xref: /llvm-project/llvm/lib/Transforms/Utils/CodeExtractor.cpp (revision 144cd22baef2d068f077e514de1b4f0d8b0973cf)
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 using namespace llvm::PatternMatch;
75 using ProfileCount = Function::ProfileCount;
76 
77 #define DEBUG_TYPE "code-extractor"
78 
79 // Provide a command-line option to aggregate function arguments into a struct
80 // for functions produced by the code extractor. This is useful when converting
81 // extracted functions to pthread-based code, as only one argument (void*) can
82 // be passed in to pthread_create().
83 static cl::opt<bool>
84 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
85                  cl::desc("Aggregate arguments to code-extracted functions"));
86 
87 /// Test whether a block is valid for extraction.
88 static bool isBlockValidForExtraction(const BasicBlock &BB,
89                                       const SetVector<BasicBlock *> &Result,
90                                       bool AllowVarArgs, bool AllowAlloca) {
91   // taking the address of a basic block moved to another function is illegal
92   if (BB.hasAddressTaken())
93     return false;
94 
95   // don't hoist code that uses another basicblock address, as it's likely to
96   // lead to unexpected behavior, like cross-function jumps
97   SmallPtrSet<User const *, 16> Visited;
98   SmallVector<User const *, 16> ToVisit;
99 
100   for (Instruction const &Inst : BB)
101     ToVisit.push_back(&Inst);
102 
103   while (!ToVisit.empty()) {
104     User const *Curr = ToVisit.pop_back_val();
105     if (!Visited.insert(Curr).second)
106       continue;
107     if (isa<BlockAddress const>(Curr))
108       return false; // even a reference to self is likely to be not compatible
109 
110     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
111       continue;
112 
113     for (auto const &U : Curr->operands()) {
114       if (auto *UU = dyn_cast<User>(U))
115         ToVisit.push_back(UU);
116     }
117   }
118 
119   // If explicitly requested, allow vastart and alloca. For invoke instructions
120   // verify that extraction is valid.
121   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
122     if (isa<AllocaInst>(I)) {
123        if (!AllowAlloca)
124          return false;
125        continue;
126     }
127 
128     if (const auto *II = dyn_cast<InvokeInst>(I)) {
129       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
130       // must be a part of the subgraph which is being extracted.
131       if (auto *UBB = II->getUnwindDest())
132         if (!Result.count(UBB))
133           return false;
134       continue;
135     }
136 
137     // All catch handlers of a catchswitch instruction as well as the unwind
138     // destination must be in the subgraph.
139     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
140       if (auto *UBB = CSI->getUnwindDest())
141         if (!Result.count(UBB))
142           return false;
143       for (auto *HBB : CSI->handlers())
144         if (!Result.count(const_cast<BasicBlock*>(HBB)))
145           return false;
146       continue;
147     }
148 
149     // Make sure that entire catch handler is within subgraph. It is sufficient
150     // to check that catch return's block is in the list.
151     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
152       for (const auto *U : CPI->users())
153         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
154           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
155             return false;
156       continue;
157     }
158 
159     // And do similar checks for cleanup handler - the entire handler must be
160     // in subgraph which is going to be extracted. For cleanup return should
161     // additionally check that the unwind destination is also in the subgraph.
162     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
163       for (const auto *U : CPI->users())
164         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
165           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
166             return false;
167       continue;
168     }
169     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
170       if (auto *UBB = CRI->getUnwindDest())
171         if (!Result.count(UBB))
172           return false;
173       continue;
174     }
175 
176     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
177       if (const Function *F = CI->getCalledFunction()) {
178         auto IID = F->getIntrinsicID();
179         if (IID == Intrinsic::vastart) {
180           if (AllowVarArgs)
181             continue;
182           else
183             return false;
184         }
185 
186         // Currently, we miscompile outlined copies of eh_typid_for. There are
187         // proposals for fixing this in llvm.org/PR39545.
188         if (IID == Intrinsic::eh_typeid_for)
189           return false;
190       }
191     }
192   }
193 
194   return true;
195 }
196 
197 /// Build a set of blocks to extract if the input blocks are viable.
198 static SetVector<BasicBlock *>
199 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
200                         bool AllowVarArgs, bool AllowAlloca) {
201   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
202   SetVector<BasicBlock *> Result;
203 
204   // Loop over the blocks, adding them to our set-vector, and aborting with an
205   // empty set if we encounter invalid blocks.
206   for (BasicBlock *BB : BBs) {
207     // If this block is dead, don't process it.
208     if (DT && !DT->isReachableFromEntry(BB))
209       continue;
210 
211     if (!Result.insert(BB))
212       llvm_unreachable("Repeated basic blocks in extraction input");
213   }
214 
215   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
216                     << '\n');
217 
218   for (auto *BB : Result) {
219     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
220       return {};
221 
222     // Make sure that the first block is not a landing pad.
223     if (BB == Result.front()) {
224       if (BB->isEHPad()) {
225         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
226         return {};
227       }
228       continue;
229     }
230 
231     // All blocks other than the first must not have predecessors outside of
232     // the subgraph which is being extracted.
233     for (auto *PBB : predecessors(BB))
234       if (!Result.count(PBB)) {
235         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
236                              "outside the region except for the first block!\n"
237                           << "Problematic source BB: " << BB->getName() << "\n"
238                           << "Problematic destination BB: " << PBB->getName()
239                           << "\n");
240         return {};
241       }
242   }
243 
244   return Result;
245 }
246 
247 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
248                              bool AggregateArgs, BlockFrequencyInfo *BFI,
249                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
250                              bool AllowVarArgs, bool AllowAlloca,
251                              std::string Suffix)
252     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
253       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
254       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
255       Suffix(Suffix) {}
256 
257 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
258                              BlockFrequencyInfo *BFI,
259                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
260                              std::string Suffix)
261     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
262       BPI(BPI), AC(AC), AllowVarArgs(false),
263       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
264                                      /* AllowVarArgs */ false,
265                                      /* AllowAlloca */ false)),
266       Suffix(Suffix) {}
267 
268 /// definedInRegion - Return true if the specified value is defined in the
269 /// extracted region.
270 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
271   if (Instruction *I = dyn_cast<Instruction>(V))
272     if (Blocks.count(I->getParent()))
273       return true;
274   return false;
275 }
276 
277 /// definedInCaller - Return true if the specified value is defined in the
278 /// function being code extracted, but not in the region being extracted.
279 /// These values must be passed in as live-ins to the function.
280 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
281   if (isa<Argument>(V)) return true;
282   if (Instruction *I = dyn_cast<Instruction>(V))
283     if (!Blocks.count(I->getParent()))
284       return true;
285   return false;
286 }
287 
288 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
289   BasicBlock *CommonExitBlock = nullptr;
290   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
291     for (auto *Succ : successors(Block)) {
292       // Internal edges, ok.
