1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 386 SmallVector<DPValue *, 8> ToBeRemoved; 387 SmallDenseSet<DebugVariable> VariableSet; 388 for (auto &I : reverse(*BB)) { 389 for (DPValue &DPV : reverse(I.getDbgValueRange())) { 390 DebugVariable Key(DPV.getVariable(), DPV.getExpression(), 391 DPV.getDebugLoc()->getInlinedAt()); 392 auto R = VariableSet.insert(Key); 393 // If the same variable fragment is described more than once it is enough 394 // to keep the last one (i.e. the first found since we for reverse 395 // iteration). 396 // FIXME: add assignment tracking support (see parallel implementation 397 // below). 398 if (!R.second) 399 ToBeRemoved.push_back(&DPV); 400 continue; 401 } 402 // Sequence with consecutive dbg.value instrs ended. Clear the map to 403 // restart identifying redundant instructions if case we find another 404 // dbg.value sequence. 405 VariableSet.clear(); 406 } 407 408 for (auto &DPV : ToBeRemoved) 409 DPV->eraseFromParent(); 410 411 return !ToBeRemoved.empty(); 412 } 413 414 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 415 if (BB->IsNewDbgInfoFormat) 416 return DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BB); 417 418 SmallVector<DbgValueInst *, 8> ToBeRemoved; 419 SmallDenseSet<DebugVariable> VariableSet; 420 for (auto &I : reverse(*BB)) { 421 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 422 DebugVariable Key(DVI->getVariable(), 423 DVI->getExpression(), 424 DVI->getDebugLoc()->getInlinedAt()); 425 auto R = VariableSet.insert(Key); 426 // If the variable fragment hasn't been seen before then we don't want 427 // to remove this dbg intrinsic. 428 if (R.second) 429 continue; 430 431 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 432 // Don't delete dbg.assign intrinsics that are linked to instructions. 433 if (!at::getAssignmentInsts(DAI).empty()) 434 continue; 435 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 436 } 437 438 // If the same variable fragment is described more than once it is enough 439 // to keep the last one (i.e. the first found since we for reverse 440 // iteration). 441 ToBeRemoved.push_back(DVI); 442 continue; 443 } 444 // Sequence with consecutive dbg.value instrs ended. Clear the map to 445 // restart identifying redundant instructions if case we find another 446 // dbg.value sequence. 447 VariableSet.clear(); 448 } 449 450 for (auto &Instr : ToBeRemoved) 451 Instr->eraseFromParent(); 452 453 return !ToBeRemoved.empty(); 454 } 455 456 /// Remove redundant dbg.value instructions using a forward scan. This can 457 /// remove a dbg.value instruction that is redundant due to indicating that a 458 /// variable has the same value as already being indicated by an earlier 459 /// dbg.value. 460 /// 461 /// ForwardScan strategy: 462 /// --------------------- 463 /// Given two identical dbg.value instructions, separated by a block of 464 /// instructions that isn't describing the same variable, like this 465 /// 466 /// dbg.value X1, "x", FragmentX1 (**) 467 /// <block of instructions, none being "dbg.value ..., "x", ..."> 468 /// dbg.value X1, "x", FragmentX1 (*) 469 /// 470 /// then the instruction marked with (*) can be removed. Variable "x" is already 471 /// described as being mapped to the SSA value X1. 472 /// 473 /// Possible improvements: 474 /// - Keep track of non-overlapping fragments. 475 static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 476 SmallVector<DPValue *, 8> ToBeRemoved; 477 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 478 VariableMap; 479 for (auto &I : *BB) { 480 for (DPValue &DPV : I.getDbgValueRange()) { 481 DebugVariable Key(DPV.getVariable(), std::nullopt, 482 DPV.getDebugLoc()->getInlinedAt()); 483 auto VMI = VariableMap.find(Key); 484 // Update the map if we found a new value/expression describing the 485 // variable, or if the variable wasn't mapped already. 486 SmallVector<Value *, 4> Values(DPV.location_ops()); 487 if (VMI == VariableMap.end() || VMI->second.first != Values || 488 VMI->second.second != DPV.getExpression()) { 489 VariableMap[Key] = {Values, DPV.getExpression()}; 490 continue; 491 } 492 // Found an identical mapping. Remember the instruction for later removal. 493 ToBeRemoved.push_back(&DPV); 494 } 495 } 496 497 for (auto *DPV : ToBeRemoved) 498 DPV->eraseFromParent(); 499 500 return !ToBeRemoved.empty(); 501 } 502 503 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 504 if (BB->IsNewDbgInfoFormat) 505 return DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BB); 506 507 SmallVector<DbgValueInst *, 8> ToBeRemoved; 508 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 509 VariableMap; 510 for (auto &I : *BB) { 511 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 512 DebugVariable Key(DVI->getVariable(), std::nullopt, 513 DVI->getDebugLoc()->getInlinedAt()); 514 auto VMI = VariableMap.find(Key); 515 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 516 // A dbg.assign with no linked instructions can be treated like a 517 // dbg.value (i.e. can be deleted). 