1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface to tear out a code region, such as an 10 // individual loop or a parallel section, into a new function, replacing it with 11 // a call to the new function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/CodeExtractor.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/InstIterator.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/MDBuilder.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/Verifier.h" 54 #include "llvm/Support/BlockFrequency.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <map> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 using namespace llvm::PatternMatch; 71 using ProfileCount = Function::ProfileCount; 72 73 #define DEBUG_TYPE "code-extractor" 74 75 // Provide a command-line option to aggregate function arguments into a struct 76 // for functions produced by the code extractor. This is useful when converting 77 // extracted functions to pthread-based code, as only one argument (void*) can 78 // be passed in to pthread_create(). 79 static cl::opt<bool> 80 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 81 cl::desc("Aggregate arguments to code-extracted functions")); 82 83 /// Test whether a block is valid for extraction. 84 static bool isBlockValidForExtraction(const BasicBlock &BB, 85 const SetVector<BasicBlock *> &Result, 86 bool AllowVarArgs, bool AllowAlloca) { 87 // taking the address of a basic block moved to another function is illegal 88 if (BB.hasAddressTaken()) 89 return false; 90 91 // don't hoist code that uses another basicblock address, as it's likely to 92 // lead to unexpected behavior, like cross-function jumps 93 SmallPtrSet<User const *, 16> Visited; 94 SmallVector<User const *, 16> ToVisit; 95 96 for (Instruction const &Inst : BB) 97 ToVisit.push_back(&Inst); 98 99 while (!ToVisit.empty()) { 100 User const *Curr = ToVisit.pop_back_val(); 101 if (!Visited.insert(Curr).second) 102 continue; 103 if (isa<BlockAddress const>(Curr)) 104 return false; // even a reference to self is likely to be not compatible 105 106 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 107 continue; 108 109 for (auto const &U : Curr->operands()) { 110 if (auto *UU = dyn_cast<User>(U)) 111 ToVisit.push_back(UU); 112 } 113 } 114 115 // If explicitly requested, allow vastart and alloca. For invoke instructions 116 // verify that extraction is valid. 117 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 118 if (isa<AllocaInst>(I)) { 119 if (!AllowAlloca) 120 return false; 121 continue; 122 } 123 124 if (const auto *II = dyn_cast<InvokeInst>(I)) { 125 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 126 // must be a part of the subgraph which is being extracted. 127 if (auto *UBB = II->getUnwindDest()) 128 if (!Result.count(UBB)) 129 return false; 130 continue; 131 } 132 133 // All catch handlers of a catchswitch instruction as well as the unwind 134 // destination must be in the subgraph. 135 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 136 if (auto *UBB = CSI->getUnwindDest()) 137 if (!Result.count(UBB)) 138 return false; 139 for (const auto *HBB : CSI->handlers()) 140 if (!Result.count(const_cast<BasicBlock*>(HBB))) 141 return false; 142 continue; 143 } 144 145 // Make sure that entire catch handler is within subgraph. It is sufficient 146 // to check that catch return's block is in the list. 147 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 148 for (const auto *U : CPI->users()) 149 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 150 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 151 return false; 152 continue; 153 } 154 155 // And do similar checks for cleanup handler - the entire handler must be 156 // in subgraph which is going to be extracted. For cleanup return should 157 // additionally check that the unwind destination is also in the subgraph. 158 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 159 for (const auto *U : CPI->users()) 160 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 161 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 162 return false; 163 continue; 164 } 165 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 166 if (auto *UBB = CRI->getUnwindDest()) 167 if (!Result.count(UBB)) 168 return false; 169 continue; 170 } 171 172 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 173 if (const Function *F = CI->getCalledFunction()) { 174 auto IID = F->getIntrinsicID(); 175 if (IID == Intrinsic::vastart) { 176 if (AllowVarArgs) 177 continue; 178 else 179 return false; 180 } 181 182 // Currently, we miscompile outlined copies of eh_typid_for. There are 183 // proposals for fixing this in llvm.org/PR39545. 184 if (IID == Intrinsic::eh_typeid_for) 185 return false; 186 } 187 } 188 } 189 190 return true; 191 } 192 193 /// Build a set of blocks to extract if the input blocks are viable. 194 static SetVector<BasicBlock *> 195 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 196 bool AllowVarArgs, bool AllowAlloca) { 197 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 198 SetVector<BasicBlock *> Result; 199 200 // Loop over the blocks, adding them to our set-vector, and aborting with an 201 // empty set if we encounter invalid blocks. 202 for (BasicBlock *BB : BBs) { 203 // If this block is dead, don't process it. 204 if (DT && !DT->isReachableFromEntry(BB)) 205 continue; 206 207 if (!Result.insert(BB)) 208 llvm_unreachable("Repeated basic blocks in extraction input"); 209 } 210 211 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() 212 << '\n'); 213 214 for (auto *BB : Result) { 215 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 216 return {}; 217 218 // Make sure that the first block is not a landing pad. 219 if (BB == Result.front()) { 220 if (BB->isEHPad()) { 221 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 222 return {}; 223 } 224 continue; 225 } 226 227 // All blocks other than the first must not have predecessors outside of 228 // the subgraph which is being extracted. 229 for (auto *PBB : predecessors(BB)) 230 if (!Result.count(PBB)) { 231 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " 232 "outside the region except for the first block!\n" 233 << "Problematic source BB: " << BB->getName() << "\n" 234 << "Problematic destination BB: " << PBB->getName() 235 << "\n"); 236 return {}; 237 } 238 } 239 240 return Result; 241 } 242 243 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 244 bool AggregateArgs, BlockFrequencyInfo *BFI, 245 BranchProbabilityInfo *BPI, AssumptionCache *AC, 246 bool AllowVarArgs, bool AllowAlloca, 247 BasicBlock *AllocationBlock, std::string Suffix, 248 bool ArgsInZeroAddressSpace) 249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), 251 AllowVarArgs(AllowVarArgs), 252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 253 Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {} 254 255 /// definedInRegion - Return true if the specified value is defined in the 256 /// extracted region. 257 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 258 if (Instruction *I = dyn_cast<Instruction>(V)) 259 if (Blocks.count(I->getParent())) 260 return true; 261 return false; 262 } 263 264 /// definedInCaller - Return true if the specified value is defined in the 265 /// function being code extracted, but not in the region being extracted. 266 /// These values must be passed in as live-ins to the function. 267 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 268 if (isa<Argument>(V)) return true; 269 if (Instruction *I = dyn_cast<Instruction>(V)) 270 if (!Blocks.count(I->getParent())) 271 return true; 272 return false; 273 } 274 275 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 276 BasicBlock *CommonExitBlock = nullptr; 277 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 278 for (auto *Succ : successors(Block)) { 279 // Internal edges, ok. 280 if (Blocks.count(Succ)) 281 continue; 282 if (!CommonExitBlock) { 283 CommonExitBlock = Succ; 284 continue; 285 } 286 if (CommonExitBlock != Succ) 287 return true; 288 } 289 return false; 290 }; 291 292 if (any_of(Blocks, hasNonCommonExitSucc)) 293 return nullptr; 294 295 return CommonExitBlock; 296 } 297 298 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { 299 for (BasicBlock &BB : F) { 300 for (Instruction &II : BB.instructionsWithoutDebug()) 301 if (auto *AI = dyn_cast<AllocaInst>(&II)) 302 Allocas.push_back(AI); 303 304 findSideEffectInfoForBlock(BB); 305 } 306 } 307 308 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { 309 for (Instruction &II : BB.instructionsWithoutDebug()) { 310 unsigned Opcode = II.getOpcode(); 311 Value *MemAddr = nullptr; 312 switch (Opcode) { 313 case Instruction::Store: 314 case Instruction::Load: { 315 if (Opcode == Instruction::Store) { 316 StoreInst *SI = cast<StoreInst>(&II); 317 MemAddr = SI->getPointerOperand(); 318 } else { 319 LoadInst *LI = cast<LoadInst>(&II); 320 MemAddr = LI->getPointerOperand(); 321 } 322 // Global variable can not be aliased with locals. 