1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool 386 DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 387 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 388 SmallDenseSet<DebugVariable> VariableSet; 389 for (auto &I : reverse(*BB)) { 390 for (DbgRecord &DR : reverse(I.getDbgRecordRange())) { 391 if (isa<DbgLabelRecord>(DR)) { 392 // Emulate existing behaviour (see comment below for dbg.declares). 393 // FIXME: Don't do this. 394 VariableSet.clear(); 395 continue; 396 } 397 398 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 399 // Skip declare-type records, as the debug intrinsic method only works 400 // on dbg.value intrinsics. 401 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 402 // The debug intrinsic method treats dbg.declares are "non-debug" 403 // instructions (i.e., a break in a consecutive range of debug 404 // intrinsics). Emulate that to create identical outputs. See 405 // "Possible improvements" above. 406 // FIXME: Delete the line below. 407 VariableSet.clear(); 408 continue; 409 } 410 411 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 412 DVR.getDebugLoc()->getInlinedAt()); 413 auto R = VariableSet.insert(Key); 414 // If the same variable fragment is described more than once it is enough 415 // to keep the last one (i.e. the first found since we for reverse 416 // iteration). 417 if (R.second) 418 continue; 419 420 if (DVR.isDbgAssign()) { 421 // Don't delete dbg.assign intrinsics that are linked to instructions. 422 if (!at::getAssignmentInsts(&DVR).empty()) 423 continue; 424 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 425 } 426 427 ToBeRemoved.push_back(&DVR); 428 continue; 429 } 430 // Sequence with consecutive dbg.value instrs ended. Clear the map to 431 // restart identifying redundant instructions if case we find another 432 // dbg.value sequence. 433 VariableSet.clear(); 434 } 435 436 for (auto &DVR : ToBeRemoved) 437 DVR->eraseFromParent(); 438 439 return !ToBeRemoved.empty(); 440 } 441 442 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 443 if (BB->IsNewDbgInfoFormat) 444 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB); 445 446 SmallVector<DbgValueInst *, 8> ToBeRemoved; 447 SmallDenseSet<DebugVariable> VariableSet; 448 for (auto &I : reverse(*BB)) { 449 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 450 DebugVariable Key(DVI->getVariable(), 451 DVI->getExpression(), 452 DVI->getDebugLoc()->getInlinedAt()); 453 auto R = VariableSet.insert(Key); 454 // If the variable fragment hasn't been seen before then we don't want 455 // to remove this dbg intrinsic. 456 if (R.second) 457 continue; 458 459 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 460 // Don't delete dbg.assign intrinsics that are linked to instructions. 461 if (!at::getAssignmentInsts(DAI).empty()) 462 continue; 463 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 464 } 465 466 // If the same variable fragment is described more than once it is enough 467 // to keep the last one (i.e. the first found since we for reverse 468 // iteration). 469 ToBeRemoved.push_back(DVI); 470 continue; 471 } 472 // Sequence with consecutive dbg.value instrs ended. Clear the map to 473 // restart identifying redundant instructions if case we find another 474 // dbg.value sequence. 475 VariableSet.clear(); 476 } 477 478 for (auto &Instr : ToBeRemoved) 479 Instr->eraseFromParent(); 480 481 return !ToBeRemoved.empty(); 482 } 483 484 /// Remove redundant dbg.value instructions using a forward scan. This can 485 /// remove a dbg.value instruction that is redundant due to indicating that a 486 /// variable has the same value as already being indicated by an earlier 487 /// dbg.value. 488 /// 489 /// ForwardScan strategy: 490 /// --------------------- 491 /// Given two identical dbg.value instructions, separated by a block of 492 /// instructions that isn't describing the same variable, like this 493 /// 494 /// dbg.value X1, "x", FragmentX1 (**) 495 /// <block of instructions, none being "dbg.value ..., "x", ..."> 496 /// dbg.value X1, "x", FragmentX1 (*) 497 /// 498 /// then the instruction marked with (*) can be removed. Variable "x" is already 499 /// described as being mapped to the SSA value X1. 500 /// 501 /// Possible improvements: 502 /// - Keep track of non-overlapping fragments. 503 static bool 504 DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 505 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 506 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 507 VariableMap; 508 for (auto &I : *BB) { 509 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 510 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 511 continue; 512 DebugVariable Key(DVR.getVariable(), std::nullopt, 513 DVR.getDebugLoc()->getInlinedAt()); 514 auto VMI = VariableMap.find(Key); 515 // A dbg.assign with no linked instructions can be treated like a 516 // dbg.value (i.e. can be deleted). 517 bool IsDbgValueKind = 518 (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty()); 519 520 // Update the map if we found a new value/expression describing the 521 // variable, or if the variable wasn't mapped already. 522 SmallVector<Value *, 4> Values(DVR.location_ops()); 523 if (VMI == VariableMap.end() || VMI->second.first != Values || 524 VMI->second.second != DVR.getExpression()) { 525 if (IsDbgValueKind) 526 VariableMap[Key] = {Values, DVR.getExpression()}; 527 else 528 VariableMap[Key] = {Values, nullptr}; 529 continue; 530 } 531 // Don't delete dbg.assign intrinsics that are linked to instructions. 532 if (!IsDbgValueKind) 533 continue; 534 // Found an identical mapping. Remember the instruction for later removal. 535 ToBeRemoved.push_back(&DVR); 536 } 537 } 538 539 for (auto *DVR : ToBeRemoved) 540 DVR->eraseFromParent(); 541 542 return !ToBeRemoved.empty(); 543 } 544 545 static bool 546 DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 547 assert(BB->isEntryBlock() && "expected entry block"); 548 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 549 DenseSet<DebugVariable> SeenDefForAggregate; 550 // Returns the DebugVariable for DVI with no fragment info. 551 auto GetAggregateVariable = [](const DbgVariableRecord &DVR) { 552 return DebugVariable(DVR.getVariable(), std::nullopt, 553 DVR.getDebugLoc().getInlinedAt()); 554 }; 555 556 // Remove undef dbg.assign intrinsics that are encountered before 557 // any non-undef intrinsics from the entry block. 558 for (auto &I : *BB) { 559 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 560 if (!DVR.isDbgValue() && !DVR.isDbgAssign()) 561 continue; 562 bool IsDbgValueKind = 563 (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty()); 564 DebugVariable Aggregate = GetAggregateVariable(DVR); 565 if (!SeenDefForAggregate.contains(Aggregate)) { 566 bool IsKill = DVR.isKillLocation() && IsDbgValueKind; 567 if (!IsKill) { 568 SeenDefForAggregate.insert(Aggregate); 569 } else if (DVR.isDbgAssign()) { 570 ToBeRemoved.push_back(&DVR); 571 } 572 } 573 } 574 } 575 576 for (DbgVariableRecord *DVR : ToBeRemoved) 577 DVR->eraseFromParent(); 578 579 return !ToBeRemoved.empty(); 580 } 581 582 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 583 if (BB->IsNewDbgInfoFormat) 584 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB); 585 586 SmallVector<DbgValueInst *, 8> ToBeRemoved; 587 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 588 VariableMap; 589 for (auto &I : *BB) { 590 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 591 DebugVariable Key(DVI->getVariable(), std::nullopt, 592 DVI->getDebugLoc()->getInlinedAt()); 593 auto VMI = VariableMap.find(Key); 594 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 595 // A dbg.assign with no linked instructions can be treated like a 596 // dbg.value (i.e. can be deleted). 597 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 598 599 // Update the map if we found a new value/expression describing the 600 // variable, or if the variable wasn't mapped already. 601 SmallVector<Value *, 4> Values(DVI->getValues()); 602 if (VMI == VariableMap.end() || VMI->second.first != Values || 603 VMI->second.second != DVI->getExpression()) { 604 // Use a sentinel value (nullptr) for the DIExpression when we see a 605 // linked dbg.assign so that the next debug intrinsic will never match 606 // it (i.e. always treat linked dbg.assigns as if they're unique). 607 if (IsDbgValueKind) 608 VariableMap[Key] = {Values, DVI->getExpression()}; 609 else 610 VariableMap[Key] = {Values, nullptr}; 611 continue; 612 } 613 614 // Don't delete dbg.assign intrinsics that are linked to instructions. 