1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/Verifier.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <map> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 using namespace llvm::PatternMatch; 73 using ProfileCount = Function::ProfileCount; 74 75 #define DEBUG_TYPE "code-extractor" 76 77 // Provide a command-line option to aggregate function arguments into a struct 78 // for functions produced by the code extractor. This is useful when converting 79 // extracted functions to pthread-based code, as only one argument (void*) can 80 // be passed in to pthread_create(). 81 static cl::opt<bool> 82 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 83 cl::desc("Aggregate arguments to code-extracted functions")); 84 85 /// Test whether a block is valid for extraction. 86 static bool isBlockValidForExtraction(const BasicBlock &BB, 87 const SetVector<BasicBlock *> &Result, 88 bool AllowVarArgs, bool AllowAlloca) { 89 // taking the address of a basic block moved to another function is illegal 90 if (BB.hasAddressTaken()) 91 return false; 92 93 // don't hoist code that uses another basicblock address, as it's likely to 94 // lead to unexpected behavior, like cross-function jumps 95 SmallPtrSet<User const *, 16> Visited; 96 SmallVector<User const *, 16> ToVisit; 97 98 for (Instruction const &Inst : BB) 99 ToVisit.push_back(&Inst); 100 101 while (!ToVisit.empty()) { 102 User const *Curr = ToVisit.pop_back_val(); 103 if (!Visited.insert(Curr).second) 104 continue; 105 if (isa<BlockAddress const>(Curr)) 106 return false; // even a reference to self is likely to be not compatible 107 108 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 109 continue; 110 111 for (auto const &U : Curr->operands()) { 112 if (auto *UU = dyn_cast<User>(U)) 113 ToVisit.push_back(UU); 114 } 115 } 116 117 // If explicitly requested, allow vastart and alloca. For invoke instructions 118 // verify that extraction is valid. 119 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 120 if (isa<AllocaInst>(I)) { 121 if (!AllowAlloca) 122 return false; 123 continue; 124 } 125 126 if (const auto *II = dyn_cast<InvokeInst>(I)) { 127 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 128 // must be a part of the subgraph which is being extracted. 129 if (auto *UBB = II->getUnwindDest()) 130 if (!Result.count(UBB)) 131 return false; 132 continue; 133 } 134 135 // All catch handlers of a catchswitch instruction as well as the unwind 136 // destination must be in the subgraph. 137 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 138 if (auto *UBB = CSI->getUnwindDest()) 139 if (!Result.count(UBB)) 140 return false; 141 for (auto *HBB : CSI->handlers()) 142 if (!Result.count(const_cast<BasicBlock*>(HBB))) 143 return false; 144 continue; 145 } 146 147 // Make sure that entire catch handler is within subgraph. It is sufficient 148 // to check that catch return's block is in the list. 149 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 150 for (const auto *U : CPI->users()) 151 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 152 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 153 return false; 154 continue; 155 } 156 157 // And do similar checks for cleanup handler - the entire handler must be 158 // in subgraph which is going to be extracted. For cleanup return should 159 // additionally check that the unwind destination is also in the subgraph. 160 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 161 for (const auto *U : CPI->users()) 162 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 163 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 164 return false; 165 continue; 166 } 167 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 168 if (auto *UBB = CRI->getUnwindDest()) 169 if (!Result.count(UBB)) 170 return false; 171 continue; 172 } 173 174 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 175 if (const Function *F = CI->getCalledFunction()) { 176 auto IID = F->getIntrinsicID(); 177 if (IID == Intrinsic::vastart) { 178 if (AllowVarArgs) 179 continue; 180 else 181 return false; 182 } 183 184 // Currently, we miscompile outlined copies of eh_typid_for. There are 185 // proposals for fixing this in llvm.org/PR39545. 186 if (IID == Intrinsic::eh_typeid_for) 187 return false; 188 } 189 } 190 } 191 192 return true; 193 } 194 195 /// Build a set of blocks to extract if the input blocks are viable. 196 static SetVector<BasicBlock *> 197 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 198 bool AllowVarArgs, bool AllowAlloca) { 199 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 200 SetVector<BasicBlock *> Result; 201 202 // Loop over the blocks, adding them to our set-vector, and aborting with an 203 // empty set if we encounter invalid blocks. 204 for (BasicBlock *BB : BBs) { 205 // If this block is dead, don't process it. 206 if (DT && !DT->isReachableFromEntry(BB)) 207 continue; 208 209 if (!Result.insert(BB)) 210 llvm_unreachable("Repeated basic blocks in extraction input"); 211 } 212 213 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 214 << '\n'); 215 216 for (auto *BB : Result) { 217 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 218 return {}; 219 220 // Make sure that the first block is not a landing pad. 221 if (BB == Result.front()) { 222 if (BB->isEHPad()) { 223 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 224 return {}; 225 } 226 continue; 227 } 228 229 // All blocks other than the first must not have predecessors outside of 230 // the subgraph which is being extracted. 231 for (auto *PBB : predecessors(BB)) 232 if (!Result.count(PBB)) { 233 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 234 "outside the region except for the first block!\n" 235 << "Problematic source BB: " << BB->getName() << "\n" 236 << "Problematic destination BB: " << PBB->getName() 237 << "\n"); 238 return {}; 239 } 240 } 241 242 return Result; 243 } 244 245 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 246 bool AggregateArgs, BlockFrequencyInfo *BFI, 247 BranchProbabilityInfo *BPI, AssumptionCache *AC, 248 bool AllowVarArgs, bool AllowAlloca, 249 BasicBlock *AllocationBlock, std::string Suffix) 250 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 251 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 252 AllowVarArgs(AllowVarArgs), 253 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 254 Suffix(Suffix) {} 255 256 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 257 BlockFrequencyInfo *BFI, 258 BranchProbabilityInfo *BPI, AssumptionCache *AC, 259 std::string Suffix) 260 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 261 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), 262 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 263 /* AllowVarArgs */ false, 264 /* AllowAlloca */ false)), 265 Suffix(Suffix) {} 266 267 /// definedInRegion - Return true if the specified value is defined in the 268 /// extracted region. 269 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 270 if (Instruction *I = dyn_cast<Instruction>(V)) 271 if (Blocks.count(I->getParent())) 272 return true; 273 return false; 274 } 275 276 /// definedInCaller - Return true if the specified value is defined in the 277 /// function being code extracted, but not in the region being extracted. 278 /// These values must be passed in as live-ins to the function. 279 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 280 if (isa<Argument>(V)) return true; 281 if (Instruction *I = dyn_cast<Instruction>(V)) 282 if (!Blocks.count(I->getParent())) 283 return true; 284 return false; 285 } 286 287 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 288 BasicBlock *CommonExitBlock = nullptr; 289 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 290 for (auto *Succ : successors(Block)) { 291 // Internal edges, ok. 292 if (Blocks.count(Succ)) 293 continue; 294 if (!CommonExitBlock) { 295 CommonExitBlock = Succ; 296 continue; 297 } 298 if (CommonExitBlock != Succ) 299 return true; 300 } 301 return false; 302 }; 303 304 if (any_of(Blocks, hasNonCommonExitSucc)) 305 return nullptr; 306 307 return CommonExitBlock; 308 } 309 310 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 311 for (BasicBlock &BB : F) { 312 for (Instruction &II : BB.instructionsWithoutDebug()) 313 if (auto *AI = dyn_cast<AllocaInst>(&II)) 314 Allocas.push_back(AI); 315 316 findSideEffectInfoForBlock(BB); 317 } 318 } 319 320 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 321 for (Instruction &II : BB.instructionsWithoutDebug()) { 322 unsigned Opcode = II.getOpcode(); 323 Value *MemAddr = nullptr; 324 switch (Opcode) { 325 case Instruction::Store: 326 case Instruction::Load: { 327 if (Opcode == Instruction::Store) { 328 StoreInst *SI = cast<StoreInst>(&II); 329 MemAddr = SI->getPointerOperand(); 330 } else { 331 LoadInst *LI = cast<LoadInst>(&II); 332 MemAddr = LI->getPointerOperand(); 333 } 334 // Global variable can not be aliased with locals. 