1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/MDBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/BlockFrequency.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <map> 65 #include <set> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 using ProfileCount = Function::ProfileCount; 71 72 #define DEBUG_TYPE "code-extractor" 73 74 // Provide a command-line option to aggregate function arguments into a struct 75 // for functions produced by the code extractor. This is useful when converting 76 // extracted functions to pthread-based code, as only one argument (void*) can 77 // be passed in to pthread_create(). 78 static cl::opt<bool> 79 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 80 cl::desc("Aggregate arguments to code-extracted functions")); 81 82 /// Test whether a block is valid for extraction. 83 static bool isBlockValidForExtraction(const BasicBlock &BB, 84 const SetVector<BasicBlock *> &Result, 85 bool AllowVarArgs, bool AllowAlloca) { 86 // taking the address of a basic block moved to another function is illegal 87 if (BB.hasAddressTaken()) 88 return false; 89 90 // don't hoist code that uses another basicblock address, as it's likely to 91 // lead to unexpected behavior, like cross-function jumps 92 SmallPtrSet<User const *, 16> Visited; 93 SmallVector<User const *, 16> ToVisit; 94 95 for (Instruction const &Inst : BB) 96 ToVisit.push_back(&Inst); 97 98 while (!ToVisit.empty()) { 99 User const *Curr = ToVisit.pop_back_val(); 100 if (!Visited.insert(Curr).second) 101 continue; 102 if (isa<BlockAddress const>(Curr)) 103 return false; // even a reference to self is likely to be not compatible 104 105 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) 106 continue; 107 108 for (auto const &U : Curr->operands()) { 109 if (auto *UU = dyn_cast<User>(U)) 110 ToVisit.push_back(UU); 111 } 112 } 113 114 // If explicitly requested, allow vastart and alloca. For invoke instructions 115 // verify that extraction is valid. 116 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 117 if (isa<AllocaInst>(I)) { 118 if (!AllowAlloca) 119 return false; 120 continue; 121 } 122 123 if (const auto *II = dyn_cast<InvokeInst>(I)) { 124 // Unwind destination (either a landingpad, catchswitch, or cleanuppad) 125 // must be a part of the subgraph which is being extracted. 126 if (auto *UBB = II->getUnwindDest()) 127 if (!Result.count(UBB)) 128 return false; 129 continue; 130 } 131 132 // All catch handlers of a catchswitch instruction as well as the unwind 133 // destination must be in the subgraph. 134 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { 135 if (auto *UBB = CSI->getUnwindDest()) 136 if (!Result.count(UBB)) 137 return false; 138 for (auto *HBB : CSI->handlers()) 139 if (!Result.count(const_cast<BasicBlock*>(HBB))) 140 return false; 141 continue; 142 } 143 144 // Make sure that entire catch handler is within subgraph. It is sufficient 145 // to check that catch return's block is in the list. 146 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { 147 for (const auto *U : CPI->users()) 148 if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) 149 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 150 return false; 151 continue; 152 } 153 154 // And do similar checks for cleanup handler - the entire handler must be 155 // in subgraph which is going to be extracted. For cleanup return should 156 // additionally check that the unwind destination is also in the subgraph. 157 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { 158 for (const auto *U : CPI->users()) 159 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 160 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) 161 return false; 162 continue; 163 } 164 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { 165 if (auto *UBB = CRI->getUnwindDest()) 166 if (!Result.count(UBB)) 167 return false; 168 continue; 169 } 170 171 if (const CallInst *CI = dyn_cast<CallInst>(I)) 172 if (const Function *F = CI->getCalledFunction()) 173 if (F->getIntrinsicID() == Intrinsic::vastart) { 174 if (AllowVarArgs) 175 continue; 176 else 177 return false; 178 } 179 } 180 181 return true; 182 } 183 184 /// Build a set of blocks to extract if the input blocks are viable. 185 static SetVector<BasicBlock *> 186 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 187 bool AllowVarArgs, bool AllowAlloca) { 188 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 189 SetVector<BasicBlock *> Result; 190 191 // Loop over the blocks, adding them to our set-vector, and aborting with an 192 // empty set if we encounter invalid blocks. 193 for (BasicBlock *BB : BBs) { 194 // If this block is dead, don't process it. 195 if (DT && !DT->isReachableFromEntry(BB)) 196 continue; 197 198 if (!Result.insert(BB)) 199 llvm_unreachable("Repeated basic blocks in extraction input"); 200 } 201 202 for (auto *BB : Result) { 203 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) 204 return {}; 205 206 // Make sure that the first block is not a landing pad. 207 if (BB == Result.front()) { 208 if (BB->isEHPad()) { 209 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); 210 return {}; 211 } 212 continue; 213 } 214 215 // All blocks other than the first must not have predecessors outside of 216 // the subgraph which is being extracted. 217 for (auto *PBB : predecessors(BB)) 218 if (!Result.count(PBB)) { 219 LLVM_DEBUG( 220 dbgs() << "No blocks in this region may have entries from " 221 "outside the region except for the first block!