293       if (Blocks.count(Succ))
294         continue;
295       if (!CommonExitBlock) {
296         CommonExitBlock = Succ;
297         continue;
298       }
299       if (CommonExitBlock != Succ)
300         return true;
301     }
302     return false;
303   };
304 
305   if (any_of(Blocks, hasNonCommonExitSucc))
306     return nullptr;
307 
308   return CommonExitBlock;
309 }
310 
311 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
312   for (BasicBlock &BB : F) {
313     for (Instruction &II : BB.instructionsWithoutDebug())
314       if (auto *AI = dyn_cast<AllocaInst>(&II))
315         Allocas.push_back(AI);
316 
317     findSideEffectInfoForBlock(BB);
318   }
319 }
320 
321 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
322   for (Instruction &II : BB.instructionsWithoutDebug()) {
323     unsigned Opcode = II.getOpcode();
324     Value *MemAddr = nullptr;
325     switch (Opcode) {
326     case Instruction::Store:
327     case Instruction::Load: {
328       if (Opcode == Instruction::Store) {
329         StoreInst *SI = cast<StoreInst>(&II);
330         MemAddr = SI->getPointerOperand();
331       } else {
332         LoadInst *LI = cast<LoadInst>(&II);
333         MemAddr = LI->getPointerOperand();
334       }
335       // Global variable can not be aliased with locals.
336       if (isa<Constant>(MemAddr))
337         break;
338       Value *Base = MemAddr->stripInBoundsConstantOffsets();
339       if (!isa<AllocaInst>(Base)) {
340         SideEffectingBlocks.insert(&BB);
341         return;
342       }
343       BaseMemAddrs[&BB].insert(Base);
344       break;
345     }
346     default: {
347       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
348       if (IntrInst) {
349         if (IntrInst->isLifetimeStartOrEnd())
350           break;
351         SideEffectingBlocks.insert(&BB);
352         return;
353       }
354       // Treat all the other cases conservatively if it has side effects.
355       if (II.mayHaveSideEffects()) {
356         SideEffectingBlocks.insert(&BB);
357         return;
358       }
359     }
360     }
361   }
362 }
363 
364 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
365     BasicBlock &BB, AllocaInst *Addr) const {
366   if (SideEffectingBlocks.count(&BB))
367     return true;
368   auto It = BaseMemAddrs.find(&BB);
369   if (It != BaseMemAddrs.end())
370     return It->second.count(Addr);
371   return false;
372 }
373 
374 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
375     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
376   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
377   Function *Func = (*Blocks.begin())->getParent();
378   for (BasicBlock &BB : *Func) {
379     if (Blocks.count(&BB))
380       continue;
381     if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
382       return false;
383   }
384   return true;
385 }
386 
387 BasicBlock *
388 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
389   BasicBlock *SinglePredFromOutlineRegion = nullptr;
390   assert(!Blocks.count(CommonExitBlock) &&
391          "Expect a block outside the region!");
392   for (auto *Pred : predecessors(CommonExitBlock)) {
393     if (!Blocks.count(Pred))
394       continue;
395     if (!SinglePredFromOutlineRegion) {
396       SinglePredFromOutlineRegion = Pred;
397     } else if (SinglePredFromOutlineRegion != Pred) {
398       SinglePredFromOutlineRegion = nullptr;
399       break;
400     }
401   }
402 
403   if (SinglePredFromOutlineRegion)
404     return SinglePredFromOutlineRegion;
405 
406 #ifndef NDEBUG
407   auto getFirstPHI = [](BasicBlock *BB) {
408     BasicBlock::iterator I = BB->begin();
409     PHINode *FirstPhi = nullptr;
410     while (I != BB->end()) {
411       PHINode *Phi = dyn_cast<PHINode>(I);
412       if (!Phi)
413         break;
414       if (!FirstPhi) {
415         FirstPhi = Phi;
416         break;
417       }
418     }
419     return FirstPhi;
420   };
421   // If there are any phi nodes, the single pred either exists or has already
422   // be created before code extraction.
423   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
424 #endif
425 
426   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
427       CommonExitBlock->getFirstNonPHI()->getIterator());
428 
429   for (BasicBlock *Pred :
430        llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
431     if (Blocks.count(Pred))
432       continue;
433     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
434   }
435   // Now add the old exit block to the outline region.
436   Blocks.insert(CommonExitBlock);
437   OldTargets.push_back(NewExitBlock);
438   return CommonExitBlock;
439 }
440 
441 // Find the pair of life time markers for address 'Addr' that are either
442 // defined inside the outline region or can legally be shrinkwrapped into the
443 // outline region. If there are not other untracked uses of the address, return
444 // the pair of markers if found; otherwise return a pair of nullptr.
445 CodeExtractor::LifetimeMarkerInfo
446 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
447                                   Instruction *Addr,
448                                   BasicBlock *ExitBlock) const {
449   LifetimeMarkerInfo Info;
450 
451   for (User *U : Addr->users()) {
452     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
453     if (IntrInst) {
454       // We don't model addresses with multiple start/end markers, but the
455       // markers do not need to be in the region.
456       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
457         if (Info.LifeStart)
458           return {};
459         Info.LifeStart = IntrInst;
460         continue;
461       }
462       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
463         if (Info.LifeEnd)
464           return {};
465         Info.LifeEnd = IntrInst;
466         continue;
467       }
468       // At this point, permit debug uses outside of the region.
469       // This is fixed in a later call to fixupDebugInfoPostExtraction().
470       if (isa<DbgInfoIntrinsic>(IntrInst))
471         continue;
472     }
473     // Find untracked uses of the address, bail.
474     if (!definedInRegion(Blocks, U))
475       return {};
476   }
477 
478   if (!Info.LifeStart || !Info.LifeEnd)
479     return {};
480 
481   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
482   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
483   // Do legality check.
484   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
485       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
486     return {};
487 
488   // Check to see if we have a place to do hoisting, if not, bail.
489   if (Info.HoistLifeEnd && !ExitBlock)
490     return {};
491 
492   return Info;
493 }
494 
495 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
496                                 ValueSet &SinkCands, ValueSet &HoistCands,
497                                 BasicBlock *&ExitBlock) const {
498   Function *Func = (*Blocks.begin())->getParent();
499   ExitBlock = getCommonExitBlock(Blocks);
500 
501   auto moveOrIgnoreLifetimeMarkers =
502       [&](const LifetimeMarkerInfo &LMI) -> bool {
503     if (!LMI.LifeStart)
504       return false;
505     if (LMI.SinkLifeStart) {
506       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
507                         << "\n");
508       SinkCands.insert(LMI.LifeStart);
509     }
510     if (LMI.HoistLifeEnd) {
511       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
512       HoistCands.insert(LMI.LifeEnd);
513     }
514     return true;
515   };
516 
517   // Look up allocas in the original function in CodeExtractorAnalysisCache, as
518   // this is much faster than walking all the instructions.
519   for (AllocaInst *AI : CEAC.getAllocas()) {
520     BasicBlock *BB = AI->getParent();
521     if (Blocks.count(BB))
522       continue;
523 
524     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
525     // check whether it is actually still in the original function.
526     Function *AIFunc = BB->getParent();
527     if (AIFunc != Func)
528       continue;
529 
530     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
531     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
532     if (Moved) {
533       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
534       SinkCands.insert(AI);
535       continue;
536     }
537 
538     // Find bitcasts in the outlined region that have lifetime marker users
539     // outside that region. Replace the lifetime marker use with an
540     // outside region bitcast to avoid unnecessary alloca/reload instructions
541     // and extra lifetime markers.
