1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <algorithm> 34 #include <set> 35 using namespace llvm; 36 37 // Provide a command-line option to aggregate function arguments into a struct 38 // for functions produced by the code extractor. This is useful when converting 39 // extracted functions to pthread-based code, as only one argument (void*) can 40 // be passed in to pthread_create(). 41 static cl::opt<bool> 42 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 43 cl::desc("Aggregate arguments to code-extracted functions")); 44 45 namespace { 46 class VISIBILITY_HIDDEN CodeExtractor { 47 typedef std::vector<Value*> Values; 48 std::set<BasicBlock*> BlocksToExtract; 49 DominatorTree* DT; 50 bool AggregateArgs; 51 unsigned NumExitBlocks; 52 const Type *RetTy; 53 public: 54 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 55 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 56 57 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 58 59 bool isEligible(const std::vector<BasicBlock*> &code); 60 61 private: 62 /// definedInRegion - Return true if the specified value is defined in the 63 /// extracted region. 64 bool definedInRegion(Value *V) const { 65 if (Instruction *I = dyn_cast<Instruction>(V)) 66 if (BlocksToExtract.count(I->getParent())) 67 return true; 68 return false; 69 } 70 71 /// definedInCaller - Return true if the specified value is defined in the 72 /// function being code extracted, but not in the region being extracted. 73 /// These values must be passed in as live-ins to the function. 74 bool definedInCaller(Value *V) const { 75 if (isa<Argument>(V)) return true; 76 if (Instruction *I = dyn_cast<Instruction>(V)) 77 if (!BlocksToExtract.count(I->getParent())) 78 return true; 79 return false; 80 } 81 82 void severSplitPHINodes(BasicBlock *&Header); 83 void splitReturnBlocks(); 84 void findInputsOutputs(Values &inputs, Values &outputs); 85 86 Function *constructFunction(const Values &inputs, 87 const Values &outputs, 88 BasicBlock *header, 89 BasicBlock *newRootNode, BasicBlock *newHeader, 90 Function *oldFunction, Module *M); 91 92 void moveCodeToFunction(Function *newFunction); 93 94 void emitCallAndSwitchStatement(Function *newFunction, 95 BasicBlock *newHeader, 96 Values &inputs, 97 Values &outputs); 98 99 }; 100 } 101 102 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 103 /// region, we need to split the entry block of the region so that the PHI node 104 /// is easier to deal with. 105 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 106 bool HasPredsFromRegion = false; 107 unsigned NumPredsOutsideRegion = 0; 108 109 if (Header != &Header->getParent()->getEntryBlock()) { 110 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 111 if (!PN) return; // No PHI nodes. 112 113 // If the header node contains any PHI nodes, check to see if there is more 114 // than one entry from outside the region. If so, we need to sever the 115 // header block into two. 116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 117 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 118 HasPredsFromRegion = true; 119 else 120 ++NumPredsOutsideRegion; 121 122 // If there is one (or fewer) predecessor from outside the region, we don't 123 // need to do anything special. 124 if (NumPredsOutsideRegion <= 1) return; 125 } 126 127 // Otherwise, we need to split the header block into two pieces: one 128 // containing PHI nodes merging values from outside of the region, and a 129 // second that contains all of the code for the block and merges back any 130 // incoming values from inside of the region. 131 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 132 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 133 Header->getName()+".ce"); 134 135 // We only want to code extract the second block now, and it becomes the new 136 // header of the region. 137 BasicBlock *OldPred = Header; 138 BlocksToExtract.erase(OldPred); 139 BlocksToExtract.insert(NewBB); 140 Header = NewBB; 141 142 // Okay, update dominator sets. The blocks that dominate the new one are the 143 // blocks that dominate TIBB plus the new block itself. 144 if (DT) 145 DT->splitBlock(NewBB); 146 147 // Okay, now we need to adjust the PHI nodes and any branches from within the 148 // region to go to the new header block instead of the old header block. 