518 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 519 520 // Update the map if we found a new value/expression describing the 521 // variable, or if the variable wasn't mapped already. 522 SmallVector<Value *, 4> Values(DVI->getValues()); 523 if (VMI == VariableMap.end() || VMI->second.first != Values || 524 VMI->second.second != DVI->getExpression()) { 525 // Use a sentinal value (nullptr) for the DIExpression when we see a 526 // linked dbg.assign so that the next debug intrinsic will never match 527 // it (i.e. always treat linked dbg.assigns as if they're unique). 528 if (IsDbgValueKind) 529 VariableMap[Key] = {Values, DVI->getExpression()}; 530 else 531 VariableMap[Key] = {Values, nullptr}; 532 continue; 533 } 534 535 // Don't delete dbg.assign intrinsics that are linked to instructions. 536 if (!IsDbgValueKind) 537 continue; 538 ToBeRemoved.push_back(DVI); 539 } 540 } 541 542 for (auto &Instr : ToBeRemoved) 543 Instr->eraseFromParent(); 544 545 return !ToBeRemoved.empty(); 546 } 547 548 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 549 /// forward scan. 550 /// Strategy: 551 /// --------------------- 552 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 553 /// linked to an intrinsic, and don't share an aggregate variable with a debug 554 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 555 /// that come before non-undef debug intrinsics for the variable are 556 /// deleted. Given: 557 /// 558 /// dbg.assign undef, "x", FragmentX1 (*) 559 /// <block of instructions, none being "dbg.value ..., "x", ..."> 560 /// dbg.value %V, "x", FragmentX2 561 /// <block of instructions, none being "dbg.value ..., "x", ..."> 562 /// dbg.assign undef, "x", FragmentX1 563 /// 564 /// then (only) the instruction marked with (*) can be removed. 565 /// Possible improvements: 566 /// - Keep track of non-overlapping fragments. 567 static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 568 assert(BB->isEntryBlock() && "expected entry block"); 569 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 570 DenseSet<DebugVariable> SeenDefForAggregate; 571 // Returns the DebugVariable for DVI with no fragment info. 572 auto GetAggregateVariable = [](DbgValueInst *DVI) { 573 return DebugVariable(DVI->getVariable(), std::nullopt, 574 DVI->getDebugLoc()->getInlinedAt()); 575 }; 576 577 // Remove undef dbg.assign intrinsics that are encountered before 578 // any non-undef intrinsics from the entry block. 579 for (auto &I : *BB) { 580 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 581 if (!DVI) 582 continue; 583 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 584 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 585 DebugVariable Aggregate = GetAggregateVariable(DVI); 586 if (!SeenDefForAggregate.contains(Aggregate)) { 587 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 588 if (!IsKill) { 589 SeenDefForAggregate.insert(Aggregate); 590 } else if (DAI) { 591 ToBeRemoved.push_back(DAI); 592 } 593 } 594 } 595 596 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 597 DAI->eraseFromParent(); 598 599 return !ToBeRemoved.empty(); 600 } 601 602 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 603 bool MadeChanges = false; 604 // By using the "backward scan" strategy before the "forward scan" strategy we 605 // can remove both dbg.value (2) and (3) in a situation like this: 606 // 607 // (1) dbg.value V1, "x", DIExpression() 608 // ... 609 // (2) dbg.value V2, "x", DIExpression() 610 // (3) dbg.value V1, "x", DIExpression() 611 // 612 // The backward scan will remove (2), it is made obsolete by (3). After 613 // getting (2) out of the way, the foward scan will remove (3) since "x" 614 // already is described as having the value V1 at (1). 615 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 616 if (BB->isEntryBlock() && 617 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 618 MadeChanges |= remomveUndefDbgAssignsFromEntryBlock(BB); 619 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 620 621 if (MadeChanges) 622 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 623 << BB->getName() << "\n"); 624 return MadeChanges; 625 } 626 627 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 628 Instruction &I = *BI; 629 // Replaces all of the uses of the instruction with uses of the value 630 I.replaceAllUsesWith(V); 631 632 // Make sure to propagate a name if there is one already. 