335 if (isa<Constant>(MemAddr)) 336 break; 337 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 338 if (!isa<AllocaInst>(Base)) { 339 SideEffectingBlocks.insert(&BB); 340 return; 341 } 342 BaseMemAddrs[&BB].insert(Base); 343 break; 344 } 345 default: { 346 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 347 if (IntrInst) { 348 if (IntrInst->isLifetimeStartOrEnd()) 349 break; 350 SideEffectingBlocks.insert(&BB); 351 return; 352 } 353 // Treat all the other cases conservatively if it has side effects. 354 if (II.mayHaveSideEffects()) { 355 SideEffectingBlocks.insert(&BB); 356 return; 357 } 358 } 359 } 360 } 361 } 362 363 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 364 BasicBlock &BB, AllocaInst *Addr) const { 365 if (SideEffectingBlocks.count(&BB)) 366 return true; 367 auto It = BaseMemAddrs.find(&BB); 368 if (It != BaseMemAddrs.end()) 369 return It->second.count(Addr); 370 return false; 371 } 372 373 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 374 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 375 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 376 Function *Func = (*Blocks.begin())->getParent(); 377 for (BasicBlock &BB : *Func) { 378 if (Blocks.count(&BB)) 379 continue; 380 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 381 return false; 382 } 383 return true; 384 } 385 386 BasicBlock * 387 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 388 BasicBlock *SinglePredFromOutlineRegion = nullptr; 389 assert(!Blocks.count(CommonExitBlock) && 390 "Expect a block outside the region!"); 391 for (auto *Pred : predecessors(CommonExitBlock)) { 392 if (!Blocks.count(Pred)) 393 continue; 394 if (!SinglePredFromOutlineRegion) { 395 SinglePredFromOutlineRegion = Pred; 396 } else if (SinglePredFromOutlineRegion != Pred) { 397 SinglePredFromOutlineRegion = nullptr; 398 break; 399 } 400 } 401 402 if (SinglePredFromOutlineRegion) 403 return SinglePredFromOutlineRegion; 404 405 #ifndef NDEBUG 406 auto getFirstPHI = [](BasicBlock *BB) { 407 BasicBlock::iterator I = BB->begin(); 408 PHINode *FirstPhi = nullptr; 409 while (I != BB->end()) { 410 PHINode *Phi = dyn_cast<PHINode>(I); 411 if (!Phi) 412 break; 413 if (!FirstPhi) { 414 FirstPhi = Phi; 415 break; 416 } 417 } 418 return FirstPhi; 419 }; 420 // If there are any phi nodes, the single pred either exists or has already 421 // be created before code extraction. 422 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 423 #endif 424 425 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 426 CommonExitBlock->getFirstNonPHI()->getIterator()); 427 428 for (BasicBlock *Pred : 429 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 430 if (Blocks.count(Pred)) 431 continue; 432 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 433 } 434 // Now add the old exit block to the outline region. 435 Blocks.insert(CommonExitBlock); 436 OldTargets.push_back(NewExitBlock); 437 return CommonExitBlock; 438 } 439 440 // Find the pair of life time markers for address 'Addr' that are either 441 // defined inside the outline region or can legally be shrinkwrapped into the 442 // outline region. If there are not other untracked uses of the address, return 443 // the pair of markers if found; otherwise return a pair of nullptr. 444 CodeExtractor::LifetimeMarkerInfo 445 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 446 Instruction *Addr, 447 BasicBlock *ExitBlock) const { 448 LifetimeMarkerInfo Info; 449 450 for (User *U : Addr->users()) { 451 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 452 if (IntrInst) { 453 // We don't model addresses with multiple start/end markers, but the 454 // markers do not need to be in the region. 455 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 456 if (Info.LifeStart) 457 return {}; 458 Info.LifeStart = IntrInst; 459 continue; 460 } 461 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 462 if (Info.LifeEnd) 463 return {}; 464 Info.LifeEnd = IntrInst; 465 continue; 466 } 467 // At this point, permit debug uses outside of the region. 468 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 469 if (isa<DbgInfoIntrinsic>(IntrInst)) 470 continue; 471 } 472 // Find untracked uses of the address, bail. 473 if (!definedInRegion(Blocks, U)) 474 return {}; 475 } 476 477 if (!Info.LifeStart || !Info.LifeEnd) 478 return {}; 479 480 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 481 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 482 // Do legality check. 483 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 484 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 485 return {}; 486 487 // Check to see if we have a place to do hoisting, if not, bail. 488 if (Info.HoistLifeEnd && !ExitBlock) 489 return {}; 490 491 return Info; 492 } 493 494 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 495 ValueSet &SinkCands, ValueSet &HoistCands, 496 BasicBlock *&ExitBlock) const { 497 Function *Func = (*Blocks.begin())->getParent(); 498 ExitBlock = getCommonExitBlock(Blocks); 499 500 auto moveOrIgnoreLifetimeMarkers = 501 [&](const LifetimeMarkerInfo &LMI) -> bool { 502 if (!LMI.LifeStart) 503 return false; 504 if (LMI.SinkLifeStart) { 505 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 506 << "\n"); 507 SinkCands.insert(LMI.LifeStart); 508 } 509 if (LMI.HoistLifeEnd) { 510 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 511 HoistCands.insert(LMI.LifeEnd); 512 } 513 return true; 514 }; 515 516 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 517 // this is much faster than walking all the instructions. 518 for (AllocaInst *AI : CEAC.getAllocas()) { 519 BasicBlock *BB = AI->getParent(); 520 if (Blocks.count(BB)) 521 continue; 522 523 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 524 // check whether it is actually still in the original function. 525 Function *AIFunc = BB->getParent(); 526 if (AIFunc != Func) 527 continue; 528 529 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 530 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 531 if (Moved) { 532 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 533 SinkCands.insert(AI); 534 continue; 535 } 536 537 // Find bitcasts in the outlined region that have lifetime marker users 538 // outside that region. Replace the lifetime marker use with an 539 // outside region bitcast to avoid unnecessary alloca/reload instructions 540 // and extra lifetime markers. 541 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 542 for (User *U : AI->users()) { 543 if (!definedInRegion(Blocks, U)) 544 continue; 545 546 if (U->stripInBoundsConstantOffsets() != AI) 547 continue; 548 549 Instruction *Bitcast = cast<Instruction>(U); 550 for (User *BU : Bitcast->users()) { 551 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 552 if (!IntrInst) 553 continue; 554 555 if (!IntrInst->isLifetimeStartOrEnd()) 556 continue; 557 558 if (definedInRegion(Blocks, IntrInst)) 559 continue; 560 561 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 562 << *Bitcast << " in out-of-region lifetime marker " 563 << *IntrInst << "\n"); 564 LifetimeBitcastUsers.push_back(IntrInst); 565 } 566 } 567 568 for (Instruction *I : LifetimeBitcastUsers) { 569 Module *M = AIFunc->getParent(); 570 LLVMContext &Ctx = M->getContext(); 571 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); 572 CastInst *CastI = 573 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); 574 I->replaceUsesOfWith(I->getOperand(1), CastI); 575 } 576 577 // Follow any bitcasts. 