615 if (!IsDbgValueKind) 616 continue; 617 ToBeRemoved.push_back(DVI); 618 } 619 } 620 621 for (auto &Instr : ToBeRemoved) 622 Instr->eraseFromParent(); 623 624 return !ToBeRemoved.empty(); 625 } 626 627 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 628 /// forward scan. 629 /// Strategy: 630 /// --------------------- 631 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 632 /// linked to an intrinsic, and don't share an aggregate variable with a debug 633 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 634 /// that come before non-undef debug intrinsics for the variable are 635 /// deleted. Given: 636 /// 637 /// dbg.assign undef, "x", FragmentX1 (*) 638 /// <block of instructions, none being "dbg.value ..., "x", ..."> 639 /// dbg.value %V, "x", FragmentX2 640 /// <block of instructions, none being "dbg.value ..., "x", ..."> 641 /// dbg.assign undef, "x", FragmentX1 642 /// 643 /// then (only) the instruction marked with (*) can be removed. 644 /// Possible improvements: 645 /// - Keep track of non-overlapping fragments. 646 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 647 if (BB->IsNewDbgInfoFormat) 648 return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB); 649 650 assert(BB->isEntryBlock() && "expected entry block"); 651 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 652 DenseSet<DebugVariable> SeenDefForAggregate; 653 // Returns the DebugVariable for DVI with no fragment info. 654 auto GetAggregateVariable = [](DbgValueInst *DVI) { 655 return DebugVariable(DVI->getVariable(), std::nullopt, 656 DVI->getDebugLoc()->getInlinedAt()); 657 }; 658 659 // Remove undef dbg.assign intrinsics that are encountered before 660 // any non-undef intrinsics from the entry block. 661 for (auto &I : *BB) { 662 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 663 if (!DVI) 664 continue; 665 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 666 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 667 DebugVariable Aggregate = GetAggregateVariable(DVI); 668 if (!SeenDefForAggregate.contains(Aggregate)) { 669 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 670 if (!IsKill) { 671 SeenDefForAggregate.insert(Aggregate); 672 } else if (DAI) { 673 ToBeRemoved.push_back(DAI); 674 } 675 } 676 } 677 678 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 679 DAI->eraseFromParent(); 680 681 return !ToBeRemoved.empty(); 682 } 683 684 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 685 bool MadeChanges = false; 686 // By using the "backward scan" strategy before the "forward scan" strategy we 687 // can remove both dbg.value (2) and (3) in a situation like this: 688 // 689 // (1) dbg.value V1, "x", DIExpression() 690 // ... 691 // (2) dbg.value V2, "x", DIExpression() 692 // (3) dbg.value V1, "x", DIExpression() 693 // 694 // The backward scan will remove (2), it is made obsolete by (3). After 695 // getting (2) out of the way, the foward scan will remove (3) since "x" 696 // already is described as having the value V1 at (1). 697 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 698 if (BB->isEntryBlock() && 699 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 700 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); 701 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 702 703 if (MadeChanges) 704 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 705 << BB->getName() << "\n"); 706 return MadeChanges; 707 } 708 709 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 710 Instruction &I = *BI; 711 // Replaces all of the uses of the instruction with uses of the value 712 I.replaceAllUsesWith(V); 713 714 // Make sure to propagate a name if there is one already. 715 if (I.hasName() && !V->hasName()) 716 V->takeName(&I); 717 718 // Delete the unnecessary instruction now... 719 BI = BI->eraseFromParent(); 720 } 721 722 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 723 Instruction *I) { 724 assert(I->getParent() == nullptr && 725 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 726 727 // Copy debug location to newly added instruction, if it wasn't already set 728 // by the caller. 729 if (!I->getDebugLoc()) 730 I->setDebugLoc(BI->getDebugLoc()); 731 732 // Insert the new instruction into the basic block... 733 BasicBlock::iterator New = I->insertInto(BB, BI); 734 735 // Replace all uses of the old instruction, and delete it. 736 ReplaceInstWithValue(BI, I); 737 738 // Move BI back to point to the newly inserted instruction 739 BI = New; 740 } 741 742 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 743 // Remember visited blocks to avoid infinite loop 744 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 745 unsigned Depth = 0; 746 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 747 VisitedBlocks.insert(BB).second) { 748 if (isa<UnreachableInst>(BB->getTerminator()) || 749 BB->getTerminatingDeoptimizeCall()) 750 return true; 751 BB = BB->getUniqueSuccessor(); 752 } 753 return false; 754 } 755 756 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 757 BasicBlock::iterator BI(From); 758 ReplaceInstWithInst(From->getParent(), BI, To); 759 } 760 761 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 762 LoopInfo *LI, MemorySSAUpdater *MSSAU, 763 const Twine &BBName) { 764 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 765 766 Instruction *LatchTerm = BB->getTerminator(); 767 768 CriticalEdgeSplittingOptions Options = 769 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 770 771 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 772 // If it is a critical edge, and the succesor is an exception block, handle 773 // the split edge logic in this specific function 774 if (Succ->isEHPad()) 775 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 776 777 // If this is a critical edge, let SplitKnownCriticalEdge do it. 778 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 779 } 780 781 // If the edge isn't critical, then BB has a single successor or Succ has a 782 // single pred. Split the block. 783 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 784 // If the successor only has a single pred, split the top of the successor 785 // block. 786 assert(SP == BB && "CFG broken"); 787 (void)SP; 788 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 789 /*Before=*/true); 790 } 791 792 // Otherwise, if BB has a single successor, split it at the bottom of the 793 // block. 794 assert(BB->getTerminator()->getNumSuccessors() == 1 && 795 "Should have a single succ!"); 796 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 797 } 798 799 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 800 if (auto *II = dyn_cast<InvokeInst>(TI)) 801 II->setUnwindDest(Succ); 802 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 803 CS->setUnwindDest(Succ); 804 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 805 CR->setUnwindDest(Succ); 806 else 807 llvm_unreachable("unexpected terminator instruction"); 808 } 809 810 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 811 BasicBlock *NewPred, PHINode *Until) { 812 int BBIdx = 0; 813 for (PHINode &PN : DestBB->phis()) { 814 // We manually update the LandingPadReplacement PHINode and it is the last 815 // PHI Node. So, if we find it, we are done. 816 if (Until == &PN) 817 break; 818 819 // Reuse the previous value of BBIdx if it lines up. In cases where we 820 // have multiple phi nodes with *lots* of predecessors, this is a speed 821 // win because we don't have to scan the PHI looking for TIBB. This 822 // happens because the BB list of PHI nodes are usually in the same 823 // order. 824 if (PN.getIncomingBlock(BBIdx) != OldPred) 825 BBIdx = PN.getBasicBlockIndex(OldPred); 826 827 assert(BBIdx != -1 && "Invalid PHI Index!"); 828 PN.setIncomingBlock(BBIdx, NewPred); 829 } 830 } 831 832 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 833 LandingPadInst *OriginalPad, 834 PHINode *LandingPadReplacement, 835 const CriticalEdgeSplittingOptions &Options, 836 const Twine &BBName) { 837 838 auto *PadInst = Succ->getFirstNonPHI(); 839 if (!LandingPadReplacement && !PadInst->isEHPad()) 840 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 841 842 auto *LI = Options.LI; 843 SmallVector<BasicBlock *, 4> LoopPreds; 844 // Check if extra modifications will be required to preserve loop-simplify 845 // form after splitting. If it would require splitting blocks with IndirectBr 846 // terminators, bail out if preserving loop-simplify form is requested. 