1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/Verifier.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <map> 69 #include <set> 70 #include <stdint.h> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 using namespace llvm::PatternMatch; 76 using ProfileCount = Function::ProfileCount; 77 78 #define DEBUG_TYPE "code-extractor" 79 80 // Provide a command-line option to aggregate function arguments into a struct 81 // for functions produced by the code extractor. This is useful when converting 82 // extracted functions to pthread-based code, as only one argument (void*) can 83 // be passed in to pthread_create(). 84 static cl::opt<bool> 85 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 86 cl::desc("Aggregate arguments to code-extracted functions")); 87 88 /// Test whether a block is valid for extraction. 89 static bool isBlockValidForExtraction(const BasicBlock &BB, 90 const SetVector<BasicBlock *> &Result, 91 bool AllowVarArgs, bool AllowAlloca) { 92 // taking the address of a basic block moved to another function is illegal 93 if (BB.hasAddressTaken()) 94 return false; 95 96 // don't hoist code that uses another basicblock address, as it's likely to 97 // lead to unexpected behavior, like cross-function jumps 98 SmallPtrSet<User const *, 16> Visited; 99 SmallVector<User const *, 16> ToVisit; 100 101 for (Instruction const &Inst : BB) 102 ToVisit.push_back(&Inst); 103 104 while (!ToVisit.empty()) { 105 User const *Curr = ToVisit.pop_back_val(); 106 if (!Visited.insert(Curr).second) 107 continue; 108 if (isa<BlockAddress const>(Curr)) 109 return false; // even a reference to self is likely to be not compatible 110 111 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 112 continue; 113 114 for (auto const &U : Curr->operands()) { 115 if (auto *UU = dyn_cast<User>(U)) 116 ToVisit.push_back(UU); 117 } 118 } 119 120 // If explicitly requested, allow vastart and alloca. For invoke instructions 121 // verify that extraction is valid. 122 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 123 if (isa<AllocaInst>(I)) { 124 if (!AllowAlloca) 125 return false; 126 continue; 127 } 128 129 if (const auto *II = dyn_cast<InvokeInst>(I)) { 130 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 131 // must be a part of the subgraph which is being extracted. 132 if (auto *UBB = II->getUnwindDest()) 133 if (!Result.count(UBB)) 134 return false; 135 continue; 136 } 137 138 // All catch handlers of a catchswitch instruction as well as the unwind 139 // destination must be in the subgraph. 140 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 141 if (auto *UBB = CSI->getUnwindDest()) 142 if (!Result.count(UBB)) 143 return false; 144 for (auto *HBB : CSI->handlers()) 145 if (!Result.count(const_cast<BasicBlock*>(HBB))) 146 return false; 147 continue; 148 } 149 150 // Make sure that entire catch handler is within subgraph. It is sufficient 151 // to check that catch return's block is in the list. 152 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 153 for (const auto *U : CPI->users()) 154 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 155 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 156 return false; 157 continue; 158 } 159 160 // And do similar checks for cleanup handler - the entire handler must be 161 // in subgraph which is going to be extracted. For cleanup return should 162 // additionally check that the unwind destination is also in the subgraph. 163 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 164 for (const auto *U : CPI->users()) 165 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 166 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 167 return false; 168 continue; 169 } 170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 171 if (auto *UBB = CRI->getUnwindDest()) 172 if (!Result.count(UBB)) 173 return false; 174 continue; 175 } 176 177 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 178 if (const Function *F = CI->getCalledFunction()) { 179 auto IID = F->getIntrinsicID(); 180 if (IID == Intrinsic::vastart) { 181 if (AllowVarArgs) 182 continue; 183 else 184 return false; 185 } 186 187 // Currently, we miscompile outlined copies of eh_typid_for. There are 188 // proposals for fixing this in llvm.org/PR39545. 189 if (IID == Intrinsic::eh_typeid_for) 190 return false; 191 } 192 } 193 } 194 195 return true; 196 } 197 198 /// Build a set of blocks to extract if the input blocks are viable. 199 static SetVector<BasicBlock *> 200 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 201 bool AllowVarArgs, bool AllowAlloca) { 202 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 203 SetVector<BasicBlock *> Result; 204 205 // Loop over the blocks, adding them to our set-vector, and aborting with an 206 // empty set if we encounter invalid blocks. 207 for (BasicBlock *BB : BBs) { 208 // If this block is dead, don't process it. 209 if (DT && !DT->isReachableFromEntry(BB)) 210 continue; 211 212 if (!Result.insert(BB)) 213 llvm_unreachable("Repeated basic blocks in extraction input"); 214 } 215 216 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 217 << '\n'); 218 219 for (auto *BB : Result) { 220 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 221 return {}; 222 223 // Make sure that the first block is not a landing pad. 224 if (BB == Result.front()) { 225 if (BB->isEHPad()) { 226 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 227 return {}; 228 } 229 continue; 230 } 231 232 // All blocks other than the first must not have predecessors outside of 233 // the subgraph which is being extracted. 234 for (auto *PBB : predecessors(BB)) 235 if (!Result.count(PBB)) { 236 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 237 "outside the region except for the first block!\n" 238 << "Problematic source BB: " << BB->getName() << "\n" 239 << "Problematic destination BB: " << PBB->getName() 240 << "\n"); 241 return {}; 242 } 243 } 244 245 return Result; 246 } 247 248 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 249 bool AggregateArgs, BlockFrequencyInfo *BFI, 250 BranchProbabilityInfo *BPI, AssumptionCache *AC, 251 bool AllowVarArgs, bool AllowAlloca, 252 std::string Suffix) 253 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 254 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs), 255 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 256 Suffix(Suffix) {} 257 258 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 259 BlockFrequencyInfo *BFI, 260 BranchProbabilityInfo *BPI, AssumptionCache *AC, 261 std::string Suffix) 262 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 263 BPI(BPI), AC(AC), AllowVarArgs(false), 264 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 265 /* AllowVarArgs */ false, 266 /* AllowAlloca */ false)), 267 Suffix(Suffix) {} 268 269 /// definedInRegion - Return true if the specified value is defined in the 270 /// extracted region. 271 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 272 if (Instruction *I = dyn_cast<Instruction>(V)) 273 if (Blocks.count(I->getParent())) 274 return true; 275 return false; 276 } 277 278 /// definedInCaller - Return true if the specified value is defined in the 279 /// function being code extracted, but not in the region being extracted. 280 /// These values must be passed in as live-ins to the function. 