578 SmallVector<Instruction *, 2> Bitcasts; 579 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 580 for (User *U : AI->users()) { 581 if (U->stripInBoundsConstantOffsets() == AI) { 582 Instruction *Bitcast = cast<Instruction>(U); 583 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 584 if (LMI.LifeStart) { 585 Bitcasts.push_back(Bitcast); 586 BitcastLifetimeInfo.push_back(LMI); 587 continue; 588 } 589 } 590 591 // Found unknown use of AI. 592 if (!definedInRegion(Blocks, U)) { 593 Bitcasts.clear(); 594 break; 595 } 596 } 597 598 // Either no bitcasts reference the alloca or there are unknown uses. 599 if (Bitcasts.empty()) 600 continue; 601 602 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 603 SinkCands.insert(AI); 604 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 605 Instruction *BitcastAddr = Bitcasts[I]; 606 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 607 assert(LMI.LifeStart && 608 "Unsafe to sink bitcast without lifetime markers"); 609 moveOrIgnoreLifetimeMarkers(LMI); 610 if (!definedInRegion(Blocks, BitcastAddr)) { 611 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 612 << "\n"); 613 SinkCands.insert(BitcastAddr); 614 } 615 } 616 } 617 } 618 619 bool CodeExtractor::isEligible() const { 620 if (Blocks.empty()) 621 return false; 622 BasicBlock *Header = *Blocks.begin(); 623 Function *F = Header->getParent(); 624 625 // For functions with varargs, check that varargs handling is only done in the 626 // outlined function, i.e vastart and vaend are only used in outlined blocks. 627 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 628 auto containsVarArgIntrinsic = [](const Instruction &I) { 629 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 630 if (const Function *Callee = CI->getCalledFunction()) 631 return Callee->getIntrinsicID() == Intrinsic::vastart || 632 Callee->getIntrinsicID() == Intrinsic::vaend; 633 return false; 634 }; 635 636 for (auto &BB : *F) { 637 if (Blocks.count(&BB)) 638 continue; 639 if (llvm::any_of(BB, containsVarArgIntrinsic)) 640 return false; 641 } 642 } 643 return true; 644 } 645 646 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 647 const ValueSet &SinkCands) const { 648 for (BasicBlock *BB : Blocks) { 649 // If a used value is defined outside the region, it's an input. If an 650 // instruction is used outside the region, it's an output. 651 for (Instruction &II : *BB) { 652 for (auto &OI : II.operands()) { 653 Value *V = OI; 654 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 655 Inputs.insert(V); 656 } 657 658 for (User *U : II.users()) 659 if (!definedInRegion(Blocks, U)) { 660 Outputs.insert(&II); 661 break; 662 } 663 } 664 } 665 } 666 667 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 668 /// of the region, we need to split the entry block of the region so that the 669 /// PHI node is easier to deal with. 670 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 671 unsigned NumPredsFromRegion = 0; 672 unsigned NumPredsOutsideRegion = 0; 673 674 if (Header != &Header->getParent()->getEntryBlock()) { 675 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 676 if (!PN) return; // No PHI nodes. 677 678 // If the header node contains any PHI nodes, check to see if there is more 679 // than one entry from outside the region. If so, we need to sever the 680 // header block into two. 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (Blocks.count(PN->getIncomingBlock(i))) 683 ++NumPredsFromRegion; 684 else 685 ++NumPredsOutsideRegion; 686 687 // If there is one (or fewer) predecessor from outside the region, we don't 688 // need to do anything special. 689 if (NumPredsOutsideRegion <= 1) return; 690 } 691 692 // Otherwise, we need to split the header block into two pieces: one 693 // containing PHI nodes merging values from outside of the region, and a 694 // second that contains all of the code for the block and merges back any 695 // incoming values from inside of the region. 696 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 697 698 // We only want to code extract the second block now, and it becomes the new 699 // header of the region. 700 BasicBlock *OldPred = Header; 701 Blocks.remove(OldPred); 702 Blocks.insert(NewBB); 703 Header = NewBB; 704 705 // Okay, now we need to adjust the PHI nodes and any branches from within the 706 // region to go to the new header block instead of the old header block. 707 if (NumPredsFromRegion) { 708 PHINode *PN = cast<PHINode>(OldPred->begin()); 709 // Loop over all of the predecessors of OldPred that are in the region, 710 // changing them to branch to NewBB instead. 711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 712 if (Blocks.count(PN->getIncomingBlock(i))) { 713 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 714 TI->replaceUsesOfWith(OldPred, NewBB); 715 } 716 717 // Okay, everything within the region is now branching to the right block, we 718 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 719 BasicBlock::iterator AfterPHIs; 720 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 721 PHINode *PN = cast<PHINode>(AfterPHIs); 722 // Create a new PHI node in the new region, which has an incoming value 723 // from OldPred of PN. 724 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 725 PN->getName() + ".ce", &NewBB->front()); 726 PN->replaceAllUsesWith(NewPN); 727 NewPN->addIncoming(PN, OldPred); 728 729 // Loop over all of the incoming value in PN, moving them to NewPN if they 730 // are from the extracted region. 731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 732 if (Blocks.count(PN->getIncomingBlock(i))) { 733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 734 PN->removeIncomingValue(i); 735 --i; 736 } 737 } 738 } 739 } 740 } 741 742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 743 /// outlined region, we split these PHIs on two: one with inputs from region 744 /// and other with remaining incoming blocks; then first PHIs are placed in 745 /// outlined region. 746 void CodeExtractor::severSplitPHINodesOfExits( 747 const SmallPtrSetImpl<BasicBlock *> &Exits) { 748 for (BasicBlock *ExitBB : Exits) { 749 BasicBlock *NewBB = nullptr; 750 751 for (PHINode &PN : ExitBB->phis()) { 752 // Find all incoming values from the outlining region. 753 SmallVector<unsigned, 2> IncomingVals; 754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 755 if (Blocks.count(PN.getIncomingBlock(i))) 756 IncomingVals.push_back(i); 757 758 // Do not process PHI if there is one (or fewer) predecessor from region. 759 // If PHI has exactly one predecessor from region, only this one incoming 760 // will be replaced on codeRepl block, so it should be safe to skip PHI. 761 if (IncomingVals.size() <= 1) 762 continue; 763 764 // Create block for new PHIs and add it to the list of outlined if it 765 // wasn't done before. 766 if (!NewBB) { 767 NewBB = BasicBlock::Create(ExitBB->getContext(), 768 ExitBB->getName() + ".split", 769 ExitBB->getParent(), ExitBB); 770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 771 for (BasicBlock *PredBB : Preds) 772 if (Blocks.count(PredBB)) 773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 774 BranchInst::Create(ExitBB, NewBB); 775 Blocks.insert(NewBB); 776 } 777 778 // Split this PHI. 779 PHINode *NewPN = 780 PHINode::Create(PN.getType(), IncomingVals.size(), 781 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 782 for (unsigned i : IncomingVals) 783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 784 for (unsigned i : reverse(IncomingVals)) 785 PN.removeIncomingValue(i, false); 786 PN.addIncoming(NewPN, NewBB); 787 } 788 } 789 } 790 791 void CodeExtractor::splitReturnBlocks() { 792 for (BasicBlock *Block : Blocks) 793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 794 BasicBlock *New = 795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 796 if (DT) { 797 // Old dominates New. New node dominates all other nodes dominated 798 // by Old. 799 DomTreeNode *OldNode = DT->getNode(Block); 800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 801 OldNode->end()); 802 803 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 804 805 for (DomTreeNode *I : Children) 806 DT->changeImmediateDominator(I, NewNode); 807 } 808 } 809 } 810 811 /// constructFunction - make a function based on inputs and outputs, as follows: 812 /// f(in0, ..., inN, out0, ..., outN) 813 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 814 const ValueSet &outputs, 815 BasicBlock *header, 816 BasicBlock *newRootNode, 817 BasicBlock *newHeader, 818 Function *oldFunction, 819 Module *M) { 820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 822 823 // This function returns unsigned, outputs will go back by reference. 