847 if (Options.PreserveLoopSimplify && LI) { 848 if (Loop *BBLoop = LI->getLoopFor(BB)) { 849 850 // The only way that we can break LoopSimplify form by splitting a 851 // critical edge is when there exists some edge from BBLoop to Succ *and* 852 // the only edge into Succ from outside of BBLoop is that of NewBB after 853 // the split. If the first isn't true, then LoopSimplify still holds, 854 // NewBB is the new exit block and it has no non-loop predecessors. If the 855 // second isn't true, then Succ was not in LoopSimplify form prior to 856 // the split as it had a non-loop predecessor. In both of these cases, 857 // the predecessor must be directly in BBLoop, not in a subloop, or again 858 // LoopSimplify doesn't hold. 859 for (BasicBlock *P : predecessors(Succ)) { 860 if (P == BB) 861 continue; // The new block is known. 862 if (LI->getLoopFor(P) != BBLoop) { 863 // Loop is not in LoopSimplify form, no need to re simplify after 864 // splitting edge. 865 LoopPreds.clear(); 866 break; 867 } 868 LoopPreds.push_back(P); 869 } 870 // Loop-simplify form can be preserved, if we can split all in-loop 871 // predecessors. 872 if (any_of(LoopPreds, [](BasicBlock *Pred) { 873 return isa<IndirectBrInst>(Pred->getTerminator()); 874 })) { 875 return nullptr; 876 } 877 } 878 } 879 880 auto *NewBB = 881 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 882 setUnwindEdgeTo(BB->getTerminator(), NewBB); 883 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 884 885 if (LandingPadReplacement) { 886 auto *NewLP = OriginalPad->clone(); 887 auto *Terminator = BranchInst::Create(Succ, NewBB); 888 NewLP->insertBefore(Terminator); 889 LandingPadReplacement->addIncoming(NewLP, NewBB); 890 } else { 891 Value *ParentPad = nullptr; 892 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 893 ParentPad = FuncletPad->getParentPad(); 894 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 895 ParentPad = CatchSwitch->getParentPad(); 896 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 897 ParentPad = CleanupPad->getParentPad(); 898 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 899 ParentPad = LandingPad->getParent(); 900 else 901 llvm_unreachable("handling for other EHPads not implemented yet"); 902 903 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 904 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 905 } 906 907 auto *DT = Options.DT; 908 auto *MSSAU = Options.MSSAU; 909 if (!DT && !LI) 910 return NewBB; 911 912 if (DT) { 913 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 914 SmallVector<DominatorTree::UpdateType, 3> Updates; 915 916 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 917 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 918 Updates.push_back({DominatorTree::Delete, BB, Succ}); 919 920 DTU.applyUpdates(Updates); 921 DTU.flush(); 922 923 if (MSSAU) { 924 MSSAU->applyUpdates(Updates, *DT); 925 if (VerifyMemorySSA) 926 MSSAU->getMemorySSA()->verifyMemorySSA(); 927 } 928 } 929 930 if (LI) { 931 if (Loop *BBLoop = LI->getLoopFor(BB)) { 932 // If one or the other blocks were not in a loop, the new block is not 933 // either, and thus LI doesn't need to be updated. 934 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 935 if (BBLoop == SuccLoop) { 936 // Both in the same loop, the NewBB joins loop. 937 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 938 } else if (BBLoop->contains(SuccLoop)) { 939 // Edge from an outer loop to an inner loop. Add to the outer loop. 940 BBLoop->addBasicBlockToLoop(NewBB, *LI); 941 } else if (SuccLoop->contains(BBLoop)) { 942 // Edge from an inner loop to an outer loop. Add to the outer loop. 943 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 944 } else { 945 // Edge from two loops with no containment relation. Because these 946 // are natural loops, we know that the destination block must be the 947 // header of its loop (adding a branch into a loop elsewhere would 948 // create an irreducible loop). 949 assert(SuccLoop->getHeader() == Succ && 950 "Should not create irreducible loops!"); 951 if (Loop *P = SuccLoop->getParentLoop()) 952 P->addBasicBlockToLoop(NewBB, *LI); 953 } 954 } 955 956 // If BB is in a loop and Succ is outside of that loop, we may need to 957 // update LoopSimplify form and LCSSA form. 958 if (!BBLoop->contains(Succ)) { 959 assert(!BBLoop->contains(NewBB) && 960 "Split point for loop exit is contained in loop!"); 961 962 // Update LCSSA form in the newly created exit block. 963 if (Options.PreserveLCSSA) { 964 createPHIsForSplitLoopExit(BB, NewBB, Succ); 965 } 966 967 if (!LoopPreds.empty()) { 968 BasicBlock *NewExitBB = SplitBlockPredecessors( 969 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 970 if (Options.PreserveLCSSA) 971 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 972 } 973 } 974 } 975 } 976 977 return NewBB; 978 } 979 980 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 981 BasicBlock *SplitBB, BasicBlock *DestBB) { 982 // SplitBB shouldn't have anything non-trivial in it yet. 983 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 984 SplitBB->isLandingPad()) && 985 "SplitBB has non-PHI nodes!"); 986 987 // For each PHI in the destination block. 988 for (PHINode &PN : DestBB->phis()) { 989 int Idx = PN.getBasicBlockIndex(SplitBB); 990 assert(Idx >= 0 && "Invalid Block Index"); 991 Value *V = PN.getIncomingValue(Idx); 992 993 // If the input is a PHI which already satisfies LCSSA, don't create 994 // a new one. 995 if (const PHINode *VP = dyn_cast<PHINode>(V)) 996 if (VP->getParent() == SplitBB) 997 continue; 998 999 // Otherwise a new PHI is needed. Create one and populate it. 1000 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 1001 BasicBlock::iterator InsertPos = 1002 SplitBB->isLandingPad() ? SplitBB->begin() 1003 : SplitBB->getTerminator()->getIterator(); 1004 NewPN->insertBefore(InsertPos); 1005 for (BasicBlock *BB : Preds) 1006 NewPN->addIncoming(V, BB); 1007 1008 // Update the original PHI. 1009 PN.setIncomingValue(Idx, NewPN); 1010 } 1011 } 1012 1013 unsigned 1014 llvm::SplitAllCriticalEdges(Function &F, 1015 const CriticalEdgeSplittingOptions &Options) { 1016 unsigned NumBroken = 0; 1017 for (BasicBlock &BB : F) { 1018 Instruction *TI = BB.getTerminator(); 1019 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 1020 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1021 if (SplitCriticalEdge(TI, i, Options)) 1022 ++NumBroken; 1023 } 1024 return NumBroken; 1025 } 1026 1027 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 1028 DomTreeUpdater *DTU, DominatorTree *DT, 1029 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1030 const Twine &BBName, bool Before) { 1031 if (Before) { 1032 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1033 return splitBlockBefore(Old, SplitPt, 1034 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 1035 BBName); 1036 } 1037 BasicBlock::iterator SplitIt = SplitPt; 1038 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 1039 ++SplitIt; 1040 assert(SplitIt != SplitPt->getParent()->end()); 1041 } 1042 std::string Name = BBName.str(); 1043 BasicBlock *New = Old->splitBasicBlock( 1044 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 1045 1046 // The new block lives in whichever loop the old one did. This preserves 1047 // LCSSA as well, because we force the split point to be after any PHI nodes. 1048 if (LI) 1049 if (Loop *L = LI->getLoopFor(Old)) 1050 L->addBasicBlockToLoop(New, *LI); 1051 1052 if (DTU) { 1053 SmallVector<DominatorTree::UpdateType, 8> Updates; 1054 // Old dominates New. New node dominates all other nodes dominated by Old. 1055 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 1056 Updates.push_back({DominatorTree::Insert, Old, New}); 1057 Updates.reserve(Updates.size() + 2 * succ_size(New)); 1058 for (BasicBlock *SuccessorOfOld : successors(New)) 1059 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 1060 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 1061 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 1062 } 1063 1064 DTU->applyUpdates(Updates); 1065 } else if (DT) 1066 // Old dominates New. New node dominates all other nodes dominated by Old. 1067 if (DomTreeNode *OldNode = DT->getNode(Old)) { 1068 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1069 1070 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 1071 for (DomTreeNode *I : Children) 1072 DT->changeImmediateDominator(I, NewNode); 1073 } 1074 1075 // Move MemoryAccesses still tracked in Old, but part of New now. 1076 // Update accesses in successor blocks accordingly. 