323 if (isa<Constant>(MemAddr)) 324 break; 325 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 326 if (!isa<AllocaInst>(Base)) { 327 SideEffectingBlocks.insert(&BB); 328 return; 329 } 330 BaseMemAddrs[&BB].insert(Base); 331 break; 332 } 333 default: { 334 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 335 if (IntrInst) { 336 if (IntrInst->isLifetimeStartOrEnd()) 337 break; 338 SideEffectingBlocks.insert(&BB); 339 return; 340 } 341 // Treat all the other cases conservatively if it has side effects. 342 if (II.mayHaveSideEffects()) { 343 SideEffectingBlocks.insert(&BB); 344 return; 345 } 346 } 347 } 348 } 349 } 350 351 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( 352 BasicBlock &BB, AllocaInst *Addr) const { 353 if (SideEffectingBlocks.count(&BB)) 354 return true; 355 auto It = BaseMemAddrs.find(&BB); 356 if (It != BaseMemAddrs.end()) 357 return It->second.count(Addr); 358 return false; 359 } 360 361 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 362 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { 363 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 364 Function *Func = (*Blocks.begin())->getParent(); 365 for (BasicBlock &BB : *Func) { 366 if (Blocks.count(&BB)) 367 continue; 368 if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) 369 return false; 370 } 371 return true; 372 } 373 374 BasicBlock * 375 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 376 BasicBlock *SinglePredFromOutlineRegion = nullptr; 377 assert(!Blocks.count(CommonExitBlock) && 378 "Expect a block outside the region!"); 379 for (auto *Pred : predecessors(CommonExitBlock)) { 380 if (!Blocks.count(Pred)) 381 continue; 382 if (!SinglePredFromOutlineRegion) { 383 SinglePredFromOutlineRegion = Pred; 384 } else if (SinglePredFromOutlineRegion != Pred) { 385 SinglePredFromOutlineRegion = nullptr; 386 break; 387 } 388 } 389 390 if (SinglePredFromOutlineRegion) 391 return SinglePredFromOutlineRegion; 392 393 #ifndef NDEBUG 394 auto getFirstPHI = [](BasicBlock *BB) { 395 BasicBlock::iterator I = BB->begin(); 396 PHINode *FirstPhi = nullptr; 397 while (I != BB->end()) { 398 PHINode *Phi = dyn_cast<PHINode>(I); 399 if (!Phi) 400 break; 401 if (!FirstPhi) { 402 FirstPhi = Phi; 403 break; 404 } 405 } 406 return FirstPhi; 407 }; 408 // If there are any phi nodes, the single pred either exists or has already 409 // be created before code extraction. 410 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 411 #endif 412 413 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 414 CommonExitBlock->getFirstNonPHI()->getIterator()); 415 416 for (BasicBlock *Pred : 417 llvm::make_early_inc_range(predecessors(CommonExitBlock))) { 418 if (Blocks.count(Pred)) 419 continue; 420 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 421 } 422 // Now add the old exit block to the outline region. 423 Blocks.insert(CommonExitBlock); 424 OldTargets.push_back(NewExitBlock); 425 return CommonExitBlock; 426 } 427 428 // Find the pair of life time markers for address 'Addr' that are either 429 // defined inside the outline region or can legally be shrinkwrapped into the 430 // outline region. If there are not other untracked uses of the address, return 431 // the pair of markers if found; otherwise return a pair of nullptr. 432 CodeExtractor::LifetimeMarkerInfo 433 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, 434 Instruction *Addr, 435 BasicBlock *ExitBlock) const { 436 LifetimeMarkerInfo Info; 437 438 for (User *U : Addr->users()) { 439 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 440 if (IntrInst) { 441 // We don't model addresses with multiple start/end markers, but the 442 // markers do not need to be in the region. 443 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 444 if (Info.LifeStart) 445 return {}; 446 Info.LifeStart = IntrInst; 447 continue; 448 } 449 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 450 if (Info.LifeEnd) 451 return {}; 452 Info.LifeEnd = IntrInst; 453 continue; 454 } 455 // At this point, permit debug uses outside of the region. 456 // This is fixed in a later call to fixupDebugInfoPostExtraction(). 457 if (isa<DbgInfoIntrinsic>(IntrInst)) 458 continue; 459 } 460 // Find untracked uses of the address, bail. 461 if (!definedInRegion(Blocks, U)) 462 return {}; 463 } 464 465 if (!Info.LifeStart || !Info.LifeEnd) 466 return {}; 467 468 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); 469 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); 470 // Do legality check. 471 if ((Info.SinkLifeStart || Info.HoistLifeEnd) && 472 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) 473 return {}; 474 475 // Check to see if we have a place to do hoisting, if not, bail. 476 if (Info.HoistLifeEnd && !ExitBlock) 477 return {}; 478 479 return Info; 480 } 481 482 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, 483 ValueSet &SinkCands, ValueSet &HoistCands, 484 BasicBlock *&ExitBlock) const { 485 Function *Func = (*Blocks.begin())->getParent(); 486 ExitBlock = getCommonExitBlock(Blocks); 487 488 auto moveOrIgnoreLifetimeMarkers = 489 [&](const LifetimeMarkerInfo &LMI) -> bool { 490 if (!LMI.LifeStart) 491 return false; 492 if (LMI.SinkLifeStart) { 493 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart 494 << "\n"); 495 SinkCands.insert(LMI.LifeStart); 496 } 497 if (LMI.HoistLifeEnd) { 498 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); 499 HoistCands.insert(LMI.LifeEnd); 500 } 501 return true; 502 }; 503 504 // Look up allocas in the original function in CodeExtractorAnalysisCache, as 505 // this is much faster than walking all the instructions. 506 for (AllocaInst *AI : CEAC.getAllocas()) { 507 BasicBlock *BB = AI->getParent(); 508 if (Blocks.count(BB)) 509 continue; 510 511 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, 512 // check whether it is actually still in the original function. 513 Function *AIFunc = BB->getParent(); 514 if (AIFunc != Func) 515 continue; 516 517 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); 518 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); 519 if (Moved) { 520 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); 521 SinkCands.insert(AI); 522 continue; 523 } 524 525 // Find bitcasts in the outlined region that have lifetime marker users 526 // outside that region. Replace the lifetime marker use with an 527 // outside region bitcast to avoid unnecessary alloca/reload instructions 528 // and extra lifetime markers. 529 SmallVector<Instruction *, 2> LifetimeBitcastUsers; 530 for (User *U : AI->users()) { 531 if (!definedInRegion(Blocks, U)) 532 continue; 533 534 if (U->stripInBoundsConstantOffsets() != AI) 535 continue; 536 537 Instruction *Bitcast = cast<Instruction>(U); 538 for (User *BU : Bitcast->users()) { 539 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); 540 if (!IntrInst) 541 continue; 542 543 if (!IntrInst->isLifetimeStartOrEnd()) 544 continue; 545 546 if (definedInRegion(Blocks, IntrInst)) 547 continue; 548 549 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" 550 << *Bitcast << " in out-of-region lifetime marker " 551 << *IntrInst << "\n"); 552 LifetimeBitcastUsers.push_back(IntrInst); 553 } 554 } 555 556 for (Instruction *I : LifetimeBitcastUsers) { 557 Module *M = AIFunc->getParent(); 558 LLVMContext &Ctx = M->getContext(); 559 auto *Int8PtrTy = PointerType::getUnqual(Ctx); 560 CastInst *CastI = 561 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator()); 562 I->replaceUsesOfWith(I->getOperand(1), CastI); 563 } 564 565 // Follow any bitcasts. 566 SmallVector<Instruction *, 2> Bitcasts; 567 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; 568 for (User *U : AI->users()) { 569 if (U->stripInBoundsConstantOffsets() == AI) { 570 Instruction *Bitcast = cast<Instruction>(U); 571 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); 572 if (LMI.LifeStart) { 573 Bitcasts.push_back(Bitcast); 574 BitcastLifetimeInfo.push_back(LMI); 575 continue; 576 } 577 } 578 579 // Found unknown use of AI. 580 if (!definedInRegion(Blocks, U)) { 581 Bitcasts.clear(); 582 break; 583 } 584 } 585 586 // Either no bitcasts reference the alloca or there are unknown uses. 587 if (Bitcasts.empty()) 588 continue; 589 590 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); 591 SinkCands.insert(AI); 592 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { 593 Instruction *BitcastAddr = Bitcasts[I]; 594 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; 595 assert(LMI.LifeStart && 596 "Unsafe to sink bitcast without lifetime markers"); 597 moveOrIgnoreLifetimeMarkers(LMI); 598 if (!definedInRegion(Blocks, BitcastAddr)) { 599 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr 600 << "\n"); 601 SinkCands.insert(BitcastAddr); 602 } 603 } 604 } 605 } 606 607 bool CodeExtractor::isEligible() const { 608 if (Blocks.empty()) 609 return false; 610 BasicBlock *Header = *Blocks.begin(); 611 Function *F = Header->getParent(); 612 613 // For functions with varargs, check that varargs handling is only done in the 614 // outlined function, i.e vastart and vaend are only used in outlined blocks. 