824 switch (NumExitBlocks) { 825 case 0: 826 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 828 default: RetTy = Type::getInt16Ty(header->getContext()); break; 829 } 830 831 std::vector<Type *> ParamTy; 832 std::vector<Type *> AggParamTy; 833 ValueSet StructValues; 834 835 // Add the types of the input values to the function's argument list 836 for (Value *value : inputs) { 837 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 838 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 839 AggParamTy.push_back(value->getType()); 840 StructValues.insert(value); 841 } else 842 ParamTy.push_back(value->getType()); 843 } 844 845 // Add the types of the output values to the function's argument list. 846 for (Value *output : outputs) { 847 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 848 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 849 AggParamTy.push_back(output->getType()); 850 StructValues.insert(output); 851 } else 852 ParamTy.push_back(PointerType::getUnqual(output->getType())); 853 } 854 855 assert( 856 (ParamTy.size() + AggParamTy.size()) == 857 (inputs.size() + outputs.size()) && 858 "Number of scalar and aggregate params does not match inputs, outputs"); 859 assert((StructValues.empty() || AggregateArgs) && 860 "Expeced StructValues only with AggregateArgs set"); 861 862 // Concatenate scalar and aggregate params in ParamTy. 863 size_t NumScalarParams = ParamTy.size(); 864 StructType *StructTy = nullptr; 865 if (AggregateArgs && !AggParamTy.empty()) { 866 StructTy = StructType::get(M->getContext(), AggParamTy); 867 ParamTy.push_back(PointerType::getUnqual(StructTy)); 868 } 869 870 LLVM_DEBUG({ 871 dbgs() << "Function type: " << *RetTy << " f("; 872 for (Type *i : ParamTy) 873 dbgs() << *i << ", "; 874 dbgs() << ")\n"; 875 }); 876 877 FunctionType *funcType = FunctionType::get( 878 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 879 880 std::string SuffixToUse = 881 Suffix.empty() 882 ? (header->getName().empty() ? "extracted" : header->getName().str()) 883 : Suffix; 884 // Create the new function 885 Function *newFunction = Function::Create( 886 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 887 oldFunction->getName() + "." + SuffixToUse, M); 888 889 // Inherit all of the target dependent attributes and white-listed 890 // target independent attributes. 891 // (e.g. If the extracted region contains a call to an x86.sse 892 // instruction we need to make sure that the extracted region has the 893 // "target-features" attribute allowing it to be lowered. 894 // FIXME: This should be changed to check to see if a specific 895 // attribute can not be inherited. 896 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 897 if (Attr.isStringAttribute()) { 898 if (Attr.getKindAsString() == "thunk") 899 continue; 900 } else 901 switch (Attr.getKindAsEnum()) { 902 // Those attributes cannot be propagated safely. Explicitly list them 903 // here so we get a warning if new attributes are added. 904 case Attribute::AllocSize: 905 case Attribute::ArgMemOnly: 906 case Attribute::Builtin: 907 case Attribute::Convergent: 908 case Attribute::InaccessibleMemOnly: 909 case Attribute::InaccessibleMemOrArgMemOnly: 910 case Attribute::JumpTable: 911 case Attribute::Naked: 912 case Attribute::NoBuiltin: 913 case Attribute::NoMerge: 914 case Attribute::NoReturn: 915 case Attribute::NoSync: 916 case Attribute::ReadNone: 917 case Attribute::ReadOnly: 918 case Attribute::ReturnsTwice: 919 case Attribute::Speculatable: 920 case Attribute::StackAlignment: 921 case Attribute::WillReturn: 922 case Attribute::WriteOnly: 923 case Attribute::AllocKind: 924 case Attribute::PresplitCoroutine: 925 continue; 926 // Those attributes should be safe to propagate to the extracted function. 927 case Attribute::AlwaysInline: 928 case Attribute::Cold: 929 case Attribute::DisableSanitizerInstrumentation: 930 case Attribute::FnRetThunkExtern: 931 case Attribute::Hot: 932 case Attribute::NoRecurse: 933 case Attribute::InlineHint: 934 case Attribute::MinSize: 935 case Attribute::NoCallback: 936 case Attribute::NoDuplicate: 937 case Attribute::NoFree: 938 case Attribute::NoImplicitFloat: 939 case Attribute::NoInline: 940 case Attribute::NonLazyBind: 941 case Attribute::NoRedZone: 942 case Attribute::NoUnwind: 943 case Attribute::NoSanitizeBounds: 944 case Attribute::NoSanitizeCoverage: 945 case Attribute::NullPointerIsValid: 946 case Attribute::OptForFuzzing: 947 case Attribute::OptimizeNone: 948 case Attribute::OptimizeForSize: 949 case Attribute::SafeStack: 950 case Attribute::ShadowCallStack: 951 case Attribute::SanitizeAddress: 952 case Attribute::SanitizeMemory: 953 case Attribute::SanitizeThread: 954 case Attribute::SanitizeHWAddress: 955 case Attribute::SanitizeMemTag: 956 case Attribute::SpeculativeLoadHardening: 957 case Attribute::StackProtect: 958 case Attribute::StackProtectReq: 959 case Attribute::StackProtectStrong: 960 case Attribute::StrictFP: 961 case Attribute::UWTable: 962 case Attribute::VScaleRange: 963 case Attribute::NoCfCheck: 964 case Attribute::MustProgress: 965 case Attribute::NoProfile: 966 case Attribute::SkipProfile: 967 break; 968 // These attributes cannot be applied to functions. 969 case Attribute::Alignment: 970 case Attribute::AllocatedPointer: 971 case Attribute::AllocAlign: 972 case Attribute::ByVal: 973 case Attribute::Dereferenceable: 974 case Attribute::DereferenceableOrNull: 975 case Attribute::ElementType: 976 case Attribute::InAlloca: 977 case Attribute::InReg: 978 case Attribute::Nest: 979 case Attribute::NoAlias: 980 case Attribute::NoCapture: 981 case Attribute::NoUndef: 982 case Attribute::NonNull: 983 case Attribute::Preallocated: 984 case Attribute::Returned: 985 case Attribute::SExt: 986 case Attribute::StructRet: 987 case Attribute::SwiftError: 988 case Attribute::SwiftSelf: 989 case Attribute::SwiftAsync: 990 case Attribute::ZExt: 991 case Attribute::ImmArg: 992 case Attribute::ByRef: 993 // These are not really attributes. 994 case Attribute::None: 995 case Attribute::EndAttrKinds: 996 case Attribute::EmptyKey: 997 case Attribute::TombstoneKey: 998 llvm_unreachable("Not a function attribute"); 999 } 1000 1001 newFunction->addFnAttr(Attr); 1002 } 1003 newFunction->getBasicBlockList().push_back(newRootNode); 1004 1005 // Create scalar and aggregate iterators to name all of the arguments we 1006 // inserted. 1007 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1008 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1009 1010 // Rewrite all users of the inputs in the extracted region to use the 1011 // arguments (or appropriate addressing into struct) instead. 1012 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1013 Value *RewriteVal; 1014 if (AggregateArgs && StructValues.contains(inputs[i])) { 1015 Value *Idx[2]; 1016 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1017 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1018 Instruction *TI = newFunction->begin()->getTerminator(); 1019 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1020 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1021 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1022 "loadgep_" + inputs[i]->getName(), TI); 1023 ++aggIdx; 1024 } else 1025 RewriteVal = &*ScalarAI++; 1026 1027 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1028 for (User *use : Users) 1029 if (Instruction *inst = dyn_cast<Instruction>(use)) 1030 if (Blocks.count(inst->getParent())) 1031 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1032 } 1033 1034 // Set names for input and output arguments. 