\n"); 222 return {}; 223 } 224 } 225 226 return Result; 227 } 228 229 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 230 bool AggregateArgs, BlockFrequencyInfo *BFI, 231 BranchProbabilityInfo *BPI, bool AllowVarArgs, 232 bool AllowAlloca, std::string Suffix) 233 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 234 BPI(BPI), AllowVarArgs(AllowVarArgs), 235 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), 236 Suffix(Suffix) {} 237 238 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 239 BlockFrequencyInfo *BFI, 240 BranchProbabilityInfo *BPI, std::string Suffix) 241 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 242 BPI(BPI), AllowVarArgs(false), 243 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, 244 /* AllowVarArgs */ false, 245 /* AllowAlloca */ false)), 246 Suffix(Suffix) {} 247 248 /// definedInRegion - Return true if the specified value is defined in the 249 /// extracted region. 250 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 251 if (Instruction *I = dyn_cast<Instruction>(V)) 252 if (Blocks.count(I->getParent())) 253 return true; 254 return false; 255 } 256 257 /// definedInCaller - Return true if the specified value is defined in the 258 /// function being code extracted, but not in the region being extracted. 259 /// These values must be passed in as live-ins to the function. 260 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 261 if (isa<Argument>(V)) return true; 262 if (Instruction *I = dyn_cast<Instruction>(V)) 263 if (!Blocks.count(I->getParent())) 264 return true; 265 return false; 266 } 267 268 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 269 BasicBlock *CommonExitBlock = nullptr; 270 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 271 for (auto *Succ : successors(Block)) { 272 // Internal edges, ok. 273 if (Blocks.count(Succ)) 274 continue; 275 if (!CommonExitBlock) { 276 CommonExitBlock = Succ; 277 continue; 278 } 279 if (CommonExitBlock == Succ) 280 continue; 281 282 return true; 283 } 284 return false; 285 }; 286 287 if (any_of(Blocks, hasNonCommonExitSucc)) 288 return nullptr; 289 290 return CommonExitBlock; 291 } 292 293 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 294 Instruction *Addr) const { 295 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 296 Function *Func = (*Blocks.begin())->getParent(); 297 for (BasicBlock &BB : *Func) { 298 if (Blocks.count(&BB)) 299 continue; 300 for (Instruction &II : BB) { 301 if (isa<DbgInfoIntrinsic>(II)) 302 continue; 303 304 unsigned Opcode = II.getOpcode(); 305 Value *MemAddr = nullptr; 306 switch (Opcode) { 307 case Instruction::Store: 308 case Instruction::Load: { 309 if (Opcode == Instruction::Store) { 310 StoreInst *SI = cast<StoreInst>(&II); 311 MemAddr = SI->getPointerOperand(); 312 } else { 313 LoadInst *LI = cast<LoadInst>(&II); 314 MemAddr = LI->getPointerOperand(); 315 } 316 // Global variable can not be aliased with locals. 317 if (dyn_cast<Constant>(MemAddr)) 318 break; 319 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 320 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 321 return false; 322 break; 323 } 324 default: { 325 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 326 if (IntrInst) { 327 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 328 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 329 break; 330 return false; 331 } 332 // Treat all the other cases conservatively if it has side effects. 333 if (II.mayHaveSideEffects()) 334 return false; 335 } 336 } 337 } 338 } 339 340 return true; 341 } 342 343 BasicBlock * 344 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 345 BasicBlock *SinglePredFromOutlineRegion = nullptr; 346 assert(!Blocks.count(CommonExitBlock) && 347 "Expect a block outside the region!"); 348 for (auto *Pred : predecessors(CommonExitBlock)) { 349 if (!Blocks.count(Pred)) 350 continue; 351 if (!SinglePredFromOutlineRegion) { 352 SinglePredFromOutlineRegion = Pred; 353 } else if (SinglePredFromOutlineRegion != Pred) { 354 SinglePredFromOutlineRegion = nullptr; 355 break; 356 } 357 } 358 359 if (SinglePredFromOutlineRegion) 360 return SinglePredFromOutlineRegion; 361 362 #ifndef NDEBUG 363 auto getFirstPHI = [](BasicBlock *BB) { 364 BasicBlock::iterator I = BB->begin(); 365 PHINode *FirstPhi = nullptr; 366 while (I != BB->end()) { 367 PHINode *Phi = dyn_cast<PHINode>(I); 368 if (!Phi) 369 break; 370 if (!FirstPhi) { 371 FirstPhi = Phi; 372 break; 373 } 374 } 375 return FirstPhi; 376 }; 377 // If there are any phi nodes, the single pred either exists or has already 378 // be created before code extraction. 379 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 380 #endif 381 382 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 383 CommonExitBlock->getFirstNonPHI()->getIterator()); 384 385 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock); 386 PI != PE;) { 387 BasicBlock *Pred = *PI++; 388 if (Blocks.count(Pred)) 389 continue; 390 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 391 } 392 // Now add the old exit block to the outline region. 393 Blocks.insert(CommonExitBlock); 394 return CommonExitBlock; 395 } 396 397 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 398 BasicBlock *&ExitBlock) const { 399 Function *Func = (*Blocks.begin())->getParent(); 400 ExitBlock = getCommonExitBlock(Blocks); 401 402 for (BasicBlock &BB : *Func) { 403 if (Blocks.count(&BB)) 404 continue; 405 for (Instruction &II : BB) { 406 auto *AI = dyn_cast<AllocaInst>(&II); 407 if (!AI) 408 continue; 409 410 // Find the pair of life time markers for address 'Addr' that are either 411 // defined inside the outline region or can legally be shrinkwrapped into 412 // the outline region. If there are not other untracked uses of the 413 // address, return the pair of markers if found; otherwise return a pair 414 // of nullptr. 