615 if (AllowVarArgs && F->getFunctionType()->isVarArg()) { 616 auto containsVarArgIntrinsic = [](const Instruction &I) { 617 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 618 if (const Function *Callee = CI->getCalledFunction()) 619 return Callee->getIntrinsicID() == Intrinsic::vastart || 620 Callee->getIntrinsicID() == Intrinsic::vaend; 621 return false; 622 }; 623 624 for (auto &BB : *F) { 625 if (Blocks.count(&BB)) 626 continue; 627 if (llvm::any_of(BB, containsVarArgIntrinsic)) 628 return false; 629 } 630 } 631 return true; 632 } 633 634 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 635 const ValueSet &SinkCands, 636 bool CollectGlobalInputs) const { 637 for (BasicBlock *BB : Blocks) { 638 // If a used value is defined outside the region, it's an input. If an 639 // instruction is used outside the region, it's an output. 640 for (Instruction &II : *BB) { 641 for (auto &OI : II.operands()) { 642 Value *V = OI; 643 if (!SinkCands.count(V) && 644 (definedInCaller(Blocks, V) || 645 (CollectGlobalInputs && llvm::isa<llvm::GlobalVariable>(V)))) 646 Inputs.insert(V); 647 } 648 649 for (User *U : II.users()) 650 if (!definedInRegion(Blocks, U)) { 651 Outputs.insert(&II); 652 break; 653 } 654 } 655 } 656 } 657 658 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside 659 /// of the region, we need to split the entry block of the region so that the 660 /// PHI node is easier to deal with. 661 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { 662 unsigned NumPredsFromRegion = 0; 663 unsigned NumPredsOutsideRegion = 0; 664 665 if (Header != &Header->getParent()->getEntryBlock()) { 666 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 667 if (!PN) return; // No PHI nodes. 668 669 // If the header node contains any PHI nodes, check to see if there is more 670 // than one entry from outside the region. If so, we need to sever the 671 // header block into two. 672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 673 if (Blocks.count(PN->getIncomingBlock(i))) 674 ++NumPredsFromRegion; 675 else 676 ++NumPredsOutsideRegion; 677 678 // If there is one (or fewer) predecessor from outside the region, we don't 679 // need to do anything special. 680 if (NumPredsOutsideRegion <= 1) return; 681 } 682 683 // Otherwise, we need to split the header block into two pieces: one 684 // containing PHI nodes merging values from outside of the region, and a 685 // second that contains all of the code for the block and merges back any 686 // incoming values from inside of the region. 687 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 688 689 // We only want to code extract the second block now, and it becomes the new 690 // header of the region. 691 BasicBlock *OldPred = Header; 692 Blocks.remove(OldPred); 693 Blocks.insert(NewBB); 694 Header = NewBB; 695 696 // Okay, now we need to adjust the PHI nodes and any branches from within the 697 // region to go to the new header block instead of the old header block. 698 if (NumPredsFromRegion) { 699 PHINode *PN = cast<PHINode>(OldPred->begin()); 700 // Loop over all of the predecessors of OldPred that are in the region, 701 // changing them to branch to NewBB instead. 702 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 703 if (Blocks.count(PN->getIncomingBlock(i))) { 704 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 705 TI->replaceUsesOfWith(OldPred, NewBB); 706 } 707 708 // Okay, everything within the region is now branching to the right block, we 709 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 710 BasicBlock::iterator AfterPHIs; 711 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 712 PHINode *PN = cast<PHINode>(AfterPHIs); 713 // Create a new PHI node in the new region, which has an incoming value 714 // from OldPred of PN. 715 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 716 PN->getName() + ".ce"); 717 NewPN->insertBefore(NewBB->begin()); 718 PN->replaceAllUsesWith(NewPN); 719 NewPN->addIncoming(PN, OldPred); 720 721 // Loop over all of the incoming value in PN, moving them to NewPN if they 722 // are from the extracted region. 723 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 724 if (Blocks.count(PN->getIncomingBlock(i))) { 725 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 726 PN->removeIncomingValue(i); 727 --i; 728 } 729 } 730 } 731 } 732 } 733 734 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from 735 /// outlined region, we split these PHIs on two: one with inputs from region 736 /// and other with remaining incoming blocks; then first PHIs are placed in 737 /// outlined region. 738 void CodeExtractor::severSplitPHINodesOfExits( 739 const SetVector<BasicBlock *> &Exits) { 740 for (BasicBlock *ExitBB : Exits) { 741 BasicBlock *NewBB = nullptr; 742 743 for (PHINode &PN : ExitBB->phis()) { 744 // Find all incoming values from the outlining region. 745 SmallVector<unsigned, 2> IncomingVals; 746 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 747 if (Blocks.count(PN.getIncomingBlock(i))) 748 IncomingVals.push_back(i); 749 750 // Do not process PHI if there is one (or fewer) predecessor from region. 751 // If PHI has exactly one predecessor from region, only this one incoming 752 // will be replaced on codeRepl block, so it should be safe to skip PHI. 753 if (IncomingVals.size() <= 1) 754 continue; 755 756 // Create block for new PHIs and add it to the list of outlined if it 757 // wasn't done before. 758 if (!NewBB) { 759 NewBB = BasicBlock::Create(ExitBB->getContext(), 760 ExitBB->getName() + ".split", 761 ExitBB->getParent(), ExitBB); 762 NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat; 763 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); 764 for (BasicBlock *PredBB : Preds) 765 if (Blocks.count(PredBB)) 766 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); 767 BranchInst::Create(ExitBB, NewBB); 768 Blocks.insert(NewBB); 769 } 770 771 // Split this PHI. 772 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(), 773 PN.getName() + ".ce"); 774 NewPN->insertBefore(NewBB->getFirstNonPHIIt()); 775 for (unsigned i : IncomingVals) 776 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); 777 for (unsigned i : reverse(IncomingVals)) 778 PN.removeIncomingValue(i, false); 779 PN.addIncoming(NewPN, NewBB); 780 } 781 } 782 } 783 784 void CodeExtractor::splitReturnBlocks() { 785 for (BasicBlock *Block : Blocks) 786 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 787 BasicBlock *New = 788 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 789 if (DT) { 790 // Old dominates New. New node dominates all other nodes dominated 791 // by Old. 792 DomTreeNode *OldNode = DT->getNode(Block); 793 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 794 OldNode->end()); 795 796 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 797 798 for (DomTreeNode *I : Children) 799 DT->changeImmediateDominator(I, NewNode); 800 } 801 } 802 } 803 804 /// constructFunction - make a function based on inputs and outputs, as follows: 805 /// f(in0, ..., inN, out0, ..., outN) 806 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 807 const ValueSet &outputs, 808 BasicBlock *header, 809 BasicBlock *newRootNode, 810 BasicBlock *newHeader, 811 Function *oldFunction, 812 Module *M) { 813 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 814 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 815 816 // This function returns unsigned, outputs will go back by reference. 