1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/Module.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/Verifier.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "Support/CommandLine.h" 28 #include "Support/Debug.h" 29 #include "Support/StringExtras.h" 30 #include <algorithm> 31 #include <set> 32 using namespace llvm; 33 34 // Provide a command-line option to aggregate function arguments into a struct 35 // for functions produced by the code extrator. This is useful when converting 36 // extracted functions to pthread-based code, as only one argument (void*) can 37 // be passed in to pthread_create(). 38 static cl::opt<bool> 39 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 40 cl::desc("Aggregate arguments to code-extracted functions")); 41 42 namespace { 43 class CodeExtractor { 44 typedef std::vector<Value*> Values; 45 std::set<BasicBlock*> BlocksToExtract; 46 DominatorSet *DS; 47 bool AggregateArgs; 48 unsigned NumExitBlocks; 49 const Type *RetTy; 50 public: 51 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 52 : DS(ds), AggregateArgs(AggregateArgsOpt), NumExitBlocks(~0U) {} 53 54 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 55 56 bool isEligible(const std::vector<BasicBlock*> &code); 57 58 private: 59 /// definedInRegion - Return true if the specified value is defined in the 60 /// extracted region. 61 bool definedInRegion(Value *V) const { 62 if (Instruction *I = dyn_cast<Instruction>(V)) 63 if (BlocksToExtract.count(I->getParent())) 64 return true; 65 return false; 66 } 67 68 /// definedInCaller - Return true if the specified value is defined in the 69 /// function being code extracted, but not in the region being extracted. 70 /// These values must be passed in as live-ins to the function. 71 bool definedInCaller(Value *V) const { 72 if (isa<Argument>(V)) return true; 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 if (!BlocksToExtract.count(I->getParent())) 75 return true; 76 return false; 77 } 78 79 void severSplitPHINodes(BasicBlock *&Header); 80 void splitReturnBlocks(); 81 void findInputsOutputs(Values &inputs, Values &outputs); 82 83 Function *constructFunction(const Values &inputs, 84 const Values &outputs, 85 BasicBlock *header, 86 BasicBlock *newRootNode, BasicBlock *newHeader, 87 Function *oldFunction, Module *M); 88 89 void moveCodeToFunction(Function *newFunction); 90 91 void emitCallAndSwitchStatement(Function *newFunction, 92 BasicBlock *newHeader, 93 Values &inputs, 94 Values &outputs); 95 96 }; 97 } 98 99 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 100 /// region, we need to split the entry block of the region so that the PHI node 101 /// is easier to deal with. 102 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 103 bool HasPredsFromRegion = false; 104 unsigned NumPredsOutsideRegion = 0; 105 106 if (Header != &Header->getParent()->front()) { 107 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 108 if (!PN) return; // No PHI nodes. 109 110 // If the header node contains any PHI nodes, check to see if there is more 111 // than one entry from outside the region. If so, we need to sever the 112 // header block into two. 113 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 114 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 115 HasPredsFromRegion = true; 116 else 117 ++NumPredsOutsideRegion; 118 119 // If there is one (or fewer) predecessor from outside the region, we don't 120 // need to do anything special. 121 if (NumPredsOutsideRegion <= 1) return; 122 } 123 124 // Otherwise, we need to split the header block into two pieces: one 125 // containing PHI nodes merging values from outside of the region, and a 126 // second that contains all of the code for the block and merges back any 127 // incoming values from inside of the region. 128 BasicBlock::iterator AfterPHIs = Header->begin(); 129 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 130 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 131 Header->getName()+".ce"); 132 133 // We only want to code extract the second block now, and it becomes the new 134 // header of the region. 135 BasicBlock *OldPred = Header; 136 BlocksToExtract.erase(OldPred); 137 BlocksToExtract.insert(NewBB); 138 Header = NewBB; 139 140 // Okay, update dominator sets. The blocks that dominate the new one are the 141 // blocks that dominate TIBB plus the new block itself. 142 if (DS) { 143 DominatorSet::DomSetType DomSet = DS->getDominators(OldPred); 144 DomSet.insert(NewBB); // A block always dominates itself. 145 DS->addBasicBlock(NewBB, DomSet); 146 147 // Additionally, NewBB dominates all blocks in the function that are 148 // dominated by OldPred. 149 Function *F = Header->getParent(); 150 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 151 if (DS->properlyDominates(OldPred, I)) 152 DS->addDominator(I, NewBB); 153 } 154 155 // Okay, now we need to adjust the PHI nodes and any branches from within the 156 // region to go to the new header block instead of the old header block. 