542     SmallVector<Instruction *, 2> LifetimeBitcastUsers;
543     for (User *U : AI->users()) {
544       if (!definedInRegion(Blocks, U))
545         continue;
546 
547       if (U->stripInBoundsConstantOffsets() != AI)
548         continue;
549 
550       Instruction *Bitcast = cast<Instruction>(U);
551       for (User *BU : Bitcast->users()) {
552         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
553         if (!IntrInst)
554           continue;
555 
556         if (!IntrInst->isLifetimeStartOrEnd())
557           continue;
558 
559         if (definedInRegion(Blocks, IntrInst))
560           continue;
561 
562         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
563                           << *Bitcast << " in out-of-region lifetime marker "
564                           << *IntrInst << "\n");
565         LifetimeBitcastUsers.push_back(IntrInst);
566       }
567     }
568 
569     for (Instruction *I : LifetimeBitcastUsers) {
570       Module *M = AIFunc->getParent();
571       LLVMContext &Ctx = M->getContext();
572       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
573       CastInst *CastI =
574           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
575       I->replaceUsesOfWith(I->getOperand(1), CastI);
576     }
577 
578     // Follow any bitcasts.
579     SmallVector<Instruction *, 2> Bitcasts;
580     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
581     for (User *U : AI->users()) {
582       if (U->stripInBoundsConstantOffsets() == AI) {
583         Instruction *Bitcast = cast<Instruction>(U);
584         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
585         if (LMI.LifeStart) {
586           Bitcasts.push_back(Bitcast);
587           BitcastLifetimeInfo.push_back(LMI);
588           continue;
589         }
590       }
591 
592       // Found unknown use of AI.
593       if (!definedInRegion(Blocks, U)) {
594         Bitcasts.clear();
595         break;
596       }
597     }
598 
599     // Either no bitcasts reference the alloca or there are unknown uses.
600     if (Bitcasts.empty())
601       continue;
602 
603     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
604     SinkCands.insert(AI);
605     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
606       Instruction *BitcastAddr = Bitcasts[I];
607       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
608       assert(LMI.LifeStart &&
609              "Unsafe to sink bitcast without lifetime markers");
610       moveOrIgnoreLifetimeMarkers(LMI);
611       if (!definedInRegion(Blocks, BitcastAddr)) {
612         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
613                           << "\n");
614         SinkCands.insert(BitcastAddr);
615       }
616     }
617   }
618 }
619 
620 bool CodeExtractor::isEligible() const {
621   if (Blocks.empty())
622     return false;
623   BasicBlock *Header = *Blocks.begin();
624   Function *F = Header->getParent();
625 
626   // For functions with varargs, check that varargs handling is only done in the
627   // outlined function, i.e vastart and vaend are only used in outlined blocks.
628   if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
629     auto containsVarArgIntrinsic = [](const Instruction &I) {
630       if (const CallInst *CI = dyn_cast<CallInst>(&I))
631         if (const Function *Callee = CI->getCalledFunction())
632           return Callee->getIntrinsicID() == Intrinsic::vastart ||
633                  Callee->getIntrinsicID() == Intrinsic::vaend;
634       return false;
635     };
636 
637     for (auto &BB : *F) {
638       if (Blocks.count(&BB))
639         continue;
640       if (llvm::any_of(BB, containsVarArgIntrinsic))
641         return false;
642     }
643   }
644   return true;
645 }
646 
647 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
648                                       const ValueSet &SinkCands) const {
649   for (BasicBlock *BB : Blocks) {
650     // If a used value is defined outside the region, it's an input.  If an
651     // instruction is used outside the region, it's an output.
652     for (Instruction &II : *BB) {
653       for (auto &OI : II.operands()) {
654         Value *V = OI;
655         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
656           Inputs.insert(V);
657       }
658 
659       for (User *U : II.users())
660         if (!definedInRegion(Blocks, U)) {
661           Outputs.insert(&II);
662           break;
663         }
664     }
665   }
666 }
667 
668 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
669 /// of the region, we need to split the entry block of the region so that the
670 /// PHI node is easier to deal with.
671 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
672   unsigned NumPredsFromRegion = 0;
673   unsigned NumPredsOutsideRegion = 0;
674 
675   if (Header != &Header->getParent()->getEntryBlock()) {
676     PHINode *PN = dyn_cast<PHINode>(Header->begin());
677     if (!PN) return;  // No PHI nodes.
678 
679     // If the header node contains any PHI nodes, check to see if there is more
680     // than one entry from outside the region.  If so, we need to sever the
681     // header block into two.
682     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
683       if (Blocks.count(PN->getIncomingBlock(i)))
684         ++NumPredsFromRegion;
685       else
686         ++NumPredsOutsideRegion;
687 
688     // If there is one (or fewer) predecessor from outside the region, we don't
689     // need to do anything special.
690     if (NumPredsOutsideRegion <= 1) return;
691   }
692 
693   // Otherwise, we need to split the header block into two pieces: one
694   // containing PHI nodes merging values from outside of the region, and a
695   // second that contains all of the code for the block and merges back any
696   // incoming values from inside of the region.
697   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
698 
699   // We only want to code extract the second block now, and it becomes the new
700   // header of the region.
701   BasicBlock *OldPred = Header;
702   Blocks.remove(OldPred);
703   Blocks.insert(NewBB);
704   Header = NewBB;
705 
706   // Okay, now we need to adjust the PHI nodes and any branches from within the
707   // region to go to the new header block instead of the old header block.
708   if (NumPredsFromRegion) {
709     PHINode *PN = cast<PHINode>(OldPred->begin());
710     // Loop over all of the predecessors of OldPred that are in the region,
711     // changing them to branch to NewBB instead.
712     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
713       if (Blocks.count(PN->getIncomingBlock(i))) {
714         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
715         TI->replaceUsesOfWith(OldPred, NewBB);
716       }
717 
718     // Okay, everything within the region is now branching to the right block, we
719     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
720     BasicBlock::iterator AfterPHIs;
721     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
722       PHINode *PN = cast<PHINode>(AfterPHIs);
723       // Create a new PHI node in the new region, which has an incoming value
724       // from OldPred of PN.
725       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
726                                        PN->getName() + ".ce", &NewBB->front());
727       PN->replaceAllUsesWith(NewPN);
728       NewPN->addIncoming(PN, OldPred);
729 
730       // Loop over all of the incoming value in PN, moving them to NewPN if they
731       // are from the extracted region.
732       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
733         if (Blocks.count(PN->getIncomingBlock(i))) {
734           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
735           PN->removeIncomingValue(i);
736           --i;
737         }
738       }
739     }
740   }
741 }
742 
743 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
744 /// outlined region, we split these PHIs on two: one with inputs from region
745 /// and other with remaining incoming blocks; then first PHIs are placed in
746 /// outlined region.
747 void CodeExtractor::severSplitPHINodesOfExits(
748     const SmallPtrSetImpl<BasicBlock *> &Exits) {
749   for (BasicBlock *ExitBB : Exits) {
750     BasicBlock *NewBB = nullptr;
751 
752     for (PHINode &PN : ExitBB->phis()) {
753       // Find all incoming values from the outlining region.
754       SmallVector<unsigned, 2> IncomingVals;
755       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
756         if (Blocks.count(PN.getIncomingBlock(i)))
757           IncomingVals.push_back(i);
758 
759       // Do not process PHI if there is one (or fewer) predecessor from region.