817 switch (NumExitBlocks) { 818 case 0: 819 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 820 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 821 default: RetTy = Type::getInt16Ty(header->getContext()); break; 822 } 823 824 std::vector<Type *> ParamTy; 825 std::vector<Type *> AggParamTy; 826 ValueSet StructValues; 827 const DataLayout &DL = M->getDataLayout(); 828 829 // Add the types of the input values to the function's argument list 830 for (Value *value : inputs) { 831 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 832 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { 833 AggParamTy.push_back(value->getType()); 834 StructValues.insert(value); 835 } else 836 ParamTy.push_back(value->getType()); 837 } 838 839 // Add the types of the output values to the function's argument list. 840 for (Value *output : outputs) { 841 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 842 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 843 AggParamTy.push_back(output->getType()); 844 StructValues.insert(output); 845 } else 846 ParamTy.push_back( 847 PointerType::get(output->getType(), DL.getAllocaAddrSpace())); 848 } 849 850 assert( 851 (ParamTy.size() + AggParamTy.size()) == 852 (inputs.size() + outputs.size()) && 853 "Number of scalar and aggregate params does not match inputs, outputs"); 854 assert((StructValues.empty() || AggregateArgs) && 855 "Expeced StructValues only with AggregateArgs set"); 856 857 // Concatenate scalar and aggregate params in ParamTy. 858 size_t NumScalarParams = ParamTy.size(); 859 StructType *StructTy = nullptr; 860 if (AggregateArgs && !AggParamTy.empty()) { 861 StructTy = StructType::get(M->getContext(), AggParamTy); 862 ParamTy.push_back(PointerType::get( 863 StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace())); 864 } 865 866 LLVM_DEBUG({ 867 dbgs() << "Function type: " << *RetTy << " f("; 868 for (Type *i : ParamTy) 869 dbgs() << *i << ", "; 870 dbgs() << ")\n"; 871 }); 872 873 FunctionType *funcType = FunctionType::get( 874 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); 875 876 std::string SuffixToUse = 877 Suffix.empty() 878 ? (header->getName().empty() ? "extracted" : header->getName().str()) 879 : Suffix; 880 // Create the new function 881 Function *newFunction = Function::Create( 882 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 883 oldFunction->getName() + "." + SuffixToUse, M); 884 newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 885 886 // Inherit all of the target dependent attributes and white-listed 887 // target independent attributes. 888 // (e.g. If the extracted region contains a call to an x86.sse 889 // instruction we need to make sure that the extracted region has the 890 // "target-features" attribute allowing it to be lowered. 891 // FIXME: This should be changed to check to see if a specific 892 // attribute can not be inherited. 893 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { 894 if (Attr.isStringAttribute()) { 895 if (Attr.getKindAsString() == "thunk") 896 continue; 897 } else 898 switch (Attr.getKindAsEnum()) { 899 // Those attributes cannot be propagated safely. Explicitly list them 900 // here so we get a warning if new attributes are added. 901 case Attribute::AllocSize: 902 case Attribute::Builtin: 903 case Attribute::Convergent: 904 case Attribute::JumpTable: 905 case Attribute::Naked: 906 case Attribute::NoBuiltin: 907 case Attribute::NoMerge: 908 case Attribute::NoReturn: 909 case Attribute::NoSync: 910 case Attribute::ReturnsTwice: 911 case Attribute::Speculatable: 912 case Attribute::StackAlignment: 913 case Attribute::WillReturn: 914 case Attribute::AllocKind: 915 case Attribute::PresplitCoroutine: 916 case Attribute::Memory: 917 case Attribute::NoFPClass: 918 case Attribute::CoroDestroyOnlyWhenComplete: 919 case Attribute::CoroElideSafe: 920 continue; 921 // Those attributes should be safe to propagate to the extracted function. 922 case Attribute::AlwaysInline: 923 case Attribute::Cold: 924 case Attribute::DisableSanitizerInstrumentation: 925 case Attribute::FnRetThunkExtern: 926 case Attribute::Hot: 927 case Attribute::HybridPatchable: 928 case Attribute::NoRecurse: 929 case Attribute::InlineHint: 930 case Attribute::MinSize: 931 case Attribute::NoCallback: 932 case Attribute::NoDuplicate: 933 case Attribute::NoFree: 934 case Attribute::NoImplicitFloat: 935 case Attribute::NoInline: 936 case Attribute::NonLazyBind: 937 case Attribute::NoRedZone: 938 case Attribute::NoUnwind: 939 case Attribute::NoSanitizeBounds: 940 case Attribute::NoSanitizeCoverage: 941 case Attribute::NullPointerIsValid: 942 case Attribute::OptimizeForDebugging: 943 case Attribute::OptForFuzzing: 944 case Attribute::OptimizeNone: 945 case Attribute::OptimizeForSize: 946 case Attribute::SafeStack: 947 case Attribute::ShadowCallStack: 948 case Attribute::SanitizeAddress: 949 case Attribute::SanitizeMemory: 950 case Attribute::SanitizeNumericalStability: 951 case Attribute::SanitizeThread: 952 case Attribute::SanitizeHWAddress: 953 case Attribute::SanitizeMemTag: 954 case Attribute::SanitizeRealtime: 955 case Attribute::SanitizeRealtimeUnsafe: 956 case Attribute::SpeculativeLoadHardening: 957 case Attribute::StackProtect: 958 case Attribute::StackProtectReq: 959 case Attribute::StackProtectStrong: 960 case Attribute::StrictFP: 961 case Attribute::UWTable: 962 case Attribute::VScaleRange: 963 case Attribute::NoCfCheck: 964 case Attribute::MustProgress: 965 case Attribute::NoProfile: 966 case Attribute::SkipProfile: 967 break; 968 // These attributes cannot be applied to functions. 969 case Attribute::Alignment: 970 case Attribute::AllocatedPointer: 971 case Attribute::AllocAlign: 972 case Attribute::ByVal: 973 case Attribute::Dereferenceable: 974 case Attribute::DereferenceableOrNull: 975 case Attribute::ElementType: 976 case Attribute::InAlloca: 977 case Attribute::InReg: 978 case Attribute::Nest: 979 case Attribute::NoAlias: 980 case Attribute::NoCapture: 981 case Attribute::NoUndef: 982 case Attribute::NonNull: 983 case Attribute::Preallocated: 984 case Attribute::ReadNone: 985 case Attribute::ReadOnly: 986 case Attribute::Returned: 987 case Attribute::SExt: 988 case Attribute::StructRet: 989 case Attribute::SwiftError: 990 case Attribute::SwiftSelf: 991 case Attribute::SwiftAsync: 992 case Attribute::ZExt: 993 case Attribute::ImmArg: 994 case Attribute::ByRef: 995 case Attribute::WriteOnly: 996 case Attribute::Writable: 997 case Attribute::DeadOnUnwind: 998 case Attribute::Range: 999 case Attribute::Initializes: 1000 case Attribute::NoExt: 1001 // These are not really attributes. 1002 case Attribute::None: 1003 case Attribute::EndAttrKinds: 1004 case Attribute::EmptyKey: 1005 case Attribute::TombstoneKey: 1006 llvm_unreachable("Not a function attribute"); 1007 } 1008 1009 newFunction->addFnAttr(Attr); 1010 } 1011 1012 if (NumExitBlocks == 0) { 1013 // Mark the new function `noreturn` if applicable. Terminators which resume 1014 // exception propagation are treated as returning instructions. This is to 1015 // avoid inserting traps after calls to outlined functions which unwind. 1016 if (none_of(Blocks, [](const BasicBlock *BB) { 1017 const Instruction *Term = BB->getTerminator(); 1018 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); 1019 })) 1020 newFunction->setDoesNotReturn(); 1021 } 1022 1023 newFunction->insert(newFunction->end(), newRootNode); 1024 1025 // Create scalar and aggregate iterators to name all of the arguments we 1026 // inserted. 1027 Function::arg_iterator ScalarAI = newFunction->arg_begin(); 1028 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); 1029 1030 // Rewrite all users of the inputs in the extracted region to use the 1031 // arguments (or appropriate addressing into struct) instead. 1032 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { 1033 Value *RewriteVal; 1034 if (AggregateArgs && StructValues.contains(inputs[i])) { 1035 Value *Idx[2]; 1036 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 1037 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); 1038 BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator(); 1039 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1040 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); 1041 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, 1042 "loadgep_" + inputs[i]->getName(), TI); 1043 ++aggIdx; 1044 } else 1045 RewriteVal = &*ScalarAI++; 1046 1047 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 1048 for (User *use : Users) 1049 if (Instruction *inst = dyn_cast<Instruction>(use)) 1050 if (Blocks.count(inst->getParent())) 1051 inst->replaceUsesOfWith(inputs[i], RewriteVal); 1052 } 1053 1054 // Set names for input and output arguments. 1055 if (NumScalarParams) { 1056 ScalarAI = newFunction->arg_begin(); 1057 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) 1058 if (!StructValues.contains(inputs[i])) 1059 ScalarAI->setName(inputs[i]->getName()); 1060 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) 1061 if (!StructValues.contains(outputs[i])) 1062 ScalarAI->setName(outputs[i]->getName() + ".out"); 1063 } 1064 1065 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 1066 // within the new function. This must be done before we lose track of which 1067 // blocks were originally in the code region. 