053 } 1054 1055 // Store to argument right after the definition of output value. 1056 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1057 if (!OutI) 1058 continue; 1059 1060 // Find proper insertion point. 1061 BasicBlock::iterator InsertPt; 1062 // In case OutI is an invoke, we insert the store at the beginning in the 1063 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1064 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1065 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1066 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1067 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1068 else 1069 InsertPt = std::next(OutI->getIterator()); 1070 1071 assert(OAI != newFunction->arg_end() && 1072 "Number of output arguments should match " 1073 "the amount of defined values"); 1074 if (AggregateArgs) { 1075 Value *Idx[2]; 1076 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1077 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1078 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1079 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), &*InsertPt); 1080 new StoreInst(outputs[i], GEP, &*InsertPt); 1081 // Since there should be only one struct argument aggregating 1082 // all the output values, we shouldn't increment OAI, which always 1083 // points to the struct argument, in this case. 1084 } else { 1085 new StoreInst(outputs[i], &*OAI, &*InsertPt); 1086 ++OAI; 1087 } 1088 } 1089 1090 // Now we can emit a switch statement using the call as a value. 1091 SwitchInst *TheSwitch = 1092 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1093 codeReplacer, 0, codeReplacer); 1094 1095 // Since there may be multiple exits from the original region, make the new 1096 // function return an unsigned, switch on that number. This loop iterates 1097 // over all of the blocks in the extracted region, updating any terminator 1098 // instructions in the to-be-extracted region that branch to blocks that are 1099 // not in the region to be extracted. 1100 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1101 1102 unsigned switchVal = 0; 1103 for (BasicBlock *Block : Blocks) { 1104 Instruction *TI = Block->getTerminator(); 1105 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1106 if (!Blocks.count(TI->getSuccessor(i))) { 1107 BasicBlock *OldTarget = TI->getSuccessor(i); 1108 // add a new basic block which returns the appropriate value 1109 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1110 if (!NewTarget) { 1111 // If we don't already have an exit stub for this non-extracted 1112 // destination, create one now! 1113 NewTarget = BasicBlock::Create(Context, 1114 OldTarget->getName() + ".exitStub", 1115 newFunction); 1116 unsigned SuccNum = switchVal++; 1117 1118 Value *brVal = nullptr; 1119 switch (NumExitBlocks) { 1120 case 0: 1121 case 1: break; // No value needed. 1122 case 2: // Conditional branch, return a bool 1123 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1124 break; 1125 default: 1126 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1127 break; 1128 } 1129 1130 ReturnInst::Create(Context, brVal, NewTarget); 1131 1132 // Update the switch instruction. 1133 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1134 SuccNum), 1135 OldTarget); 1136 } 1137 1138 // rewrite the original branch instruction with this new target 1139 TI->setSuccessor(i, NewTarget); 1140 } 1141 } 1142 1143 // Now that we've done the deed, simplify the switch instruction. 1144 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1145 switch (NumExitBlocks) { 1146 case 0: 1147 // There are no successors (the block containing the switch itself), which 1148 // means that previously this was the last part of the function, and hence 1149 // this should be rewritten as a `ret' 1150 1151 // Check if the function should return a value 1152 if (OldFnRetTy->isVoidTy()) { 1153 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1154 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1155 // return what we have 1156 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1157 } else { 1158 // Otherwise we must have code extracted an unwind or something, just 1159 // return whatever we want. 1160 ReturnInst::Create(Context, 1161 Constant::getNullValue(OldFnRetTy), TheSwitch); 1162 } 1163 1164 TheSwitch->eraseFromParent(); 1165 break; 1166 case 1: 1167 // Only a single destination, change the switch into an unconditional 1168 // branch. 1169 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1170 TheSwitch->eraseFromParent(); 1171 break; 1172 case 2: 1173 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1174 call, TheSwitch); 1175 TheSwitch->eraseFromParent(); 1176 break; 1177 default: 1178 // Otherwise, make the default destination of the switch instruction be one 1179 // of the other successors. 1180 TheSwitch->setCondition(call); 1181 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1182 // Remove redundant case 1183 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1184 break; 1185 } 1186 1187 // Insert lifetime markers around the reloads of any output values. The 1188 // allocas output values are stored in are only in-use in the codeRepl block. 