760       // If PHI has exactly one predecessor from region, only this one incoming
761       // will be replaced on codeRepl block, so it should be safe to skip PHI.
762       if (IncomingVals.size() <= 1)
763         continue;
764 
765       // Create block for new PHIs and add it to the list of outlined if it
766       // wasn't done before.
767       if (!NewBB) {
768         NewBB = BasicBlock::Create(ExitBB->getContext(),
769                                    ExitBB->getName() + ".split",
770                                    ExitBB->getParent(), ExitBB);
771         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
772         for (BasicBlock *PredBB : Preds)
773           if (Blocks.count(PredBB))
774             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
775         BranchInst::Create(ExitBB, NewBB);
776         Blocks.insert(NewBB);
777       }
778 
779       // Split this PHI.
780       PHINode *NewPN =
781           PHINode::Create(PN.getType(), IncomingVals.size(),
782                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
783       for (unsigned i : IncomingVals)
784         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
785       for (unsigned i : reverse(IncomingVals))
786         PN.removeIncomingValue(i, false);
787       PN.addIncoming(NewPN, NewBB);
788     }
789   }
790 }
791 
792 void CodeExtractor::splitReturnBlocks() {
793   for (BasicBlock *Block : Blocks)
794     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
795       BasicBlock *New =
796           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
797       if (DT) {
798         // Old dominates New. New node dominates all other nodes dominated
799         // by Old.
800         DomTreeNode *OldNode = DT->getNode(Block);
801         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
802                                                OldNode->end());
803 
804         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
805 
806         for (DomTreeNode *I : Children)
807           DT->changeImmediateDominator(I, NewNode);
808       }
809     }
810 }
811 
812 /// constructFunction - make a function based on inputs and outputs, as follows:
813 /// f(in0, ..., inN, out0, ..., outN)
814 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
815                                            const ValueSet &outputs,
816                                            BasicBlock *header,
817                                            BasicBlock *newRootNode,
818                                            BasicBlock *newHeader,
819                                            Function *oldFunction,
820                                            Module *M) {
821   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
822   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
823 
824   // This function returns unsigned, outputs will go back by reference.
825   switch (NumExitBlocks) {
826   case 0:
827   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
828   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
829   default: RetTy = Type::getInt16Ty(header->getContext()); break;
830   }
831 
832   std::vector<Type *> paramTy;
833 
834   // Add the types of the input values to the function's argument list
835   for (Value *value : inputs) {
836     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
837     paramTy.push_back(value->getType());
838   }
839 
840   // Add the types of the output values to the function's argument list.
841   for (Value *output : outputs) {
842     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
843     if (AggregateArgs)
844       paramTy.push_back(output->getType());
845     else
846       paramTy.push_back(PointerType::getUnqual(output->getType()));
847   }
848 
849   LLVM_DEBUG({
850     dbgs() << "Function type: " << *RetTy << " f(";
851     for (Type *i : paramTy)
852       dbgs() << *i << ", ";
853     dbgs() << ")\n";
854   });
855 
856   StructType *StructTy = nullptr;
857   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
858     StructTy = StructType::get(M->getContext(), paramTy);
859     paramTy.clear();
860     paramTy.push_back(PointerType::getUnqual(StructTy));
861   }
862   FunctionType *funcType =
863                   FunctionType::get(RetTy, paramTy,
864                                     AllowVarArgs && oldFunction->isVarArg());
865 
866   std::string SuffixToUse =
867       Suffix.empty()
868           ? (header->getName().empty() ? "extracted" : header->getName().str())
869           : Suffix;
870   // Create the new function
871   Function *newFunction = Function::Create(
872       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
873       oldFunction->getName() + "." + SuffixToUse, M);
874   // If the old function is no-throw, so is the new one.
875   if (oldFunction->doesNotThrow())
876     newFunction->setDoesNotThrow();
877 
878   // Inherit the uwtable attribute if we need to.
879   if (oldFunction->hasUWTable())
880     newFunction->setHasUWTable();
881 
882   // Inherit all of the target dependent attributes and white-listed
883   // target independent attributes.
884   //  (e.g. If the extracted region contains a call to an x86.sse
885   //  instruction we need to make sure that the extracted region has the
886   //  "target-features" attribute allowing it to be lowered.
887   // FIXME: This should be changed to check to see if a specific
888   //           attribute can not be inherited.
889   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
890     if (Attr.isStringAttribute()) {
891       if (Attr.getKindAsString() == "thunk")
892         continue;
893     } else
894       switch (Attr.getKindAsEnum()) {
895       // Those attributes cannot be propagated safely. Explicitly list them
896       // here so we get a warning if new attributes are added. This list also
897       // includes non-function attributes.
898       case Attribute::Alignment:
899       case Attribute::AllocSize:
900       case Attribute::ArgMemOnly:
901       case Attribute::Builtin:
902       case Attribute::ByVal:
903       case Attribute::Convergent:
904       case Attribute::Dereferenceable:
905       case Attribute::DereferenceableOrNull:
906       case Attribute::ElementType:
907       case Attribute::InAlloca:
908       case Attribute::InReg:
909       case Attribute::InaccessibleMemOnly:
910       case Attribute::InaccessibleMemOrArgMemOnly:
911       case Attribute::JumpTable:
912       case Attribute::Naked:
913       case Attribute::Nest:
914       case Attribute::NoAlias:
915       case Attribute::NoBuiltin:
916       case Attribute::NoCapture:
917       case Attribute::NoMerge:
918       case Attribute::NoReturn:
919       case Attribute::NoSync:
920       case Attribute::NoUndef:
921       case Attribute::None:
922       case Attribute::NonNull:
923       case Attribute::Preallocated:
924       case Attribute::ReadNone:
925       case Attribute::ReadOnly:
926       case Attribute::Returned:
927       case Attribute::ReturnsTwice:
928       case Attribute::SExt:
929       case Attribute::Speculatable:
930       case Attribute::StackAlignment:
931       case Attribute::StructRet:
932       case Attribute::SwiftError:
933       case Attribute::SwiftSelf:
934       case Attribute::SwiftAsync:
935       case Attribute::WillReturn:
936       case Attribute::WriteOnly:
937       case Attribute::ZExt:
938       case Attribute::ImmArg:
939       case Attribute::ByRef:
940       case Attribute::EndAttrKinds:
941       case Attribute::EmptyKey:
942       case Attribute::TombstoneKey:
943         continue;
944       // Those attributes should be safe to propagate to the extracted function.
945       case Attribute::AlwaysInline:
946       case Attribute::Cold:
947       case Attribute::DisableSanitizerInstrumentation:
948       case Attribute::Hot:
949       case Attribute::NoRecurse:
950       case Attribute::InlineHint:
951       case Attribute::MinSize:
952       case Attribute::NoCallback:
953       case Attribute::NoDuplicate:
954       case Attribute::NoFree:
955       case Attribute::NoImplicitFloat:
956       case Attribute::NoInline:
957       case Attribute::NonLazyBind:
958       case Attribute::NoRedZone:
959       case Attribute::NoUnwind:
960       case Attribute::NoSanitizeCoverage:
961       case Attribute::NullPointerIsValid:
962       case Attribute::OptForFuzzing:
963       case Attribute::OptimizeNone:
964       case Attribute::OptimizeForSize:
965       case Attribute::SafeStack:
966       case Attribute::ShadowCallStack:
967       case Attribute::SanitizeAddress:
968       case Attribute::SanitizeMemory:
969       case Attribute::SanitizeThread:
970       case Attribute::SanitizeHWAddress:
971       case Attribute::SanitizeMemTag:
972       case Attribute::SpeculativeLoadHardening:
973       case Attribute::StackProtect:
974       case Attribute::StackProtectReq:
975       case Attribute::StackProtectStrong:
976       case Attribute::StrictFP:
977       case Attribute::UWTable:
978       case Attribute::VScaleRange:
979       case Attribute::NoCfCheck:
980       case Attribute::MustProgress:
981       case Attribute::NoProfile:
982         break;
983       }
984 
985     newFunction->addFnAttr(Attr);
986   }
987   newFunction->getBasicBlockList().push_back(newRootNode);
988 
989   // Create an iterator to name all of the arguments we inserted.