1035 if (NumScalarParams) { 1036 ScalarAI = newFunction->arg_begin(); 1037 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1038 if (!StructValues.contains(inputs[i])) 1039 ScalarAI->setName(inputs[i]->getName()); 1040 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1041 if (!StructValues.contains(outputs[i])) 1042 ScalarAI->setName(outputs[i]->getName() + ".out"); 1043 } 1044 1045 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1046 // within the new function. This must be done before we lose track of which 1047 // blocks were originally in the code region. 1048 std::vector<User *> Users(header->user_begin(), header->user_end()); 1049 for (auto &U : Users) 1050 // The BasicBlock which contains the branch is not in the region 1051 // modify the branch target to a new block 1052 if (Instruction *I = dyn_cast<Instruction>(U)) 1053 if (I->isTerminator() && I->getFunction() == oldFunction && 1054 !Blocks.count(I->getParent())) 1055 I->replaceUsesOfWith(header, newHeader); 1056 1057 return newFunction; 1058 } 1059 1060 /// Erase lifetime.start markers which reference inputs to the extraction 1061 /// region, and insert the referenced memory into \p LifetimesStart. 1062 /// 1063 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1064 /// of allocas which will be moved from the caller function into the extracted 1065 /// function (\p SunkAllocas). 1066 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1067 const SetVector<Value *> &SunkAllocas, 1068 SetVector<Value *> &LifetimesStart) { 1069 for (BasicBlock *BB : Blocks) { 1070 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1071 auto *II = dyn_cast<IntrinsicInst>(&I); 1072 if (!II || !II->isLifetimeStartOrEnd()) 1073 continue; 1074 1075 // Get the memory operand of the lifetime marker. If the underlying 1076 // object is a sunk alloca, or is otherwise defined in the extraction 1077 // region, the lifetime marker must not be erased. 1078 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1079 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1080 continue; 1081 1082 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1083 LifetimesStart.insert(Mem); 1084 II->eraseFromParent(); 1085 } 1086 } 1087 } 1088 1089 /// Insert lifetime start/end markers surrounding the call to the new function 1090 /// for objects defined in the caller. 1091 static void insertLifetimeMarkersSurroundingCall( 1092 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1093 CallInst *TheCall) { 1094 LLVMContext &Ctx = M->getContext(); 1095 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1096 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1097 Instruction *Term = TheCall->getParent()->getTerminator(); 1098 1099 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1100 // needed to satisfy this requirement so they may be reused. 1101 DenseMap<Value *, Value *> Bitcasts; 1102 1103 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1104 // markers before the call if \p InsertBefore, and after the call otherwise. 1105 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1106 bool InsertBefore) { 1107 for (Value *Mem : Objects) { 1108 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1109 TheCall->getFunction()) && 1110 "Input memory not defined in original function"); 1111 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1112 if (!MemAsI8Ptr) { 1113 if (Mem->getType() == Int8PtrTy) 1114 MemAsI8Ptr = Mem; 1115 else 1116 MemAsI8Ptr = 1117 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1118 } 1119 1120 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1121 if (InsertBefore) 1122 Marker->insertBefore(TheCall); 1123 else 1124 Marker->insertBefore(Term); 1125 } 1126 }; 1127 1128 if (!LifetimesStart.empty()) { 1129 auto StartFn = llvm::Intrinsic::getDeclaration( 1130 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1131 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1132 } 1133 1134 if (!LifetimesEnd.empty()) { 1135 auto EndFn = llvm::Intrinsic::getDeclaration( 1136 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1137 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1138 } 1139 } 1140 1141 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1142 /// the call instruction, splitting any PHI nodes in the header block as 1143 /// necessary. 1144 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1145 BasicBlock *codeReplacer, 1146 ValueSet &inputs, 1147 ValueSet &outputs) { 1148 // Emit a call to the new function, passing in: *pointer to struct (if 1149 // aggregating parameters), or plan inputs and allocated memory for outputs 1150 std::vector<Value *> params, ReloadOutputs, Reloads; 1151 ValueSet StructValues; 1152 1153 Module *M = newFunction->getParent(); 1154 LLVMContext &Context = M->getContext(); 1155 const DataLayout &DL = M->getDataLayout(); 1156 CallInst *call = nullptr; 1157 1158 // Add inputs as params, or to be filled into the struct 1159 unsigned ScalarInputArgNo = 0; 1160 SmallVector<unsigned, 1> SwiftErrorArgs; 1161 for (Value *input : inputs) { 1162 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1163 StructValues.insert(input); 1164 else { 1165 params.push_back(input); 1166 if (input->isSwiftError()) 1167 SwiftErrorArgs.push_back(ScalarInputArgNo); 1168 } 1169 ++ScalarInputArgNo; 1170 } 1171 1172 // Create allocas for the outputs 1173 unsigned ScalarOutputArgNo = 0; 1174 for (Value *output : outputs) { 1175 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1176 StructValues.insert(output); 1177 } else { 1178 AllocaInst *alloca = 1179 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1180 nullptr, output->getName() + ".loc", 1181 &codeReplacer->getParent()->front().front()); 1182 ReloadOutputs.push_back(alloca); 1183 params.push_back(alloca); 1184 ++ScalarOutputArgNo; 1185 } 1186 } 1187 1188 StructType *StructArgTy = nullptr; 1189 AllocaInst *Struct = nullptr; 1190 unsigned NumAggregatedInputs = 0; 1191 if (AggregateArgs && !StructValues.empty()) { 1192 std::vector<Type *> ArgTypes; 1193 for (Value *V : StructValues) 1194 ArgTypes.push_back(V->getType()); 1195 1196 // Allocate a struct at the beginning of this function 1197 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1198 Struct = new AllocaInst( 1199 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1200 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt() 1201 : &codeReplacer->getParent()->front().front()); 1202 params.push_back(Struct); 1203 1204 // Store aggregated inputs in the struct. 1205 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1206 if (inputs.contains(StructValues[i])) { 1207 Value *Idx[2]; 1208 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1209 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1210 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1211 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1212 codeReplacer->getInstList().push_back(GEP); 1213 new StoreInst(StructValues[i], GEP, codeReplacer); 1214 NumAggregatedInputs++; 1215 } 1216 } 1217 } 1218 1219 // Emit the call to the function 1220 call = CallInst::Create(newFunction, params, 1221 NumExitBlocks > 1 ? "targetBlock" : ""); 1222 // Add debug location to the new call, if the original function has debug 1223 // info. In that case, the terminator of the entry block of the extracted 1224 // function contains the first debug location of the extracted function, 1225 // set in extractCodeRegion. 1226 if (codeReplacer->getParent()->getSubprogram()) { 1227 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1228 call->setDebugLoc(DL); 1229 } 1230 codeReplacer->getInstList().push_back(call); 1231 1232 // Set swifterror parameter attributes. 1233 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1234 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1235 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1236 } 1237 1238 // Reload the outputs passed in by reference, use the struct if output is in 1239 // the aggregate or reload from the scalar argument. 