281 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 282 if (isa<Argument>(V)) return true; 283 if (Instruction *I = dyn_cast<Instruction>(V)) 284 if (!Blocks.count(I->getParent())) 285 return true; 286 return false; 287 } 288 289 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 290 BasicBlock *CommonExitBlock = nullptr; 291 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 292 for (auto *Succ : successors(Block)) { 293 // Internal edges, ok. 294 if (Blocks.count(Succ)) 295 continue; 296 if (!CommonExitBlock) { 297 CommonExitBlock = Succ; 298 continue; 299 } 300 if (CommonExitBlock != Succ) 301 return true; 302 } 303 return false; 304 }; 305 306 if (any_of(Blocks, hasNonCommonExitSucc)) 307 return nullptr; 308 309 return CommonExitBlock; 310 } 311 312 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 313 for (BasicBlock &BB : F) { 314 for (Instruction &II : BB.instructionsWithoutDebug()) 315 if (auto *AI = dyn_cast<AllocaInst>(&II)) 316 Allocas.push_back(AI); 317 318 findSideEffectInfoForBlock(BB); 319 } 320 } 321 322 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 323 for (Instruction &II : BB.instructionsWithoutDebug()) { 324 unsigned Opcode = II.getOpcode(); 325 Value *MemAddr = nullptr; 326 switch (Opcode) { 327 case Instruction::Store: 328 case Instruction::Load: { 329 if (Opcode == Instruction::Store) { 330 StoreInst *SI = cast<StoreInst>(&II); 331 MemAddr = SI->getPointerOperand(); 332 } else { 333 LoadInst *LI = cast<LoadInst>(&II); 334 MemAddr = LI->getPointerOperand(); 335 } 336 // Global variable can not be aliased with locals. 337 if (dyn_cast<Constant>(MemAddr)) 338 break; 339 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 340 if (!isa<AllocaInst>(Base)) { 341 SideEffectingBlocks.insert(&BB); 342 return; 343 } 344 BaseMemAddrs[&BB].insert(Base); 345 break; 346 } 347 default: { 348 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 349 if (IntrInst) { 350 if (IntrInst->isLifetimeStartOrEnd()) 351 break; 352 SideEffectingBlocks.insert(&BB); 353 return; 354 } 355 // Treat all the other cases conservatively if it has side effects. 356 if (II.mayHaveSideEffects()) { 357 SideEffectingBlocks.insert(&BB); 358 return; 359 } 360 } 361 } 362 } 363 } 364 365 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 366 BasicBlock &BB, AllocaInst *Addr) const { 367 if (SideEffectingBlocks.count(&BB)) 368 return true; 369 auto It = BaseMemAddrs.find(&BB); 370 if (It != BaseMemAddrs.end()) 371 return It->second.count(Addr); 372 return false; 373 } 374 375 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 376 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 377 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 378 Function *Func = (*Blocks.begin())->getParent(); 379 for (BasicBlock &BB : *Func) { 380 if (Blocks.count(&BB)) 381 continue; 382 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 383 return false; 384 } 385 return true; 386 } 387 388 BasicBlock * 389 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 390 BasicBlock *SinglePredFromOutlineRegion = nullptr; 391 assert(!Blocks.count(CommonExitBlock) && 392 "Expect a block outside the region!"); 393 for (auto *Pred : predecessors(CommonExitBlock)) { 394 if (!Blocks.count(Pred)) 395 continue; 396 if (!SinglePredFromOutlineRegion) { 397 SinglePredFromOutlineRegion = Pred; 398 } else if (SinglePredFromOutlineRegion != Pred) { 399 SinglePredFromOutlineRegion = nullptr; 400 break; 401 } 402 } 403 404 if (SinglePredFromOutlineRegion) 405 return SinglePredFromOutlineRegion; 406 407 #ifndef NDEBUG 408 auto getFirstPHI = [](BasicBlock *BB) { 409 BasicBlock::iterator I = BB->begin(); 410 PHINode *FirstPhi = nullptr; 411 while (I != BB->end()) { 412 PHINode *Phi = dyn_cast<PHINode>(I); 413 if (!Phi) 414 break; 415 if (!FirstPhi) { 416 FirstPhi = Phi; 417 break; 418 } 419 } 420 return FirstPhi; 421 }; 422 // If there are any phi nodes, the single pred either exists or has already 423 // be created before code extraction. 424 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 425 #endif 426 427 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 428 CommonExitBlock->getFirstNonPHI()->getIterator()); 429 430 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 431 PI != PE;) { 432 BasicBlock *Pred = *PI++; 433 if (Blocks.count(Pred)) 434 continue; 435 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 436 } 437 // Now add the old exit block to the outline region. 438 Blocks.insert(CommonExitBlock); 439 return CommonExitBlock; 440 } 441 442 // Find the pair of life time markers for address 'Addr' that are either 443 // defined inside the outline region or can legally be shrinkwrapped into the 444 // outline region. If there are not other untracked uses of the address, return 445 // the pair of markers if found; otherwise return a pair of nullptr. 446 CodeExtractor::LifetimeMarkerInfo 447 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 448 Instruction *Addr, 449 BasicBlock *ExitBlock) const { 450 LifetimeMarkerInfo Info; 451 452 for (User *U : Addr->users()) { 453 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 454 if (IntrInst) { 455 // We don't model addresses with multiple start/end markers, but the 456 // markers do not need to be in the region. 457 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 458 if (Info.LifeStart) 459 return {}; 460 Info.LifeStart = IntrInst; 461 continue; 462 } 463 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 464 if (Info.LifeEnd) 465 return {}; 466 Info.LifeEnd = IntrInst; 467 continue; 468 } 469 // At this point, permit debug uses outside of the region. 470 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 471 if (isa<DbgInfoIntrinsic>(IntrInst)) 472 continue; 473 } 474 // Find untracked uses of the address, bail. 475 if (!definedInRegion(Blocks, U)) 476 return {}; 477 } 478 479 if (!Info.LifeStart || !Info.LifeEnd) 480 return {}; 481 482 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 483 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 484 // Do legality check. 485 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 486 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 487 return {}; 488 489 // Check to see if we have a place to do hoisting, if not, bail. 490 if (Info.HoistLifeEnd && !ExitBlock) 491 return {}; 492 493 return Info; 494 } 495 496 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 497 ValueSet &SinkCands, ValueSet &HoistCands, 498 BasicBlock *&ExitBlock) const { 499 Function *Func = (*Blocks.begin())->getParent(); 500 ExitBlock = getCommonExitBlock(Blocks); 501 502 auto moveOrIgnoreLifetimeMarkers = 503 [&](const LifetimeMarkerInfo &LMI) -> bool { 504 if (!LMI.LifeStart) 505 return false; 506 if (LMI.SinkLifeStart) { 507 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 508 << "\n"); 509 SinkCands.insert(LMI.LifeStart); 510 } 511 if (LMI.HoistLifeEnd) { 512 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 513 HoistCands.insert(LMI.LifeEnd); 514 } 515 return true; 516 }; 517 518 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 519 // this is much faster than walking all the instructions. 520 for (AllocaInst *AI : CEAC.getAllocas()) { 521 BasicBlock *BB = AI->getParent(); 522 if (Blocks.count(BB)) 523 continue; 524 525 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 526 // check whether it is actually still in the original function. 527 Function *AIFunc = BB->getParent(); 528 if (AIFunc != Func) 529 continue; 530 531 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 532 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 533 if (Moved) { 534 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 535 SinkCands.insert(AI); 536 continue; 537 } 538 539 // Follow any bitcasts. 