990   Function::arg_iterator AI = newFunction->arg_begin();
991 
992   // Rewrite all users of the inputs in the extracted region to use the
993   // arguments (or appropriate addressing into struct) instead.
994   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
995     Value *RewriteVal;
996     if (AggregateArgs) {
997       Value *Idx[2];
998       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
999       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
1000       Instruction *TI = newFunction->begin()->getTerminator();
1001       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1002           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
1003       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
1004                                 "loadgep_" + inputs[i]->getName(), TI);
1005     } else
1006       RewriteVal = &*AI++;
1007 
1008     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1009     for (User *use : Users)
1010       if (Instruction *inst = dyn_cast<Instruction>(use))
1011         if (Blocks.count(inst->getParent()))
1012           inst->replaceUsesOfWith(inputs[i], RewriteVal);
1013   }
1014 
1015   // Set names for input and output arguments.
1016   if (!AggregateArgs) {
1017     AI = newFunction->arg_begin();
1018     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
1019       AI->setName(inputs[i]->getName());
1020     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
1021       AI->setName(outputs[i]->getName()+".out");
1022   }
1023 
1024   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1025   // within the new function. This must be done before we lose track of which
1026   // blocks were originally in the code region.
1027   std::vector<User *> Users(header->user_begin(), header->user_end());
1028   for (auto &U : Users)
1029     // The BasicBlock which contains the branch is not in the region
1030     // modify the branch target to a new block
1031     if (Instruction *I = dyn_cast<Instruction>(U))
1032       if (I->isTerminator() && I->getFunction() == oldFunction &&
1033           !Blocks.count(I->getParent()))
1034         I->replaceUsesOfWith(header, newHeader);
1035 
1036   return newFunction;
1037 }
1038 
1039 /// Erase lifetime.start markers which reference inputs to the extraction
1040 /// region, and insert the referenced memory into \p LifetimesStart.
1041 ///
1042 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1043 /// of allocas which will be moved from the caller function into the extracted
1044 /// function (\p SunkAllocas).
1045 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1046                                          const SetVector<Value *> &SunkAllocas,
1047                                          SetVector<Value *> &LifetimesStart) {
1048   for (BasicBlock *BB : Blocks) {
1049     for (auto It = BB->begin(), End = BB->end(); It != End;) {
1050       auto *II = dyn_cast<IntrinsicInst>(&*It);
1051       ++It;
1052       if (!II || !II->isLifetimeStartOrEnd())
1053         continue;
1054 
1055       // Get the memory operand of the lifetime marker. If the underlying
1056       // object is a sunk alloca, or is otherwise defined in the extraction
1057       // region, the lifetime marker must not be erased.
1058       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1059       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1060         continue;
1061 
1062       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1063         LifetimesStart.insert(Mem);
1064       II->eraseFromParent();
1065     }
1066   }
1067 }
1068 
1069 /// Insert lifetime start/end markers surrounding the call to the new function
1070 /// for objects defined in the caller.
1071 static void insertLifetimeMarkersSurroundingCall(
1072     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1073     CallInst *TheCall) {
1074   LLVMContext &Ctx = M->getContext();
1075   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
1076   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1077   Instruction *Term = TheCall->getParent()->getTerminator();
1078 
1079   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
1080   // needed to satisfy this requirement so they may be reused.
1081   DenseMap<Value *, Value *> Bitcasts;
1082 
1083   // Emit lifetime markers for the pointers given in \p Objects. Insert the
1084   // markers before the call if \p InsertBefore, and after the call otherwise.
1085   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
1086                            bool InsertBefore) {
1087     for (Value *Mem : Objects) {
1088       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1089                                             TheCall->getFunction()) &&
1090              "Input memory not defined in original function");
1091       Value *&MemAsI8Ptr = Bitcasts[Mem];
1092       if (!MemAsI8Ptr) {
1093         if (Mem->getType() == Int8PtrTy)
1094           MemAsI8Ptr = Mem;
1095         else
1096           MemAsI8Ptr =
1097               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
1098       }
1099 
1100       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
1101       if (InsertBefore)
1102         Marker->insertBefore(TheCall);
1103       else
1104         Marker->insertBefore(Term);
1105     }
1106   };
1107 
1108   if (!LifetimesStart.empty()) {
1109     auto StartFn = llvm::Intrinsic::getDeclaration(
1110         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
1111     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
1112   }
1113 
1114   if (!LifetimesEnd.empty()) {
1115     auto EndFn = llvm::Intrinsic::getDeclaration(
1116         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
1117     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
1118   }
1119 }
1120 
1121 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1122 /// the call instruction, splitting any PHI nodes in the header block as
1123 /// necessary.
1124 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1125                                                     BasicBlock *codeReplacer,
1126                                                     ValueSet &inputs,
1127                                                     ValueSet &outputs) {
1128   // Emit a call to the new function, passing in: *pointer to struct (if
1129   // aggregating parameters), or plan inputs and allocated memory for outputs
1130   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1131 
1132   Module *M = newFunction->getParent();
1133   LLVMContext &Context = M->getContext();
1134   const DataLayout &DL = M->getDataLayout();
1135   CallInst *call = nullptr;
1136 
1137   // Add inputs as params, or to be filled into the struct
1138   unsigned ArgNo = 0;
1139   SmallVector<unsigned, 1> SwiftErrorArgs;
1140   for (Value *input : inputs) {
1141     if (AggregateArgs)
1142       StructValues.push_back(input);
1143     else {
1144       params.push_back(input);
1145       if (input->isSwiftError())
1146         SwiftErrorArgs.push_back(ArgNo);
1147     }
1148     ++ArgNo;
1149   }
1150 
1151   // Create allocas for the outputs
1152   for (Value *output : outputs) {
1153     if (AggregateArgs) {
1154       StructValues.push_back(output);
1155     } else {
1156       AllocaInst *alloca =
1157         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1158                        nullptr, output->getName() + ".loc",
1159                        &codeReplacer->getParent()->front().front());
1160       ReloadOutputs.push_back(alloca);
1161       params.push_back(alloca);
1162     }
1163   }
1164 
1165   StructType *StructArgTy = nullptr;
1166   AllocaInst *Struct = nullptr;
1167   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1168     std::vector<Type *> ArgTypes;
1169     for (Value *V : StructValues)
1170       ArgTypes.push_back(V->getType());
1171 
1172     // Allocate a struct at the beginning of this function
1173     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1174     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1175                             "structArg",
1176                             &codeReplacer->getParent()->front().front());
1177     params.push_back(Struct);
1178 
1179     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1180       Value *Idx[2];
1181       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1182       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1183       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1184           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1185       codeReplacer->getInstList().push_back(GEP);
1186       new StoreInst(StructValues[i], GEP, codeReplacer);
1187     }
1188   }
1189 
1190   // Emit the call to the function
1191   call = CallInst::Create(newFunction, params,
1192                           NumExitBlocks > 1 ? "targetBlock" : "");
1193   // Add debug location to the new call, if the original function has debug
1194   // info. In that case, the terminator of the entry block of the extracted
1195   // function contains the first debug location of the extracted function,
1196   // set in extractCodeRegion.