1077 if (MSSAU) 1078 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 1079 1080 return New; 1081 } 1082 1083 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1084 DominatorTree *DT, LoopInfo *LI, 1085 MemorySSAUpdater *MSSAU, const Twine &BBName, 1086 bool Before) { 1087 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1088 Before); 1089 } 1090 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1091 DomTreeUpdater *DTU, LoopInfo *LI, 1092 MemorySSAUpdater *MSSAU, const Twine &BBName, 1093 bool Before) { 1094 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1095 Before); 1096 } 1097 1098 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1099 DomTreeUpdater *DTU, LoopInfo *LI, 1100 MemorySSAUpdater *MSSAU, 1101 const Twine &BBName) { 1102 1103 BasicBlock::iterator SplitIt = SplitPt; 1104 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1105 ++SplitIt; 1106 std::string Name = BBName.str(); 1107 BasicBlock *New = Old->splitBasicBlock( 1108 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1109 /* Before=*/true); 1110 1111 // The new block lives in whichever loop the old one did. This preserves 1112 // LCSSA as well, because we force the split point to be after any PHI nodes. 1113 if (LI) 1114 if (Loop *L = LI->getLoopFor(Old)) 1115 L->addBasicBlockToLoop(New, *LI); 1116 1117 if (DTU) { 1118 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1119 // New dominates Old. The predecessor nodes of the Old node dominate 1120 // New node. 1121 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1122 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1123 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1124 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1125 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1126 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1127 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1128 } 1129 1130 DTU->applyUpdates(DTUpdates); 1131 1132 // Move MemoryAccesses still tracked in Old, but part of New now. 1133 // Update accesses in successor blocks accordingly. 1134 if (MSSAU) { 1135 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1136 if (VerifyMemorySSA) 1137 MSSAU->getMemorySSA()->verifyMemorySSA(); 1138 } 1139 } 1140 return New; 1141 } 1142 1143 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1144 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1145 ArrayRef<BasicBlock *> Preds, 1146 DomTreeUpdater *DTU, DominatorTree *DT, 1147 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1148 bool PreserveLCSSA, bool &HasLoopExit) { 1149 // Update dominator tree if available. 1150 if (DTU) { 1151 // Recalculation of DomTree is needed when updating a forward DomTree and 1152 // the Entry BB is replaced. 1153 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1154 // The entry block was removed and there is no external interface for 1155 // the dominator tree to be notified of this change. In this corner-case 1156 // we recalculate the entire tree. 1157 DTU->recalculate(*NewBB->getParent()); 1158 } else { 1159 // Split block expects NewBB to have a non-empty set of predecessors. 1160 SmallVector<DominatorTree::UpdateType, 8> Updates; 1161 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1162 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1163 Updates.reserve(Updates.size() + 2 * Preds.size()); 1164 for (auto *Pred : Preds) 1165 if (UniquePreds.insert(Pred).second) { 1166 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1167 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1168 } 1169 DTU->applyUpdates(Updates); 1170 } 1171 } else if (DT) { 1172 if (OldBB == DT->getRootNode()->getBlock()) { 1173 assert(NewBB->isEntryBlock()); 1174 DT->setNewRoot(NewBB); 1175 } else { 1176 // Split block expects NewBB to have a non-empty set of predecessors. 1177 DT->splitBlock(NewBB); 1178 } 1179 } 1180 1181 // Update MemoryPhis after split if MemorySSA is available 1182 if (MSSAU) 1183 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1184 1185 // The rest of the logic is only relevant for updating the loop structures. 1186 if (!LI) 1187 return; 1188 1189 if (DTU && DTU->hasDomTree()) 1190 DT = &DTU->getDomTree(); 1191 assert(DT && "DT should be available to update LoopInfo!"); 1192 Loop *L = LI->getLoopFor(OldBB); 1193 1194 // If we need to preserve loop analyses, collect some information about how 1195 // this split will affect loops. 1196 bool IsLoopEntry = !!L; 1197 bool SplitMakesNewLoopHeader = false; 1198 for (BasicBlock *Pred : Preds) { 1199 // Preds that are not reachable from entry should not be used to identify if 1200 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1201 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1202 // as true and make the NewBB the header of some loop. This breaks LI. 1203 if (!DT->isReachableFromEntry(Pred)) 1204 continue; 1205 // If we need to preserve LCSSA, determine if any of the preds is a loop 1206 // exit. 1207 if (PreserveLCSSA) 1208 if (Loop *PL = LI->getLoopFor(Pred)) 1209 if (!PL->contains(OldBB)) 1210 HasLoopExit = true; 1211 1212 // If we need to preserve LoopInfo, note whether any of the preds crosses 1213 // an interesting loop boundary. 1214 if (!L) 1215 continue; 1216 if (L->contains(Pred)) 1217 IsLoopEntry = false; 1218 else 1219 SplitMakesNewLoopHeader = true; 1220 } 1221 1222 // Unless we have a loop for OldBB, nothing else to do here. 1223 if (!L) 1224 return; 1225 1226 if (IsLoopEntry) { 1227 // Add the new block to the nearest enclosing loop (and not an adjacent 1228 // loop). To find this, examine each of the predecessors and determine which 1229 // loops enclose them, and select the most-nested loop which contains the 1230 // loop containing the block being split. 1231 Loop *InnermostPredLoop = nullptr; 1232 for (BasicBlock *Pred : Preds) { 1233 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1234 // Seek a loop which actually contains the block being split (to avoid 1235 // adjacent loops). 1236 while (PredLoop && !PredLoop->contains(OldBB)) 1237 PredLoop = PredLoop->getParentLoop(); 1238 1239 // Select the most-nested of these loops which contains the block. 1240 if (PredLoop && PredLoop->contains(OldBB) && 1241 (!InnermostPredLoop || 1242 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1243 InnermostPredLoop = PredLoop; 1244 } 1245 } 1246 1247 if (InnermostPredLoop) 1248 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1249 } else { 1250 L->addBasicBlockToLoop(NewBB, *LI); 1251 if (SplitMakesNewLoopHeader) 1252 L->moveToHeader(NewBB); 1253 } 1254 } 1255 1256 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1257 /// This also updates AliasAnalysis, if available. 1258 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1259 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1260 bool HasLoopExit) { 1261 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1262 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1263 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1264 PHINode *PN = cast<PHINode>(I++); 1265 1266 // Check to see if all of the values coming in are the same. If so, we 1267 // don't need to create a new PHI node, unless it's needed for LCSSA. 1268 Value *InVal = nullptr; 1269 if (!HasLoopExit) { 1270 InVal = PN->getIncomingValueForBlock(Preds[0]); 1271 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1272 if (!PredSet.count(PN->getIncomingBlock(i))) 1273 continue; 1274 if (!InVal) 1275 InVal = PN->getIncomingValue(i); 1276 else if (InVal != PN->getIncomingValue(i)) { 1277 InVal = nullptr; 1278 break; 1279 } 1280 } 1281 } 1282 1283 if (InVal) { 1284 // If all incoming values for the new PHI would be the same, just don't 1285 // make a new PHI. Instead, just remove the incoming values from the old 1286 // PHI. 1287 PN->removeIncomingValueIf( 1288 [&](unsigned Idx) { 1289 return PredSet.contains(PN->getIncomingBlock(Idx)); 1290 }, 1291 /* DeletePHIIfEmpty */ false); 1292 1293 // Add an incoming value to the PHI node in the loop for the preheader 1294 // edge. 1295 PN->addIncoming(InVal, NewBB); 1296 continue; 1297 } 1298 1299 // If the values coming into the block are not the same, we need a new 1300 // PHI. 1301 // Create the new PHI node, insert it into NewBB at the end of the block 1302 PHINode *NewPHI = 1303 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator()); 1304 1305 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1306 // the cost of removal if we end up removing a large number of values, and 1307 // second off, this ensures that the indices for the incoming values aren't 1308 // invalidated when we remove one. 1309 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1310 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1311 if (PredSet.count(IncomingBB)) { 1312 Value *V = PN->removeIncomingValue(i, false); 1313 NewPHI->addIncoming(V, IncomingBB); 1314 } 1315 } 1316 1317 PN->addIncoming(NewPHI, NewBB); 1318 } 1319 } 1320 1321 static void SplitLandingPadPredecessorsImpl( 1322 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1323 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1324 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1325 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1326 1327 static BasicBlock * 1328 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1329 const char *Suffix, DomTreeUpdater *DTU, 1330 DominatorTree *DT, LoopInfo *LI, 1331 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1332 // Do not attempt to split that which cannot be split. 