149 if (HasPredsFromRegion) { 150 PHINode *PN = cast<PHINode>(OldPred->begin()); 151 // Loop over all of the predecessors of OldPred that are in the region, 152 // changing them to branch to NewBB instead. 153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 154 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 155 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 156 TI->replaceUsesOfWith(OldPred, NewBB); 157 } 158 159 // Okay, everthing within the region is now branching to the right block, we 160 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 161 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 162 PHINode *PN = cast<PHINode>(AfterPHIs); 163 // Create a new PHI node in the new region, which has an incoming value 164 // from OldPred of PN. 165 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", 166 NewBB->begin()); 167 NewPN->addIncoming(PN, OldPred); 168 169 // Loop over all of the incoming value in PN, moving them to NewPN if they 170 // are from the extracted region. 171 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 172 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 173 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 174 PN->removeIncomingValue(i); 175 --i; 176 } 177 } 178 } 179 } 180 } 181 182 void CodeExtractor::splitReturnBlocks() { 183 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 184 E = BlocksToExtract.end(); I != E; ++I) 185 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 186 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 187 } 188 189 // findInputsOutputs - Find inputs to, outputs from the code region. 190 // 191 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 192 std::set<BasicBlock*> ExitBlocks; 193 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 194 ce = BlocksToExtract.end(); ci != ce; ++ci) { 195 BasicBlock *BB = *ci; 196 197 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 198 // If a used value is defined outside the region, it's an input. If an 199 // instruction is used outside the region, it's an output. 200 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 201 if (definedInCaller(*O)) 202 inputs.push_back(*O); 203 204 // Consider uses of this instruction (outputs). 205 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 206 UI != E; ++UI) 207 if (!definedInRegion(*UI)) { 208 outputs.push_back(I); 209 break; 210 } 211 } // for: insts 212 213 // Keep track of the exit blocks from the region. 214 TerminatorInst *TI = BB->getTerminator(); 215 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 216 if (!BlocksToExtract.count(TI->getSuccessor(i))) 217 ExitBlocks.insert(TI->getSuccessor(i)); 218 } // for: basic blocks 219 220 NumExitBlocks = ExitBlocks.size(); 221 222 // Eliminate duplicates. 223 std::sort(inputs.begin(), inputs.end()); 224 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 225 std::sort(outputs.begin(), outputs.end()); 226 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 227 } 228 229 /// constructFunction - make a function based on inputs and outputs, as follows: 230 /// f(in0, ..., inN, out0, ..., outN) 231 /// 232 Function *CodeExtractor::constructFunction(const Values &inputs, 233 const Values &outputs, 234 BasicBlock *header, 235 BasicBlock *newRootNode, 236 BasicBlock *newHeader, 237 Function *oldFunction, 238 Module *M) { 239 DOUT << "inputs: " << inputs.size() << "\n"; 240 DOUT << "outputs: " << outputs.size() << "\n"; 241 242 LLVMContext &Context = header->getContext(); 243 244 // This function returns unsigned, outputs will go back by reference. 245 switch (NumExitBlocks) { 246 case 0: 247 case 1: RetTy = Type::VoidTy; break; 248 case 2: RetTy = Type::Int1Ty; break; 249 default: RetTy = Type::Int16Ty; break; 250 } 251 252 std::vector<const Type*> paramTy; 253 254 // Add the types of the input values to the function's argument list 255 for (Values::const_iterator i = inputs.begin(), 256 e = inputs.end(); i != e; ++i) { 257 const Value *value = *i; 258 DOUT << "value used in func: " << *value << "\n"; 259 paramTy.push_back(value->getType()); 260 } 261 262 // Add the types of the output values to the function's argument list. 263 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 264 I != E; ++I) { 265 DOUT << "instr used in func: " << **I << "\n"; 266 if (AggregateArgs) 267 paramTy.push_back((*I)->getType()); 268 else 269 paramTy.push_back( 270 header->getContext().getPointerTypeUnqual((*I)->getType())); 271 } 272 273 DOUT << "Function type: " << *RetTy << " f("; 274 for (std::vector<const Type*>::iterator i = paramTy.begin(), 275 e = paramTy.end(); i != e; ++i) 276 DOUT << **i << ", "; 277 DOUT << ")\n"; 278 279 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 280 PointerType *StructPtr = 281 Context.getPointerTypeUnqual(Context.getStructType(paramTy)); 282 paramTy.clear(); 283 paramTy.push_back(StructPtr); 284 } 285 const FunctionType *funcType = 286 Context.getFunctionType(RetTy, paramTy, false); 287 288 // Create the new function 289 Function *newFunction = Function::Create(funcType, 290 GlobalValue::InternalLinkage, 291 oldFunction->getName() + "_" + 292 header->getName(), M); 293 // If the old function is no-throw, so is the new one. 294 if (oldFunction->doesNotThrow()) 295 newFunction->setDoesNotThrow(true); 296 297 newFunction->getBasicBlockList().push_back(newRootNode); 298 299 // Create an iterator to name all of the arguments we inserted. 300 Function::arg_iterator AI = newFunction->arg_begin(); 301 302 // Rewrite all users of the inputs in the extracted region to use the 303 // arguments (or appropriate addressing into struct) instead. 304 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 305 Value *RewriteVal; 306 if (AggregateArgs) { 307 Value *Idx[2]; 308 Idx[0] = Context.getNullValue(Type::Int32Ty); 309 Idx[1] = Context.getConstantInt(Type::Int32Ty, i); 310 TerminatorInst *TI = newFunction->begin()->getTerminator(); 311 GetElementPtrInst *GEP = 312 GetElementPtrInst::Create(AI, Idx, Idx+2, 313 "gep_" + inputs[i]->getName(), TI); 314 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 315 } else 316 RewriteVal = AI++; 317 318 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 319 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 320 use != useE; ++use) 321 if (Instruction* inst = dyn_cast<Instruction>(*use)) 322 if (BlocksToExtract.count(inst->getParent())) 323 inst->replaceUsesOfWith(inputs[i], RewriteVal); 324 } 325 326 // Set names for input and output arguments. 327 if (!AggregateArgs) { 328 AI = newFunction->arg_begin(); 329 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 330 AI->setName(inputs[i]->getName()); 331 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 332 AI->setName(outputs[i]->getName()+".out"); 333 } 334 335 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 336 // within the new function. This must be done before we lose track of which 337 // blocks were originally in the code region. 338 std::vector<User*> Users(header->use_begin(), header->use_end()); 339 for (unsigned i = 0, e = Users.size(); i != e; ++i) 340 // The BasicBlock which contains the branch is not in the region 341 // modify the branch target to a new block 342 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 343 if (!BlocksToExtract.count(TI->getParent()) && 344 TI->getParent()->getParent() == oldFunction) 345 TI->replaceUsesOfWith(header, newHeader); 346 347 return newFunction; 348 } 349 350 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 351 /// the call instruction, splitting any PHI nodes in the header block as 352 /// necessary. 353 void CodeExtractor:: 354 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 355 Values &inputs, Values &outputs) { 356 LLVMContext &Context = codeReplacer->getContext(); 357 358 // Emit a call to the new function, passing in: *pointer to struct (if 359 // aggregating parameters), or plan inputs and allocated memory for outputs 360 std::vector<Value*> params, StructValues, ReloadOutputs; 361 362 // Add inputs as params, or to be filled into the struct 363 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 364 if (AggregateArgs) 365 StructValues.push_back(*i); 366 else 367 params.push_back(*i); 368 369 // Create allocas for the outputs 370 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 371 if (AggregateArgs) { 372 StructValues.push_back(*i); 373 } else { 374 AllocaInst *alloca = 375 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 376 codeReplacer->getParent()->begin()->begin()); 377 ReloadOutputs.push_back(alloca); 378 params.push_back(alloca); 379 } 380 } 381 382 AllocaInst *Struct = 0; 383 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 384 std::vector<const Type*> ArgTypes; 385 for (Values::iterator v = StructValues.begin(), 386 ve = StructValues.end(); v != ve; ++v) 387 ArgTypes.push_back((*v)->getType()); 388 389 // Allocate a struct at the beginning of this function 390 Type *StructArgTy = Context.getStructType(ArgTypes); 391 Struct = 392 new AllocaInst(StructArgTy, 0, "structArg", 393 codeReplacer->getParent()->begin()->begin()); 394 params.push_back(Struct); 395 396 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 397 Value *Idx[2]; 398 Idx[0] = Context.getNullValue(Type::Int32Ty); 399 Idx[1] = Context.getConstantInt(Type::Int32Ty, i); 400 GetElementPtrInst *GEP = 401 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 402 "gep_" + StructValues[i]->getName()); 403 codeReplacer->getInstList().push_back(GEP); 404 StoreInst *SI = new StoreInst(StructValues[i], GEP); 405 codeReplacer->getInstList().push_back(SI); 406 } 407 } 408 409 // Emit the call to the function 410 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), 411 NumExitBlocks > 1 ? "targetBlock" : ""); 412 codeReplacer->getInstList().push_back(call); 413 414 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 415 unsigned FirstOut = inputs.size(); 416 if (!AggregateArgs) 417 std::advance(OutputArgBegin, inputs.size()); 418 419 // Reload the outputs passed in by reference 420 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 421 Value *Output = 0; 422 if (AggregateArgs) { 423 Value *Idx[2]; 424 Idx[0] = Context.getNullValue(Type::Int32Ty); 425 Idx[1] = Context.getConstantInt(Type::Int32Ty, FirstOut + i); 426 GetElementPtrInst *GEP 427 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 428 "gep_reload_" + outputs[i]->getName()); 429 codeReplacer->getInstList().push_back(GEP); 430 Output = GEP; 431 } else { 432 Output = ReloadOutputs[i]; 433 } 434 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 435 codeReplacer->getInstList().push_back(load); 436 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 437 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 438 Instruction *inst = cast<Instruction>(Users[u]); 439 if (!BlocksToExtract.count(inst->getParent())) 440 inst->replaceUsesOfWith(outputs[i], load); 441 } 442 } 443 444 // Now we can emit a switch statement using the call as a value. 445 SwitchInst *TheSwitch = 446 SwitchInst::Create(Context.getNullValue(Type::Int16Ty), 447 codeReplacer, 0, codeReplacer); 448 449 // Since there may be multiple exits from the original region, make the new 450 // function return an unsigned, switch on that number. This loop iterates 451 // over all of the blocks in the extracted region, updating any terminator 452 // instructions in the to-be-extracted region that branch to blocks that are 453 // not in the region to be extracted. 454 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 455 456 unsigned switchVal = 0; 457 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 458 e = BlocksToExtract.end(); i != e; ++i) { 459 TerminatorInst *TI = (*i)->getTerminator(); 460 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 461 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 462 BasicBlock *OldTarget = TI->getSuccessor(i); 463 // add a new basic block which returns the appropriate value 464 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 465 if (!NewTarget) { 466 // If we don't already have an exit stub for this non-extracted 467 // destination, create one now! 468 NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub", 469 newFunction); 470 unsigned SuccNum = switchVal++; 471 472 Value *brVal = 0; 473 switch (NumExitBlocks) { 474 case 0: 475 case 1: break; // No value needed. 476 case 2: // Conditional branch, return a bool 477 brVal = Context.getConstantInt(Type::Int1Ty, !SuccNum); 478 break; 479 default: 480 brVal = Context.getConstantInt(Type::Int16Ty, SuccNum); 481 break; 482 } 483 484 ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget); 485 486 // Update the switch instruction. 487 TheSwitch->addCase(Context.getConstantInt(Type::Int16Ty, SuccNum), 488 OldTarget); 489 490 // Restore values just before we exit 491 Function::arg_iterator OAI = OutputArgBegin; 492 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 493 // For an invoke, the normal destination is the only one that is 494 // dominated by the result of the invocation 495 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 496 497 bool DominatesDef = true; 498 499 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 500 DefBlock = Invoke->getNormalDest(); 501 502 // Make sure we are looking at the original successor block, not 503 // at a newly inserted exit block, which won't be in the dominator 504 // info. 505 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 506 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 507 if (DefBlock == I->second) { 508 DefBlock = I->first; 509 break; 510 } 511 512 // In the extract block case, if the block we are extracting ends 513 // with an invoke instruction, make sure that we don't emit a 514 // store of the invoke value for the unwind block. 