415 auto GetLifeTimeMarkers = 416 [&](Instruction *Addr, bool &SinkLifeStart, 417 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 418 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 419 420 for (User *U : Addr->users()) { 421 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 422 if (IntrInst) { 423 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 424 // Do not handle the case where AI has multiple start markers. 425 if (LifeStart) 426 return std::make_pair<Instruction *>(nullptr, nullptr); 427 LifeStart = IntrInst; 428 } 429 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 430 if (LifeEnd) 431 return std::make_pair<Instruction *>(nullptr, nullptr); 432 LifeEnd = IntrInst; 433 } 434 continue; 435 } 436 // Find untracked uses of the address, bail. 437 if (!definedInRegion(Blocks, U)) 438 return std::make_pair<Instruction *>(nullptr, nullptr); 439 } 440 441 if (!LifeStart || !LifeEnd) 442 return std::make_pair<Instruction *>(nullptr, nullptr); 443 444 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 445 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 446 // Do legality Check. 447 if ((SinkLifeStart || HoistLifeEnd) && 448 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 449 return std::make_pair<Instruction *>(nullptr, nullptr); 450 451 // Check to see if we have a place to do hoisting, if not, bail. 452 if (HoistLifeEnd && !ExitBlock) 453 return std::make_pair<Instruction *>(nullptr, nullptr); 454 455 return std::make_pair(LifeStart, LifeEnd); 456 }; 457 458 bool SinkLifeStart = false, HoistLifeEnd = false; 459 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 460 461 if (Markers.first) { 462 if (SinkLifeStart) 463 SinkCands.insert(Markers.first); 464 SinkCands.insert(AI); 465 if (HoistLifeEnd) 466 HoistCands.insert(Markers.second); 467 continue; 468 } 469 470 // Follow the bitcast. 471 Instruction *MarkerAddr = nullptr; 472 for (User *U : AI->users()) { 473 if (U->stripInBoundsConstantOffsets() == AI) { 474 SinkLifeStart = false; 475 HoistLifeEnd = false; 476 Instruction *Bitcast = cast<Instruction>(U); 477 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 478 if (Markers.first) { 479 MarkerAddr = Bitcast; 480 continue; 481 } 482 } 483 484 // Found unknown use of AI. 485 if (!definedInRegion(Blocks, U)) { 486 MarkerAddr = nullptr; 487 break; 488 } 489 } 490 491 if (MarkerAddr) { 492 if (SinkLifeStart) 493 SinkCands.insert(Markers.first); 494 if (!definedInRegion(Blocks, MarkerAddr)) 495 SinkCands.insert(MarkerAddr); 496 SinkCands.insert(AI); 497 if (HoistLifeEnd) 498 HoistCands.insert(Markers.second); 499 } 500 } 501 } 502 } 503 504 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 505 const ValueSet &SinkCands) const { 506 for (BasicBlock *BB : Blocks) { 507 // If a used value is defined outside the region, it's an input. If an 508 // instruction is used outside the region, it's an output. 509 for (Instruction &II : *BB) { 510 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 511 ++OI) { 512 Value *V = *OI; 513 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 514 Inputs.insert(V); 515 } 516 517 for (User *U : II.users()) 518 if (!definedInRegion(Blocks, U)) { 519 Outputs.insert(&II); 520 break; 521 } 522 } 523 } 524 } 525 526 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 527 /// region, we need to split the entry block of the region so that the PHI node 528 /// is easier to deal with. 529 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 530 unsigned NumPredsFromRegion = 0; 531 unsigned NumPredsOutsideRegion = 0; 532 533 if (Header != &Header->getParent()->getEntryBlock()) { 534 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 535 if (!PN) return; // No PHI nodes. 536 537 // If the header node contains any PHI nodes, check to see if there is more 538 // than one entry from outside the region. If so, we need to sever the 539 // header block into two. 540 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 541 if (Blocks.count(PN->getIncomingBlock(i))) 542 ++NumPredsFromRegion; 543 else 544 ++NumPredsOutsideRegion; 545 546 // If there is one (or fewer) predecessor from outside the region, we don't 547 // need to do anything special. 548 if (NumPredsOutsideRegion <= 1) return; 549 } 550 551 // Otherwise, we need to split the header block into two pieces: one 552 // containing PHI nodes merging values from outside of the region, and a 553 // second that contains all of the code for the block and merges back any 554 // incoming values from inside of the region. 555 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); 556 557 // We only want to code extract the second block now, and it becomes the new 558 // header of the region. 559 BasicBlock *OldPred = Header; 560 Blocks.remove(OldPred); 561 Blocks.insert(NewBB); 562 Header = NewBB; 563 564 // Okay, now we need to adjust the PHI nodes and any branches from within the 565 // region to go to the new header block instead of the old header block. 566 if (NumPredsFromRegion) { 567 PHINode *PN = cast<PHINode>(OldPred->begin()); 568 // Loop over all of the predecessors of OldPred that are in the region, 569 // changing them to branch to NewBB instead. 