1240 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1241 aggIdx = NumAggregatedInputs; 1242 i != e; ++i) { 1243 Value *Output = nullptr; 1244 if (AggregateArgs && StructValues.contains(outputs[i])) { 1245 Value *Idx[2]; 1246 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1247 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1248 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1249 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1250 codeReplacer->getInstList().push_back(GEP); 1251 Output = GEP; 1252 ++aggIdx; 1253 } else { 1254 Output = ReloadOutputs[scalarIdx]; 1255 ++scalarIdx; 1256 } 1257 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1258 outputs[i]->getName() + ".reload", 1259 codeReplacer); 1260 Reloads.push_back(load); 1261 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1262 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1263 Instruction *inst = cast<Instruction>(Users[u]); 1264 if (!Blocks.count(inst->getParent())) 1265 inst->replaceUsesOfWith(outputs[i], load); 1266 } 1267 } 1268 1269 // Now we can emit a switch statement using the call as a value. 1270 SwitchInst *TheSwitch = 1271 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1272 codeReplacer, 0, codeReplacer); 1273 1274 // Since there may be multiple exits from the original region, make the new 1275 // function return an unsigned, switch on that number. This loop iterates 1276 // over all of the blocks in the extracted region, updating any terminator 1277 // instructions in the to-be-extracted region that branch to blocks that are 1278 // not in the region to be extracted. 1279 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1280 1281 // Iterate over the previously collected targets, and create new blocks inside 1282 // the function to branch to. 1283 unsigned switchVal = 0; 1284 for (BasicBlock *OldTarget : OldTargets) { 1285 if (Blocks.count(OldTarget)) 1286 continue; 1287 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1288 if (NewTarget) 1289 continue; 1290 1291 // If we don't already have an exit stub for this non-extracted 1292 // destination, create one now! 1293 NewTarget = BasicBlock::Create(Context, 1294 OldTarget->getName() + ".exitStub", 1295 newFunction); 1296 unsigned SuccNum = switchVal++; 1297 1298 Value *brVal = nullptr; 1299 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1300 switch (NumExitBlocks) { 1301 case 0: 1302 case 1: break; // No value needed. 1303 case 2: // Conditional branch, return a bool 1304 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1305 break; 1306 default: 1307 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1308 break; 1309 } 1310 1311 ReturnInst::Create(Context, brVal, NewTarget); 1312 1313 // Update the switch instruction. 1314 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1315 SuccNum), 1316 OldTarget); 1317 } 1318 1319 for (BasicBlock *Block : Blocks) { 1320 Instruction *TI = Block->getTerminator(); 1321 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1322 if (Blocks.count(TI->getSuccessor(i))) 1323 continue; 1324 BasicBlock *OldTarget = TI->getSuccessor(i); 1325 // add a new basic block which returns the appropriate value 1326 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1327 assert(NewTarget && "Unknown target block!"); 1328 1329 // rewrite the original branch instruction with this new target 1330 TI->setSuccessor(i, NewTarget); 1331 } 1332 } 1333 1334 // Store the arguments right after the definition of output value. 1335 // This should be proceeded after creating exit stubs to be ensure that invoke 1336 // result restore will be placed in the outlined function. 1337 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1338 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1339 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1340 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1341 1342 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1343 ++i) { 1344 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1345 if (!OutI) 1346 continue; 1347 1348 // Find proper insertion point. 1349 BasicBlock::iterator InsertPt; 1350 // In case OutI is an invoke, we insert the store at the beginning in the 1351 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1352 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1353 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1354 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1355 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1356 else 1357 InsertPt = std::next(OutI->getIterator()); 1358 1359 Instruction *InsertBefore = &*InsertPt; 1360 assert((InsertBefore->getFunction() == newFunction || 1361 Blocks.count(InsertBefore->getParent())) && 1362 "InsertPt should be in new function"); 1363 if (AggregateArgs && StructValues.contains(outputs[i])) { 1364 assert(AggOutputArgBegin != newFunction->arg_end() && 1365 "Number of aggregate output arguments should match " 1366 "the number of defined values"); 1367 Value *Idx[2]; 1368 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1369 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1370 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1371 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1372 InsertBefore); 1373 new StoreInst(outputs[i], GEP, InsertBefore); 1374 ++aggIdx; 1375 // Since there should be only one struct argument aggregating 1376 // all the output values, we shouldn't increment AggOutputArgBegin, which 1377 // always points to the struct argument, in this case. 1378 } else { 1379 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1380 "Number of scalar output arguments should match " 1381 "the number of defined values"); 1382 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); 1383 ++ScalarOutputArgBegin; 1384 } 1385 } 1386 1387 // Now that we've done the deed, simplify the switch instruction. 1388 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1389 switch (NumExitBlocks) { 1390 case 0: 1391 // There are no successors (the block containing the switch itself), which 1392 // means that previously this was the last part of the function, and hence 1393 // this should be rewritten as a `ret' 1394 1395 // Check if the function should return a value 1396 if (OldFnRetTy->isVoidTy()) { 1397 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1398 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1399 // return what we have 1400 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1401 } else { 1402 // Otherwise we must have code extracted an unwind or something, just 1403 // return whatever we want. 1404 ReturnInst::Create(Context, 1405 Constant::getNullValue(OldFnRetTy), TheSwitch); 1406 } 1407 1408 TheSwitch->eraseFromParent(); 1409 break; 1410 case 1: 1411 // Only a single destination, change the switch into an unconditional 1412 // branch. 1413 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1414 TheSwitch->eraseFromParent(); 1415 break; 1416 case 2: 1417 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1418 call, TheSwitch); 1419 TheSwitch->eraseFromParent(); 1420 break; 1421 default: 1422 // Otherwise, make the default destination of the switch instruction be one 1423 // of the other successors. 1424 TheSwitch->setCondition(call); 1425 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1426 // Remove redundant case 1427 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1428 break; 1429 } 1430 1431 // Insert lifetime markers around the reloads of any output values. The 1432 // allocas output values are stored in are only in-use in the codeRepl block. 1433 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1434 1435 return call; 1436 } 1437 1438 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1439 Function *oldFunc = (*Blocks.begin())->getParent(); 1440 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1441 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1442 1443 auto newFuncIt = newFunction->front().getIterator(); 1444 for (BasicBlock *Block : Blocks) { 1445 // Delete the basic block from the old function, and the list of blocks 1446 oldBlocks.remove(Block); 1447 1448 // Insert this basic block into the new function 1449 // Insert the original blocks after the entry block created 1450 // for the new function. The entry block may be followed 1451 // by a set of exit blocks at this point, but these exit 1452 // blocks better be placed at the end of the new function. 