515 if (!DT && DefBlock != OldTarget) 516 DominatesDef = false; 517 } 518 519 if (DT) 520 DominatesDef = DT->dominates(DefBlock, OldTarget); 521 522 if (DominatesDef) { 523 if (AggregateArgs) { 524 Value *Idx[2]; 525 Idx[0] = Context.getNullValue(Type::Int32Ty); 526 Idx[1] = Context.getConstantInt(Type::Int32Ty,FirstOut+out); 527 GetElementPtrInst *GEP = 528 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 529 "gep_" + outputs[out]->getName(), 530 NTRet); 531 new StoreInst(outputs[out], GEP, NTRet); 532 } else { 533 new StoreInst(outputs[out], OAI, NTRet); 534 } 535 } 536 // Advance output iterator even if we don't emit a store 537 if (!AggregateArgs) ++OAI; 538 } 539 } 540 541 // rewrite the original branch instruction with this new target 542 TI->setSuccessor(i, NewTarget); 543 } 544 } 545 546 // Now that we've done the deed, simplify the switch instruction. 547 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 548 switch (NumExitBlocks) { 549 case 0: 550 // There are no successors (the block containing the switch itself), which 551 // means that previously this was the last part of the function, and hence 552 // this should be rewritten as a `ret' 553 554 // Check if the function should return a value 555 if (OldFnRetTy == Type::VoidTy) { 556 ReturnInst::Create(0, TheSwitch); // Return void 557 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 558 // return what we have 559 ReturnInst::Create(TheSwitch->getCondition(), TheSwitch); 560 } else { 561 // Otherwise we must have code extracted an unwind or something, just 562 // return whatever we want. 563 ReturnInst::Create(Context.getNullValue(OldFnRetTy), TheSwitch); 564 } 565 566 TheSwitch->eraseFromParent(); 567 break; 568 case 1: 569 // Only a single destination, change the switch into an unconditional 570 // branch. 571 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 572 TheSwitch->eraseFromParent(); 573 break; 574 case 2: 575 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 576 call, TheSwitch); 577 TheSwitch->eraseFromParent(); 578 break; 579 default: 580 // Otherwise, make the default destination of the switch instruction be one 581 // of the other successors. 582 TheSwitch->setOperand(0, call); 583 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 584 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 585 break; 586 } 587 } 588 589 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 590 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 591 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 592 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 593 594 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 595 e = BlocksToExtract.end(); i != e; ++i) { 596 // Delete the basic block from the old function, and the list of blocks 597 oldBlocks.remove(*i); 598 599 // Insert this basic block into the new function 600 newBlocks.push_back(*i); 601 } 602 } 603 604 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 605 /// new function. Returns pointer to the new function. 606 /// 607 /// algorithm: 608 /// 609 /// find inputs and outputs for the region 610 /// 611 /// for inputs: add to function as args, map input instr* to arg# 612 /// for outputs: add allocas for scalars, 613 /// add to func as args, map output instr* to arg# 614 /// 615 /// rewrite func to use argument #s instead of instr* 616 /// 617 /// for each scalar output in the function: at every exit, store intermediate 618 /// computed result back into memory. 619 /// 620 Function *CodeExtractor:: 621 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 622 if (!isEligible(code)) 623 return 0; 624 625 // 1) Find inputs, outputs 626 // 2) Construct new function 627 // * Add allocas for defs, pass as args by reference 628 // * Pass in uses as args 629 // 3) Move code region, add call instr to func 630 // 631 BlocksToExtract.insert(code.begin(), code.end()); 632 633 Values inputs, outputs; 634 635 // Assumption: this is a single-entry code region, and the header is the first 636 // block in the region. 