540 SmallVector<Instruction *, 2> Bitcasts; 541 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 542 for (User *U : AI->users()) { 543 if (U->stripInBoundsConstantOffsets() == AI) { 544 Instruction *Bitcast = cast<Instruction>(U); 545 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 546 if (LMI.LifeStart) { 547 Bitcasts.push_back(Bitcast); 548 BitcastLifetimeInfo.push_back(LMI); 549 continue; 550 } 551 } 552 553 // Found unknown use of AI. 554 if (!definedInRegion(Blocks, U)) { 555 Bitcasts.clear(); 556 break; 557 } 558 } 559 560 // Either no bitcasts reference the alloca or there are unknown uses. 561 if (Bitcasts.empty()) 562 continue; 563 564 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 565 SinkCands.insert(AI); 566 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 567 Instruction *BitcastAddr = Bitcasts[I]; 568 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 569 assert(LMI.LifeStart && 570 "Unsafe to sink bitcast without lifetime markers"); 571 moveOrIgnoreLifetimeMarkers(LMI); 572 if (!definedInRegion(Blocks, BitcastAddr)) { 573 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 574 << "\n"); 575 SinkCands.insert(BitcastAddr); 576 } 577 } 578 } 579 } 580 581 bool CodeExtractor::isEligible() const { 582 if (Blocks.empty()) 583 return false; 584 BasicBlock *Header = *Blocks.begin(); 585 Function *F = Header->getParent(); 586 587 // For functions with varargs, check that varargs handling is only done in the 588 // outlined function, i.e vastart and vaend are only used in outlined blocks. 589 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 590 auto containsVarArgIntrinsic = [](const Instruction &I) { 591 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 592 if (const Function *Callee = CI->getCalledFunction()) 593 return Callee->getIntrinsicID() == Intrinsic::vastart || 594 Callee->getIntrinsicID() == Intrinsic::vaend; 595 return false; 596 }; 597 598 for (auto &BB : *F) { 599 if (Blocks.count(&BB)) 600 continue; 601 if (llvm::any_of(BB, containsVarArgIntrinsic)) 602 return false; 603 } 604 } 605 return true; 606 } 607 608 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 609 const ValueSet &SinkCands) const { 610 for (BasicBlock *BB : Blocks) { 611 // If a used value is defined outside the region, it's an input. If an 612 // instruction is used outside the region, it's an output. 613 for (Instruction &II : *BB) { 614 for (auto &OI : II.operands()) { 615 Value *V = OI; 616 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 617 Inputs.insert(V); 618 } 619 620 for (User *U : II.users()) 621 if (!definedInRegion(Blocks, U)) { 622 Outputs.insert(&II); 623 break; 624 } 625 } 626 } 627 } 628 629 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 630 /// of the region, we need to split the entry block of the region so that the 631 /// PHI node is easier to deal with. 632 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 633 unsigned NumPredsFromRegion = 0; 634 unsigned NumPredsOutsideRegion = 0; 635 636 if (Header != &Header->getParent()->getEntryBlock()) { 637 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 638 if (!PN) return; // No PHI nodes. 639 640 // If the header node contains any PHI nodes, check to see if there is more 641 // than one entry from outside the region. If so, we need to sever the 642 // header block into two. 643 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 644 if (Blocks.count(PN->getIncomingBlock(i))) 645 ++NumPredsFromRegion; 646 else 647 ++NumPredsOutsideRegion; 648 649 // If there is one (or fewer) predecessor from outside the region, we don't 650 // need to do anything special. 651 if (NumPredsOutsideRegion <= 1) return; 652 } 653 654 // Otherwise, we need to split the header block into two pieces: one 655 // containing PHI nodes merging values from outside of the region, and a 656 // second that contains all of the code for the block and merges back any 657 // incoming values from inside of the region. 658 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 659 660 // We only want to code extract the second block now, and it becomes the new 661 // header of the region. 662 BasicBlock *OldPred = Header; 663 Blocks.remove(OldPred); 664 Blocks.insert(NewBB); 665 Header = NewBB; 666 667 // Okay, now we need to adjust the PHI nodes and any branches from within the 668 // region to go to the new header block instead of the old header block. 669 if (NumPredsFromRegion) { 670 PHINode *PN = cast<PHINode>(OldPred->begin()); 671 // Loop over all of the predecessors of OldPred that are in the region, 672 // changing them to branch to NewBB instead. 673 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 674 if (Blocks.count(PN->getIncomingBlock(i))) { 675 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 676 TI->replaceUsesOfWith(OldPred, NewBB); 677 } 678 679 // Okay, everything within the region is now branching to the right block, we 680 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 681 BasicBlock::iterator AfterPHIs; 682 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 683 PHINode *PN = cast<PHINode>(AfterPHIs); 684 // Create a new PHI node in the new region, which has an incoming value 685 // from OldPred of PN. 686 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 687 PN->getName() + ".ce", &NewBB->front()); 688 PN->replaceAllUsesWith(NewPN); 689 NewPN->addIncoming(PN, OldPred); 690 691 // Loop over all of the incoming value in PN, moving them to NewPN if they 692 // are from the extracted region. 693 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 694 if (Blocks.count(PN->getIncomingBlock(i))) { 695 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 696 PN->removeIncomingValue(i); 697 --i; 698 } 699 } 700 } 701 } 702 } 703 704 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 705 /// outlined region, we split these PHIs on two: one with inputs from region 706 /// and other with remaining incoming blocks; then first PHIs are placed in 707 /// outlined region. 708 void CodeExtractor::severSplitPHINodesOfExits( 709 const SmallPtrSetImpl<BasicBlock *> &Exits) { 710 for (BasicBlock *ExitBB : Exits) { 711 BasicBlock *NewBB = nullptr; 712 713 for (PHINode &PN : ExitBB->phis()) { 714 // Find all incoming values from the outlining region. 715 SmallVector<unsigned, 2> IncomingVals; 716 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 717 if (Blocks.count(PN.getIncomingBlock(i))) 718 IncomingVals.push_back(i); 719 720 // Do not process PHI if there is one (or fewer) predecessor from region. 721 // If PHI has exactly one predecessor from region, only this one incoming 722 // will be replaced on codeRepl block, so it should be safe to skip PHI. 723 if (IncomingVals.size() <= 1) 724 continue; 725 726 // Create block for new PHIs and add it to the list of outlined if it 727 // wasn't done before. 