570 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 571 if (Blocks.count(PN->getIncomingBlock(i))) { 572 Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); 573 TI->replaceUsesOfWith(OldPred, NewBB); 574 } 575 576 // Okay, everything within the region is now branching to the right block, we 577 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 578 BasicBlock::iterator AfterPHIs; 579 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 580 PHINode *PN = cast<PHINode>(AfterPHIs); 581 // Create a new PHI node in the new region, which has an incoming value 582 // from OldPred of PN. 583 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 584 PN->getName() + ".ce", &NewBB->front()); 585 PN->replaceAllUsesWith(NewPN); 586 NewPN->addIncoming(PN, OldPred); 587 588 // Loop over all of the incoming value in PN, moving them to NewPN if they 589 // are from the extracted region. 590 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 591 if (Blocks.count(PN->getIncomingBlock(i))) { 592 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 593 PN->removeIncomingValue(i); 594 --i; 595 } 596 } 597 } 598 } 599 } 600 601 void CodeExtractor::splitReturnBlocks() { 602 for (BasicBlock *Block : Blocks) 603 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 604 BasicBlock *New = 605 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 606 if (DT) { 607 // Old dominates New. New node dominates all other nodes dominated 608 // by Old. 609 DomTreeNode *OldNode = DT->getNode(Block); 610 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 611 OldNode->end()); 612 613 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 614 615 for (DomTreeNode *I : Children) 616 DT->changeImmediateDominator(I, NewNode); 617 } 618 } 619 } 620 621 /// constructFunction - make a function based on inputs and outputs, as follows: 622 /// f(in0, ..., inN, out0, ..., outN) 623 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 624 const ValueSet &outputs, 625 BasicBlock *header, 626 BasicBlock *newRootNode, 627 BasicBlock *newHeader, 628 Function *oldFunction, 629 Module *M) { 630 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 631 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 632 633 // This function returns unsigned, outputs will go back by reference. 634 switch (NumExitBlocks) { 635 case 0: 636 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 637 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 638 default: RetTy = Type::getInt16Ty(header->getContext()); break; 639 } 640 641 std::vector<Type *> paramTy; 642 643 // Add the types of the input values to the function's argument list 644 for (Value *value : inputs) { 645 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); 646 paramTy.push_back(value->getType()); 647 } 648 649 // Add the types of the output values to the function's argument list. 650 for (Value *output : outputs) { 651 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 652 if (AggregateArgs) 653 paramTy.push_back(output->getType()); 654 else 655 paramTy.push_back(PointerType::getUnqual(output->getType())); 656 } 657 658 LLVM_DEBUG({ 659 dbgs() << "Function type: " << *RetTy << " f("; 660 for (Type *i : paramTy) 661 dbgs() << *i << ", "; 662 dbgs() << ")\n"; 663 }); 664 665 StructType *StructTy; 666 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 667 StructTy = StructType::get(M->getContext(), paramTy); 668 paramTy.clear(); 669 paramTy.push_back(PointerType::getUnqual(StructTy)); 670 } 671 FunctionType *funcType = 672 FunctionType::get(RetTy, paramTy, 673 AllowVarArgs && oldFunction->isVarArg()); 674 675 std::string SuffixToUse = 676 Suffix.empty() 677 ? (header->getName().empty() ? "extracted" : header->getName().str()) 678 : Suffix; 679 // Create the new function 680 Function *newFunction = Function::Create( 681 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), 682 oldFunction->getName() + "." + SuffixToUse, M); 683 // If the old function is no-throw, so is the new one. 684 if (oldFunction->doesNotThrow()) 685 newFunction->setDoesNotThrow(); 686 687 // Inherit the uwtable attribute if we need to. 688 if (oldFunction->hasUWTable()) 689 newFunction->setHasUWTable(); 690 691 // Inherit all of the target dependent attributes and white-listed 692 // target independent attributes. 693 // (e.g. If the extracted region contains a call to an x86.sse 694 // instruction we need to make sure that the extracted region has the 695 // "target-features" attribute allowing it to be lowered. 696 // FIXME: This should be changed to check to see if a specific 697 // attribute can not be inherited. 698 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) { 699 if (Attr.isStringAttribute()) { 700 if (Attr.getKindAsString() == "thunk") 701 continue; 702 } else 703 switch (Attr.getKindAsEnum()) { 704 // Those attributes cannot be propagated safely. Explicitly list them 705 // here so we get a warning if new attributes are added. This list also 706 // includes non-function attributes. 707 case Attribute::Alignment: 708 case Attribute::AllocSize: 709 case Attribute::ArgMemOnly: 710 case Attribute::Builtin: 711 case Attribute::ByVal: 712 case Attribute::Convergent: 713 case Attribute::Dereferenceable: 714 case Attribute::DereferenceableOrNull: 715 case Attribute::InAlloca: 716 case Attribute::InReg: 717 case Attribute::InaccessibleMemOnly: 718 case Attribute::InaccessibleMemOrArgMemOnly: 719 case Attribute::JumpTable: 720 case Attribute::Naked: 721 case Attribute::Nest: 722 case Attribute::NoAlias: 723 case Attribute::NoBuiltin: 724 case Attribute::NoCapture: 725 case Attribute::NoReturn: 726 case Attribute::None: 727 case Attribute::NonNull: 728 case Attribute::ReadNone: 729 case Attribute::ReadOnly: 730 case Attribute::Returned: 731 case Attribute::ReturnsTwice: 732 case Attribute::SExt: 733 case Attribute::Speculatable: 734 case Attribute::StackAlignment: 735 case Attribute::StructRet: 736 case Attribute::SwiftError: 737 case Attribute::SwiftSelf: 738 case Attribute::WriteOnly: 739 case Attribute::ZExt: 740 case Attribute::EndAttrKinds: 741 continue; 742 // Those attributes should be safe to propagate to the extracted function. 