633 if (I.hasName() && !V->hasName()) 634 V->takeName(&I); 635 636 // Delete the unnecessary instruction now... 637 BI = BI->eraseFromParent(); 638 } 639 640 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 641 Instruction *I) { 642 assert(I->getParent() == nullptr && 643 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 644 645 // Copy debug location to newly added instruction, if it wasn't already set 646 // by the caller. 647 if (!I->getDebugLoc()) 648 I->setDebugLoc(BI->getDebugLoc()); 649 650 // Insert the new instruction into the basic block... 651 BasicBlock::iterator New = I->insertInto(BB, BI); 652 653 // Replace all uses of the old instruction, and delete it. 654 ReplaceInstWithValue(BI, I); 655 656 // Move BI back to point to the newly inserted instruction 657 BI = New; 658 } 659 660 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 661 // Remember visited blocks to avoid infinite loop 662 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 663 unsigned Depth = 0; 664 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 665 VisitedBlocks.insert(BB).second) { 666 if (isa<UnreachableInst>(BB->getTerminator()) || 667 BB->getTerminatingDeoptimizeCall()) 668 return true; 669 BB = BB->getUniqueSuccessor(); 670 } 671 return false; 672 } 673 674 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 675 BasicBlock::iterator BI(From); 676 ReplaceInstWithInst(From->getParent(), BI, To); 677 } 678 679 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 680 LoopInfo *LI, MemorySSAUpdater *MSSAU, 681 const Twine &BBName) { 682 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 683 684 Instruction *LatchTerm = BB->getTerminator(); 685 686 CriticalEdgeSplittingOptions Options = 687 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 688 689 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 690 // If it is a critical edge, and the succesor is an exception block, handle 691 // the split edge logic in this specific function 692 if (Succ->isEHPad()) 693 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 694 695 // If this is a critical edge, let SplitKnownCriticalEdge do it. 696 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 697 } 698 699 // If the edge isn't critical, then BB has a single successor or Succ has a 700 // single pred. Split the block. 701 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 702 // If the successor only has a single pred, split the top of the successor 703 // block. 704 assert(SP == BB && "CFG broken"); 705 SP = nullptr; 706 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 707 /*Before=*/true); 708 } 709 710 // Otherwise, if BB has a single successor, split it at the bottom of the 711 // block. 712 assert(BB->getTerminator()->getNumSuccessors() == 1 && 713 "Should have a single succ!"); 714 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 715 } 716 717 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 718 if (auto *II = dyn_cast<InvokeInst>(TI)) 719 II->setUnwindDest(Succ); 720 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 721 CS->setUnwindDest(Succ); 722 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 723 CR->setUnwindDest(Succ); 724 else 725 llvm_unreachable("unexpected terminator instruction"); 726 } 727 728 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 729 BasicBlock *NewPred, PHINode *Until) { 730 int BBIdx = 0; 731 for (PHINode &PN : DestBB->phis()) { 732 // We manually update the LandingPadReplacement PHINode and it is the last 733 // PHI Node. So, if we find it, we are done. 734 if (Until == &PN) 735 break; 736 737 // Reuse the previous value of BBIdx if it lines up. In cases where we 738 // have multiple phi nodes with *lots* of predecessors, this is a speed 739 // win because we don't have to scan the PHI looking for TIBB. This 740 // happens because the BB list of PHI nodes are usually in the same 741 // order. 742 if (PN.getIncomingBlock(BBIdx) != OldPred) 743 BBIdx = PN.getBasicBlockIndex(OldPred); 744 745 assert(BBIdx != -1 && "Invalid PHI Index!"); 746 PN.setIncomingBlock(BBIdx, NewPred); 747 } 748 } 749 750 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 751 LandingPadInst *OriginalPad, 752 PHINode *LandingPadReplacement, 753 const CriticalEdgeSplittingOptions &Options, 754 const Twine &BBName) { 755 756 auto *PadInst = Succ->getFirstNonPHI(); 757 if (!LandingPadReplacement && !PadInst->isEHPad()) 758 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 759 760 auto *LI = Options.LI; 761 SmallVector<BasicBlock *, 4> LoopPreds; 762 // Check if extra modifications will be required to preserve loop-simplify 763 // form after splitting. If it would require splitting blocks with IndirectBr 764 // terminators, bail out if preserving loop-simplify form is requested. 