728 if (!NewBB) { 729 NewBB = BasicBlock::Create(ExitBB->getContext(), 730 ExitBB->getName() + ".split", 731 ExitBB->getParent(), ExitBB); 732 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB), 733 pred_end(ExitBB)); 734 for (BasicBlock *PredBB : Preds) 735 if (Blocks.count(PredBB)) 736 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 737 BranchInst::Create(ExitBB, NewBB); 738 Blocks.insert(NewBB); 739 } 740 741 // Split this PHI. 742 PHINode *NewPN = 743 PHINode::Create(PN.getType(), IncomingVals.size(), 744 PN.getName() + ".ce", NewBB->getFirstNonPHI()); 745 for (unsigned i : IncomingVals) 746 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 747 for (unsigned i : reverse(IncomingVals)) 748 PN.removeIncomingValue(i, false); 749 PN.addIncoming(NewPN, NewBB); 750 } 751 } 752 } 753 754 void CodeExtractor::splitReturnBlocks() { 755 for (BasicBlock *Block : Blocks) 756 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 757 BasicBlock *New = 758 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 759 if (DT) { 760 // Old dominates New. New node dominates all other nodes dominated 761 // by Old. 762 DomTreeNode *OldNode = DT->getNode(Block); 763 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 764 OldNode->end()); 765 766 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 767 768 for (DomTreeNode *I : Children) 769 DT->changeImmediateDominator(I, NewNode); 770 } 771 } 772 } 773 774 /// constructFunction - make a function based on inputs and outputs, as follows: 775 /// f(in0, ..., inN, out0, ..., outN) 776 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 777 const ValueSet &outputs, 778 BasicBlock *header, 779 BasicBlock *newRootNode, 780 BasicBlock *newHeader, 781 Function *oldFunction, 782 Module *M) { 783 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 784 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 785 786 // This function returns unsigned, outputs will go back by reference. 787 switch (NumExitBlocks) { 788 case 0: 789 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 790 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 791 default: RetTy = Type::getInt16Ty(header->getContext()); break; 792 } 793 794 std::vector<Type *> paramTy; 795 796 // Add the types of the input values to the function's argument list 797 for (Value *value : inputs) { 798 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 799 paramTy.push_back(value->getType()); 800 } 801 802 // Add the types of the output values to the function's argument list. 803 for (Value *output : outputs) { 804 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 805 if (AggregateArgs) 806 paramTy.push_back(output->getType()); 807 else 808 paramTy.push_back(PointerType::getUnqual(output->getType())); 809 } 810 811 LLVM_DEBUG({ 812 dbgs() << "Function type: " << *RetTy << " f("; 813 for (Type *i : paramTy) 814 dbgs() << *i << ", "; 815 dbgs() << ")\n"; 816 }); 817 818 StructType *StructTy = nullptr; 819 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 820 StructTy = StructType::get(M->getContext(), paramTy); 821 paramTy.clear(); 822 paramTy.push_back(PointerType::getUnqual(StructTy)); 823 } 824 FunctionType *funcType = 825 FunctionType::get(RetTy, paramTy, 826 AllowVarArgs && oldFunction->isVarArg()); 827 828 std::string SuffixToUse = 829 Suffix.empty() 830 ? (header->getName().empty() ? "extracted" : header->getName().str()) 831 : Suffix; 832 // Create the new function 833 Function *newFunction = Function::Create( 834 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 835 oldFunction->getName() + "." + SuffixToUse, M); 836 // If the old function is no-throw, so is the new one. 837 if (oldFunction->doesNotThrow()) 838 newFunction->setDoesNotThrow(); 839 840 // Inherit the uwtable attribute if we need to. 841 if (oldFunction->hasUWTable()) 842 newFunction->setHasUWTable(); 843 844 // Inherit all of the target dependent attributes and white-listed 845 // target independent attributes. 846 // (e.g. If the extracted region contains a call to an x86.sse 847 // instruction we need to make sure that the extracted region has the 848 // "target-features" attribute allowing it to be lowered. 849 // FIXME: This should be changed to check to see if a specific 850 // attribute can not be inherited. 851 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 852 if (Attr.isStringAttribute()) { 853 if (Attr.getKindAsString() == "thunk") 854 continue; 855 } else 856 switch (Attr.getKindAsEnum()) { 857 // Those attributes cannot be propagated safely. Explicitly list them 858 // here so we get a warning if new attributes are added. This list also 859 // includes non-function attributes. 860 case Attribute::Alignment: 861 case Attribute::AllocSize: 862 case Attribute::ArgMemOnly: 863 case Attribute::Builtin: 864 case Attribute::ByVal: 865 case Attribute::Convergent: 866 case Attribute::Dereferenceable: 867 case Attribute::DereferenceableOrNull: 868 case Attribute::InAlloca: 869 case Attribute::InReg: 870 case Attribute::InaccessibleMemOnly: 871 case Attribute::InaccessibleMemOrArgMemOnly: 872 case Attribute::JumpTable: 873 case Attribute::Naked: 874 case Attribute::Nest: 875 case Attribute::NoAlias: 876 case Attribute::NoBuiltin: 877 case Attribute::NoCapture: 878 case Attribute::NoMerge: 879 case Attribute::NoReturn: 880 case Attribute::NoSync: 881 case Attribute::NoUndef: 882 case Attribute::None: 883 case Attribute::NonNull: 884 case Attribute::Preallocated: 885 case Attribute::ReadNone: 886 case Attribute::ReadOnly: 887 case Attribute::Returned: 888 case Attribute::ReturnsTwice: 889 case Attribute::SExt: 890 case Attribute::Speculatable: 891 case Attribute::StackAlignment: 892 case Attribute::StructRet: 893 case Attribute::SwiftError: 894 case Attribute::SwiftSelf: 895 case Attribute::WillReturn: 896 case Attribute::WriteOnly: 897 case Attribute::ZExt: 898 case Attribute::ImmArg: 899 case Attribute::ByRef: 900 case Attribute::EndAttrKinds: 901 case Attribute::EmptyKey: 902 case Attribute::TombstoneKey: 903 continue; 904 // Those attributes should be safe to propagate to the extracted function. 905 case Attribute::AlwaysInline: 906 case Attribute::Cold: 907 case Attribute::NoRecurse: 908 case Attribute::InlineHint: 909 case Attribute::MinSize: 910 case Attribute::NoDuplicate: 911 case Attribute::NoFree: 912 case Attribute::NoImplicitFloat: 913 case Attribute::NoInline: 914 case Attribute::NonLazyBind: 915 case Attribute::NoRedZone: 916 case Attribute::NoUnwind: 917 case Attribute::NullPointerIsValid: 918 case Attribute::OptForFuzzing: 919 case Attribute::OptimizeNone: 920 case Attribute::OptimizeForSize: 921 case Attribute::SafeStack: 922 case Attribute::ShadowCallStack: 923 case Attribute::SanitizeAddress: 924 case Attribute::SanitizeMemory: 925 case Attribute::SanitizeThread: 926 case Attribute::SanitizeHWAddress: 927 case Attribute::SanitizeMemTag: 928 case Attribute::SpeculativeLoadHardening: 929 case Attribute::NoStackProtect: 930 case Attribute::StackProtect: 931 case Attribute::StackProtectReq: 932 case Attribute::StackProtectStrong: 933 case Attribute::StrictFP: 934 case Attribute::UWTable: 935 case Attribute::NoCfCheck: 936 case Attribute::MustProgress: 937 break; 938 } 939 940 newFunction->addFnAttr(Attr); 941 } 942 newFunction->getBasicBlockList().push_back(newRootNode); 943 944 // Create an iterator to name all of the arguments we inserted. 945 Function::arg_iterator AI = newFunction->arg_begin(); 946 947 // Rewrite all users of the inputs in the extracted region to use the 948 // arguments (or appropriate addressing into struct) instead. 949 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 950 Value *RewriteVal; 951 if (AggregateArgs) { 952 Value *Idx[2]; 953 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 954 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 955 Instruction *TI = newFunction->begin()->getTerminator(); 956 GetElementPtrInst *GEP = GetElementPtrInst::Create( 957 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 958 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP, 959 "loadgep_" + inputs[i]->getName(), TI); 960 } else 961 RewriteVal = &*AI++; 962 963 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 964 for (User *use : Users) 965 if (Instruction *inst = dyn_cast<Instruction>(use)) 966 if (Blocks.count(inst->getParent())) 967 inst->replaceUsesOfWith(inputs[i], RewriteVal); 968 } 969 970 // Set names for input and output arguments. 