743 case Attribute::AlwaysInline: 744 case Attribute::Cold: 745 case Attribute::NoRecurse: 746 case Attribute::InlineHint: 747 case Attribute::MinSize: 748 case Attribute::NoDuplicate: 749 case Attribute::NoImplicitFloat: 750 case Attribute::NoInline: 751 case Attribute::NonLazyBind: 752 case Attribute::NoRedZone: 753 case Attribute::NoUnwind: 754 case Attribute::OptForFuzzing: 755 case Attribute::OptimizeNone: 756 case Attribute::OptimizeForSize: 757 case Attribute::SafeStack: 758 case Attribute::ShadowCallStack: 759 case Attribute::SanitizeAddress: 760 case Attribute::SanitizeMemory: 761 case Attribute::SanitizeThread: 762 case Attribute::SanitizeHWAddress: 763 case Attribute::SpeculativeLoadHardening: 764 case Attribute::StackProtect: 765 case Attribute::StackProtectReq: 766 case Attribute::StackProtectStrong: 767 case Attribute::StrictFP: 768 case Attribute::UWTable: 769 case Attribute::NoCfCheck: 770 break; 771 } 772 773 newFunction->addFnAttr(Attr); 774 } 775 newFunction->getBasicBlockList().push_back(newRootNode); 776 777 // Create an iterator to name all of the arguments we inserted. 778 Function::arg_iterator AI = newFunction->arg_begin(); 779 780 // Rewrite all users of the inputs in the extracted region to use the 781 // arguments (or appropriate addressing into struct) instead. 782 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 783 Value *RewriteVal; 784 if (AggregateArgs) { 785 Value *Idx[2]; 786 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 787 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 788 Instruction *TI = newFunction->begin()->getTerminator(); 789 GetElementPtrInst *GEP = GetElementPtrInst::Create( 790 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 791 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 792 } else 793 RewriteVal = &*AI++; 794 795 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 796 for (User *use : Users) 797 if (Instruction *inst = dyn_cast<Instruction>(use)) 798 if (Blocks.count(inst->getParent())) 799 inst->replaceUsesOfWith(inputs[i], RewriteVal); 800 } 801 802 // Set names for input and output arguments. 803 if (!AggregateArgs) { 804 AI = newFunction->arg_begin(); 805 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 806 AI->setName(inputs[i]->getName()); 807 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 808 AI->setName(outputs[i]->getName()+".out"); 809 } 810 811 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 812 // within the new function. This must be done before we lose track of which 813 // blocks were originally in the code region. 814 std::vector<User *> Users(header->user_begin(), header->user_end()); 815 for (unsigned i = 0, e = Users.size(); i != e; ++i) 816 // The BasicBlock which contains the branch is not in the region 817 // modify the branch target to a new block 818 if (Instruction *I = dyn_cast<Instruction>(Users[i])) 819 if (I->isTerminator() && !Blocks.count(I->getParent()) && 820 I->getParent()->getParent() == oldFunction) 821 I->replaceUsesOfWith(header, newHeader); 822 823 return newFunction; 824 } 825 826 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 827 /// the call instruction, splitting any PHI nodes in the header block as 828 /// necessary. 829 void CodeExtractor:: 830 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 831 ValueSet &inputs, ValueSet &outputs) { 832 // Emit a call to the new function, passing in: *pointer to struct (if 833 // aggregating parameters), or plan inputs and allocated memory for outputs 834 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads; 835 836 Module *M = newFunction->getParent(); 837 LLVMContext &Context = M->getContext(); 838 const DataLayout &DL = M->getDataLayout(); 839 840 // Add inputs as params, or to be filled into the struct 841 for (Value *input : inputs) 842 if (AggregateArgs) 843 StructValues.push_back(input); 844 else 845 params.push_back(input); 846 847 // Create allocas for the outputs 848 for (Value *output : outputs) { 849 if (AggregateArgs) { 850 StructValues.push_back(output); 851 } else { 852 AllocaInst *alloca = 853 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 854 nullptr, output->getName() + ".loc", 855 &codeReplacer->getParent()->front().front()); 856 ReloadOutputs.push_back(alloca); 857 params.push_back(alloca); 858 } 859 } 860 861 StructType *StructArgTy = nullptr; 862 AllocaInst *Struct = nullptr; 863 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 864 std::vector<Type *> ArgTypes; 865 for (ValueSet::iterator v = StructValues.begin(), 866 ve = StructValues.end(); v != ve; ++v) 867 ArgTypes.push_back((*v)->getType()); 868 869 // Allocate a struct at the beginning of this function 870 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 871 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 872 "structArg", 873 &codeReplacer->getParent()->front().front()); 874 params.push_back(Struct); 875 876 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 877 Value *Idx[2]; 878 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 879 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 880 GetElementPtrInst *GEP = GetElementPtrInst::Create( 881 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 882 codeReplacer->getInstList().push_back(GEP); 883 StoreInst *SI = new StoreInst(StructValues[i], GEP); 884 codeReplacer->getInstList().push_back(SI); 885 } 886 } 887 888 // Emit the call to the function 889 CallInst *call = CallInst::Create(newFunction, params, 890 NumExitBlocks > 1 ? "targetBlock" : ""); 891 // Add debug location to the new call, if the original function has debug 892 // info. In that case, the terminator of the entry block of the extracted 893 // function contains the first debug location of the extracted function, 894 // set in extractCodeRegion. 