157 if (HasPredsFromRegion) { 158 PHINode *PN = cast<PHINode>(OldPred->begin()); 159 // Loop over all of the predecessors of OldPred that are in the region, 160 // changing them to branch to NewBB instead. 161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 162 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 163 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 164 TI->replaceUsesOfWith(OldPred, NewBB); 165 } 166 167 // Okay, everthing within the region is now branching to the right block, we 168 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 169 for (AfterPHIs = OldPred->begin(); 170 PHINode *PN = dyn_cast<PHINode>(AfterPHIs); ++AfterPHIs) { 171 // Create a new PHI node in the new region, which has an incoming value 172 // from OldPred of PN. 173 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 174 NewBB->begin()); 175 NewPN->addIncoming(PN, OldPred); 176 177 // Loop over all of the incoming value in PN, moving them to NewPN if they 178 // are from the extracted region. 179 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 180 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 181 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 182 PN->removeIncomingValue(i); 183 --i; 184 } 185 } 186 } 187 } 188 } 189 190 void CodeExtractor::splitReturnBlocks() { 191 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 192 E = BlocksToExtract.end(); I != E; ++I) 193 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 194 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 195 } 196 197 // findInputsOutputs - Find inputs to, outputs from the code region. 198 // 199 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 200 std::set<BasicBlock*> ExitBlocks; 201 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 202 ce = BlocksToExtract.end(); ci != ce; ++ci) { 203 BasicBlock *BB = *ci; 204 205 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 206 // If a used value is defined outside the region, it's an input. If an 207 // instruction is used outside the region, it's an output. 208 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 209 if (definedInCaller(*O)) 210 inputs.push_back(*O); 211 212 // Consider uses of this instruction (outputs). 213 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 214 UI != E; ++UI) 215 if (!definedInRegion(*UI)) { 216 outputs.push_back(I); 217 break; 218 } 219 } // for: insts 220 221 // Keep track of the exit blocks from the region. 222 TerminatorInst *TI = BB->getTerminator(); 223 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 224 if (!BlocksToExtract.count(TI->getSuccessor(i))) 225 ExitBlocks.insert(TI->getSuccessor(i)); 226 } // for: basic blocks 227 228 NumExitBlocks = ExitBlocks.size(); 229 } 230 231 /// constructFunction - make a function based on inputs and outputs, as follows: 232 /// f(in0, ..., inN, out0, ..., outN) 233 /// 234 Function *CodeExtractor::constructFunction(const Values &inputs, 235 const Values &outputs, 236 BasicBlock *header, 237 BasicBlock *newRootNode, 238 BasicBlock *newHeader, 239 Function *oldFunction, 240 Module *M) { 241 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 242 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 243 244 // This function returns unsigned, outputs will go back by reference. 245 switch (NumExitBlocks) { 246 case 0: 247 case 1: RetTy = Type::VoidTy; break; 248 case 2: RetTy = Type::BoolTy; break; 249 default: RetTy = Type::UShortTy; break; 250 } 251 252 std::vector<const Type*> paramTy; 253 254 // Add the types of the input values to the function's argument list 255 for (Values::const_iterator i = inputs.begin(), 256 e = inputs.end(); i != e; ++i) { 257 const Value *value = *i; 258 DEBUG(std::cerr << "value used in func: " << value << "\n"); 259 paramTy.push_back(value->getType()); 260 } 261 262 // Add the types of the output values to the function's argument list. 263 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 264 I != E; ++I) { 265 DEBUG(std::cerr << "instr used in func: " << *I << "\n"); 266 if (AggregateArgs) 267 paramTy.push_back((*I)->getType()); 268 else 269 paramTy.push_back(PointerType::get((*I)->getType())); 270 } 271 272 DEBUG(std::cerr << "Function type: " << RetTy << " f("); 273 DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(), 274 e = paramTy.end(); i != e; ++i) std::cerr << *i << ", "); 275 DEBUG(std::cerr << ")\n"); 276 277 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 278 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 279 paramTy.clear(); 280 paramTy.push_back(StructPtr); 281 } 282 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 283 284 // Create the new function 285 Function *newFunction = new Function(funcType, 286 GlobalValue::InternalLinkage, 287 oldFunction->getName() + "_code", M); 288 newFunction->getBasicBlockList().push_back(newRootNode); 289 290 // Create an iterator to name all of the arguments we inserted. 291 Function::aiterator AI = newFunction->abegin(); 292 293 // Rewrite all users of the inputs in the extracted region to use the 294 // arguments (or appropriate addressing into struct) instead. 