971 if (!AggregateArgs) { 972 AI = newFunction->arg_begin(); 973 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 974 AI->setName(inputs[i]->getName()); 975 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 976 AI->setName(outputs[i]->getName()+".out"); 977 } 978 979 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 980 // within the new function. This must be done before we lose track of which 981 // blocks were originally in the code region. 982 std::vector<User *> Users(header->user_begin(), header->user_end()); 983 for (auto &U : Users) 984 // The BasicBlock which contains the branch is not in the region 985 // modify the branch target to a new block 986 if (Instruction *I = dyn_cast<Instruction>(U)) 987 if (I->isTerminator() && I->getFunction() == oldFunction && 988 !Blocks.count(I->getParent())) 989 I->replaceUsesOfWith(header, newHeader); 990 991 return newFunction; 992 } 993 994 /// Erase lifetime.start markers which reference inputs to the extraction 995 /// region, and insert the referenced memory into \p LifetimesStart. 996 /// 997 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 998 /// of allocas which will be moved from the caller function into the extracted 999 /// function (\p SunkAllocas). 1000 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1001 const SetVector<Value *> &SunkAllocas, 1002 SetVector<Value *> &LifetimesStart) { 1003 for (BasicBlock *BB : Blocks) { 1004 for (auto It = BB->begin(), End = BB->end(); It != End;) { 1005 auto *II = dyn_cast<IntrinsicInst>(&*It); 1006 ++It; 1007 if (!II || !II->isLifetimeStartOrEnd()) 1008 continue; 1009 1010 // Get the memory operand of the lifetime marker. If the underlying 1011 // object is a sunk alloca, or is otherwise defined in the extraction 1012 // region, the lifetime marker must not be erased. 1013 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1014 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1015 continue; 1016 1017 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1018 LifetimesStart.insert(Mem); 1019 II->eraseFromParent(); 1020 } 1021 } 1022 } 1023 1024 /// Insert lifetime start/end markers surrounding the call to the new function 1025 /// for objects defined in the caller. 1026 static void insertLifetimeMarkersSurroundingCall( 1027 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1028 CallInst *TheCall) { 1029 LLVMContext &Ctx = M->getContext(); 1030 auto Int8PtrTy = Type::getInt8PtrTy(Ctx); 1031 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1032 Instruction *Term = TheCall->getParent()->getTerminator(); 1033 1034 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts 1035 // needed to satisfy this requirement so they may be reused. 1036 DenseMap<Value *, Value *> Bitcasts; 1037 1038 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1039 // markers before the call if \p InsertBefore, and after the call otherwise. 1040 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, 1041 bool InsertBefore) { 1042 for (Value *Mem : Objects) { 1043 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1044 TheCall->getFunction()) && 1045 "Input memory not defined in original function"); 1046 Value *&MemAsI8Ptr = Bitcasts[Mem]; 1047 if (!MemAsI8Ptr) { 1048 if (Mem->getType() == Int8PtrTy) 1049 MemAsI8Ptr = Mem; 1050 else 1051 MemAsI8Ptr = 1052 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); 1053 } 1054 1055 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); 1056 if (InsertBefore) 1057 Marker->insertBefore(TheCall); 1058 else 1059 Marker->insertBefore(Term); 1060 } 1061 }; 1062 1063 if (!LifetimesStart.empty()) { 1064 auto StartFn = llvm::Intrinsic::getDeclaration( 1065 M, llvm::Intrinsic::lifetime_start, Int8PtrTy); 1066 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); 1067 } 1068 1069 if (!LifetimesEnd.empty()) { 1070 auto EndFn = llvm::Intrinsic::getDeclaration( 1071 M, llvm::Intrinsic::lifetime_end, Int8PtrTy); 1072 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); 1073 } 1074 } 1075 1076 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1077 /// the call instruction, splitting any PHI nodes in the header block as 1078 /// necessary. 1079 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1080 BasicBlock *codeReplacer, 1081 ValueSet &inputs, 1082 ValueSet &outputs) { 1083 // Emit a call to the new function, passing in: *pointer to struct (if 1084 // aggregating parameters), or plan inputs and allocated memory for outputs 1085 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 1086 1087 Module *M = newFunction->getParent(); 1088 LLVMContext &Context = M->getContext(); 1089 const DataLayout &DL = M->getDataLayout(); 1090 CallInst *call = nullptr; 1091 1092 // Add inputs as params, or to be filled into the struct 1093 unsigned ArgNo = 0; 1094 SmallVector<unsigned, 1> SwiftErrorArgs; 1095 for (Value *input : inputs) { 1096 if (AggregateArgs) 1097 StructValues.push_back(input); 1098 else { 1099 params.push_back(input); 1100 if (input->isSwiftError()) 1101 SwiftErrorArgs.push_back(ArgNo); 1102 } 1103 ++ArgNo; 1104 } 1105 1106 // Create allocas for the outputs 1107 for (Value *output : outputs) { 1108 if (AggregateArgs) { 1109 StructValues.push_back(output); 1110 } else { 1111 AllocaInst *alloca = 1112 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1113 nullptr, output->getName() + ".loc", 1114 &codeReplacer->getParent()->front().front()); 1115 ReloadOutputs.push_back(alloca); 1116 params.push_back(alloca); 1117 } 1118 } 1119 1120 StructType *StructArgTy = nullptr; 1121 AllocaInst *Struct = nullptr; 1122 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 1123 std::vector<Type *> ArgTypes; 1124 for (ValueSet::iterator v = StructValues.begin(), 1125 ve = StructValues.end(); v != ve; ++v) 1126 ArgTypes.push_back((*v)->getType()); 1127 1128 // Allocate a struct at the beginning of this function 1129 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1130 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 1131 "structArg", 1132 &codeReplacer->getParent()->front().front()); 1133 params.push_back(Struct); 1134 1135 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 1136 Value *Idx[2]; 1137 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1138 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1139 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1140 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1141 codeReplacer->getInstList().push_back(GEP); 1142 new StoreInst(StructValues[i], GEP, codeReplacer); 1143 } 1144 } 1145 1146 // Emit the call to the function 1147 call = CallInst::Create(newFunction, params, 1148 NumExitBlocks > 1 ? "targetBlock" : ""); 1149 // Add debug location to the new call, if the original function has debug 1150 // info. In that case, the terminator of the entry block of the extracted 1151 // function contains the first debug location of the extracted function, 1152 // set in extractCodeRegion. 1153 if (codeReplacer->getParent()->getSubprogram()) { 1154 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1155 call->setDebugLoc(DL); 1156 } 1157 codeReplacer->getInstList().push_back(call); 1158 1159 // Set swifterror parameter attributes. 1160 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1161 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1162 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1163 } 1164 1165 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 1166 unsigned FirstOut = inputs.size(); 1167 if (!AggregateArgs) 1168 std::advance(OutputArgBegin, inputs.size()); 1169 1170 // Reload the outputs passed in by reference. 