895 if (codeReplacer->getParent()->getSubprogram()) { 896 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) 897 call->setDebugLoc(DL); 898 } 899 codeReplacer->getInstList().push_back(call); 900 901 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 902 unsigned FirstOut = inputs.size(); 903 if (!AggregateArgs) 904 std::advance(OutputArgBegin, inputs.size()); 905 906 // Reload the outputs passed in by reference. 907 Function::arg_iterator OAI = OutputArgBegin; 908 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 909 Value *Output = nullptr; 910 if (AggregateArgs) { 911 Value *Idx[2]; 912 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 913 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 914 GetElementPtrInst *GEP = GetElementPtrInst::Create( 915 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 916 codeReplacer->getInstList().push_back(GEP); 917 Output = GEP; 918 } else { 919 Output = ReloadOutputs[i]; 920 } 921 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 922 Reloads.push_back(load); 923 codeReplacer->getInstList().push_back(load); 924 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 925 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 926 Instruction *inst = cast<Instruction>(Users[u]); 927 if (!Blocks.count(inst->getParent())) 928 inst->replaceUsesOfWith(outputs[i], load); 929 } 930 931 // Store to argument right after the definition of output value. 932 auto *OutI = dyn_cast<Instruction>(outputs[i]); 933 if (!OutI) 934 continue; 935 936 // Find proper insertion point. 937 Instruction *InsertPt; 938 // In case OutI is an invoke, we insert the store at the beginning in the 939 // 'normal destination' BB. Otherwise we insert the store right after OutI. 940 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) 941 InsertPt = InvokeI->getNormalDest()->getFirstNonPHI(); 942 else 943 InsertPt = OutI->getNextNode(); 944 945 // Let's assume that there is no other guy interleave non-PHI in PHIs. 946 if (isa<PHINode>(InsertPt)) 947 InsertPt = InsertPt->getParent()->getFirstNonPHI(); 948 949 assert(OAI != newFunction->arg_end() && 950 "Number of output arguments should match " 951 "the amount of defined values"); 952 if (AggregateArgs) { 953 Value *Idx[2]; 954 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 955 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 956 GetElementPtrInst *GEP = GetElementPtrInst::Create( 957 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt); 958 new StoreInst(outputs[i], GEP, InsertPt); 959 // Since there should be only one struct argument aggregating 960 // all the output values, we shouldn't increment OAI, which always 961 // points to the struct argument, in this case. 962 } else { 963 new StoreInst(outputs[i], &*OAI, InsertPt); 964 ++OAI; 965 } 966 } 967 968 // Now we can emit a switch statement using the call as a value. 969 SwitchInst *TheSwitch = 970 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 971 codeReplacer, 0, codeReplacer); 972 973 // Since there may be multiple exits from the original region, make the new 974 // function return an unsigned, switch on that number. This loop iterates 975 // over all of the blocks in the extracted region, updating any terminator 976 // instructions in the to-be-extracted region that branch to blocks that are 977 // not in the region to be extracted. 978 std::map<BasicBlock *, BasicBlock *> ExitBlockMap; 979 980 unsigned switchVal = 0; 981 for (BasicBlock *Block : Blocks) { 982 Instruction *TI = Block->getTerminator(); 983 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 984 if (!Blocks.count(TI->getSuccessor(i))) { 985 BasicBlock *OldTarget = TI->getSuccessor(i); 986 // add a new basic block which returns the appropriate value 987 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 988 if (!NewTarget) { 989 // If we don't already have an exit stub for this non-extracted 990 // destination, create one now! 991 NewTarget = BasicBlock::Create(Context, 992 OldTarget->getName() + ".exitStub", 993 newFunction); 994 unsigned SuccNum = switchVal++; 995 996 Value *brVal = nullptr; 997 switch (NumExitBlocks) { 998 case 0: 999 case 1: break; // No value needed. 1000 case 2: // Conditional branch, return a bool 1001 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 1002 break; 1003 default: 1004 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 1005 break; 1006 } 1007 1008 ReturnInst::Create(Context, brVal, NewTarget); 1009 1010 // Update the switch instruction. 1011 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 1012 SuccNum), 1013 OldTarget); 1014 } 1015 1016 // rewrite the original branch instruction with this new target 1017 TI->setSuccessor(i, NewTarget); 1018 } 1019 } 1020 1021 // Now that we've done the deed, simplify the switch instruction. 