765 if (Options.PreserveLoopSimplify && LI) { 766 if (Loop *BBLoop = LI->getLoopFor(BB)) { 767 768 // The only way that we can break LoopSimplify form by splitting a 769 // critical edge is when there exists some edge from BBLoop to Succ *and* 770 // the only edge into Succ from outside of BBLoop is that of NewBB after 771 // the split. If the first isn't true, then LoopSimplify still holds, 772 // NewBB is the new exit block and it has no non-loop predecessors. If the 773 // second isn't true, then Succ was not in LoopSimplify form prior to 774 // the split as it had a non-loop predecessor. In both of these cases, 775 // the predecessor must be directly in BBLoop, not in a subloop, or again 776 // LoopSimplify doesn't hold. 777 for (BasicBlock *P : predecessors(Succ)) { 778 if (P == BB) 779 continue; // The new block is known. 780 if (LI->getLoopFor(P) != BBLoop) { 781 // Loop is not in LoopSimplify form, no need to re simplify after 782 // splitting edge. 783 LoopPreds.clear(); 784 break; 785 } 786 LoopPreds.push_back(P); 787 } 788 // Loop-simplify form can be preserved, if we can split all in-loop 789 // predecessors. 790 if (any_of(LoopPreds, [](BasicBlock *Pred) { 791 return isa<IndirectBrInst>(Pred->getTerminator()); 792 })) { 793 return nullptr; 794 } 795 } 796 } 797 798 auto *NewBB = 799 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 800 setUnwindEdgeTo(BB->getTerminator(), NewBB); 801 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 802 803 if (LandingPadReplacement) { 804 auto *NewLP = OriginalPad->clone(); 805 auto *Terminator = BranchInst::Create(Succ, NewBB); 806 NewLP->insertBefore(Terminator); 807 LandingPadReplacement->addIncoming(NewLP, NewBB); 808 } else { 809 Value *ParentPad = nullptr; 810 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 811 ParentPad = FuncletPad->getParentPad(); 812 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 813 ParentPad = CatchSwitch->getParentPad(); 814 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 815 ParentPad = CleanupPad->getParentPad(); 816 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 817 ParentPad = LandingPad->getParent(); 818 else 819 llvm_unreachable("handling for other EHPads not implemented yet"); 820 821 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 822 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 823 } 824 825 auto *DT = Options.DT; 826 auto *MSSAU = Options.MSSAU; 827 if (!DT && !LI) 828 return NewBB; 829 830 if (DT) { 831 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 832 SmallVector<DominatorTree::UpdateType, 3> Updates; 833 834 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 835 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 836 Updates.push_back({DominatorTree::Delete, BB, Succ}); 837 838 DTU.applyUpdates(Updates); 839 DTU.flush(); 840 841 if (MSSAU) { 842 MSSAU->applyUpdates(Updates, *DT); 843 if (VerifyMemorySSA) 844 MSSAU->getMemorySSA()->verifyMemorySSA(); 845 } 846 } 847 848 if (LI) { 849 if (Loop *BBLoop = LI->getLoopFor(BB)) { 850 // If one or the other blocks were not in a loop, the new block is not 851 // either, and thus LI doesn't need to be updated. 852 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 853 if (BBLoop == SuccLoop) { 854 // Both in the same loop, the NewBB joins loop. 855 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 856 } else if (BBLoop->contains(SuccLoop)) { 857 // Edge from an outer loop to an inner loop. Add to the outer loop. 858 BBLoop->addBasicBlockToLoop(NewBB, *LI); 859 } else if (SuccLoop->contains(BBLoop)) { 860 // Edge from an inner loop to an outer loop. Add to the outer loop. 861 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 862 } else { 863 // Edge from two loops with no containment relation. Because these 864 // are natural loops, we know that the destination block must be the 865 // header of its loop (adding a branch into a loop elsewhere would 866 // create an irreducible loop). 867 assert(SuccLoop->getHeader() == Succ && 868 "Should not create irreducible loops!"); 869 if (Loop *P = SuccLoop->getParentLoop()) 870 P->addBasicBlockToLoop(NewBB, *LI); 871 } 872 } 873 874 // If BB is in a loop and Succ is outside of that loop, we may need to 875 // update LoopSimplify form and LCSSA form. 876 if (!BBLoop->contains(Succ)) { 877 assert(!BBLoop->contains(NewBB) && 878 "Split point for loop exit is contained in loop!"); 879 880 // Update LCSSA form in the newly created exit block. 