295 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 296 Value *RewriteVal; 297 if (AggregateArgs) { 298 std::vector<Value*> Indices; 299 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 300 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 301 std::string GEPname = "gep_" + inputs[i]->getName(); 302 TerminatorInst *TI = newFunction->begin()->getTerminator(); 303 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); 304 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 305 } else 306 RewriteVal = AI++; 307 308 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 309 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 310 use != useE; ++use) 311 if (Instruction* inst = dyn_cast<Instruction>(*use)) 312 if (BlocksToExtract.count(inst->getParent())) 313 inst->replaceUsesOfWith(inputs[i], RewriteVal); 314 } 315 316 // Set names for input and output arguments. 317 if (!AggregateArgs) { 318 AI = newFunction->abegin(); 319 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 320 AI->setName(inputs[i]->getName()); 321 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 322 AI->setName(outputs[i]->getName()+".out"); 323 } 324 325 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 326 // within the new function. This must be done before we lose track of which 327 // blocks were originally in the code region. 328 std::vector<User*> Users(header->use_begin(), header->use_end()); 329 for (unsigned i = 0, e = Users.size(); i != e; ++i) 330 // The BasicBlock which contains the branch is not in the region 331 // modify the branch target to a new block 332 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 333 if (!BlocksToExtract.count(TI->getParent()) && 334 TI->getParent()->getParent() == oldFunction) 335 TI->replaceUsesOfWith(header, newHeader); 336 337 return newFunction; 338 } 339 340 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 341 /// the call instruction, splitting any PHI nodes in the header block as 342 /// necessary. 343 void CodeExtractor:: 344 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 345 Values &inputs, Values &outputs) { 346 // Emit a call to the new function, passing in: *pointer to struct (if 347 // aggregating parameters), or plan inputs and allocated memory for outputs 348 std::vector<Value*> params, StructValues, ReloadOutputs; 349 350 // Add inputs as params, or to be filled into the struct 351 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 352 if (AggregateArgs) 353 StructValues.push_back(*i); 354 else 355 params.push_back(*i); 356 357 // Create allocas for the outputs 358 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 359 if (AggregateArgs) { 360 StructValues.push_back(*i); 361 } else { 362 AllocaInst *alloca = 363 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 364 codeReplacer->getParent()->begin()->begin()); 365 ReloadOutputs.push_back(alloca); 366 params.push_back(alloca); 367 } 368 } 369 370 AllocaInst *Struct = 0; 371 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 372 std::vector<const Type*> ArgTypes; 373 for (Values::iterator v = StructValues.begin(), 374 ve = StructValues.end(); v != ve; ++v) 375 ArgTypes.push_back((*v)->getType()); 376 377 // Allocate a struct at the beginning of this function 378 Type *StructArgTy = StructType::get(ArgTypes); 379 Struct = 380 new AllocaInst(StructArgTy, 0, "structArg", 381 codeReplacer->getParent()->begin()->begin()); 382 params.push_back(Struct); 383 384 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 385 std::vector<Value*> Indices; 386 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 387 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 388 GetElementPtrInst *GEP = 389 new GetElementPtrInst(Struct, Indices, 390 "gep_" + StructValues[i]->getName(), 0); 391 codeReplacer->getInstList().push_back(GEP); 392 StoreInst *SI = new StoreInst(StructValues[i], GEP); 393 codeReplacer->getInstList().push_back(SI); 394 } 395 } 396 397 // Emit the call to the function 398 CallInst *call = new CallInst(newFunction, params, 399 NumExitBlocks > 1 ? "targetBlock": ""); 400 codeReplacer->getInstList().push_back(call); 401 402 Function::aiterator OutputArgBegin = newFunction->abegin(); 403 unsigned FirstOut = inputs.size(); 404 if (!AggregateArgs) 405 std::advance(OutputArgBegin, inputs.size()); 406 407 // Reload the outputs passed in by reference 408 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 409 Value *Output = 0; 410 if (AggregateArgs) { 411 std::vector<Value*> Indices; 412 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 413 Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); 414 GetElementPtrInst *GEP 415 = new GetElementPtrInst(Struct, Indices, 416 "gep_reload_" + outputs[i]->getName(), 0); 417 codeReplacer->getInstList().push_back(GEP); 418 Output = GEP; 419 } else { 420 Output = ReloadOutputs[i]; 421 } 422 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 423 codeReplacer->getInstList().push_back(load); 424 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 425 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 426 Instruction *inst = cast<Instruction>(Users[u]); 427 if (!BlocksToExtract.count(inst->getParent())) 428 inst->replaceUsesOfWith(outputs[i], load); 429 } 430 } 431 432 // Now we can emit a switch statement using the call as a value. 