1453 newFuncIt = newBlocks.insertAfter(newFuncIt, Block); 1454 } 1455 } 1456 1457 void CodeExtractor::calculateNewCallTerminatorWeights( 1458 BasicBlock *CodeReplacer, 1459 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1460 BranchProbabilityInfo *BPI) { 1461 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1462 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1463 1464 // Update the branch weights for the exit block. 1465 Instruction *TI = CodeReplacer->getTerminator(); 1466 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1467 1468 // Block Frequency distribution with dummy node. 1469 Distribution BranchDist; 1470 1471 SmallVector<BranchProbability, 4> EdgeProbabilities( 1472 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1473 1474 // Add each of the frequencies of the successors. 1475 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1476 BlockNode ExitNode(i); 1477 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1478 if (ExitFreq != 0) 1479 BranchDist.addExit(ExitNode, ExitFreq); 1480 else 1481 EdgeProbabilities[i] = BranchProbability::getZero(); 1482 } 1483 1484 // Check for no total weight. 1485 if (BranchDist.Total == 0) { 1486 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1487 return; 1488 } 1489 1490 // Normalize the distribution so that they can fit in unsigned. 1491 BranchDist.normalize(); 1492 1493 // Create normalized branch weights and set the metadata. 1494 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1495 const auto &Weight = BranchDist.Weights[I]; 1496 1497 // Get the weight and update the current BFI. 1498 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1499 BranchProbability BP(Weight.Amount, BranchDist.Total); 1500 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1501 } 1502 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1503 TI->setMetadata( 1504 LLVMContext::MD_prof, 1505 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1506 } 1507 1508 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1509 /// \p F. 1510 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1511 for (Instruction &I : instructions(F)) { 1512 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1513 findDbgUsers(DbgUsers, &I); 1514 for (DbgVariableIntrinsic *DVI : DbgUsers) 1515 if (DVI->getFunction() != &F) 1516 DVI->eraseFromParent(); 1517 } 1518 } 1519 1520 /// Fix up the debug info in the old and new functions by pointing line 1521 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1522 /// intrinsics which point to values outside of the new function. 1523 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1524 CallInst &TheCall) { 1525 DISubprogram *OldSP = OldFunc.getSubprogram(); 1526 LLVMContext &Ctx = OldFunc.getContext(); 1527 1528 if (!OldSP) { 1529 // Erase any debug info the new function contains. 1530 stripDebugInfo(NewFunc); 1531 // Make sure the old function doesn't contain any non-local metadata refs. 1532 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1533 return; 1534 } 1535 1536 // Create a subprogram for the new function. Leave out a description of the 1537 // function arguments, as the parameters don't correspond to anything at the 1538 // source level. 1539 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1540 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1541 OldSP->getUnit()); 1542 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1543 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1544 DISubprogram::SPFlagOptimized | 1545 DISubprogram::SPFlagLocalToUnit; 1546 auto NewSP = DIB.createFunction( 1547 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1548 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1549 NewFunc.setSubprogram(NewSP); 1550 1551 // Debug intrinsics in the new function need to be updated in one of two 1552 // ways: 1553 // 1) They need to be deleted, because they describe a value in the old 1554 // function. 1555 // 2) They need to point to fresh metadata, e.g. because they currently 1556 // point to a variable in the wrong scope. 1557 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1558 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1559 for (Instruction &I : instructions(NewFunc)) { 1560 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1561 if (!DII) 1562 continue; 1563 1564 // Point the intrinsic to a fresh label within the new function. 1565 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1566 DILabel *OldLabel = DLI->getLabel(); 1567 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1568 if (!NewLabel) 1569 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1570 OldLabel->getFile(), OldLabel->getLine()); 1571 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1572 continue; 1573 } 1574 1575 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1576 // Location is invalid if it isn't a constant or an instruction, or is an 1577 // instruction but isn't in the new function. 1578 if (!Location || 1579 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1580 return true; 1581 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1582 return LocationInst && LocationInst->getFunction() != &NewFunc; 1583 }; 1584 1585 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1586 // If any of the used locations are invalid, delete the intrinsic. 1587 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1588 DebugIntrinsicsToDelete.push_back(DVI); 1589 continue; 1590 } 1591 1592 // Point the intrinsic to a fresh variable within the new function. 1593 DILocalVariable *OldVar = DVI->getVariable(); 1594 DINode *&NewVar = RemappedMetadata[OldVar]; 1595 if (!NewVar) 1596 NewVar = DIB.createAutoVariable( 1597 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1598 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1599 OldVar->getAlignInBits()); 1600 DVI->setVariable(cast<DILocalVariable>(NewVar)); 1601 } 1602 for (auto *DII : DebugIntrinsicsToDelete) 1603 DII->eraseFromParent(); 1604 DIB.finalizeSubprogram(NewSP); 1605 1606 // Fix up the scope information attached to the line locations in the new 1607 // function. 1608 for (Instruction &I : instructions(NewFunc)) { 1609 if (const DebugLoc &DL = I.getDebugLoc()) 1610 I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); 1611 1612 // Loop info metadata may contain line locations. Fix them up. 1613 auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { 1614 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1615 return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, 1616 nullptr); 1617 return MD; 1618 }; 1619 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1620 } 1621 if (!TheCall.getDebugLoc()) 1622 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1623 1624 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1625 } 1626 1627 Function * 1628 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1629 ValueSet Inputs, Outputs; 1630 return extractCodeRegion(CEAC, Inputs, Outputs); 1631 } 1632 1633 Function * 1634 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1635 ValueSet &inputs, ValueSet &outputs) { 1636 if (!isEligible()) 1637 return nullptr; 1638 1639 // Assumption: this is a single-entry code region, and the header is the first 1640 // block in the region. 1641 BasicBlock *header = *Blocks.begin(); 1642 Function *oldFunction = header->getParent(); 1643 1644 // Calculate the entry frequency of the new function before we change the root 1645 // block. 1646 BlockFrequency EntryFreq; 1647 if (BFI) { 1648 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1649 for (BasicBlock *Pred : predecessors(header)) { 1650 if (Blocks.count(Pred)) 1651 continue; 1652 EntryFreq += 1653 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1654 } 1655 } 1656 1657 // Remove @llvm.assume calls that will be moved to the new function from the 1658 // old function's assumption cache. 1659 for (BasicBlock *Block : Blocks) { 1660 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1661 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1662 if (AC) 1663 AC->unregisterAssumption(AI); 1664 AI->eraseFromParent(); 1665 } 1666 } 1667 } 1668 1669 // If we have any return instructions in the region, split those blocks so 1670 // that the return is not in the region. 1671 splitReturnBlocks(); 1672 1673 // Calculate the exit blocks for the extracted region and the total exit 1674 // weights for each of those blocks. 