881 if (Options.PreserveLCSSA) { 882 createPHIsForSplitLoopExit(BB, NewBB, Succ); 883 } 884 885 if (!LoopPreds.empty()) { 886 BasicBlock *NewExitBB = SplitBlockPredecessors( 887 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 888 if (Options.PreserveLCSSA) 889 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 890 } 891 } 892 } 893 } 894 895 return NewBB; 896 } 897 898 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 899 BasicBlock *SplitBB, BasicBlock *DestBB) { 900 // SplitBB shouldn't have anything non-trivial in it yet. 901 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 902 SplitBB->isLandingPad()) && 903 "SplitBB has non-PHI nodes!"); 904 905 // For each PHI in the destination block. 906 for (PHINode &PN : DestBB->phis()) { 907 int Idx = PN.getBasicBlockIndex(SplitBB); 908 assert(Idx >= 0 && "Invalid Block Index"); 909 Value *V = PN.getIncomingValue(Idx); 910 911 // If the input is a PHI which already satisfies LCSSA, don't create 912 // a new one. 913 if (const PHINode *VP = dyn_cast<PHINode>(V)) 914 if (VP->getParent() == SplitBB) 915 continue; 916 917 // Otherwise a new PHI is needed. Create one and populate it. 918 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 919 BasicBlock::iterator InsertPos = 920 SplitBB->isLandingPad() ? SplitBB->begin() 921 : SplitBB->getTerminator()->getIterator(); 922 NewPN->insertBefore(InsertPos); 923 for (BasicBlock *BB : Preds) 924 NewPN->addIncoming(V, BB); 925 926 // Update the original PHI. 927 PN.setIncomingValue(Idx, NewPN); 928 } 929 } 930 931 unsigned 932 llvm::SplitAllCriticalEdges(Function &F, 933 const CriticalEdgeSplittingOptions &Options) { 934 unsigned NumBroken = 0; 935 for (BasicBlock &BB : F) { 936 Instruction *TI = BB.getTerminator(); 937 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 938 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 939 if (SplitCriticalEdge(TI, i, Options)) 940 ++NumBroken; 941 } 942 return NumBroken; 943 } 944 945 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 946 DomTreeUpdater *DTU, DominatorTree *DT, 947 LoopInfo *LI, MemorySSAUpdater *MSSAU, 948 const Twine &BBName, bool Before) { 949 if (Before) { 950 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 951 return splitBlockBefore(Old, SplitPt, 952 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 953 BBName); 954 } 955 BasicBlock::iterator SplitIt = SplitPt; 956 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 957 ++SplitIt; 958 assert(SplitIt != SplitPt->getParent()->end()); 959 } 960 std::string Name = BBName.str(); 961 BasicBlock *New = Old->splitBasicBlock( 962 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 963 964 // The new block lives in whichever loop the old one did. This preserves 965 // LCSSA as well, because we force the split point to be after any PHI nodes. 966 if (LI) 967 if (Loop *L = LI->getLoopFor(Old)) 968 L->addBasicBlockToLoop(New, *LI); 969 970 if (DTU) { 971 SmallVector<DominatorTree::UpdateType, 8> Updates; 972 // Old dominates New. New node dominates all other nodes dominated by Old. 973 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 974 Updates.push_back({DominatorTree::Insert, Old, New}); 975 Updates.reserve(Updates.size() + 2 * succ_size(New)); 976 for (BasicBlock *SuccessorOfOld : successors(New)) 977 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 978 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 979 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 980 } 981 982 DTU->applyUpdates(Updates); 983 } else if (DT) 984 // Old dominates New. New node dominates all other nodes dominated by Old. 985 if (DomTreeNode *OldNode = DT->getNode(Old)) { 986 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 987 988 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 989 for (DomTreeNode *I : Children) 990 DT->changeImmediateDominator(I, NewNode); 991 } 992 993 // Move MemoryAccesses still tracked in Old, but part of New now. 994 // Update accesses in successor blocks accordingly. 995 if (MSSAU) 996 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 997 998 return New; 999 } 1000 1001 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1002 DominatorTree *DT, LoopInfo *LI, 1003 MemorySSAUpdater *MSSAU, const Twine &BBName, 1004 bool Before) { 1005 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1006 Before); 1007 } 1008 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1009 DomTreeUpdater *DTU, LoopInfo *LI, 1010 MemorySSAUpdater *MSSAU, const Twine &BBName, 1011 bool Before) { 1012 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1013 Before); 1014 } 1015 1016 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1017 DomTreeUpdater *DTU, LoopInfo *LI, 1018 MemorySSAUpdater *MSSAU, 1019 const Twine &BBName) { 1020 1021 BasicBlock::iterator SplitIt = SplitPt; 1022 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1023 ++SplitIt; 1024 std::string Name = BBName.str(); 1025 BasicBlock *New = Old->splitBasicBlock( 1026 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1027 /* Before=*/true); 1028 1029 // The new block lives in whichever loop the old one did. This preserves 1030 // LCSSA as well, because we force the split point to be after any PHI nodes. 