433 SwitchInst *TheSwitch = 434 new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy), 435 codeReplacer, codeReplacer); 436 437 // Since there may be multiple exits from the original region, make the new 438 // function return an unsigned, switch on that number. This loop iterates 439 // over all of the blocks in the extracted region, updating any terminator 440 // instructions in the to-be-extracted region that branch to blocks that are 441 // not in the region to be extracted. 442 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 443 444 unsigned switchVal = 0; 445 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 446 e = BlocksToExtract.end(); i != e; ++i) { 447 TerminatorInst *TI = (*i)->getTerminator(); 448 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 449 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 450 BasicBlock *OldTarget = TI->getSuccessor(i); 451 // add a new basic block which returns the appropriate value 452 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 453 if (!NewTarget) { 454 // If we don't already have an exit stub for this non-extracted 455 // destination, create one now! 456 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 457 newFunction); 458 unsigned SuccNum = switchVal++; 459 460 Value *brVal = 0; 461 switch (NumExitBlocks) { 462 case 0: 463 case 1: break; // No value needed. 464 case 2: // Conditional branch, return a bool 465 brVal = SuccNum ? ConstantBool::False : ConstantBool::True; 466 break; 467 default: 468 brVal = ConstantUInt::get(Type::UShortTy, SuccNum); 469 break; 470 } 471 472 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 473 474 // Update the switch instruction. 475 TheSwitch->addCase(ConstantUInt::get(Type::UShortTy, SuccNum), 476 OldTarget); 477 478 // Restore values just before we exit 479 Function::aiterator OAI = OutputArgBegin; 480 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 481 // For an invoke, the normal destination is the only one that is 482 // dominated by the result of the invocation 483 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 484 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) 485 DefBlock = Invoke->getNormalDest(); 486 if (!DS || DS->dominates(DefBlock, TI->getParent())) 487 if (AggregateArgs) { 488 std::vector<Value*> Indices; 489 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 490 Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); 491 GetElementPtrInst *GEP = 492 new GetElementPtrInst(OAI, Indices, 493 "gep_" + outputs[out]->getName(), 494 NTRet); 495 new StoreInst(outputs[out], GEP, NTRet); 496 } else 497 new StoreInst(outputs[out], OAI, NTRet); 498 // Advance output iterator even if we don't emit a store 499 if (!AggregateArgs) ++OAI; 500 } 501 } 502 503 // rewrite the original branch instruction with this new target 504 TI->setSuccessor(i, NewTarget); 505 } 506 } 507 508 // Now that we've done the deed, simplify the switch instruction. 509 switch (NumExitBlocks) { 510 case 0: 511 // There is only 1 successor (the block containing the switch itself), which 512 // means that previously this was the last part of the function, and hence 513 // this should be rewritten as a `ret' 514 515 // Check if the function should return a value 516 if (TheSwitch->getParent()->getParent()->getReturnType() != Type::VoidTy && 517 TheSwitch->getParent()->getParent()->getReturnType() == 518 TheSwitch->getCondition()->getType()) 519 // return what we have 520 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 521 else 522 // just return 523 new ReturnInst(0, TheSwitch); 524 525 TheSwitch->getParent()->getInstList().erase(TheSwitch); 526 break; 527 case 1: 528 // Only a single destination, change the switch into an unconditional 529 // branch. 530 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 531 TheSwitch->getParent()->getInstList().erase(TheSwitch); 532 break; 533 case 2: 534 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 535 call, TheSwitch); 536 TheSwitch->getParent()->getInstList().erase(TheSwitch); 537 break; 538 default: 539 // Otherwise, make the default destination of the switch instruction be one 540 // of the other successors. 541 TheSwitch->setOperand(0, call); 542 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 543 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 544 break; 545 } 546 } 547 548 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 549 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 550 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 551 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 552 553 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 554 e = BlocksToExtract.end(); i != e; ++i) { 555 // Delete the basic block from the old function, and the list of blocks 556 oldBlocks.remove(*i); 557 558 // Insert this basic block into the new function 559 newBlocks.push_back(*i); 560 } 561 } 562 563 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 564 /// new function. Returns pointer to the new function. 