1068 std::vector<User *> Users(header->user_begin(), header->user_end()); 1069 for (auto &U : Users) 1070 // The BasicBlock which contains the branch is not in the region 1071 // modify the branch target to a new block 1072 if (Instruction *I = dyn_cast<Instruction>(U)) 1073 if (I->isTerminator() && I->getFunction() == oldFunction && 1074 !Blocks.count(I->getParent())) 1075 I->replaceUsesOfWith(header, newHeader); 1076 1077 return newFunction; 1078 } 1079 1080 /// Erase lifetime.start markers which reference inputs to the extraction 1081 /// region, and insert the referenced memory into \p LifetimesStart. 1082 /// 1083 /// The extraction region is defined by a set of blocks (\p Blocks), and a set 1084 /// of allocas which will be moved from the caller function into the extracted 1085 /// function (\p SunkAllocas). 1086 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, 1087 const SetVector<Value *> &SunkAllocas, 1088 SetVector<Value *> &LifetimesStart) { 1089 for (BasicBlock *BB : Blocks) { 1090 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 1091 auto *II = dyn_cast<IntrinsicInst>(&I); 1092 if (!II || !II->isLifetimeStartOrEnd()) 1093 continue; 1094 1095 // Get the memory operand of the lifetime marker. If the underlying 1096 // object is a sunk alloca, or is otherwise defined in the extraction 1097 // region, the lifetime marker must not be erased. 1098 Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); 1099 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) 1100 continue; 1101 1102 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1103 LifetimesStart.insert(Mem); 1104 II->eraseFromParent(); 1105 } 1106 } 1107 } 1108 1109 /// Insert lifetime start/end markers surrounding the call to the new function 1110 /// for objects defined in the caller. 1111 static void insertLifetimeMarkersSurroundingCall( 1112 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, 1113 CallInst *TheCall) { 1114 LLVMContext &Ctx = M->getContext(); 1115 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); 1116 Instruction *Term = TheCall->getParent()->getTerminator(); 1117 1118 // Emit lifetime markers for the pointers given in \p Objects. Insert the 1119 // markers before the call if \p InsertBefore, and after the call otherwise. 1120 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects, 1121 bool InsertBefore) { 1122 for (Value *Mem : Objects) { 1123 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == 1124 TheCall->getFunction()) && 1125 "Input memory not defined in original function"); 1126 1127 Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType()); 1128 auto Marker = CallInst::Create(Func, {NegativeOne, Mem}); 1129 if (InsertBefore) 1130 Marker->insertBefore(TheCall); 1131 else 1132 Marker->insertBefore(Term); 1133 } 1134 }; 1135 1136 if (!LifetimesStart.empty()) { 1137 insertMarkers(Intrinsic::lifetime_start, LifetimesStart, 1138 /*InsertBefore=*/true); 1139 } 1140 1141 if (!LifetimesEnd.empty()) { 1142 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd, 1143 /*InsertBefore=*/false); 1144 } 1145 } 1146 1147 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 1148 /// the call instruction, splitting any PHI nodes in the header block as 1149 /// necessary. 1150 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 1151 BasicBlock *codeReplacer, 1152 ValueSet &inputs, 1153 ValueSet &outputs) { 1154 // Emit a call to the new function, passing in: *pointer to struct (if 1155 // aggregating parameters), or plan inputs and allocated memory for outputs 1156 std::vector<Value *> params, ReloadOutputs, Reloads; 1157 ValueSet StructValues; 1158 1159 Module *M = newFunction->getParent(); 1160 LLVMContext &Context = M->getContext(); 1161 const DataLayout &DL = M->getDataLayout(); 1162 CallInst *call = nullptr; 1163 1164 // Add inputs as params, or to be filled into the struct 1165 unsigned ScalarInputArgNo = 0; 1166 SmallVector<unsigned, 1> SwiftErrorArgs; 1167 for (Value *input : inputs) { 1168 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) 1169 StructValues.insert(input); 1170 else { 1171 params.push_back(input); 1172 if (input->isSwiftError()) 1173 SwiftErrorArgs.push_back(ScalarInputArgNo); 1174 } 1175 ++ScalarInputArgNo; 1176 } 1177 1178 // Create allocas for the outputs 1179 unsigned ScalarOutputArgNo = 0; 1180 for (Value *output : outputs) { 1181 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { 1182 StructValues.insert(output); 1183 } else { 1184 AllocaInst *alloca = 1185 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 1186 nullptr, output->getName() + ".loc", 1187 codeReplacer->getParent()->front().begin()); 1188 ReloadOutputs.push_back(alloca); 1189 params.push_back(alloca); 1190 ++ScalarOutputArgNo; 1191 } 1192 } 1193 1194 StructType *StructArgTy = nullptr; 1195 AllocaInst *Struct = nullptr; 1196 unsigned NumAggregatedInputs = 0; 1197 if (AggregateArgs && !StructValues.empty()) { 1198 std::vector<Type *> ArgTypes; 1199 for (Value *V : StructValues) 1200 ArgTypes.push_back(V->getType()); 1201 1202 // Allocate a struct at the beginning of this function 1203 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 1204 Struct = new AllocaInst( 1205 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", 1206 AllocationBlock ? AllocationBlock->getFirstInsertionPt() 1207 : codeReplacer->getParent()->front().begin()); 1208 1209 if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) { 1210 auto *StructSpaceCast = new AddrSpaceCastInst( 1211 Struct, PointerType ::get(Context, 0), "structArg.ascast"); 1212 StructSpaceCast->insertAfter(Struct); 1213 params.push_back(StructSpaceCast); 1214 } else { 1215 params.push_back(Struct); 1216 } 1217 // Store aggregated inputs in the struct. 1218 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { 1219 if (inputs.contains(StructValues[i])) { 1220 Value *Idx[2]; 1221 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1222 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 1223 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1224 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 1225 GEP->insertInto(codeReplacer, codeReplacer->end()); 1226 new StoreInst(StructValues[i], GEP, codeReplacer); 1227 NumAggregatedInputs++; 1228 } 1229 } 1230 } 1231 1232 // Emit the call to the function 1233 call = CallInst::Create(newFunction, params, 1234 NumExitBlocks > 1 ? "targetBlock" : ""); 1235 // Add debug location to the new call, if the original function has debug 1236 // info. In that case, the terminator of the entry block of the extracted 1237 // function contains the first debug location of the extracted function, 1238 // set in extractCodeRegion. 1239 if (codeReplacer->getParent()->getSubprogram()) { 1240 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 1241 call->setDebugLoc(DL); 1242 } 1243 call->insertInto(codeReplacer, codeReplacer->end()); 1244 1245 // Set swifterror parameter attributes. 1246 for (unsigned SwiftErrArgNo : SwiftErrorArgs) { 1247 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1248 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); 1249 } 1250 1251 // Reload the outputs passed in by reference, use the struct if output is in 1252 // the aggregate or reload from the scalar argument. 1253 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, 1254 aggIdx = NumAggregatedInputs; 1255 i != e; ++i) { 1256 Value *Output = nullptr; 1257 if (AggregateArgs && StructValues.contains(outputs[i])) { 1258 Value *Idx[2]; 1259 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1260 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1261 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1262 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 1263 GEP->insertInto(codeReplacer, codeReplacer->end()); 1264 Output = GEP; 1265 ++aggIdx; 1266 } else { 1267 Output = ReloadOutputs[scalarIdx]; 1268 ++scalarIdx; 1269 } 1270 LoadInst *load = new LoadInst(outputs[i]->getType(), Output, 1271 outputs[i]->getName() + ".reload", 1272 codeReplacer); 1273 Reloads.push_back(load); 1274 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 1275 for (User *U : Users) { 1276 Instruction *inst = cast<Instruction>(U); 1277 if (!Blocks.count(inst->getParent())) 1278 inst->replaceUsesOfWith(outputs[i], load); 1279 } 1280 } 1281 1282 // Now we can emit a switch statement using the call as a value. 