1031 if (LI) 1032 if (Loop *L = LI->getLoopFor(Old)) 1033 L->addBasicBlockToLoop(New, *LI); 1034 1035 if (DTU) { 1036 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1037 // New dominates Old. The predecessor nodes of the Old node dominate 1038 // New node. 1039 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1040 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1041 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1042 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1043 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1044 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1045 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1046 } 1047 1048 DTU->applyUpdates(DTUpdates); 1049 1050 // Move MemoryAccesses still tracked in Old, but part of New now. 1051 // Update accesses in successor blocks accordingly. 1052 if (MSSAU) { 1053 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1054 if (VerifyMemorySSA) 1055 MSSAU->getMemorySSA()->verifyMemorySSA(); 1056 } 1057 } 1058 return New; 1059 } 1060 1061 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1062 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1063 ArrayRef<BasicBlock *> Preds, 1064 DomTreeUpdater *DTU, DominatorTree *DT, 1065 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1066 bool PreserveLCSSA, bool &HasLoopExit) { 1067 // Update dominator tree if available. 1068 if (DTU) { 1069 // Recalculation of DomTree is needed when updating a forward DomTree and 1070 // the Entry BB is replaced. 1071 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1072 // The entry block was removed and there is no external interface for 1073 // the dominator tree to be notified of this change. In this corner-case 1074 // we recalculate the entire tree. 1075 DTU->recalculate(*NewBB->getParent()); 1076 } else { 1077 // Split block expects NewBB to have a non-empty set of predecessors. 1078 SmallVector<DominatorTree::UpdateType, 8> Updates; 1079 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1080 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1081 Updates.reserve(Updates.size() + 2 * Preds.size()); 1082 for (auto *Pred : Preds) 1083 if (UniquePreds.insert(Pred).second) { 1084 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1085 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1086 } 1087 DTU->applyUpdates(Updates); 1088 } 1089 } else if (DT) { 1090 if (OldBB == DT->getRootNode()->getBlock()) { 1091 assert(NewBB->isEntryBlock()); 1092 DT->setNewRoot(NewBB); 1093 } else { 1094 // Split block expects NewBB to have a non-empty set of predecessors. 1095 DT->splitBlock(NewBB); 1096 } 1097 } 1098 1099 // Update MemoryPhis after split if MemorySSA is available 1100 if (MSSAU) 1101 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1102 1103 // The rest of the logic is only relevant for updating the loop structures. 1104 if (!LI) 1105 return; 1106 1107 if (DTU && DTU->hasDomTree()) 1108 DT = &DTU->getDomTree(); 1109 assert(DT && "DT should be available to update LoopInfo!"); 1110 Loop *L = LI->getLoopFor(OldBB); 1111 1112 // If we need to preserve loop analyses, collect some information about how 1113 // this split will affect loops. 1114 bool IsLoopEntry = !!L; 1115 bool SplitMakesNewLoopHeader = false; 1116 for (BasicBlock *Pred : Preds) { 1117 // Preds that are not reachable from entry should not be used to identify if 1118 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1119 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1120 // as true and make the NewBB the header of some loop. This breaks LI. 1121 if (!DT->isReachableFromEntry(Pred)) 1122 continue; 1123 // If we need to preserve LCSSA, determine if any of the preds is a loop 1124 // exit. 1125 if (PreserveLCSSA) 1126 if (Loop *PL = LI->getLoopFor(Pred)) 1127 if (!PL->contains(OldBB)) 1128 HasLoopExit = true; 1129 1130 // If we need to preserve LoopInfo, note whether any of the preds crosses 1131 // an interesting loop boundary. 