1022 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 1023 switch (NumExitBlocks) { 1024 case 0: 1025 // There are no successors (the block containing the switch itself), which 1026 // means that previously this was the last part of the function, and hence 1027 // this should be rewritten as a `ret' 1028 1029 // Check if the function should return a value 1030 if (OldFnRetTy->isVoidTy()) { 1031 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 1032 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 1033 // return what we have 1034 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 1035 } else { 1036 // Otherwise we must have code extracted an unwind or something, just 1037 // return whatever we want. 1038 ReturnInst::Create(Context, 1039 Constant::getNullValue(OldFnRetTy), TheSwitch); 1040 } 1041 1042 TheSwitch->eraseFromParent(); 1043 break; 1044 case 1: 1045 // Only a single destination, change the switch into an unconditional 1046 // branch. 1047 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 1048 TheSwitch->eraseFromParent(); 1049 break; 1050 case 2: 1051 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 1052 call, TheSwitch); 1053 TheSwitch->eraseFromParent(); 1054 break; 1055 default: 1056 // Otherwise, make the default destination of the switch instruction be one 1057 // of the other successors. 1058 TheSwitch->setCondition(call); 1059 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 1060 // Remove redundant case 1061 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 1062 break; 1063 } 1064 } 1065 1066 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 1067 Function *oldFunc = (*Blocks.begin())->getParent(); 1068 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 1069 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 1070 1071 for (BasicBlock *Block : Blocks) { 1072 // Delete the basic block from the old function, and the list of blocks 1073 oldBlocks.remove(Block); 1074 1075 // Insert this basic block into the new function 1076 newBlocks.push_back(Block); 1077 } 1078 } 1079 1080 void CodeExtractor::calculateNewCallTerminatorWeights( 1081 BasicBlock *CodeReplacer, 1082 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 1083 BranchProbabilityInfo *BPI) { 1084 using Distribution = BlockFrequencyInfoImplBase::Distribution; 1085 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 1086 1087 // Update the branch weights for the exit block. 1088 Instruction *TI = CodeReplacer->getTerminator(); 1089 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 1090 1091 // Block Frequency distribution with dummy node. 1092 Distribution BranchDist; 1093 1094 // Add each of the frequencies of the successors. 1095 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 1096 BlockNode ExitNode(i); 1097 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 1098 if (ExitFreq != 0) 1099 BranchDist.addExit(ExitNode, ExitFreq); 1100 else 1101 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 1102 } 1103 1104 // Check for no total weight. 1105 if (BranchDist.Total == 0) 1106 return; 1107 1108 // Normalize the distribution so that they can fit in unsigned. 1109 BranchDist.normalize(); 1110 1111 // Create normalized branch weights and set the metadata. 1112 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 1113 const auto &Weight = BranchDist.Weights[I]; 1114 1115 // Get the weight and update the current BFI. 1116 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 1117 BranchProbability BP(Weight.Amount, BranchDist.Total); 1118 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 1119 } 1120 TI->setMetadata( 1121 LLVMContext::MD_prof, 1122 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 1123 } 1124 1125 Function *CodeExtractor::extractCodeRegion() { 1126 if (!isEligible()) 1127 return nullptr; 1128 1129 // Assumption: this is a single-entry code region, and the header is the first 1130 // block in the region. 1131 BasicBlock *header = *Blocks.begin(); 1132 Function *oldFunction = header->getParent(); 1133 1134 // For functions with varargs, check that varargs handling is only done in the 1135 // outlined function, i.e vastart and vaend are only used in outlined blocks. 1136 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) { 1137 auto containsVarArgIntrinsic = [](Instruction &I) { 1138 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1139 if (const Function *F = CI->getCalledFunction()) 1140 return F->getIntrinsicID() == Intrinsic::vastart || 1141 F->getIntrinsicID() == Intrinsic::vaend; 1142 return false; 1143 }; 1144 1145 for (auto &BB : *oldFunction) { 1146 if (Blocks.count(&BB)) 1147 continue; 1148 if (llvm::any_of(BB, containsVarArgIntrinsic)) 1149 return nullptr; 1150 } 1151 } 1152 ValueSet inputs, outputs, SinkingCands, HoistingCands; 1153 BasicBlock *CommonExit = nullptr; 1154 1155 // Calculate the entry frequency of the new function before we change the root 1156 // block. 1157 BlockFrequency EntryFreq; 1158 if (BFI) { 1159 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 1160 for (BasicBlock *Pred : predecessors(header)) { 1161 if (Blocks.count(Pred)) 1162 continue; 1163 EntryFreq += 1164 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 1165 } 1166 } 1167 1168 // If we have to split PHI nodes or the entry block, do so now. 1169 severSplitPHINodes(header); 1170 1171 // If we have any return instructions in the region, split those blocks so 1172 // that the return is not in the region. 1173 splitReturnBlocks(); 1174 1175 // This takes place of the original loop 1176 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 1177 "codeRepl", oldFunction, 1178 header); 1179 1180 // The new function needs a root node because other nodes can branch to the 1181 // head of the region, but the entry node of a function cannot have preds. 