1197   if (codeReplacer->getParent()->getSubprogram()) {
1198     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1199       call->setDebugLoc(DL);
1200   }
1201   codeReplacer->getInstList().push_back(call);
1202 
1203   // Set swifterror parameter attributes.
1204   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1205     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1206     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1207   }
1208 
1209   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1210   unsigned FirstOut = inputs.size();
1211   if (!AggregateArgs)
1212     std::advance(OutputArgBegin, inputs.size());
1213 
1214   // Reload the outputs passed in by reference.
1215   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1216     Value *Output = nullptr;
1217     if (AggregateArgs) {
1218       Value *Idx[2];
1219       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1220       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1221       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1222           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1223       codeReplacer->getInstList().push_back(GEP);
1224       Output = GEP;
1225     } else {
1226       Output = ReloadOutputs[i];
1227     }
1228     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1229                                   outputs[i]->getName() + ".reload",
1230                                   codeReplacer);
1231     Reloads.push_back(load);
1232     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1233     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1234       Instruction *inst = cast<Instruction>(Users[u]);
1235       if (!Blocks.count(inst->getParent()))
1236         inst->replaceUsesOfWith(outputs[i], load);
1237     }
1238   }
1239 
1240   // Now we can emit a switch statement using the call as a value.
1241   SwitchInst *TheSwitch =
1242       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1243                          codeReplacer, 0, codeReplacer);
1244 
1245   // Since there may be multiple exits from the original region, make the new
1246   // function return an unsigned, switch on that number.  This loop iterates
1247   // over all of the blocks in the extracted region, updating any terminator
1248   // instructions in the to-be-extracted region that branch to blocks that are
1249   // not in the region to be extracted.
1250   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1251 
1252   // Iterate over the previously collected targets, and create new blocks inside
1253   // the function to branch to.
1254   unsigned switchVal = 0;
1255   for (BasicBlock *OldTarget : OldTargets) {
1256     if (Blocks.count(OldTarget))
1257       continue;
1258     BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1259     if (NewTarget)
1260       continue;
1261 
1262     // If we don't already have an exit stub for this non-extracted
1263     // destination, create one now!
1264     NewTarget = BasicBlock::Create(Context,
1265                                     OldTarget->getName() + ".exitStub",
1266                                     newFunction);
1267     unsigned SuccNum = switchVal++;
1268 
1269     Value *brVal = nullptr;
1270     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1271     switch (NumExitBlocks) {
1272     case 0:
1273     case 1: break;  // No value needed.
1274     case 2:         // Conditional branch, return a bool
1275       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1276       break;
1277     default:
1278       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1279       break;
1280     }
1281 
1282     ReturnInst::Create(Context, brVal, NewTarget);
1283 
1284     // Update the switch instruction.
1285     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1286                                         SuccNum),
1287                         OldTarget);
1288   }
1289 
1290   for (BasicBlock *Block : Blocks) {
1291     Instruction *TI = Block->getTerminator();
1292     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1293       if (Blocks.count(TI->getSuccessor(i)))
1294         continue;
1295       BasicBlock *OldTarget = TI->getSuccessor(i);
1296       // add a new basic block which returns the appropriate value
1297       BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1298       assert(NewTarget && "Unknown target block!");
1299 
1300       // rewrite the original branch instruction with this new target
1301       TI->setSuccessor(i, NewTarget);
1302    }
1303   }
1304 
1305   // Store the arguments right after the definition of output value.
1306   // This should be proceeded after creating exit stubs to be ensure that invoke
1307   // result restore will be placed in the outlined function.
1308   Function::arg_iterator OAI = OutputArgBegin;
1309   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1310     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1311     if (!OutI)
1312       continue;
1313 
1314     // Find proper insertion point.
1315     BasicBlock::iterator InsertPt;
1316     // In case OutI is an invoke, we insert the store at the beginning in the
1317     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1318     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1319       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1320     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1321       InsertPt = Phi->getParent()->getFirstInsertionPt();
1322     else
1323       InsertPt = std::next(OutI->getIterator());
1324 
1325     Instruction *InsertBefore = &*InsertPt;
1326     assert((InsertBefore->getFunction() == newFunction ||
1327             Blocks.count(InsertBefore->getParent())) &&
1328            "InsertPt should be in new function");
1329     assert(OAI != newFunction->arg_end() &&
1330            "Number of output arguments should match "
1331            "the amount of defined values");
1332     if (AggregateArgs) {
1333       Value *Idx[2];
1334       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1335       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1336       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1337           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1338           InsertBefore);
1339       new StoreInst(outputs[i], GEP, InsertBefore);
1340       // Since there should be only one struct argument aggregating
1341       // all the output values, we shouldn't increment OAI, which always
1342       // points to the struct argument, in this case.
1343     } else {
1344       new StoreInst(outputs[i], &*OAI, InsertBefore);
1345       ++OAI;
1346     }
1347   }
1348 
1349   // Now that we've done the deed, simplify the switch instruction.
1350   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1351   switch (NumExitBlocks) {
1352   case 0:
1353     // There are no successors (the block containing the switch itself), which
1354     // means that previously this was the last part of the function, and hence
1355     // this should be rewritten as a `ret'
1356 
1357     // Check if the function should return a value
1358     if (OldFnRetTy->isVoidTy()) {
1359       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1360     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1361       // return what we have
1362       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1363     } else {
1364       // Otherwise we must have code extracted an unwind or something, just
1365       // return whatever we want.
1366       ReturnInst::Create(Context,
1367                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1368     }
1369 
1370     TheSwitch->eraseFromParent();
1371     break;
1372   case 1:
1373     // Only a single destination, change the switch into an unconditional
1374     // branch.
1375     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1376     TheSwitch->eraseFromParent();
1377     break;
1378   case 2:
1379     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1380                        call, TheSwitch);
1381     TheSwitch->eraseFromParent();
1382     break;
1383   default:
1384     // Otherwise, make the default destination of the switch instruction be one
1385     // of the other successors.
1386     TheSwitch->setCondition(call);
1387     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1388     // Remove redundant case
1389     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1390     break;
1391   }
1392 
1393   // Insert lifetime markers around the reloads of any output values. The
1394   // allocas output values are stored in are only in-use in the codeRepl block.
1395   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1396 
1397   return call;
1398 }
1399 
1400 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1401   Function *oldFunc = (*Blocks.begin())->getParent();
1402   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1403   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1404 
1405   auto newFuncIt = newFunction->front().getIterator();
1406   for (BasicBlock *Block : Blocks) {
1407     // Delete the basic block from the old function, and the list of blocks
1408     oldBlocks.remove(Block);
1409 
1410     // Insert this basic block into the new function
1411     // Insert the original blocks after the entry block created
1412     // for the new function. The entry block may be followed
1413     // by a set of exit blocks at this point, but these exit
1414     // blocks better be placed at the end of the new function.