1283 SwitchInst *TheSwitch = 1284 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 1285 codeReplacer, 0, codeReplacer); 1286 1287 // Since there may be multiple exits from the original region, make the new 1288 // function return an unsigned, switch on that number. This loop iterates 1289 // over all of the blocks in the extracted region, updating any terminator 1290 // instructions in the to-be-extracted region that branch to blocks that are 1291 // not in the region to be extracted. 1292 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 1293 1294 // Iterate over the previously collected targets, and create new blocks inside 1295 // the function to branch to. 1296 unsigned switchVal = 0; 1297 for (BasicBlock *OldTarget : OldTargets) { 1298 if (Blocks.count(OldTarget)) 1299 continue; 1300 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 1301 if (NewTarget) 1302 continue; 1303 1304 // If we don't already have an exit stub for this non-extracted 1305 // destination, create one now! 1306 NewTarget = BasicBlock::Create(Context, 1307 OldTarget->getName() + ".exitStub", 1308 newFunction); 1309 unsigned SuccNum = switchVal++; 1310 1311 Value *brVal = nullptr; 1312 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); 1313 switch (NumExitBlocks) { 1314 case 0: 1315 case 1: break; // No value needed. 1316 case 2: // Conditional branch, return a bool 1317 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1318 break; 1319 default: 1320 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1321 break; 1322 } 1323 1324 ReturnInst::Create(Context, brVal, NewTarget); 1325 1326 // Update the switch instruction. 1327 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1328 SuccNum), 1329 OldTarget); 1330 } 1331 1332 for (BasicBlock *Block : Blocks) { 1333 Instruction *TI = Block->getTerminator(); 1334 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1335 if (Blocks.count(TI->getSuccessor(i))) 1336 continue; 1337 BasicBlock *OldTarget = TI->getSuccessor(i); 1338 // add a new basic block which returns the appropriate value 1339 BasicBlock *NewTarget = ExitBlockMap[OldTarget]; 1340 assert(NewTarget && "Unknown target block!"); 1341 1342 // rewrite the original branch instruction with this new target 1343 TI->setSuccessor(i, NewTarget); 1344 } 1345 } 1346 1347 // Store the arguments right after the definition of output value. 1348 // This should be proceeded after creating exit stubs to be ensure that invoke 1349 // result restore will be placed in the outlined function. 1350 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); 1351 std::advance(ScalarOutputArgBegin, ScalarInputArgNo); 1352 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); 1353 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); 1354 1355 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; 1356 ++i) { 1357 auto *OutI = dyn_cast<Instruction>(outputs[i]); 1358 if (!OutI) 1359 continue; 1360 1361 // Find proper insertion point. 1362 BasicBlock::iterator InsertPt; 1363 // In case OutI is an invoke, we insert the store at the beginning in the 1364 // 'normal destination' BB. Otherwise we insert the store right after OutI. 1365 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 1366 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); 1367 else if (auto *Phi = dyn_cast<PHINode>(OutI)) 1368 InsertPt = Phi->getParent()->getFirstInsertionPt(); 1369 else 1370 InsertPt = std::next(OutI->getIterator()); 1371 1372 assert((InsertPt->getFunction() == newFunction || 1373 Blocks.count(InsertPt->getParent())) && 1374 "InsertPt should be in new function"); 1375 if (AggregateArgs && StructValues.contains(outputs[i])) { 1376 assert(AggOutputArgBegin != newFunction->arg_end() && 1377 "Number of aggregate output arguments should match " 1378 "the number of defined values"); 1379 Value *Idx[2]; 1380 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 1381 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); 1382 GetElementPtrInst *GEP = GetElementPtrInst::Create( 1383 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), 1384 InsertPt); 1385 new StoreInst(outputs[i], GEP, InsertPt); 1386 ++aggIdx; 1387 // Since there should be only one struct argument aggregating 1388 // all the output values, we shouldn't increment AggOutputArgBegin, which 1389 // always points to the struct argument, in this case. 1390 } else { 1391 assert(ScalarOutputArgBegin != newFunction->arg_end() && 1392 "Number of scalar output arguments should match " 1393 "the number of defined values"); 1394 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt); 1395 ++ScalarOutputArgBegin; 1396 } 1397 } 1398 1399 // Now that we've done the deed, simplify the switch instruction. 1400 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1401 switch (NumExitBlocks) { 1402 case 0: 1403 // There are no successors (the block containing the switch itself), which 1404 // means that previously this was the last part of the function, and hence 1405 // this should be rewritten as a `ret` or `unreachable`. 1406 if (newFunction->doesNotReturn()) { 1407 // If fn is no return, end with an unreachable terminator. 1408 (void)new UnreachableInst(Context, TheSwitch->getIterator()); 1409 } else if (OldFnRetTy->isVoidTy()) { 1410 // We have no return value. 1411 ReturnInst::Create(Context, nullptr, 1412 TheSwitch->getIterator()); // Return void 1413 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1414 // return what we have 1415 ReturnInst::Create(Context, TheSwitch->getCondition(), 1416 TheSwitch->getIterator()); 1417 } else { 1418 // Otherwise we must have code extracted an unwind or something, just 1419 // return whatever we want. 1420 ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy), 1421 TheSwitch->getIterator()); 1422 } 1423 1424 TheSwitch->eraseFromParent(); 1425 break; 1426 case 1: 1427 // Only a single destination, change the switch into an unconditional 1428 // branch. 1429 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator()); 1430 TheSwitch->eraseFromParent(); 1431 break; 1432 case 2: 1433 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1434 call, TheSwitch->getIterator()); 1435 TheSwitch->eraseFromParent(); 1436 break; 1437 default: 1438 // Otherwise, make the default destination of the switch instruction be one 1439 // of the other successors. 1440 TheSwitch->setCondition(call); 1441 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1442 // Remove redundant case 1443 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1444 break; 1445 } 1446 1447 // Insert lifetime markers around the reloads of any output values. The 1448 // allocas output values are stored in are only in-use in the codeRepl block. 1449 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); 1450 1451 return call; 1452 } 1453 1454 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1455 auto newFuncIt = newFunction->front().getIterator(); 1456 for (BasicBlock *Block : Blocks) { 1457 // Delete the basic block from the old function, and the list of blocks 1458 Block->removeFromParent(); 1459 1460 // Insert this basic block into the new function 1461 // Insert the original blocks after the entry block created 1462 // for the new function. The entry block may be followed 1463 // by a set of exit blocks at this point, but these exit 1464 // blocks better be placed at the end of the new function. 1465 newFuncIt = newFunction->insert(std::next(newFuncIt), Block); 1466 } 1467 } 1468 1469 void CodeExtractor::calculateNewCallTerminatorWeights( 1470 BasicBlock *CodeReplacer, 1471 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1472 BranchProbabilityInfo *BPI) { 1473 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1474 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1475 1476 // Update the branch weights for the exit block. 1477 Instruction *TI = CodeReplacer->getTerminator(); 1478 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1479 1480 // Block Frequency distribution with dummy node. 1481 Distribution BranchDist; 1482 1483 SmallVector<BranchProbability, 4> EdgeProbabilities( 1484 TI->getNumSuccessors(), BranchProbability::getUnknown()); 1485 1486 // Add each of the frequencies of the successors. 1487 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1488 BlockNode ExitNode(i); 1489 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1490 if (ExitFreq != 0) 1491 BranchDist.addExit(ExitNode, ExitFreq); 1492 else 1493 EdgeProbabilities[i] = BranchProbability::getZero(); 1494 } 1495 1496 // Check for no total weight. 1497 if (BranchDist.Total == 0) { 1498 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1499 return; 1500 } 1501 1502 // Normalize the distribution so that they can fit in unsigned. 1503 BranchDist.normalize(); 1504 1505 // Create normalized branch weights and set the metadata. 