1675 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1676 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1677 for (BasicBlock *Block : Blocks) { 1678 for (BasicBlock *Succ : successors(Block)) { 1679 if (!Blocks.count(Succ)) { 1680 // Update the branch weight for this successor. 1681 if (BFI) { 1682 BlockFrequency &BF = ExitWeights[Succ]; 1683 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1684 } 1685 ExitBlocks.insert(Succ); 1686 } 1687 } 1688 } 1689 NumExitBlocks = ExitBlocks.size(); 1690 1691 for (BasicBlock *Block : Blocks) { 1692 Instruction *TI = Block->getTerminator(); 1693 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1694 if (Blocks.count(TI->getSuccessor(i))) 1695 continue; 1696 BasicBlock *OldTarget = TI->getSuccessor(i); 1697 OldTargets.push_back(OldTarget); 1698 } 1699 } 1700 1701 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1702 severSplitPHINodesOfEntry(header); 1703 severSplitPHINodesOfExits(ExitBlocks); 1704 1705 // This takes place of the original loop 1706 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1707 "codeRepl", oldFunction, 1708 header); 1709 1710 // The new function needs a root node because other nodes can branch to the 1711 // head of the region, but the entry node of a function cannot have preds. 1712 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1713 "newFuncRoot"); 1714 auto *BranchI = BranchInst::Create(header); 1715 // If the original function has debug info, we have to add a debug location 1716 // to the new branch instruction from the artificial entry block. 1717 // We use the debug location of the first instruction in the extracted 1718 // blocks, as there is no other equivalent line in the source code. 1719 if (oldFunction->getSubprogram()) { 1720 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1721 return any_of(*BB, [&BranchI](const Instruction &I) { 1722 if (!I.getDebugLoc()) 1723 return false; 1724 BranchI->setDebugLoc(I.getDebugLoc()); 1725 return true; 1726 }); 1727 }); 1728 } 1729 newFuncRoot->getInstList().push_back(BranchI); 1730 1731 ValueSet SinkingCands, HoistingCands; 1732 BasicBlock *CommonExit = nullptr; 1733 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1734 assert(HoistingCands.empty() || CommonExit); 1735 1736 // Find inputs to, outputs from the code region. 1737 findInputsOutputs(inputs, outputs, SinkingCands); 1738 1739 // Now sink all instructions which only have non-phi uses inside the region. 1740 // Group the allocas at the start of the block, so that any bitcast uses of 1741 // the allocas are well-defined. 1742 AllocaInst *FirstSunkAlloca = nullptr; 1743 for (auto *II : SinkingCands) { 1744 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1745 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1746 if (!FirstSunkAlloca) 1747 FirstSunkAlloca = AI; 1748 } 1749 } 1750 assert((SinkingCands.empty() || FirstSunkAlloca) && 1751 "Did not expect a sink candidate without any allocas"); 1752 for (auto *II : SinkingCands) { 1753 if (!isa<AllocaInst>(II)) { 1754 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1755 } 1756 } 1757 1758 if (!HoistingCands.empty()) { 1759 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1760 Instruction *TI = HoistToBlock->getTerminator(); 1761 for (auto *II : HoistingCands) 1762 cast<Instruction>(II)->moveBefore(TI); 1763 } 1764 1765 // Collect objects which are inputs to the extraction region and also 1766 // referenced by lifetime start markers within it. The effects of these 1767 // markers must be replicated in the calling function to prevent the stack 1768 // coloring pass from merging slots which store input objects. 1769 ValueSet LifetimesStart; 1770 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1771 1772 // Construct new function based on inputs/outputs & add allocas for all defs. 1773 Function *newFunction = 1774 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1775 oldFunction, oldFunction->getParent()); 1776 1777 // Update the entry count of the function. 1778 if (BFI) { 1779 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1780 if (Count) 1781 newFunction->setEntryCount( 1782 ProfileCount(Count.value(), Function::PCT_Real)); // FIXME 1783 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1784 } 1785 1786 CallInst *TheCall = 1787 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1788 1789 moveCodeToFunction(newFunction); 1790 1791 // Replicate the effects of any lifetime start/end markers which referenced 1792 // input objects in the extraction region by placing markers around the call. 1793 insertLifetimeMarkersSurroundingCall( 1794 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1795 1796 // Propagate personality info to the new function if there is one. 1797 if (oldFunction->hasPersonalityFn()) 1798 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1799 1800 // Update the branch weights for the exit block. 1801 if (BFI && NumExitBlocks > 1) 1802 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1803 1804 // Loop over all of the PHI nodes in the header and exit blocks, and change 1805 // any references to the old incoming edge to be the new incoming edge. 1806 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1807 PHINode *PN = cast<PHINode>(I); 1808 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1809 if (!Blocks.count(PN->getIncomingBlock(i))) 1810 PN->setIncomingBlock(i, newFuncRoot); 1811 } 1812 1813 for (BasicBlock *ExitBB : ExitBlocks) 1814 for (PHINode &PN : ExitBB->phis()) { 1815 Value *IncomingCodeReplacerVal = nullptr; 1816 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1817 // Ignore incoming values from outside of the extracted region. 1818 if (!Blocks.count(PN.getIncomingBlock(i))) 1819 continue; 1820 1821 // Ensure that there is only one incoming value from codeReplacer. 1822 if (!IncomingCodeReplacerVal) { 1823 PN.setIncomingBlock(i, codeReplacer); 1824 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1825 } else 1826 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1827 "PHI has two incompatbile incoming values from codeRepl"); 1828 } 1829 } 1830 1831 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1832 1833 // Mark the new function `noreturn` if applicable. Terminators which resume 1834 // exception propagation are treated as returning instructions. This is to 1835 // avoid inserting traps after calls to outlined functions which unwind. 1836 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1837 const Instruction *Term = BB.getTerminator(); 1838 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1839 }); 1840 if (doesNotReturn) 1841 newFunction->setDoesNotReturn(); 1842 1843 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1844 newFunction->dump(); 1845 report_fatal_error("verification of newFunction failed!"); 1846 }); 1847 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1848 report_fatal_error("verification of oldFunction failed!")); 1849 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1850 report_fatal_error("Stale Asumption cache for old Function!")); 1851 return newFunction; 1852 } 1853 1854 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1855 const Function &NewFunc, 1856 AssumptionCache *AC) { 1857 for (auto AssumeVH : AC->assumptions()) { 1858 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1859 if (!I) 1860 continue; 1861 1862 // There shouldn't be any llvm.assume intrinsics in the new function. 1863 if (I->getFunction() != &OldFunc) 1864 return true; 1865 1866 // There shouldn't be any stale affected values in the assumption cache 1867 // that were previously in the old function, but that have now been moved 1868 // to the new function. 1869 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1870 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1871 if (!AffectedCI) 1872 continue; 1873 if (AffectedCI->getFunction() != &OldFunc) 1874 return true; 1875 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1876 if (AssumedInst->getFunction() != &OldFunc) 1877 return true; 1878 } 1879 } 1880 return false; 1881 } 1882 1883 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1884 ExcludeArgsFromAggregate.insert(Arg); 1885 } 1886