1189 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, call); 1190 1191 return call; 1192 } 1193 1194 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1195 Function *oldFunc = (*Blocks.begin())->getParent(); 1196 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1197 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1198 1199 for (BasicBlock *Block : Blocks) { 1200 // Delete the basic block from the old function, and the list of blocks 1201 oldBlocks.remove(Block); 1202 1203 // Insert this basic block into the new function 1204 newBlocks.push_back(Block); 1205 } 1206 } 1207 1208 void CodeExtractor::calculateNewCallTerminatorWeights( 1209 BasicBlock *CodeReplacer, 1210 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1211 BranchProbabilityInfo *BPI) { 1212 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1213 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1214 1215 // Update the branch weights for the exit block. 1216 Instruction *TI = CodeReplacer->getTerminator(); 1217 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1218 1219 // Block Frequency distribution with dummy node. 1220 Distribution BranchDist; 1221 1222 // Add each of the frequencies of the successors. 1223 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1224 BlockNode ExitNode(i); 1225 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1226 if (ExitFreq != 0) 1227 BranchDist.addExit(ExitNode, ExitFreq); 1228 else 1229 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1230 } 1231 1232 // Check for no total weight. 1233 if (BranchDist.Total == 0) 1234 return; 1235 1236 // Normalize the distribution so that they can fit in unsigned. 1237 BranchDist.normalize(); 1238 1239 // Create normalized branch weights and set the metadata. 1240 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1241 const auto &Weight = BranchDist.Weights[I]; 1242 1243 // Get the weight and update the current BFI. 1244 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1245 BranchProbability BP(Weight.Amount, BranchDist.Total); 1246 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1247 } 1248 TI->setMetadata( 1249 LLVMContext::MD_prof, 1250 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1251 } 1252 1253 Function *CodeExtractor::extractCodeRegion() { 1254 if (!isEligible()) 1255 return nullptr; 1256 1257 // Assumption: this is a single-entry code region, and the header is the first 1258 // block in the region. 1259 BasicBlock *header = *Blocks.begin(); 1260 Function *oldFunction = header->getParent(); 1261 1262 // For functions with varargs, check that varargs handling is only done in the 1263 // outlined function, i.e vastart and vaend are only used in outlined blocks. 1264 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { 1265 auto containsVarArgIntrinsic = [](Instruction &I) { 1266 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1267 if (const Function *F = CI->getCalledFunction()) 1268 return F->getIntrinsicID() == Intrinsic::vastart || 1269 F->getIntrinsicID() == Intrinsic::vaend; 1270 return false; 1271 }; 1272 1273 for (auto &BB : *oldFunction) { 1274 if (Blocks.count(&BB)) 1275 continue; 1276 if (llvm::any_of(BB, containsVarArgIntrinsic)) 1277 return nullptr; 1278 } 1279 } 1280 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1281 BasicBlock *CommonExit = nullptr; 1282 1283 // Calculate the entry frequency of the new function before we change the root 1284 // block. 1285 BlockFrequency EntryFreq; 1286 if (BFI) { 1287 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1288 for (BasicBlock *Pred : predecessors(header)) { 1289 if (Blocks.count(Pred)) 1290 continue; 1291 EntryFreq += 1292 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1293 } 1294 } 1295 1296 // If we have any return instructions in the region, split those blocks so 1297 // that the return is not in the region. 1298 splitReturnBlocks(); 1299 1300 // Calculate the exit blocks for the extracted region and the total exit 1301 // weights for each of those blocks. 1302 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1303 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1304 for (BasicBlock *Block : Blocks) { 1305 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1306 ++SI) { 1307 if (!Blocks.count(*SI)) { 1308 // Update the branch weight for this successor. 1309 if (BFI) { 1310 BlockFrequency &BF = ExitWeights[*SI]; 1311 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1312 } 1313 ExitBlocks.insert(*SI); 1314 } 1315 } 1316 } 1317 NumExitBlocks = ExitBlocks.size(); 1318 1319 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1320 severSplitPHINodesOfEntry(header); 1321 severSplitPHINodesOfExits(ExitBlocks); 1322 1323 // This takes place of the original loop 1324 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1325 "codeRepl", oldFunction, 1326 header); 1327 1328 // The new function needs a root node because other nodes can branch to the 1329 // head of the region, but the entry node of a function cannot have preds. 1330 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1331 "newFuncRoot"); 1332 auto *BranchI = BranchInst::Create(header); 1333 // If the original function has debug info, we have to add a debug location 1334 // to the new branch instruction from the artificial entry block. 