1415     newFuncIt = newBlocks.insertAfter(newFuncIt, Block);
1416   }
1417 }
1418 
1419 void CodeExtractor::calculateNewCallTerminatorWeights(
1420     BasicBlock *CodeReplacer,
1421     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1422     BranchProbabilityInfo *BPI) {
1423   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1424   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1425 
1426   // Update the branch weights for the exit block.
1427   Instruction *TI = CodeReplacer->getTerminator();
1428   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1429 
1430   // Block Frequency distribution with dummy node.
1431   Distribution BranchDist;
1432 
1433   SmallVector<BranchProbability, 4> EdgeProbabilities(
1434       TI->getNumSuccessors(), BranchProbability::getUnknown());
1435 
1436   // Add each of the frequencies of the successors.
1437   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1438     BlockNode ExitNode(i);
1439     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1440     if (ExitFreq != 0)
1441       BranchDist.addExit(ExitNode, ExitFreq);
1442     else
1443       EdgeProbabilities[i] = BranchProbability::getZero();
1444   }
1445 
1446   // Check for no total weight.
1447   if (BranchDist.Total == 0) {
1448     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1449     return;
1450   }
1451 
1452   // Normalize the distribution so that they can fit in unsigned.
1453   BranchDist.normalize();
1454 
1455   // Create normalized branch weights and set the metadata.
1456   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1457     const auto &Weight = BranchDist.Weights[I];
1458 
1459     // Get the weight and update the current BFI.
1460     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1461     BranchProbability BP(Weight.Amount, BranchDist.Total);
1462     EdgeProbabilities[Weight.TargetNode.Index] = BP;
1463   }
1464   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1465   TI->setMetadata(
1466       LLVMContext::MD_prof,
1467       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1468 }
1469 
1470 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1471 /// \p F.
1472 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1473   for (Instruction &I : instructions(F)) {
1474     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1475     findDbgUsers(DbgUsers, &I);
1476     for (DbgVariableIntrinsic *DVI : DbgUsers)
1477       if (DVI->getFunction() != &F)
1478         DVI->eraseFromParent();
1479   }
1480 }
1481 
1482 /// Fix up the debug info in the old and new functions by pointing line
1483 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1484 /// intrinsics which point to values outside of the new function.
1485 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1486                                          CallInst &TheCall) {
1487   DISubprogram *OldSP = OldFunc.getSubprogram();
1488   LLVMContext &Ctx = OldFunc.getContext();
1489 
1490   if (!OldSP) {
1491     // Erase any debug info the new function contains.
1492     stripDebugInfo(NewFunc);
1493     // Make sure the old function doesn't contain any non-local metadata refs.
1494     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1495     return;
1496   }
1497 
1498   // Create a subprogram for the new function. Leave out a description of the
1499   // function arguments, as the parameters don't correspond to anything at the
1500   // source level.
1501   assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1502   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1503                 OldSP->getUnit());
1504   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
1505   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1506                                     DISubprogram::SPFlagOptimized |
1507                                     DISubprogram::SPFlagLocalToUnit;
1508   auto NewSP = DIB.createFunction(
1509       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1510       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1511   NewFunc.setSubprogram(NewSP);
1512 
1513   // Debug intrinsics in the new function need to be updated in one of two
1514   // ways:
1515   //  1) They need to be deleted, because they describe a value in the old
1516   //     function.
1517   //  2) They need to point to fresh metadata, e.g. because they currently
1518   //     point to a variable in the wrong scope.
1519   SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1520   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1521   for (Instruction &I : instructions(NewFunc)) {
1522     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1523     if (!DII)
1524       continue;
1525 
1526     // Point the intrinsic to a fresh label within the new function.
1527     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1528       DILabel *OldLabel = DLI->getLabel();
1529       DINode *&NewLabel = RemappedMetadata[OldLabel];
1530       if (!NewLabel)
1531         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
1532                                 OldLabel->getFile(), OldLabel->getLine());
1533       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1534       continue;
1535     }
1536 
1537     auto IsInvalidLocation = [&NewFunc](Value *Location) {
1538       // Location is invalid if it isn't a constant or an instruction, or is an
1539       // instruction but isn't in the new function.
1540       if (!Location ||
1541           (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1542         return true;
1543       Instruction *LocationInst = dyn_cast<Instruction>(Location);
1544       return LocationInst && LocationInst->getFunction() != &NewFunc;
1545     };
1546 
1547     auto *DVI = cast<DbgVariableIntrinsic>(DII);
1548     // If any of the used locations are invalid, delete the intrinsic.
1549     if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1550       DebugIntrinsicsToDelete.push_back(DVI);
1551       continue;
1552     }
1553 
1554     // Point the intrinsic to a fresh variable within the new function.
1555     DILocalVariable *OldVar = DVI->getVariable();
1556     DINode *&NewVar = RemappedMetadata[OldVar];
1557     if (!NewVar)
1558       NewVar = DIB.createAutoVariable(
1559           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1560           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1561           OldVar->getAlignInBits());
1562     DVI->setVariable(cast<DILocalVariable>(NewVar));
1563   }
1564   for (auto *DII : DebugIntrinsicsToDelete)
1565     DII->eraseFromParent();
1566   DIB.finalizeSubprogram(NewSP);
1567 
1568   // Fix up the scope information attached to the line locations in the new
1569   // function.
1570   for (Instruction &I : instructions(NewFunc)) {
1571     if (const DebugLoc &DL = I.getDebugLoc())
1572       I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
1573 
1574     // Loop info metadata may contain line locations. Fix them up.
1575     auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * {
1576       if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1577         return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP,
1578                                nullptr);
1579       return MD;
1580     };
1581     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1582   }
1583   if (!TheCall.getDebugLoc())
1584     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1585 
1586   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1587 }
1588 
1589 Function *
1590 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1591   ValueSet Inputs, Outputs;
1592   return extractCodeRegion(CEAC, Inputs, Outputs);
1593 }
1594 
1595 Function *
1596 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1597                                  ValueSet &inputs, ValueSet &outputs) {
1598   if (!isEligible())
1599     return nullptr;
1600 
1601   // Assumption: this is a single-entry code region, and the header is the first
1602   // block in the region.
1603   BasicBlock *header = *Blocks.begin();
1604   Function *oldFunction = header->getParent();
1605 
1606   // Calculate the entry frequency of the new function before we change the root
1607   //   block.
1608   BlockFrequency EntryFreq;
1609   if (BFI) {
1610     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1611     for (BasicBlock *Pred : predecessors(header)) {
1612       if (Blocks.count(Pred))
1613         continue;
1614       EntryFreq +=
1615           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1616     }
1617   }
1618 
1619   // Remove @llvm.assume calls that will be moved to the new function from the
1620   // old function's assumption cache.
1621   for (BasicBlock *Block : Blocks) {
1622     for (auto It = Block->begin(), End = Block->end(); It != End;) {
1623       Instruction *I = &*It;
1624       ++It;
1625 
1626       if (auto *AI = dyn_cast<AssumeInst>(I)) {
1627         if (AC)
1628           AC->unregisterAssumption(AI);
1629         AI->eraseFromParent();
1630       }
1631     }
1632   }
1633 
1634   // If we have any return instructions in the region, split those blocks so
1635   // that the return is not in the region.