1171 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1172 Value *Output = nullptr; 1173 if (AggregateArgs) { 1174 Value *Idx[2]; 1175 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1176 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1177 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1178 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1179 codeReplacer->getInstList().push_back(GEP); 1180 Output = GEP; 1181 } else { 1182 Output = ReloadOutputs[i]; 1183 } 1184 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1185 outputs[i]->getName() + ".reload", 1186 codeReplacer); 1187 Reloads.push_back(load); 1188 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1189 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 1190 Instruction *inst = cast<Instruction>(Users[u]); 1191 if (!Blocks.count(inst->getParent())) 1192 inst->replaceUsesOfWith(outputs[i], load); 1193 } 1194 } 1195 1196 // Now we can emit a switch statement using the call as a value. 1197 SwitchInst *TheSwitch = 1198 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1199 codeReplacer, 0, codeReplacer); 1200 1201 // Since there may be multiple exits from the original region, make the new 1202 // function return an unsigned, switch on that number. This loop iterates 1203 // over all of the blocks in the extracted region, updating any terminator 1204 // instructions in the to-be-extracted region that branch to blocks that are 1205 // not in the region to be extracted. 1206 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1207 1208 unsigned switchVal = 0; 1209 for (BasicBlock *Block : Blocks) { 1210 Instruction *TI = Block->getTerminator(); 1211 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1212 if (!Blocks.count(TI->getSuccessor(i))) { 1213 BasicBlock *OldTarget = TI->getSuccessor(i); 1214 // add a new basic block which returns the appropriate value 1215 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1216 if (!NewTarget) { 1217 // If we don't already have an exit stub for this non-extracted 1218 // destination, create one now! 1219 NewTarget = BasicBlock::Create(Context, 1220 OldTarget->getName() + ".exitStub", 1221 newFunction); 1222 unsigned SuccNum = switchVal++; 1223 1224 Value *brVal = nullptr; 1225 switch (NumExitBlocks) { 1226 case 0: 1227 case 1: break; // No value needed. 1228 case 2: // Conditional branch, return a bool 1229 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1230 break; 1231 default: 1232 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1233 break; 1234 } 1235 1236 ReturnInst::Create(Context, brVal, NewTarget); 1237 1238 // Update the switch instruction. 1239 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1240 SuccNum), 1241 OldTarget); 1242 } 1243 1244 // rewrite the original branch instruction with this new target 1245 TI->setSuccessor(i, NewTarget); 1246 } 1247 } 1248 1249 // Store the arguments right after the definition of output value. 1250 // This should be proceeded after creating exit stubs to be ensure that invoke 1251 // result restore will be placed in the outlined function. 1252 Function::arg_iterator OAI = OutputArgBegin; 1253 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 1254 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1255 if (!OutI) 1256 continue; 1257 1258 // Find proper insertion point. 1259 BasicBlock::iterator InsertPt; 1260 // In case OutI is an invoke, we insert the store at the beginning in the 1261 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1262 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1263 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1264 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1265 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1266 else 1267 InsertPt = std::next(OutI->getIterator()); 1268 1269 Instruction *InsertBefore = &*InsertPt; 1270 assert((InsertBefore->getFunction() == newFunction || 1271 Blocks.count(InsertBefore->getParent())) && 1272 "InsertPt should be in new function"); 1273 assert(OAI != newFunction->arg_end() && 1274 "Number of output arguments should match " 1275 "the amount of defined values"); 1276 if (AggregateArgs) { 1277 Value *Idx[2]; 1278 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1279 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 1280 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1281 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), 1282 InsertBefore); 1283 new StoreInst(outputs[i], GEP, InsertBefore); 1284 // Since there should be only one struct argument aggregating 1285 // all the output values, we shouldn't increment OAI, which always 1286 // points to the struct argument, in this case. 1287 } else { 1288 new StoreInst(outputs[i], &*OAI, InsertBefore); 1289 ++OAI; 1290 } 1291 } 1292 1293 // Now that we've done the deed, simplify the switch instruction. 1294 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1295 switch (NumExitBlocks) { 1296 case 0: 1297 // There are no successors (the block containing the switch itself), which 1298 // means that previously this was the last part of the function, and hence 1299 // this should be rewritten as a `ret' 1300 1301 // Check if the function should return a value 1302 if (OldFnRetTy->isVoidTy()) { 1303 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1304 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1305 // return what we have 1306 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1307 } else { 1308 // Otherwise we must have code extracted an unwind or something, just 1309 // return whatever we want. 1310 ReturnInst::Create(Context, 1311 Constant::getNullValue(OldFnRetTy), TheSwitch); 1312 } 1313 1314 TheSwitch->eraseFromParent(); 1315 break; 1316 case 1: 1317 // Only a single destination, change the switch into an unconditional 1318 // branch. 1319 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1320 TheSwitch->eraseFromParent(); 1321 break; 1322 case 2: 1323 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1324 call, TheSwitch); 1325 TheSwitch->eraseFromParent(); 1326 break; 1327 default: 1328 // Otherwise, make the default destination of the switch instruction be one 1329 // of the other successors. 1330 TheSwitch->setCondition(call); 1331 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1332 // Remove redundant case 1333 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1334 break; 1335 } 1336 1337 // Insert lifetime markers around the reloads of any output values. The 1338 // allocas output values are stored in are only in-use in the codeRepl block. 1339 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1340 1341 return call; 1342 } 1343 1344 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1345 Function *oldFunc = (*Blocks.begin())->getParent(); 1346 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1347 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1348 1349 for (BasicBlock *Block : Blocks) { 1350 // Delete the basic block from the old function, and the list of blocks 1351 oldBlocks.remove(Block); 1352 1353 // Insert this basic block into the new function 1354 newBlocks.push_back(Block); 1355 } 1356 } 1357 1358 void CodeExtractor::calculateNewCallTerminatorWeights( 1359 BasicBlock *CodeReplacer, 1360 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1361 BranchProbabilityInfo *BPI) { 1362 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1363 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1364 1365 // Update the branch weights for the exit block. 1366 Instruction *TI = CodeReplacer->getTerminator(); 1367 SmallVector<uint64_t, 8> BranchWeights(TI->getNumSuccessors(), 0); 1368 1369 // Block Frequency distribution with dummy node. 1370 Distribution BranchDist; 1371 1372 SmallVector<BranchProbability, 4> EdgeProbabilities( 1373 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1374 1375 // Add each of the frequencies of the successors. 