1506 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1507 const auto &Weight = BranchDist.Weights[I]; 1508 1509 // Get the weight and update the current BFI. 1510 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1511 BranchProbability BP(Weight.Amount, BranchDist.Total); 1512 EdgeProbabilities[Weight.TargetNode.Index] = BP; 1513 } 1514 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); 1515 TI->setMetadata( 1516 LLVMContext::MD_prof, 1517 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1518 } 1519 1520 /// Erase debug info intrinsics which refer to values in \p F but aren't in 1521 /// \p F. 1522 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { 1523 for (Instruction &I : instructions(F)) { 1524 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1525 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 1526 findDbgUsers(DbgUsers, &I, &DbgVariableRecords); 1527 for (DbgVariableIntrinsic *DVI : DbgUsers) 1528 if (DVI->getFunction() != &F) 1529 DVI->eraseFromParent(); 1530 for (DbgVariableRecord *DVR : DbgVariableRecords) 1531 if (DVR->getFunction() != &F) 1532 DVR->eraseFromParent(); 1533 } 1534 } 1535 1536 /// Fix up the debug info in the old and new functions by pointing line 1537 /// locations and debug intrinsics to the new subprogram scope, and by deleting 1538 /// intrinsics which point to values outside of the new function. 1539 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, 1540 CallInst &TheCall) { 1541 DISubprogram *OldSP = OldFunc.getSubprogram(); 1542 LLVMContext &Ctx = OldFunc.getContext(); 1543 1544 if (!OldSP) { 1545 // Erase any debug info the new function contains. 1546 stripDebugInfo(NewFunc); 1547 // Make sure the old function doesn't contain any non-local metadata refs. 1548 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1549 return; 1550 } 1551 1552 // Create a subprogram for the new function. Leave out a description of the 1553 // function arguments, as the parameters don't correspond to anything at the 1554 // source level. 1555 assert(OldSP->getUnit() && "Missing compile unit for subprogram"); 1556 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, 1557 OldSP->getUnit()); 1558 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray({})); 1559 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | 1560 DISubprogram::SPFlagOptimized | 1561 DISubprogram::SPFlagLocalToUnit; 1562 auto NewSP = DIB.createFunction( 1563 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), 1564 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); 1565 NewFunc.setSubprogram(NewSP); 1566 1567 auto IsInvalidLocation = [&NewFunc](Value *Location) { 1568 // Location is invalid if it isn't a constant or an instruction, or is an 1569 // instruction but isn't in the new function. 1570 if (!Location || 1571 (!isa<Constant>(Location) && !isa<Instruction>(Location))) 1572 return true; 1573 Instruction *LocationInst = dyn_cast<Instruction>(Location); 1574 return LocationInst && LocationInst->getFunction() != &NewFunc; 1575 }; 1576 1577 // Debug intrinsics in the new function need to be updated in one of two 1578 // ways: 1579 // 1) They need to be deleted, because they describe a value in the old 1580 // function. 1581 // 2) They need to point to fresh metadata, e.g. because they currently 1582 // point to a variable in the wrong scope. 1583 SmallDenseMap<DINode *, DINode *> RemappedMetadata; 1584 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; 1585 SmallVector<DbgVariableRecord *, 4> DVRsToDelete; 1586 DenseMap<const MDNode *, MDNode *> Cache; 1587 1588 auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) { 1589 DINode *&NewVar = RemappedMetadata[OldVar]; 1590 if (!NewVar) { 1591 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1592 *OldVar->getScope(), *NewSP, Ctx, Cache); 1593 NewVar = DIB.createAutoVariable( 1594 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), 1595 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, 1596 OldVar->getAlignInBits()); 1597 } 1598 return cast<DILocalVariable>(NewVar); 1599 }; 1600 1601 auto UpdateDbgLabel = [&](auto *LabelRecord) { 1602 // Point the label record to a fresh label within the new function if 1603 // the record was not inlined from some other function. 1604 if (LabelRecord->getDebugLoc().getInlinedAt()) 1605 return; 1606 DILabel *OldLabel = LabelRecord->getLabel(); 1607 DINode *&NewLabel = RemappedMetadata[OldLabel]; 1608 if (!NewLabel) { 1609 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram( 1610 *OldLabel->getScope(), *NewSP, Ctx, Cache); 1611 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(), 1612 OldLabel->getFile(), OldLabel->getLine()); 1613 } 1614 LabelRecord->setLabel(cast<DILabel>(NewLabel)); 1615 }; 1616 1617 auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void { 1618 for (DbgRecord &DR : I.getDbgRecordRange()) { 1619 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1620 UpdateDbgLabel(DLR); 1621 continue; 1622 } 1623 1624 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1625 // Apply the two updates that dbg.values get: invalid operands, and 1626 // variable metadata fixup. 1627 if (any_of(DVR.location_ops(), IsInvalidLocation)) { 1628 DVRsToDelete.push_back(&DVR); 1629 continue; 1630 } 1631 if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) { 1632 DVRsToDelete.push_back(&DVR); 1633 continue; 1634 } 1635 if (!DVR.getDebugLoc().getInlinedAt()) 1636 DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable())); 1637 } 1638 }; 1639 1640 for (Instruction &I : instructions(NewFunc)) { 1641 UpdateDbgRecordsOnInst(I); 1642 1643 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); 1644 if (!DII) 1645 continue; 1646 1647 // Point the intrinsic to a fresh label within the new function if the 1648 // intrinsic was not inlined from some other function. 1649 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { 1650 UpdateDbgLabel(DLI); 1651 continue; 1652 } 1653 1654 auto *DVI = cast<DbgVariableIntrinsic>(DII); 1655 // If any of the used locations are invalid, delete the intrinsic. 1656 if (any_of(DVI->location_ops(), IsInvalidLocation)) { 1657 DebugIntrinsicsToDelete.push_back(DVI); 1658 continue; 1659 } 1660 // DbgAssign intrinsics have an extra Value argument: 1661 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 1662 DAI && IsInvalidLocation(DAI->getAddress())) { 1663 DebugIntrinsicsToDelete.push_back(DVI); 1664 continue; 1665 } 1666 // If the variable was in the scope of the old function, i.e. it was not 1667 // inlined, point the intrinsic to a fresh variable within the new function. 1668 if (!DVI->getDebugLoc().getInlinedAt()) 1669 DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable())); 1670 } 1671 1672 for (auto *DII : DebugIntrinsicsToDelete) 1673 DII->eraseFromParent(); 1674 for (auto *DVR : DVRsToDelete) 1675 DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR); 1676 DIB.finalizeSubprogram(NewSP); 1677 1678 // Fix up the scope information attached to the line locations and the 1679 // debug assignment metadata in the new function. 1680 DenseMap<DIAssignID *, DIAssignID *> AssignmentIDMap; 1681 for (Instruction &I : instructions(NewFunc)) { 1682 if (const DebugLoc &DL = I.getDebugLoc()) 1683 I.setDebugLoc( 1684 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache)); 1685 for (DbgRecord &DR : I.getDbgRecordRange()) 1686 DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(), 1687 *NewSP, Ctx, Cache)); 1688 1689 // Loop info metadata may contain line locations. Fix them up. 1690 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * { 1691 if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) 1692 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache); 1693 return MD; 1694 }; 1695 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); 1696 at::remapAssignID(AssignmentIDMap, I); 1697 } 1698 if (!TheCall.getDebugLoc()) 1699 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); 1700 1701 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); 1702 } 1703 1704 Function * 1705 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { 1706 ValueSet Inputs, Outputs; 1707 return extractCodeRegion(CEAC, Inputs, Outputs); 1708 } 1709 1710 Function * 1711 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, 1712 ValueSet &inputs, ValueSet &outputs) { 1713 if (!isEligible()) 1714 return nullptr; 1715 1716 // Assumption: this is a single-entry code region, and the header is the first 1717 // block in the region. 1718 BasicBlock *header = *Blocks.begin(); 1719 Function *oldFunction = header->getParent(); 1720 1721 // Calculate the entry frequency of the new function before we change the root 1722 // block. 