1333 if (!BB->canSplitPredecessors()) 1334 return nullptr; 1335 1336 // For the landingpads we need to act a bit differently. 1337 // Delegate this work to the SplitLandingPadPredecessors. 1338 if (BB->isLandingPad()) { 1339 SmallVector<BasicBlock*, 2> NewBBs; 1340 std::string NewName = std::string(Suffix) + ".split-lp"; 1341 1342 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1343 DTU, DT, LI, MSSAU, PreserveLCSSA); 1344 return NewBBs[0]; 1345 } 1346 1347 // Create new basic block, insert right before the original block. 1348 BasicBlock *NewBB = BasicBlock::Create( 1349 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1350 1351 // The new block unconditionally branches to the old block. 1352 BranchInst *BI = BranchInst::Create(BB, NewBB); 1353 1354 Loop *L = nullptr; 1355 BasicBlock *OldLatch = nullptr; 1356 // Splitting the predecessors of a loop header creates a preheader block. 1357 if (LI && LI->isLoopHeader(BB)) { 1358 L = LI->getLoopFor(BB); 1359 // Using the loop start line number prevents debuggers stepping into the 1360 // loop body for this instruction. 1361 BI->setDebugLoc(L->getStartLoc()); 1362 1363 // If BB is the header of the Loop, it is possible that the loop is 1364 // modified, such that the current latch does not remain the latch of the 1365 // loop. If that is the case, the loop metadata from the current latch needs 1366 // to be applied to the new latch. 1367 OldLatch = L->getLoopLatch(); 1368 } else 1369 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1370 1371 // Move the edges from Preds to point to NewBB instead of BB. 1372 for (BasicBlock *Pred : Preds) { 1373 // This is slightly more strict than necessary; the minimum requirement 1374 // is that there be no more than one indirectbr branching to BB. And 1375 // all BlockAddress uses would need to be updated. 1376 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1377 "Cannot split an edge from an IndirectBrInst"); 1378 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1379 } 1380 1381 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1382 // node becomes an incoming value for BB's phi node. However, if the Preds 1383 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1384 // account for the newly created predecessor. 1385 if (Preds.empty()) { 1386 // Insert dummy values as the incoming value. 1387 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1388 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1389 } 1390 1391 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1392 bool HasLoopExit = false; 1393 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1394 HasLoopExit); 1395 1396 if (!Preds.empty()) { 1397 // Update the PHI nodes in BB with the values coming from NewBB. 1398 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1399 } 1400 1401 if (OldLatch) { 1402 BasicBlock *NewLatch = L->getLoopLatch(); 1403 if (NewLatch != OldLatch) { 1404 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1405 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1406 // It's still possible that OldLatch is the latch of another inner loop, 1407 // in which case we do not remove the metadata. 1408 Loop *IL = LI->getLoopFor(OldLatch); 1409 if (IL && IL->getLoopLatch() != OldLatch) 1410 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1411 } 1412 } 1413 1414 return NewBB; 1415 } 1416 1417 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1418 ArrayRef<BasicBlock *> Preds, 1419 const char *Suffix, DominatorTree *DT, 1420 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1421 bool PreserveLCSSA) { 1422 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1423 MSSAU, PreserveLCSSA); 1424 } 1425 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1426 ArrayRef<BasicBlock *> Preds, 1427 const char *Suffix, 1428 DomTreeUpdater *DTU, LoopInfo *LI, 1429 MemorySSAUpdater *MSSAU, 1430 bool PreserveLCSSA) { 1431 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1432 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1433 } 1434 1435 static void SplitLandingPadPredecessorsImpl( 1436 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1437 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1438 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1439 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1440 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1441 1442 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1443 // it right before the original block. 1444 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1445 OrigBB->getName() + Suffix1, 1446 OrigBB->getParent(), OrigBB); 1447 NewBBs.push_back(NewBB1); 1448 1449 // The new block unconditionally branches to the old block. 1450 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1451 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1452 1453 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1454 for (BasicBlock *Pred : Preds) { 1455 // This is slightly more strict than necessary; the minimum requirement 1456 // is that there be no more than one indirectbr branching to BB. And 1457 // all BlockAddress uses would need to be updated. 1458 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1459 "Cannot split an edge from an IndirectBrInst"); 1460 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1461 } 1462 1463 bool HasLoopExit = false; 1464 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1465 PreserveLCSSA, HasLoopExit); 1466 1467 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1468 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1469 1470 // Move the remaining edges from OrigBB to point to NewBB2. 1471 SmallVector<BasicBlock*, 8> NewBB2Preds; 1472 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1473 i != e; ) { 1474 BasicBlock *Pred = *i++; 1475 if (Pred == NewBB1) continue; 1476 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1477 "Cannot split an edge from an IndirectBrInst"); 1478 NewBB2Preds.push_back(Pred); 1479 e = pred_end(OrigBB); 1480 } 1481 1482 BasicBlock *NewBB2 = nullptr; 1483 if (!NewBB2Preds.empty()) { 1484 // Create another basic block for the rest of OrigBB's predecessors. 1485 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1486 OrigBB->getName() + Suffix2, 1487 OrigBB->getParent(), OrigBB); 1488 NewBBs.push_back(NewBB2); 1489 1490 // The new block unconditionally branches to the old block. 1491 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1492 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1493 1494 // Move the remaining edges from OrigBB to point to NewBB2. 1495 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1496 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1497 1498 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1499 HasLoopExit = false; 1500 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1501 PreserveLCSSA, HasLoopExit); 1502 1503 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1504 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1505 } 1506 1507 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1508 Instruction *Clone1 = LPad->clone(); 1509 Clone1->setName(Twine("lpad") + Suffix1); 1510 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1511 1512 if (NewBB2) { 1513 Instruction *Clone2 = LPad->clone(); 1514 Clone2->setName(Twine("lpad") + Suffix2); 1515 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1516 1517 // Create a PHI node for the two cloned landingpad instructions only 1518 // if the original landingpad instruction has some uses. 1519 if (!LPad->use_empty()) { 1520 assert(!LPad->getType()->isTokenTy() && 1521 "Split cannot be applied if LPad is token type. Otherwise an " 1522 "invalid PHINode of token type would be created."); 1523 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator()); 1524 PN->addIncoming(Clone1, NewBB1); 1525 PN->addIncoming(Clone2, NewBB2); 1526 LPad->replaceAllUsesWith(PN); 1527 } 1528 LPad->eraseFromParent(); 1529 } else { 1530 // There is no second clone. Just replace the landing pad with the first 1531 // clone. 