1335 // We use the debug location of the first instruction in the extracted 1336 // blocks, as there is no other equivalent line in the source code. 1337 if (oldFunction->getSubprogram()) { 1338 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1339 return any_of(*BB, [&BranchI](const Instruction &I) { 1340 if (!I.getDebugLoc()) 1341 return false; 1342 BranchI->setDebugLoc(I.getDebugLoc()); 1343 return true; 1344 }); 1345 }); 1346 } 1347 newFuncRoot->getInstList().push_back(BranchI); 1348 1349 findAllocas(SinkingCands, HoistingCands, CommonExit); 1350 assert(HoistingCands.empty() || CommonExit); 1351 1352 // Find inputs to, outputs from the code region. 1353 findInputsOutputs(inputs, outputs, SinkingCands); 1354 1355 // Now sink all instructions which only have non-phi uses inside the region 1356 for (auto *II : SinkingCands) 1357 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1358 newFuncRoot->getFirstInsertionPt()); 1359 1360 if (!HoistingCands.empty()) { 1361 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1362 Instruction *TI = HoistToBlock->getTerminator(); 1363 for (auto *II : HoistingCands) 1364 cast<Instruction>(II)->moveBefore(TI); 1365 } 1366 1367 // Collect objects which are inputs to the extraction region and also 1368 // referenced by lifetime start/end markers within it. The effects of these 1369 // markers must be replicated in the calling function to prevent the stack 1370 // coloring pass from merging slots which store input objects. 1371 ValueSet InputObjectsWithLifetime = 1372 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands); 1373 1374 // Construct new function based on inputs/outputs & add allocas for all defs. 1375 Function *newFunction = 1376 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1377 oldFunction, oldFunction->getParent()); 1378 1379 // Update the entry count of the function. 1380 if (BFI) { 1381 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1382 if (Count.hasValue()) 1383 newFunction->setEntryCount( 1384 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1385 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1386 } 1387 1388 CallInst *TheCall = 1389 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1390 1391 moveCodeToFunction(newFunction); 1392 1393 // Replicate the effects of any lifetime start/end markers which referenced 1394 // input objects in the extraction region by placing markers around the call. 1395 insertLifetimeMarkersSurroundingCall(oldFunction->getParent(), 1396 InputObjectsWithLifetime.getArrayRef(), 1397 TheCall); 1398 1399 // Propagate personality info to the new function if there is one. 1400 if (oldFunction->hasPersonalityFn()) 1401 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1402 1403 // Update the branch weights for the exit block. 1404 if (BFI && NumExitBlocks > 1) 1405 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1406 1407 // Loop over all of the PHI nodes in the header and exit blocks, and change 1408 // any references to the old incoming edge to be the new incoming edge. 1409 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1410 PHINode *PN = cast<PHINode>(I); 1411 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1412 if (!Blocks.count(PN->getIncomingBlock(i))) 1413 PN->setIncomingBlock(i, newFuncRoot); 1414 } 1415 1416 for (BasicBlock *ExitBB : ExitBlocks) 1417 for (PHINode &PN : ExitBB->phis()) { 1418 Value *IncomingCodeReplacerVal = nullptr; 1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1420 // Ignore incoming values from outside of the extracted region. 1421 if (!Blocks.count(PN.getIncomingBlock(i))) 1422 continue; 1423 1424 // Ensure that there is only one incoming value from codeReplacer. 1425 if (!IncomingCodeReplacerVal) { 1426 PN.setIncomingBlock(i, codeReplacer); 1427 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1428 } else 1429 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1430 "PHI has two incompatbile incoming values from codeRepl"); 1431 } 1432 } 1433 1434 // Erase debug info intrinsics. Variable updates within the new function are 1435 // invisible to debuggers. This could be improved by defining a DISubprogram 1436 // for the new function. 1437 for (BasicBlock &BB : *newFunction) { 1438 auto BlockIt = BB.begin(); 1439 // Remove debug info intrinsics from the new function. 1440 while (BlockIt != BB.end()) { 1441 Instruction *Inst = &*BlockIt; 1442 ++BlockIt; 1443 if (isa<DbgInfoIntrinsic>(Inst)) 1444 Inst->eraseFromParent(); 1445 } 1446 // Remove debug info intrinsics which refer to values in the new function 1447 // from the old function. 1448 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1449 for (Instruction &I : BB) 1450 findDbgUsers(DbgUsers, &I); 1451 for (DbgVariableIntrinsic *DVI : DbgUsers) 1452 DVI->eraseFromParent(); 1453 } 1454 1455 // Mark the new function `noreturn` if applicable. Terminators which resume 1456 // exception propagation are treated as returning instructions. This is to 1457 // avoid inserting traps after calls to outlined functions which unwind. 1458 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1459 const Instruction *Term = BB.getTerminator(); 1460 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1461 }); 1462 if (doesNotReturn) 1463 newFunction->setDoesNotReturn(); 1464 1465 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1466 newFunction->dump(); 1467 report_fatal_error("verification of newFunction failed!"); 1468 }); 1469 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1470 report_fatal_error("verification of oldFunction failed!")); 1471 return newFunction; 1472 } 1473