1132 if (!L) 1133 continue; 1134 if (L->contains(Pred)) 1135 IsLoopEntry = false; 1136 else 1137 SplitMakesNewLoopHeader = true; 1138 } 1139 1140 // Unless we have a loop for OldBB, nothing else to do here. 1141 if (!L) 1142 return; 1143 1144 if (IsLoopEntry) { 1145 // Add the new block to the nearest enclosing loop (and not an adjacent 1146 // loop). To find this, examine each of the predecessors and determine which 1147 // loops enclose them, and select the most-nested loop which contains the 1148 // loop containing the block being split. 1149 Loop *InnermostPredLoop = nullptr; 1150 for (BasicBlock *Pred : Preds) { 1151 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1152 // Seek a loop which actually contains the block being split (to avoid 1153 // adjacent loops). 1154 while (PredLoop && !PredLoop->contains(OldBB)) 1155 PredLoop = PredLoop->getParentLoop(); 1156 1157 // Select the most-nested of these loops which contains the block. 1158 if (PredLoop && PredLoop->contains(OldBB) && 1159 (!InnermostPredLoop || 1160 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1161 InnermostPredLoop = PredLoop; 1162 } 1163 } 1164 1165 if (InnermostPredLoop) 1166 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1167 } else { 1168 L->addBasicBlockToLoop(NewBB, *LI); 1169 if (SplitMakesNewLoopHeader) 1170 L->moveToHeader(NewBB); 1171 } 1172 } 1173 1174 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1175 /// This also updates AliasAnalysis, if available. 1176 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1177 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1178 bool HasLoopExit) { 1179 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1180 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1181 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1182 PHINode *PN = cast<PHINode>(I++); 1183 1184 // Check to see if all of the values coming in are the same. If so, we 1185 // don't need to create a new PHI node, unless it's needed for LCSSA. 1186 Value *InVal = nullptr; 1187 if (!HasLoopExit) { 1188 InVal = PN->getIncomingValueForBlock(Preds[0]); 1189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1190 if (!PredSet.count(PN->getIncomingBlock(i))) 1191 continue; 1192 if (!InVal) 1193 InVal = PN->getIncomingValue(i); 1194 else if (InVal != PN->getIncomingValue(i)) { 1195 InVal = nullptr; 1196 break; 1197 } 1198 } 1199 } 1200 1201 if (InVal) { 1202 // If all incoming values for the new PHI would be the same, just don't 1203 // make a new PHI. Instead, just remove the incoming values from the old 1204 // PHI. 1205 PN->removeIncomingValueIf( 1206 [&](unsigned Idx) { 1207 return PredSet.contains(PN->getIncomingBlock(Idx)); 1208 }, 1209 /* DeletePHIIfEmpty */ false); 1210 1211 // Add an incoming value to the PHI node in the loop for the preheader 1212 // edge. 1213 PN->addIncoming(InVal, NewBB); 1214 continue; 1215 } 1216 1217 // If the values coming into the block are not the same, we need a new 1218 // PHI. 1219 // Create the new PHI node, insert it into NewBB at the end of the block 1220 PHINode *NewPHI = 1221 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1222 1223 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1224 // the cost of removal if we end up removing a large number of values, and 1225 // second off, this ensures that the indices for the incoming values aren't 1226 // invalidated when we remove one. 1227 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1228 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1229 if (PredSet.count(IncomingBB)) { 1230 Value *V = PN->removeIncomingValue(i, false); 1231 NewPHI->addIncoming(V, IncomingBB); 1232 } 1233 } 1234 1235 PN->addIncoming(NewPHI, NewBB); 1236 } 1237 } 1238 1239 static void SplitLandingPadPredecessorsImpl( 1240 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1241 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1242 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1243 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1244 1245 static BasicBlock * 1246 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1247 const char *Suffix, DomTreeUpdater *DTU, 1248 DominatorTree *DT, LoopInfo *LI, 1249 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1250 // Do not attempt to split that which cannot be split. 1251 if (!BB->canSplitPredecessors()) 1252 return nullptr; 1253 1254 // For the landingpads we need to act a bit differently. 1255 // Delegate this work to the SplitLandingPadPredecessors. 1256 if (BB->isLandingPad()) { 1257 SmallVector<BasicBlock*, 2> NewBBs; 1258 std::string NewName = std::string(Suffix) + ".split-lp"; 1259 1260 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1261 DTU, DT, LI, MSSAU, PreserveLCSSA); 1262 return NewBBs[0]; 1263 } 1264 1265 // Create new basic block, insert right before the original block. 