1376 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1377 BlockNode ExitNode(i); 1378 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1379 if (ExitFreq != 0) 1380 BranchDist.addExit(ExitNode, ExitFreq); 1381 else 1382 EdgeProbabilities[i] = BranchProbability::getZero(); 1383 } 1384 1385 // Check for no total weight. 1386 if (BranchDist.Total == 0) { 1387 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1388 return; 1389 } 1390 1391 // Normalize the distribution so that they can fit in unsigned. 1392 BranchDist.normalize(); 1393 1394 // Create normalized branch weights and set the metadata. 1395 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1396 const auto &Weight = BranchDist.Weights[I]; 1397 1398 // Get the weight and update the current BFI. 1399 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1400 BranchProbability BP(Weight.Amount, BranchDist.Total); 1401 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1402 } 1403 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1404 TI->setMetadata( 1405 LLVMContext::MD_prof, 1406 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1407 } 1408 1409 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1410 /// \p F. 1411 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1412 for (Instruction &I : instructions(F)) { 1413 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1414 findDbgUsers(DbgUsers, &I); 1415 for (DbgVariableIntrinsic *DVI : DbgUsers) 1416 if (DVI->getFunction() != &F) 1417 DVI->eraseFromParent(); 1418 } 1419 } 1420 1421 /// Fix up the debug info in the old and new functions by pointing line 1422 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1423 /// intrinsics which point to values outside of the new function. 1424 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1425 CallInst &TheCall) { 1426 DISubprogram *OldSP = OldFunc.getSubprogram(); 1427 LLVMContext &Ctx = OldFunc.getContext(); 1428 1429 if (!OldSP) { 1430 // Erase any debug info the new function contains. 1431 stripDebugInfo(NewFunc); 1432 // Make sure the old function doesn't contain any non-local metadata refs. 1433 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1434 return; 1435 } 1436 1437 // Create a subprogram for the new function. Leave out a description of the 1438 // function arguments, as the parameters don't correspond to anything at the 1439 // source level. 1440 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1441 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1442 OldSP->getUnit()); 1443 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); 1444 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1445 DISubprogram::SPFlagOptimized | 1446 DISubprogram::SPFlagLocalToUnit; 1447 auto NewSP = DIB.createFunction( 1448 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1449 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1450 NewFunc.setSubprogram(NewSP); 1451 1452 // Debug intrinsics in the new function need to be updated in one of two 1453 // ways: 1454 // 1) They need to be deleted, because they describe a value in the old 1455 // function. 1456 // 2) They need to point to fresh metadata, e.g. because they currently 1457 // point to a variable in the wrong scope. 1458 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1459 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1460 for (Instruction &I : instructions(NewFunc)) { 1461 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1462 if (!DII) 1463 continue; 1464 1465 // Point the intrinsic to a fresh label within the new function. 1466 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1467 DILabel *OldLabel = DLI->getLabel(); 1468 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1469 if (!NewLabel) 1470 NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), 1471 OldLabel->getFile(), OldLabel->getLine()); 1472 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); 1473 continue; 1474 } 1475 1476 // If the location isn't a constant or an instruction, delete the 1477 // intrinsic. 1478 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1479 Value *Location = DVI->getVariableLocation(); 1480 if (!Location || 1481 (!isa<Constant>(Location) && !isa<Instruction>(Location))) { 1482 DebugIntrinsicsToDelete.push_back(DVI); 1483 continue; 1484 } 1485 1486 // If the variable location is an instruction but isn't in the new 1487 // function, delete the intrinsic. 1488 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1489 if (LocationInst && LocationInst->getFunction() != &NewFunc) { 1490 DebugIntrinsicsToDelete.push_back(DVI); 1491 continue; 1492 } 1493 1494 // Point the intrinsic to a fresh variable within the new function. 1495 DILocalVariable *OldVar = DVI->getVariable(); 1496 DINode *&NewVar = RemappedMetadata[OldVar]; 1497 if (!NewVar) 1498 NewVar = DIB.createAutoVariable( 1499 NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1500 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1501 OldVar->getAlignInBits()); 1502 DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar)); 1503 } 1504 for (auto *DII : DebugIntrinsicsToDelete) 1505 DII->eraseFromParent(); 1506 DIB.finalizeSubprogram(NewSP); 1507 1508 // Fix up the scope information attached to the line locations in the new 1509 // function. 1510 for (Instruction &I : instructions(NewFunc)) { 1511 if (const DebugLoc &DL = I.getDebugLoc()) 1512 I.setDebugLoc(DebugLoc::get(DL.getLine(), DL.getCol(), NewSP)); 1513 1514 // Loop info metadata may contain line locations. Fix them up. 1515 auto updateLoopInfoLoc = [&Ctx, 1516 NewSP](const DILocation &Loc) -> DILocation * { 1517 return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP, 1518 nullptr); 1519 }; 1520 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1521 } 1522 if (!TheCall.getDebugLoc()) 1523 TheCall.setDebugLoc(DebugLoc::get(0, 0, OldSP)); 1524 1525 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1526 } 1527 1528 Function * 1529 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1530 if (!isEligible()) 1531 return nullptr; 1532 1533 // Assumption: this is a single-entry code region, and the header is the first 1534 // block in the region. 1535 BasicBlock *header = *Blocks.begin(); 1536 Function *oldFunction = header->getParent(); 1537 1538 // Calculate the entry frequency of the new function before we change the root 1539 // block. 1540 BlockFrequency EntryFreq; 1541 if (BFI) { 1542 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1543 for (BasicBlock *Pred : predecessors(header)) { 1544 if (Blocks.count(Pred)) 1545 continue; 1546 EntryFreq += 1547 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1548 } 1549 } 1550 1551 // Remove @llvm.assume calls that will be moved to the new function from the 1552 // old function's assumption cache. 1553 for (BasicBlock *Block : Blocks) { 1554 for (auto It = Block->begin(), End = Block->end(); It != End;) { 1555 Instruction *I = &*It; 1556 ++It; 1557 1558 if (match(I, m_Intrinsic<Intrinsic::assume>())) { 1559 if (AC) 1560 AC->unregisterAssumption(cast<CallInst>(I)); 1561 I->eraseFromParent(); 1562 } 1563 } 1564 } 1565 1566 // If we have any return instructions in the region, split those blocks so 1567 // that the return is not in the region. 1568 splitReturnBlocks(); 1569 1570 // Calculate the exit blocks for the extracted region and the total exit 1571 // weights for each of those blocks. 1572 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1573 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1574 for (BasicBlock *Block : Blocks) { 1575 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1576 ++SI) { 1577 if (!Blocks.count(*SI)) { 1578 // Update the branch weight for this successor. 