1532 LPad->replaceAllUsesWith(Clone1); 1533 LPad->eraseFromParent(); 1534 } 1535 } 1536 1537 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1538 ArrayRef<BasicBlock *> Preds, 1539 const char *Suffix1, const char *Suffix2, 1540 SmallVectorImpl<BasicBlock *> &NewBBs, 1541 DomTreeUpdater *DTU, LoopInfo *LI, 1542 MemorySSAUpdater *MSSAU, 1543 bool PreserveLCSSA) { 1544 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1545 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1546 PreserveLCSSA); 1547 } 1548 1549 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1550 BasicBlock *Pred, 1551 DomTreeUpdater *DTU) { 1552 Instruction *UncondBranch = Pred->getTerminator(); 1553 // Clone the return and add it to the end of the predecessor. 1554 Instruction *NewRet = RI->clone(); 1555 NewRet->insertInto(Pred, Pred->end()); 1556 1557 // If the return instruction returns a value, and if the value was a 1558 // PHI node in "BB", propagate the right value into the return. 1559 for (Use &Op : NewRet->operands()) { 1560 Value *V = Op; 1561 Instruction *NewBC = nullptr; 1562 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1563 // Return value might be bitcasted. Clone and insert it before the 1564 // return instruction. 1565 V = BCI->getOperand(0); 1566 NewBC = BCI->clone(); 1567 NewBC->insertInto(Pred, NewRet->getIterator()); 1568 Op = NewBC; 1569 } 1570 1571 Instruction *NewEV = nullptr; 1572 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1573 V = EVI->getOperand(0); 1574 NewEV = EVI->clone(); 1575 if (NewBC) { 1576 NewBC->setOperand(0, NewEV); 1577 NewEV->insertInto(Pred, NewBC->getIterator()); 1578 } else { 1579 NewEV->insertInto(Pred, NewRet->getIterator()); 1580 Op = NewEV; 1581 } 1582 } 1583 1584 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1585 if (PN->getParent() == BB) { 1586 if (NewEV) { 1587 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1588 } else if (NewBC) 1589 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1590 else 1591 Op = PN->getIncomingValueForBlock(Pred); 1592 } 1593 } 1594 } 1595 1596 // Update any PHI nodes in the returning block to realize that we no 1597 // longer branch to them. 1598 BB->removePredecessor(Pred); 1599 UncondBranch->eraseFromParent(); 1600 1601 if (DTU) 1602 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1603 1604 return cast<ReturnInst>(NewRet); 1605 } 1606 1607 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1608 BasicBlock::iterator SplitBefore, 1609 bool Unreachable, 1610 MDNode *BranchWeights, 1611 DomTreeUpdater *DTU, LoopInfo *LI, 1612 BasicBlock *ThenBlock) { 1613 SplitBlockAndInsertIfThenElse( 1614 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1615 /* UnreachableThen */ Unreachable, 1616 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1617 return ThenBlock->getTerminator(); 1618 } 1619 1620 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1621 BasicBlock::iterator SplitBefore, 1622 bool Unreachable, 1623 MDNode *BranchWeights, 1624 DomTreeUpdater *DTU, LoopInfo *LI, 1625 BasicBlock *ElseBlock) { 1626 SplitBlockAndInsertIfThenElse( 1627 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1628 /* UnreachableThen */ false, 1629 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1630 return ElseBlock->getTerminator(); 1631 } 1632 1633 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1634 Instruction **ThenTerm, 1635 Instruction **ElseTerm, 1636 MDNode *BranchWeights, 1637 DomTreeUpdater *DTU, LoopInfo *LI) { 1638 BasicBlock *ThenBlock = nullptr; 1639 BasicBlock *ElseBlock = nullptr; 1640 SplitBlockAndInsertIfThenElse( 1641 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1642 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1643 1644 *ThenTerm = ThenBlock->getTerminator(); 1645 *ElseTerm = ElseBlock->getTerminator(); 1646 } 1647 1648 void llvm::SplitBlockAndInsertIfThenElse( 1649 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1650 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1651 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1652 assert((ThenBlock || ElseBlock) && 1653 "At least one branch block must be created"); 1654 assert((!UnreachableThen || !UnreachableElse) && 1655 "Split block tail must be reachable"); 1656 1657 SmallVector<DominatorTree::UpdateType, 8> Updates; 1658 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1659 BasicBlock *Head = SplitBefore->getParent(); 1660 if (DTU) { 1661 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1662 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1663 } 1664 1665 LLVMContext &C = Head->getContext(); 1666 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1667 BasicBlock *TrueBlock = Tail; 1668 BasicBlock *FalseBlock = Tail; 1669 bool ThenToTailEdge = false; 1670 bool ElseToTailEdge = false; 1671 1672 // Encapsulate the logic around creation/insertion/etc of a new block. 1673 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1674 bool &ToTailEdge) { 1675 if (PBB == nullptr) 1676 return; // Do not create/insert a block. 1677 1678 if (*PBB) 1679 BB = *PBB; // Caller supplied block, use it. 1680 else { 1681 // Create a new block. 1682 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1683 if (Unreachable) 1684 (void)new UnreachableInst(C, BB); 1685 else { 1686 (void)BranchInst::Create(Tail, BB); 1687 ToTailEdge = true; 1688 } 1689 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1690 // Pass the new block back to the caller. 1691 *PBB = BB; 1692 } 1693 }; 1694 1695 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1696 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1697 1698 Instruction *HeadOldTerm = Head->getTerminator(); 1699 BranchInst *HeadNewTerm = 1700 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1701 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1702 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1703 1704 if (DTU) { 1705 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1706 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1707 if (ThenToTailEdge) 1708 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1709 if (ElseToTailEdge) 1710 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1711 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1712 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1713 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1714 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1715 DTU->applyUpdates(Updates); 1716 } 1717 1718 if (LI) { 1719 if (Loop *L = LI->getLoopFor(Head); L) { 1720 if (ThenToTailEdge) 1721 L->addBasicBlockToLoop(TrueBlock, *LI); 1722 if (ElseToTailEdge) 1723 L->addBasicBlockToLoop(FalseBlock, *LI); 1724 L->addBasicBlockToLoop(Tail, *LI); 1725 } 1726 } 1727 } 1728 1729 std::pair<Instruction*, Value*> 1730 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1731 BasicBlock *LoopPred = SplitBefore->getParent(); 1732 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1733 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1734 1735 auto *Ty = End->getType(); 1736 auto &DL = SplitBefore->getModule()->getDataLayout(); 1737 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1738 1739 IRBuilder<> Builder(LoopBody->getTerminator()); 1740 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1741 auto *IVNext = 1742 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1743 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1744 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1745 IV->getName() + ".check"); 1746 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1747 LoopBody->getTerminator()->eraseFromParent(); 1748 1749 // Populate the IV PHI. 1750 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1751 IV->addIncoming(IVNext, LoopBody); 1752 1753 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1754 } 1755 1756 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1757 Type *IndexTy, Instruction *InsertBefore, 1758 std::function<void(IRBuilderBase&, Value*)> Func) { 1759 1760 IRBuilder<> IRB(InsertBefore); 1761 1762 if (EC.isScalable()) { 1763 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1764 1765 auto [BodyIP, Index] = 1766 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1767 1768 IRB.SetInsertPoint(BodyIP); 1769 Func(IRB, Index); 1770 return; 1771 } 1772 1773 unsigned Num = EC.getFixedValue(); 1774 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1775 IRB.SetInsertPoint(InsertBefore); 1776 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1777 } 1778 } 1779 1780 void llvm::SplitBlockAndInsertForEachLane( 1781 Value *EVL, Instruction *InsertBefore, 1782 std::function<void(IRBuilderBase &, Value *)> Func) { 1783 1784 IRBuilder<> IRB(InsertBefore); 1785 Type *Ty = EVL->getType(); 1786 1787 if (!isa<ConstantInt>(EVL)) { 1788 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1789 IRB.SetInsertPoint(BodyIP); 1790 Func(IRB, Index); 1791 return; 1792 } 1793 1794 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1795 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1796 IRB.SetInsertPoint(InsertBefore); 1797 Func(IRB, ConstantInt::get(Ty, Idx)); 1798 } 1799 } 1800 1801 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1802 BasicBlock *&IfFalse) { 1803 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1804 BasicBlock *Pred1 = nullptr; 1805 BasicBlock *Pred2 = nullptr; 1806 1807 if (SomePHI) { 1808 if (SomePHI->getNumIncomingValues() != 2) 1809 return nullptr; 1810 Pred1 = SomePHI->getIncomingBlock(0); 1811 Pred2 = SomePHI->getIncomingBlock(1); 1812 } else { 1813 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1814 if (PI == PE) // No predecessor 1815 return nullptr; 1816 Pred1 = *PI++; 1817 if (PI == PE) // Only one predecessor 1818 return nullptr; 1819 Pred2 = *PI++; 1820 if (PI != PE) // More than two predecessors 1821 return nullptr; 1822 } 1823 1824 // We can only handle branches. Other control flow will be lowered to 1825 // branches if possible anyway. 