1636   splitReturnBlocks();
1637 
1638   // Calculate the exit blocks for the extracted region and the total exit
1639   // weights for each of those blocks.
1640   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1641   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1642   for (BasicBlock *Block : Blocks) {
1643     for (BasicBlock *Succ : successors(Block)) {
1644       if (!Blocks.count(Succ)) {
1645         // Update the branch weight for this successor.
1646         if (BFI) {
1647           BlockFrequency &BF = ExitWeights[Succ];
1648           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1649         }
1650         ExitBlocks.insert(Succ);
1651       }
1652     }
1653   }
1654   NumExitBlocks = ExitBlocks.size();
1655 
1656   for (BasicBlock *Block : Blocks) {
1657     Instruction *TI = Block->getTerminator();
1658     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1659       if (Blocks.count(TI->getSuccessor(i)))
1660         continue;
1661       BasicBlock *OldTarget = TI->getSuccessor(i);
1662       OldTargets.push_back(OldTarget);
1663     }
1664   }
1665 
1666   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1667   severSplitPHINodesOfEntry(header);
1668   severSplitPHINodesOfExits(ExitBlocks);
1669 
1670   // This takes place of the original loop
1671   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1672                                                 "codeRepl", oldFunction,
1673                                                 header);
1674 
1675   // The new function needs a root node because other nodes can branch to the
1676   // head of the region, but the entry node of a function cannot have preds.
1677   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1678                                                "newFuncRoot");
1679   auto *BranchI = BranchInst::Create(header);
1680   // If the original function has debug info, we have to add a debug location
1681   // to the new branch instruction from the artificial entry block.
1682   // We use the debug location of the first instruction in the extracted
1683   // blocks, as there is no other equivalent line in the source code.
1684   if (oldFunction->getSubprogram()) {
1685     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1686       return any_of(*BB, [&BranchI](const Instruction &I) {
1687         if (!I.getDebugLoc())
1688           return false;
1689         BranchI->setDebugLoc(I.getDebugLoc());
1690         return true;
1691       });
1692     });
1693   }
1694   newFuncRoot->getInstList().push_back(BranchI);
1695 
1696   ValueSet SinkingCands, HoistingCands;
1697   BasicBlock *CommonExit = nullptr;
1698   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1699   assert(HoistingCands.empty() || CommonExit);
1700 
1701   // Find inputs to, outputs from the code region.
1702   findInputsOutputs(inputs, outputs, SinkingCands);
1703 
1704   // Now sink all instructions which only have non-phi uses inside the region.
1705   // Group the allocas at the start of the block, so that any bitcast uses of
1706   // the allocas are well-defined.
1707   AllocaInst *FirstSunkAlloca = nullptr;
1708   for (auto *II : SinkingCands) {
1709     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1710       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1711       if (!FirstSunkAlloca)
1712         FirstSunkAlloca = AI;
1713     }
1714   }
1715   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1716          "Did not expect a sink candidate without any allocas");
1717   for (auto *II : SinkingCands) {
1718     if (!isa<AllocaInst>(II)) {
1719       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1720     }
1721   }
1722 
1723   if (!HoistingCands.empty()) {
1724     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1725     Instruction *TI = HoistToBlock->getTerminator();
1726     for (auto *II : HoistingCands)
1727       cast<Instruction>(II)->moveBefore(TI);
1728   }
1729 
1730   // Collect objects which are inputs to the extraction region and also
1731   // referenced by lifetime start markers within it. The effects of these
1732   // markers must be replicated in the calling function to prevent the stack
1733   // coloring pass from merging slots which store input objects.
1734   ValueSet LifetimesStart;
1735   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1736 
1737   // Construct new function based on inputs/outputs & add allocas for all defs.
1738   Function *newFunction =
1739       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1740                         oldFunction, oldFunction->getParent());
1741 
1742   // Update the entry count of the function.
1743   if (BFI) {
1744     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1745     if (Count.hasValue())
1746       newFunction->setEntryCount(
1747           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1748     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1749   }
1750 
1751   CallInst *TheCall =
1752       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1753 
1754   moveCodeToFunction(newFunction);
1755 
1756   // Replicate the effects of any lifetime start/end markers which referenced
1757   // input objects in the extraction region by placing markers around the call.
1758   insertLifetimeMarkersSurroundingCall(
1759       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1760 
1761   // Propagate personality info to the new function if there is one.
1762   if (oldFunction->hasPersonalityFn())
1763     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1764 
1765   // Update the branch weights for the exit block.
1766   if (BFI && NumExitBlocks > 1)
1767     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1768 
1769   // Loop over all of the PHI nodes in the header and exit blocks, and change
1770   // any references to the old incoming edge to be the new incoming edge.
1771   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1772     PHINode *PN = cast<PHINode>(I);
1773     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1774       if (!Blocks.count(PN->getIncomingBlock(i)))
1775         PN->setIncomingBlock(i, newFuncRoot);
1776   }
1777 
1778   for (BasicBlock *ExitBB : ExitBlocks)
1779     for (PHINode &PN : ExitBB->phis()) {
1780       Value *IncomingCodeReplacerVal = nullptr;
1781       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1782         // Ignore incoming values from outside of the extracted region.
1783         if (!Blocks.count(PN.getIncomingBlock(i)))
1784           continue;
1785 
1786         // Ensure that there is only one incoming value from codeReplacer.
1787         if (!IncomingCodeReplacerVal) {
1788           PN.setIncomingBlock(i, codeReplacer);
1789           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1790         } else
1791           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1792                  "PHI has two incompatbile incoming values from codeRepl");
1793       }
1794     }
1795 
1796   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1797 
1798   // Mark the new function `noreturn` if applicable. Terminators which resume
1799   // exception propagation are treated as returning instructions. This is to
1800   // avoid inserting traps after calls to outlined functions which unwind.
1801   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1802     const Instruction *Term = BB.getTerminator();
1803     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1804   });
1805   if (doesNotReturn)
1806     newFunction->setDoesNotReturn();
1807 
1808   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1809     newFunction->dump();
1810     report_fatal_error("verification of newFunction failed!");
1811   });
1812   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1813              report_fatal_error("verification of oldFunction failed!"));
1814   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1815                  report_fatal_error("Stale Asumption cache for old Function!"));
1816   return newFunction;
1817 }
1818 
1819 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1820                                           const Function &NewFunc,
1821                                           AssumptionCache *AC) {
1822   for (auto AssumeVH : AC->assumptions()) {
1823     auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1824     if (!I)
1825       continue;
1826 
1827     // There shouldn't be any llvm.assume intrinsics in the new function.
1828     if (I->getFunction() != &OldFunc)
1829       return true;
1830 
1831     // There shouldn't be any stale affected values in the assumption cache
1832     // that were previously in the old function, but that have now been moved
1833     // to the new function.
1834     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1835       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1836       if (!AffectedCI)
1837         continue;
1838       if (AffectedCI->getFunction() != &OldFunc)
1839         return true;
1840       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1841       if (AssumedInst->getFunction() != &OldFunc)
1842         return true;
1843     }
1844   }
1845   return false;
1846 }
1847