1182 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 1183 "newFuncRoot"); 1184 auto *BranchI = BranchInst::Create(header); 1185 // If the original function has debug info, we have to add a debug location 1186 // to the new branch instruction from the artificial entry block. 1187 // We use the debug location of the first instruction in the extracted 1188 // blocks, as there is no other equivalent line in the source code. 1189 if (oldFunction->getSubprogram()) { 1190 any_of(Blocks, [&BranchI](const BasicBlock *BB) { 1191 return any_of(*BB, [&BranchI](const Instruction &I) { 1192 if (!I.getDebugLoc()) 1193 return false; 1194 BranchI->setDebugLoc(I.getDebugLoc()); 1195 return true; 1196 }); 1197 }); 1198 } 1199 newFuncRoot->getInstList().push_back(BranchI); 1200 1201 findAllocas(SinkingCands, HoistingCands, CommonExit); 1202 assert(HoistingCands.empty() || CommonExit); 1203 1204 // Find inputs to, outputs from the code region. 1205 findInputsOutputs(inputs, outputs, SinkingCands); 1206 1207 // Now sink all instructions which only have non-phi uses inside the region 1208 for (auto *II : SinkingCands) 1209 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1210 newFuncRoot->getFirstInsertionPt()); 1211 1212 if (!HoistingCands.empty()) { 1213 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1214 Instruction *TI = HoistToBlock->getTerminator(); 1215 for (auto *II : HoistingCands) 1216 cast<Instruction>(II)->moveBefore(TI); 1217 } 1218 1219 // Calculate the exit blocks for the extracted region and the total exit 1220 // weights for each of those blocks. 1221 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1222 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1223 for (BasicBlock *Block : Blocks) { 1224 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1225 ++SI) { 1226 if (!Blocks.count(*SI)) { 1227 // Update the branch weight for this successor. 1228 if (BFI) { 1229 BlockFrequency &BF = ExitWeights[*SI]; 1230 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1231 } 1232 ExitBlocks.insert(*SI); 1233 } 1234 } 1235 } 1236 NumExitBlocks = ExitBlocks.size(); 1237 1238 // Construct new function based on inputs/outputs & add allocas for all defs. 1239 Function *newFunction = constructFunction(inputs, outputs, header, 1240 newFuncRoot, 1241 codeReplacer, oldFunction, 1242 oldFunction->getParent()); 1243 1244 // Update the entry count of the function. 1245 if (BFI) { 1246 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1247 if (Count.hasValue()) 1248 newFunction->setEntryCount( 1249 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME 1250 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1251 } 1252 1253 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1254 1255 moveCodeToFunction(newFunction); 1256 1257 // Propagate personality info to the new function if there is one. 1258 if (oldFunction->hasPersonalityFn()) 1259 newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); 1260 1261 // Update the branch weights for the exit block. 1262 if (BFI && NumExitBlocks > 1) 1263 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1264 1265 // Loop over all of the PHI nodes in the header block, and change any 1266 // references to the old incoming edge to be the new incoming edge. 1267 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1268 PHINode *PN = cast<PHINode>(I); 1269 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1270 if (!Blocks.count(PN->getIncomingBlock(i))) 1271 PN->setIncomingBlock(i, newFuncRoot); 1272 } 1273 1274 // Look at all successors of the codeReplacer block. If any of these blocks 1275 // had PHI nodes in them, we need to update the "from" block to be the code 1276 // replacer, not the original block in the extracted region. 1277 for (BasicBlock *SuccBB : successors(codeReplacer)) { 1278 for (PHINode &PN : SuccBB->phis()) { 1279 Value *IncomingCodeReplacerVal = nullptr; 1280 SmallVector<unsigned, 2> IncomingValsToRemove; 1281 for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { 1282 BasicBlock *IncomingBB = PN.getIncomingBlock(I); 1283 1284 // Ignore incoming values from outside of the extracted region. 1285 if (!Blocks.count(IncomingBB)) 1286 continue; 1287 1288 // Ensure that there is only one incoming value from codeReplacer. 1289 if (!IncomingCodeReplacerVal) { 1290 PN.setIncomingBlock(I, codeReplacer); 1291 IncomingCodeReplacerVal = PN.getIncomingValue(I); 1292 } else { 1293 assert(IncomingCodeReplacerVal == PN.getIncomingValue(I) && 1294 "PHI has two incompatbile incoming values from codeRepl"); 1295 IncomingValsToRemove.push_back(I); 1296 } 1297 } 1298 1299 for (unsigned I : reverse(IncomingValsToRemove)) 1300 PN.removeIncomingValue(I, /*DeletePHIIfEmpty=*/false); 1301 } 1302 } 1303 1304 // Erase debug info intrinsics. Variable updates within the new function are 1305 // invisible to debuggers. This could be improved by defining a DISubprogram 1306 // for the new function. 1307 for (BasicBlock &BB : *newFunction) { 1308 auto BlockIt = BB.begin(); 1309 // Remove debug info intrinsics from the new function. 1310 while (BlockIt != BB.end()) { 1311 Instruction *Inst = &*BlockIt; 1312 ++BlockIt; 1313 if (isa<DbgInfoIntrinsic>(Inst)) 1314 Inst->eraseFromParent(); 1315 } 1316 // Remove debug info intrinsics which refer to values in the new function 1317 // from the old function. 1318 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; 1319 for (Instruction &I : BB) 1320 findDbgUsers(DbgUsers, &I); 1321 for (DbgVariableIntrinsic *DVI : DbgUsers) 1322 DVI->eraseFromParent(); 1323 } 1324 1325 LLVM_DEBUG(if (verifyFunction(*newFunction)) 1326 report_fatal_error("verifyFunction failed!")); 1327 return newFunction; 1328 } 1329