1826 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1827 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1828 if (!Pred1Br || !Pred2Br) 1829 return nullptr; 1830 1831 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1832 // either are. 1833 if (Pred2Br->isConditional()) { 1834 // If both branches are conditional, we don't have an "if statement". In 1835 // reality, we could transform this case, but since the condition will be 1836 // required anyway, we stand no chance of eliminating it, so the xform is 1837 // probably not profitable. 1838 if (Pred1Br->isConditional()) 1839 return nullptr; 1840 1841 std::swap(Pred1, Pred2); 1842 std::swap(Pred1Br, Pred2Br); 1843 } 1844 1845 if (Pred1Br->isConditional()) { 1846 // The only thing we have to watch out for here is to make sure that Pred2 1847 // doesn't have incoming edges from other blocks. If it does, the condition 1848 // doesn't dominate BB. 1849 if (!Pred2->getSinglePredecessor()) 1850 return nullptr; 1851 1852 // If we found a conditional branch predecessor, make sure that it branches 1853 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1854 if (Pred1Br->getSuccessor(0) == BB && 1855 Pred1Br->getSuccessor(1) == Pred2) { 1856 IfTrue = Pred1; 1857 IfFalse = Pred2; 1858 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1859 Pred1Br->getSuccessor(1) == BB) { 1860 IfTrue = Pred2; 1861 IfFalse = Pred1; 1862 } else { 1863 // We know that one arm of the conditional goes to BB, so the other must 1864 // go somewhere unrelated, and this must not be an "if statement". 1865 return nullptr; 1866 } 1867 1868 return Pred1Br; 1869 } 1870 1871 // Ok, if we got here, both predecessors end with an unconditional branch to 1872 // BB. Don't panic! If both blocks only have a single (identical) 1873 // predecessor, and THAT is a conditional branch, then we're all ok! 1874 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1875 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1876 return nullptr; 1877 1878 // Otherwise, if this is a conditional branch, then we can use it! 1879 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1880 if (!BI) return nullptr; 1881 1882 assert(BI->isConditional() && "Two successors but not conditional?"); 1883 if (BI->getSuccessor(0) == Pred1) { 1884 IfTrue = Pred1; 1885 IfFalse = Pred2; 1886 } else { 1887 IfTrue = Pred2; 1888 IfFalse = Pred1; 1889 } 1890 return BI; 1891 } 1892 1893 // After creating a control flow hub, the operands of PHINodes in an outgoing 1894 // block Out no longer match the predecessors of that block. Predecessors of Out 1895 // that are incoming blocks to the hub are now replaced by just one edge from 1896 // the hub. To match this new control flow, the corresponding values from each 1897 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1898 // 1899 // This operation cannot be performed with SSAUpdater, because it involves one 1900 // new use: If the block Out is in the list of Incoming blocks, then the newly 1901 // created PHI in the Hub will use itself along that edge from Out to Hub. 1902 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1903 const SetVector<BasicBlock *> &Incoming, 1904 BasicBlock *FirstGuardBlock) { 1905 auto I = Out->begin(); 1906 while (I != Out->end() && isa<PHINode>(I)) { 1907 auto Phi = cast<PHINode>(I); 1908 auto NewPhi = 1909 PHINode::Create(Phi->getType(), Incoming.size(), 1910 Phi->getName() + ".moved", FirstGuardBlock->begin()); 1911 for (auto *In : Incoming) { 1912 Value *V = UndefValue::get(Phi->getType()); 1913 if (In == Out) { 1914 V = NewPhi; 1915 } else if (Phi->getBasicBlockIndex(In) != -1) { 1916 V = Phi->removeIncomingValue(In, false); 1917 } 1918 NewPhi->addIncoming(V, In); 1919 } 1920 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1921 if (Phi->getNumOperands() == 0) { 1922 Phi->replaceAllUsesWith(NewPhi); 1923 I = Phi->eraseFromParent(); 1924 continue; 1925 } 1926 Phi->addIncoming(NewPhi, GuardBlock); 1927 ++I; 1928 } 1929 } 1930 1931 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1932 using BBSetVector = SetVector<BasicBlock *>; 1933 1934 // Redirects the terminator of the incoming block to the first guard 1935 // block in the hub. The condition of the original terminator (if it 1936 // was conditional) and its original successors are returned as a 1937 // tuple <condition, succ0, succ1>. The function additionally filters 1938 // out successors that are not in the set of outgoing blocks. 1939 // 1940 // - condition is non-null iff the branch is conditional. 1941 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1942 // - Succ2 is non-null iff condition is non-null and the fallthrough 1943 // target is an outgoing block. 1944 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1945 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1946 const BBSetVector &Outgoing) { 1947 assert(isa<BranchInst>(BB->getTerminator()) && 1948 "Only support branch terminator."); 1949 auto Branch = cast<BranchInst>(BB->getTerminator()); 1950 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1951 1952 BasicBlock *Succ0 = Branch->getSuccessor(0); 1953 BasicBlock *Succ1 = nullptr; 1954 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1955 1956 if (Branch->isUnconditional()) { 1957 Branch->setSuccessor(0, FirstGuardBlock); 1958 assert(Succ0); 1959 } else { 1960 Succ1 = Branch->getSuccessor(1); 1961 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1962 assert(Succ0 || Succ1); 1963 if (Succ0 && !Succ1) { 1964 Branch->setSuccessor(0, FirstGuardBlock); 1965 } else if (Succ1 && !Succ0) { 1966 Branch->setSuccessor(1, FirstGuardBlock); 1967 } else { 1968 Branch->eraseFromParent(); 1969 BranchInst::Create(FirstGuardBlock, BB); 1970 } 1971 } 1972 1973 assert(Succ0 || Succ1); 1974 return std::make_tuple(Condition, Succ0, Succ1); 1975 } 1976 // Setup the branch instructions for guard blocks. 1977 // 1978 // Each guard block terminates in a conditional branch that transfers 1979 // control to the corresponding outgoing block or the next guard 1980 // block. The last guard block has two outgoing blocks as successors 1981 // since the condition for the final outgoing block is trivially 1982 // true. So we create one less block (including the first guard block) 1983 // than the number of outgoing blocks. 1984 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1985 const BBSetVector &Outgoing, 1986 BBPredicates &GuardPredicates) { 1987 // To help keep the loop simple, temporarily append the last 1988 // outgoing block to the list of guard blocks. 