1723 BlockFrequency EntryFreq; 1724 if (BFI) { 1725 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1726 for (BasicBlock *Pred : predecessors(header)) { 1727 if (Blocks.count(Pred)) 1728 continue; 1729 EntryFreq += 1730 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1731 } 1732 } 1733 1734 // Remove @llvm.assume calls that will be moved to the new function from the 1735 // old function's assumption cache. 1736 for (BasicBlock *Block : Blocks) { 1737 for (Instruction &I : llvm::make_early_inc_range(*Block)) { 1738 if (auto *AI = dyn_cast<AssumeInst>(&I)) { 1739 if (AC) 1740 AC->unregisterAssumption(AI); 1741 AI->eraseFromParent(); 1742 } 1743 } 1744 } 1745 1746 // If we have any return instructions in the region, split those blocks so 1747 // that the return is not in the region. 1748 splitReturnBlocks(); 1749 1750 // Calculate the exit blocks for the extracted region and the total exit 1751 // weights for each of those blocks. 1752 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1753 SetVector<BasicBlock *> ExitBlocks; 1754 for (BasicBlock *Block : Blocks) { 1755 for (BasicBlock *Succ : successors(Block)) { 1756 if (!Blocks.count(Succ)) { 1757 // Update the branch weight for this successor. 1758 if (BFI) { 1759 BlockFrequency &BF = ExitWeights[Succ]; 1760 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); 1761 } 1762 ExitBlocks.insert(Succ); 1763 } 1764 } 1765 } 1766 NumExitBlocks = ExitBlocks.size(); 1767 1768 for (BasicBlock *Block : Blocks) { 1769 for (BasicBlock *OldTarget : successors(Block)) 1770 if (!Blocks.contains(OldTarget)) 1771 OldTargets.push_back(OldTarget); 1772 } 1773 1774 // If we have to split PHI nodes of the entry or exit blocks, do so now. 1775 severSplitPHINodesOfEntry(header); 1776 severSplitPHINodesOfExits(ExitBlocks); 1777 1778 // This takes place of the original loop 1779 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1780 "codeRepl", oldFunction, 1781 header); 1782 codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 1783 1784 // The new function needs a root node because other nodes can branch to the 1785 // head of the region, but the entry node of a function cannot have preds. 1786 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1787 "newFuncRoot"); 1788 newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat; 1789 1790 auto *BranchI = BranchInst::Create(header); 1791 // If the original function has debug info, we have to add a debug location 1792 // to the new branch instruction from the artificial entry block. 1793 // We use the debug location of the first instruction in the extracted 1794 // blocks, as there is no other equivalent line in the source code. 1795 if (oldFunction->getSubprogram()) { 1796 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1797 return any_of(*BB, [&BranchI](const Instruction &I) { 1798 if (!I.getDebugLoc()) 1799 return false; 1800 // Don't use source locations attached to debug-intrinsics: they could 1801 // be from completely unrelated scopes. 1802 if (isa<DbgInfoIntrinsic>(I)) 1803 return false; 1804 BranchI->setDebugLoc(I.getDebugLoc()); 1805 return true; 1806 }); 1807 }); 1808 } 1809 BranchI->insertInto(newFuncRoot, newFuncRoot->end()); 1810 1811 ValueSet SinkingCands, HoistingCands; 1812 BasicBlock *CommonExit = nullptr; 1813 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); 1814 assert(HoistingCands.empty() || CommonExit); 1815 1816 // Find inputs to, outputs from the code region. 1817 findInputsOutputs(inputs, outputs, SinkingCands); 1818 1819 // Now sink all instructions which only have non-phi uses inside the region. 1820 // Group the allocas at the start of the block, so that any bitcast uses of 1821 // the allocas are well-defined. 1822 AllocaInst *FirstSunkAlloca = nullptr; 1823 for (auto *II : SinkingCands) { 1824 if (auto *AI = dyn_cast<AllocaInst>(II)) { 1825 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); 1826 if (!FirstSunkAlloca) 1827 FirstSunkAlloca = AI; 1828 } 1829 } 1830 assert((SinkingCands.empty() || FirstSunkAlloca) && 1831 "Did not expect a sink candidate without any allocas"); 1832 for (auto *II : SinkingCands) { 1833 if (!isa<AllocaInst>(II)) { 1834 cast<Instruction>(II)->moveAfter(FirstSunkAlloca); 1835 } 1836 } 1837 1838 if (!HoistingCands.empty()) { 1839 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1840 Instruction *TI = HoistToBlock->getTerminator(); 1841 for (auto *II : HoistingCands) 1842 cast<Instruction>(II)->moveBefore(TI); 1843 } 1844 1845 // Collect objects which are inputs to the extraction region and also 1846 // referenced by lifetime start markers within it. The effects of these 1847 // markers must be replicated in the calling function to prevent the stack 1848 // coloring pass from merging slots which store input objects. 1849 ValueSet LifetimesStart; 1850 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); 1851 1852 // Construct new function based on inputs/outputs & add allocas for all defs. 1853 Function *newFunction = 1854 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, 1855 oldFunction, oldFunction->getParent()); 1856 1857 // Update the entry count of the function. 1858 if (BFI) { 1859 auto Count = BFI->getProfileCountFromFreq(EntryFreq); 1860 if (Count) 1861 newFunction->setEntryCount( 1862 ProfileCount(*Count, Function::PCT_Real)); // FIXME 1863 BFI->setBlockFreq(codeReplacer, EntryFreq); 1864 } 1865 1866 CallInst *TheCall = 1867 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1868 1869 moveCodeToFunction(newFunction); 1870 1871 // Replicate the effects of any lifetime start/end markers which referenced 1872 // input objects in the extraction region by placing markers around the call. 1873 insertLifetimeMarkersSurroundingCall( 1874 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); 1875 1876 // Propagate personality info to the new function if there is one. 1877 if (oldFunction->hasPersonalityFn()) 1878 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1879 1880 // Update the branch weights for the exit block. 1881 if (BFI && NumExitBlocks > 1) 1882 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1883 1884 // Loop over all of the PHI nodes in the header and exit blocks, and change 1885 // any references to the old incoming edge to be the new incoming edge. 1886 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1887 PHINode *PN = cast<PHINode>(I); 1888 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1889 if (!Blocks.count(PN->getIncomingBlock(i))) 1890 PN->setIncomingBlock(i, newFuncRoot); 1891 } 1892 1893 for (BasicBlock *ExitBB : ExitBlocks) 1894 for (PHINode &PN : ExitBB->phis()) { 1895 Value *IncomingCodeReplacerVal = nullptr; 1896 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1897 // Ignore incoming values from outside of the extracted region. 1898 if (!Blocks.count(PN.getIncomingBlock(i))) 1899 continue; 1900 1901 // Ensure that there is only one incoming value from codeReplacer. 1902 if (!IncomingCodeReplacerVal) { 1903 PN.setIncomingBlock(i, codeReplacer); 1904 IncomingCodeReplacerVal = PN.getIncomingValue(i); 1905 } else 1906 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && 1907 "PHI has two incompatbile incoming values from codeRepl"); 1908 } 1909 } 1910 1911 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); 1912 1913 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { 1914 newFunction->dump(); 1915 report_fatal_error("verification of newFunction failed!"); 1916 }); 1917 LLVM_DEBUG(if (verifyFunction(*oldFunction)) 1918 report_fatal_error("verification of oldFunction failed!")); 1919 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) 1920 report_fatal_error("Stale Asumption cache for old Function!")); 1921 return newFunction; 1922 } 1923 1924 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, 1925 const Function &NewFunc, 1926 AssumptionCache *AC) { 1927 for (auto AssumeVH : AC->assumptions()) { 1928 auto *I = dyn_cast_or_null<CallInst>(AssumeVH); 1929 if (!I) 1930 continue; 1931 1932 // There shouldn't be any llvm.assume intrinsics in the new function. 1933 if (I->getFunction() != &OldFunc) 1934 return true; 1935 1936 // There shouldn't be any stale affected values in the assumption cache 1937 // that were previously in the old function, but that have now been moved 1938 // to the new function. 1939 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { 1940 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); 1941 if (!AffectedCI) 1942 continue; 1943 if (AffectedCI->getFunction() != &OldFunc) 1944 return true; 1945 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); 1946 if (AssumedInst->getFunction() != &OldFunc) 1947 return true; 1948 } 1949 } 1950 return false; 1951 } 1952 1953 void CodeExtractor::excludeArgFromAggregate(Value *Arg) { 1954 ExcludeArgsFromAggregate.insert(Arg); 1955 } 1956