637 BasicBlock *header = code[0]; 638 639 for (unsigned i = 1, e = code.size(); i != e; ++i) 640 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 641 PI != E; ++PI) 642 assert(BlocksToExtract.count(*PI) && 643 "No blocks in this region may have entries from outside the region" 644 " except for the first block!"); 645 646 // If we have to split PHI nodes or the entry block, do so now. 647 severSplitPHINodes(header); 648 649 // If we have any return instructions in the region, split those blocks so 650 // that the return is not in the region. 651 splitReturnBlocks(); 652 653 Function *oldFunction = header->getParent(); 654 655 // This takes place of the original loop 656 BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction, 657 header); 658 659 // The new function needs a root node because other nodes can branch to the 660 // head of the region, but the entry node of a function cannot have preds. 661 BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot"); 662 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 663 664 // Find inputs to, outputs from the code region. 665 findInputsOutputs(inputs, outputs); 666 667 // Construct new function based on inputs/outputs & add allocas for all defs. 668 Function *newFunction = constructFunction(inputs, outputs, header, 669 newFuncRoot, 670 codeReplacer, oldFunction, 671 oldFunction->getParent()); 672 673 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 674 675 moveCodeToFunction(newFunction); 676 677 // Loop over all of the PHI nodes in the header block, and change any 678 // references to the old incoming edge to be the new incoming edge. 679 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 680 PHINode *PN = cast<PHINode>(I); 681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 682 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 683 PN->setIncomingBlock(i, newFuncRoot); 684 } 685 686 // Look at all successors of the codeReplacer block. If any of these blocks 687 // had PHI nodes in them, we need to update the "from" block to be the code 688 // replacer, not the original block in the extracted region. 689 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 690 succ_end(codeReplacer)); 691 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 692 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 693 PHINode *PN = cast<PHINode>(I); 694 std::set<BasicBlock*> ProcessedPreds; 695 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 696 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 697 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 698 PN->setIncomingBlock(i, codeReplacer); 699 else { 700 // There were multiple entries in the PHI for this block, now there 701 // is only one, so remove the duplicated entries. 702 PN->removeIncomingValue(i, false); 703 --i; --e; 704 } 705 } 706 } 707 708 //cerr << "NEW FUNCTION: " << *newFunction; 709 // verifyFunction(*newFunction); 710 711 // cerr << "OLD FUNCTION: " << *oldFunction; 712 // verifyFunction(*oldFunction); 713 714 DEBUG(if (verifyFunction(*newFunction)) 715 llvm_report_error("verifyFunction failed!")); 716 return newFunction; 717 } 718 719 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 720 // Deny code region if it contains allocas or vastarts. 721 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 722 BB != e; ++BB) 723 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 724 I != Ie; ++I) 725 if (isa<AllocaInst>(*I)) 726 return false; 727 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 728 if (const Function *F = CI->getCalledFunction()) 729 if (F->getIntrinsicID() == Intrinsic::vastart) 730 return false; 731 return true; 732 } 733 734 735 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 736 /// function 737 /// 738 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 739 const std::vector<BasicBlock*> &code, 740 bool AggregateArgs) { 741 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 742 } 743 744 /// ExtractBasicBlock - slurp a natural loop into a brand new function 745 /// 746 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 747 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 748 } 749 750 /// ExtractBasicBlock - slurp a basic block into a brand new function 751 /// 752 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 753 std::vector<BasicBlock*> Blocks; 754 Blocks.push_back(BB); 755 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 756 } 757