1989 GuardBlocks.push_back(Outgoing.back()); 1990 1991 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1992 auto Out = Outgoing[i]; 1993 assert(GuardPredicates.count(Out)); 1994 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1995 GuardBlocks[i]); 1996 } 1997 1998 // Remove the last block from the guard list. 1999 GuardBlocks.pop_back(); 2000 } 2001 2002 /// We are using one integer to represent the block we are branching to. Then at 2003 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 2004 static void calcPredicateUsingInteger( 2005 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2006 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 2007 auto &Context = Incoming.front()->getContext(); 2008 auto FirstGuardBlock = GuardBlocks.front(); 2009 2010 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 2011 "merged.bb.idx", FirstGuardBlock); 2012 2013 for (auto In : Incoming) { 2014 Value *Condition; 2015 BasicBlock *Succ0; 2016 BasicBlock *Succ1; 2017 std::tie(Condition, Succ0, Succ1) = 2018 redirectToHub(In, FirstGuardBlock, Outgoing); 2019 Value *IncomingId = nullptr; 2020 if (Succ0 && Succ1) { 2021 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 2022 auto Succ0Iter = find(Outgoing, Succ0); 2023 auto Succ1Iter = find(Outgoing, Succ1); 2024 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 2025 std::distance(Outgoing.begin(), Succ0Iter)); 2026 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 2027 std::distance(Outgoing.begin(), Succ1Iter)); 2028 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 2029 In->getTerminator()->getIterator()); 2030 } else { 2031 // Get the index of the non-null successor. 2032 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 2033 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 2034 std::distance(Outgoing.begin(), SuccIter)); 2035 } 2036 Phi->addIncoming(IncomingId, In); 2037 } 2038 2039 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2040 auto Out = Outgoing[i]; 2041 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 2042 ConstantInt::get(Type::getInt32Ty(Context), i), 2043 Out->getName() + ".predicate", GuardBlocks[i]); 2044 GuardPredicates[Out] = Cmp; 2045 } 2046 } 2047 2048 /// We record the predicate of each outgoing block using a phi of boolean. 2049 static void calcPredicateUsingBooleans( 2050 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2051 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 2052 SmallVectorImpl<WeakVH> &DeletionCandidates) { 2053 auto &Context = Incoming.front()->getContext(); 2054 auto BoolTrue = ConstantInt::getTrue(Context); 2055 auto BoolFalse = ConstantInt::getFalse(Context); 2056 auto FirstGuardBlock = GuardBlocks.front(); 2057 2058 // The predicate for the last outgoing is trivially true, and so we 2059 // process only the first N-1 successors. 2060 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2061 auto Out = Outgoing[i]; 2062 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 2063 2064 auto Phi = 2065 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 2066 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 2067 GuardPredicates[Out] = Phi; 2068 } 2069 2070 for (auto *In : Incoming) { 2071 Value *Condition; 2072 BasicBlock *Succ0; 2073 BasicBlock *Succ1; 2074 std::tie(Condition, Succ0, Succ1) = 2075 redirectToHub(In, FirstGuardBlock, Outgoing); 2076 2077 // Optimization: Consider an incoming block A with both successors 2078 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 2079 // for Succ0 and Succ1 complement each other. If Succ0 is visited 2080 // first in the loop below, control will branch to Succ0 using the 2081 // corresponding predicate. But if that branch is not taken, then 2082 // control must reach Succ1, which means that the incoming value of 2083 // the predicate from `In` is true for Succ1. 2084 bool OneSuccessorDone = false; 2085 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2086 auto Out = Outgoing[i]; 2087 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 2088 if (Out != Succ0 && Out != Succ1) { 2089 Phi->addIncoming(BoolFalse, In); 2090 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 2091 // Optimization: When only one successor is an outgoing block, 2092 // the incoming predicate from `In` is always true. 2093 Phi->addIncoming(BoolTrue, In); 2094 } else { 2095 assert(Succ0 && Succ1); 2096 if (Out == Succ0) { 2097 Phi->addIncoming(Condition, In); 2098 } else { 2099 auto Inverted = invertCondition(Condition); 2100 DeletionCandidates.push_back(Condition); 2101 Phi->addIncoming(Inverted, In); 2102 } 2103 OneSuccessorDone = true; 2104 } 2105 } 2106 } 2107 } 2108 2109 // Capture the existing control flow as guard predicates, and redirect 2110 // control flow from \p Incoming block through the \p GuardBlocks to the 2111 // \p Outgoing blocks. 2112 // 2113 // There is one guard predicate for each outgoing block OutBB. The 2114 // predicate represents whether the hub should transfer control flow 2115 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 2116 // them in the same order as the Outgoing set-vector, and control 2117 // branches to the first outgoing block whose predicate evaluates to true. 2118 static void 2119 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 2120 SmallVectorImpl<WeakVH> &DeletionCandidates, 2121 const BBSetVector &Incoming, 2122 const BBSetVector &Outgoing, const StringRef Prefix, 2123 std::optional<unsigned> MaxControlFlowBooleans) { 2124 BBPredicates GuardPredicates; 2125 auto F = Incoming.front()->getParent(); 2126 2127 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 2128 GuardBlocks.push_back( 2129 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 2130 2131 // When we are using an integer to record which target block to jump to, we 2132 // are creating less live values, actually we are using one single integer to 2133 // store the index of the target block. When we are using booleans to store 2134 // the branching information, we need (N-1) boolean values, where N is the 2135 // number of outgoing block. 2136 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2137 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2138 DeletionCandidates); 2139 else 2140 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2141 2142 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2143 } 2144 2145 BasicBlock *llvm::CreateControlFlowHub( 2146 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2147 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2148 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2149 if (Outgoing.size() < 2) 2150 return Outgoing.front(); 2151 2152 SmallVector<DominatorTree::UpdateType, 16> Updates; 2153 if (DTU) { 2154 for (auto *In : Incoming) { 2155 for (auto Succ : successors(In)) 2156 if (Outgoing.count(Succ)) 2157 Updates.push_back({DominatorTree::Delete, In, Succ}); 2158 } 2159 } 2160 2161 SmallVector<WeakVH, 8> DeletionCandidates; 2162 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2163 Prefix, MaxControlFlowBooleans); 2164 auto FirstGuardBlock = GuardBlocks.front(); 2165 2166 // Update the PHINodes in each outgoing block to match the new control flow. 2167 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2168 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2169 2170 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2171 2172 if (DTU) { 2173 int NumGuards = GuardBlocks.size(); 2174 assert((int)Outgoing.size() == NumGuards + 1); 2175 2176 for (auto In : Incoming) 2177 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2178 2179 for (int i = 0; i != NumGuards - 1; ++i) { 2180 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2181 Updates.push_back( 2182 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2183 } 2184 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2185 Outgoing[NumGuards - 1]}); 2186 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2187 Outgoing[NumGuards]}); 2188 DTU->applyUpdates(Updates); 2189 } 2190 2191 for (auto I : DeletionCandidates) { 2192 if (I->use_empty()) 2193 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2194 Inst->eraseFromParent(); 2195 } 2196 2197 return FirstGuardBlock; 2198 } 2199 2200 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2201 Value *NewCond = PBI->getCondition(); 2202 // If this is a "cmp" instruction, only used for branching (and nowhere 2203 // else), then we can simply invert the predicate. 2204 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2205 CmpInst *CI = cast<CmpInst>(NewCond); 2206 CI->setPredicate(CI->getInversePredicate()); 2207 } else 2208 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2209 2210 PBI->setCondition(NewCond); 2211 PBI->swapSuccessors(); 2212 } 2213 2214 bool llvm::hasOnlySimpleTerminator(const Function &F) { 2215 for (auto &BB : F) { 2216 auto *Term = BB.getTerminator(); 2217 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 2218 isa<BranchInst>(Term))) 2219 return false; 2220 } 2221 return true; 2222 } 2223 2224 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, 2225 const BasicBlock &Dest) { 2226 assert(Src.getParent() == Dest.getParent()); 2227 if (!Src.getParent()->isPresplitCoroutine()) 2228 return false; 2229 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator())) 2230 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition())) 2231 return Intr->getIntrinsicID() == Intrinsic::coro_suspend && 2232 SW->getDefaultDest() == &Dest; 2233 return false; 2234 } 2235