1579 if (BFI) { 1580 BlockFrequency &BF = ExitWeights[*SI]; 1581 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1582 } 1583 ExitBlocks.insert(*SI); 1584 } 1585 } 1586 } 1587 NumExitBlocks = ExitBlocks.size(); 1588 1589 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1590 severSplitPHINodesOfEntry(header); 1591 severSplitPHINodesOfExits(ExitBlocks); 1592 1593 // This takes place of the original loop 1594 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1595 "codeRepl", oldFunction, 1596 header); 1597 1598 // The new function needs a root node because other nodes can branch to the 1599 // head of the region, but the entry node of a function cannot have preds. 1600 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1601 "newFuncRoot"); 1602 auto *BranchI = BranchInst::Create(header); 1603 // If the original function has debug info, we have to add a debug location 1604 // to the new branch instruction from the artificial entry block. 1605 // We use the debug location of the first instruction in the extracted 1606 // blocks, as there is no other equivalent line in the source code. 1607 if (oldFunction->getSubprogram()) { 1608 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1609 return any_of(*BB, [&BranchI](const Instruction &I) { 1610 if (!I.getDebugLoc()) 1611 return false; 1612 BranchI->setDebugLoc(I.getDebugLoc()); 1613 return true; 1614 }); 1615 }); 1616 } 1617 newFuncRoot->getInstList().push_back(BranchI); 1618 1619 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1620 BasicBlock *CommonExit = nullptr; 1621 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1622 assert(HoistingCands.empty() || CommonExit); 1623 1624 // Find inputs to, outputs from the code region. 1625 findInputsOutputs(inputs, outputs, SinkingCands); 1626 1627 // Now sink all instructions which only have non-phi uses inside the region. 1628 // Group the allocas at the start of the block, so that any bitcast uses of 1629 // the allocas are well-defined. 1630 AllocaInst *FirstSunkAlloca = nullptr; 1631 for (auto *II : SinkingCands) { 1632 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1633 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1634 if (!FirstSunkAlloca) 1635 FirstSunkAlloca = AI; 1636 } 1637 } 1638 assert((SinkingCands.empty() || FirstSunkAlloca) && 1639 "Did not expect a sink candidate without any allocas"); 1640 for (auto *II : SinkingCands) { 1641 if (!isa<AllocaInst>(II)) { 1642 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1643 } 1644 } 1645 1646 if (!HoistingCands.empty()) { 1647 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1648 Instruction *TI = HoistToBlock->getTerminator(); 1649 for (auto *II : HoistingCands) 1650 cast<Instruction>(II)->moveBefore(TI); 1651 } 1652 1653 // Collect objects which are inputs to the extraction region and also 1654 // referenced by lifetime start markers within it. The effects of these 1655 // markers must be replicated in the calling function to prevent the stack 1656 // coloring pass from merging slots which store input objects. 1657 ValueSet LifetimesStart; 1658 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1659 1660 // Construct new function based on inputs/outputs & add allocas for all defs. 1661 Function *newFunction = 1662 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1663 oldFunction, oldFunction->getParent()); 1664 1665 // Update the entry count of the function. 1666 if (BFI) { 1667 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1668 if (Count.hasValue()) 1669 newFunction->setEntryCount( 1670 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1671 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1672 } 1673 1674 CallInst *TheCall = 1675 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1676 1677 moveCodeToFunction(newFunction); 1678 1679 // Replicate the effects of any lifetime start/end markers which referenced 1680 // input objects in the extraction region by placing markers around the call. 1681 insertLifetimeMarkersSurroundingCall( 1682 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1683 1684 // Propagate personality info to the new function if there is one. 1685 if (oldFunction->hasPersonalityFn()) 1686 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1687 1688 // Update the branch weights for the exit block. 1689 if (BFI && NumExitBlocks > 1) 1690 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1691 1692 // Loop over all of the PHI nodes in the header and exit blocks, and change 1693 // any references to the old incoming edge to be the new incoming edge. 1694 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1695 PHINode *PN = cast<PHINode>(I); 1696 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1697 if (!Blocks.count(PN->getIncomingBlock(i))) 1698 PN->setIncomingBlock(i, newFuncRoot); 1699 } 1700 1701 for (BasicBlock *ExitBB : ExitBlocks) 1702 for (PHINode &PN : ExitBB->phis()) { 1703 Value *IncomingCodeReplacerVal = nullptr; 1704 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1705 // Ignore incoming values from outside of the extracted region. 1706 if (!Blocks.count(PN.getIncomingBlock(i))) 1707 continue; 1708 1709 // Ensure that there is only one incoming value from codeReplacer. 1710 if (!IncomingCodeReplacerVal) { 1711 PN.setIncomingBlock(i, codeReplacer); 1712 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1713 } else 1714 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1715 "PHI has two incompatbile incoming values from codeRepl"); 1716 } 1717 } 1718 1719 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1720 1721 // Mark the new function `noreturn` if applicable. Terminators which resume 1722 // exception propagation are treated as returning instructions. This is to 1723 // avoid inserting traps after calls to outlined functions which unwind. 1724 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { 1725 const Instruction *Term = BB.getTerminator(); 1726 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1727 }); 1728 if (doesNotReturn) 1729 newFunction->setDoesNotReturn(); 1730 1731 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1732 newFunction->dump(); 1733 report_fatal_error("verification of newFunction failed!"); 1734 }); 1735 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1736 report_fatal_error("verification of oldFunction failed!")); 1737 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1738 report_fatal_error("Stale Asumption cache for old Function!")); 1739 return newFunction; 1740 } 1741 1742 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1743 const Function &NewFunc, 1744 AssumptionCache *AC) { 1745 for (auto AssumeVH : AC->assumptions()) { 1746 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1747 if (!I) 1748 continue; 1749 1750 // There shouldn't be any llvm.assume intrinsics in the new function. 1751 if (I->getFunction() != &OldFunc) 1752 return true; 1753 1754 // There shouldn't be any stale affected values in the assumption cache 1755 // that were previously in the old function, but that have now been moved 1756 // to the new function. 1757 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1758 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1759 if (!AffectedCI) 1760 continue; 1761 if (AffectedCI->getFunction() != &OldFunc) 1762 return true; 1763 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1764 if (AssumedInst->getFunction() != &OldFunc) 1765 return true; 1766 } 1767 } 1768 return false; 1769 } 1770