565 /// 566 /// algorithm: 567 /// 568 /// find inputs and outputs for the region 569 /// 570 /// for inputs: add to function as args, map input instr* to arg# 571 /// for outputs: add allocas for scalars, 572 /// add to func as args, map output instr* to arg# 573 /// 574 /// rewrite func to use argument #s instead of instr* 575 /// 576 /// for each scalar output in the function: at every exit, store intermediate 577 /// computed result back into memory. 578 /// 579 Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 580 { 581 if (!isEligible(code)) 582 return 0; 583 584 // 1) Find inputs, outputs 585 // 2) Construct new function 586 // * Add allocas for defs, pass as args by reference 587 // * Pass in uses as args 588 // 3) Move code region, add call instr to func 589 // 590 BlocksToExtract.insert(code.begin(), code.end()); 591 592 Values inputs, outputs; 593 594 // Assumption: this is a single-entry code region, and the header is the first 595 // block in the region. 596 BasicBlock *header = code[0]; 597 598 for (unsigned i = 1, e = code.size(); i != e; ++i) 599 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 600 PI != E; ++PI) 601 assert(BlocksToExtract.count(*PI) && 602 "No blocks in this region may have entries from outside the region" 603 " except for the first block!"); 604 605 // If we have to split PHI nodes or the entry block, do so now. 606 severSplitPHINodes(header); 607 608 // If we have any return instructions in the region, split those blocks so 609 // that the return is not in the region. 610 splitReturnBlocks(); 611 612 Function *oldFunction = header->getParent(); 613 614 // This takes place of the original loop 615 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 616 617 // The new function needs a root node because other nodes can branch to the 618 // head of the region, but the entry node of a function cannot have preds. 619 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 620 newFuncRoot->getInstList().push_back(new BranchInst(header)); 621 622 // Find inputs to, outputs from the code region. 623 findInputsOutputs(inputs, outputs); 624 625 // Construct new function based on inputs/outputs & add allocas for all defs. 626 Function *newFunction = constructFunction(inputs, outputs, header, 627 newFuncRoot, 628 codeReplacer, oldFunction, 629 oldFunction->getParent()); 630 631 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 632 633 moveCodeToFunction(newFunction); 634 635 // Loop over all of the PHI nodes in the header block, and change any 636 // references to the old incoming edge to be the new incoming edge. 637 for (BasicBlock::iterator I = header->begin(); 638 PHINode *PN = dyn_cast<PHINode>(I); ++I) 639 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 640 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 641 PN->setIncomingBlock(i, newFuncRoot); 642 643 // Look at all successors of the codeReplacer block. If any of these blocks 644 // had PHI nodes in them, we need to update the "from" block to be the code 645 // replacer, not the original block in the extracted region. 646 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 647 succ_end(codeReplacer)); 648 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 649 for (BasicBlock::iterator I = Succs[i]->begin(); 650 PHINode *PN = dyn_cast<PHINode>(I); ++I) 651 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 652 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 653 PN->setIncomingBlock(i, codeReplacer); 654 655 //std::cerr << "NEW FUNCTION: " << *newFunction; 656 // verifyFunction(*newFunction); 657 658 // std::cerr << "OLD FUNCTION: " << *oldFunction; 659 // verifyFunction(*oldFunction); 660 661 DEBUG(if (verifyFunction(*newFunction)) abort()); 662 return newFunction; 663 } 664 665 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 666 // Deny code region if it contains allocas or vastarts. 667 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 668 BB != e; ++BB) 669 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 670 I != Ie; ++I) 671 if (isa<AllocaInst>(*I)) 672 return false; 673 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 674 if (const Function *F = CI->getCalledFunction()) 675 if (F->getIntrinsicID() == Intrinsic::vastart) 676 return false; 677 return true; 678 } 679 680 681 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 682 /// function 683 /// 684 Function* llvm::ExtractCodeRegion(DominatorSet &DS, 685 const std::vector<BasicBlock*> &code, 686 bool AggregateArgs) { 687 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 688 } 689 690 /// ExtractBasicBlock - slurp a natural loop into a brand new function 691 /// 692 Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 693 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 694 } 695 696 /// ExtractBasicBlock - slurp a basic block into a brand new function 697 /// 698 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 699 std::vector<BasicBlock*> Blocks; 700 Blocks.push_back(BB); 701 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 702 } 703