1266 BasicBlock *NewBB = BasicBlock::Create( 1267 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1268 1269 // The new block unconditionally branches to the old block. 1270 BranchInst *BI = BranchInst::Create(BB, NewBB); 1271 1272 Loop *L = nullptr; 1273 BasicBlock *OldLatch = nullptr; 1274 // Splitting the predecessors of a loop header creates a preheader block. 1275 if (LI && LI->isLoopHeader(BB)) { 1276 L = LI->getLoopFor(BB); 1277 // Using the loop start line number prevents debuggers stepping into the 1278 // loop body for this instruction. 1279 BI->setDebugLoc(L->getStartLoc()); 1280 1281 // If BB is the header of the Loop, it is possible that the loop is 1282 // modified, such that the current latch does not remain the latch of the 1283 // loop. If that is the case, the loop metadata from the current latch needs 1284 // to be applied to the new latch. 1285 OldLatch = L->getLoopLatch(); 1286 } else 1287 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1288 1289 // Move the edges from Preds to point to NewBB instead of BB. 1290 for (BasicBlock *Pred : Preds) { 1291 // This is slightly more strict than necessary; the minimum requirement 1292 // is that there be no more than one indirectbr branching to BB. And 1293 // all BlockAddress uses would need to be updated. 1294 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1295 "Cannot split an edge from an IndirectBrInst"); 1296 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1297 } 1298 1299 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1300 // node becomes an incoming value for BB's phi node. However, if the Preds 1301 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1302 // account for the newly created predecessor. 1303 if (Preds.empty()) { 1304 // Insert dummy values as the incoming value. 1305 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1306 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1307 } 1308 1309 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1310 bool HasLoopExit = false; 1311 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1312 HasLoopExit); 1313 1314 if (!Preds.empty()) { 1315 // Update the PHI nodes in BB with the values coming from NewBB. 1316 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1317 } 1318 1319 if (OldLatch) { 1320 BasicBlock *NewLatch = L->getLoopLatch(); 1321 if (NewLatch != OldLatch) { 1322 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1323 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1324 // It's still possible that OldLatch is the latch of another inner loop, 1325 // in which case we do not remove the metadata. 1326 Loop *IL = LI->getLoopFor(OldLatch); 1327 if (IL && IL->getLoopLatch() != OldLatch) 1328 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1329 } 1330 } 1331 1332 return NewBB; 1333 } 1334 1335 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1336 ArrayRef<BasicBlock *> Preds, 1337 const char *Suffix, DominatorTree *DT, 1338 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1339 bool PreserveLCSSA) { 1340 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1341 MSSAU, PreserveLCSSA); 1342 } 1343 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1344 ArrayRef<BasicBlock *> Preds, 1345 const char *Suffix, 1346 DomTreeUpdater *DTU, LoopInfo *LI, 1347 MemorySSAUpdater *MSSAU, 1348 bool PreserveLCSSA) { 1349 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1350 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1351 } 1352 1353 static void SplitLandingPadPredecessorsImpl( 1354 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1355 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1356 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1357 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1358 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1359 1360 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1361 // it right before the original block. 1362 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1363 OrigBB->getName() + Suffix1, 1364 OrigBB->getParent(), OrigBB); 1365 NewBBs.push_back(NewBB1); 1366 1367 // The new block unconditionally branches to the old block. 1368 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1369 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1370 1371 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1372 for (BasicBlock *Pred : Preds) { 1373 // This is slightly more strict than necessary; the minimum requirement 1374 // is that there be no more than one indirectbr branching to BB. And 1375 // all BlockAddress uses would need to be updated. 1376 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1377 "Cannot split an edge from an IndirectBrInst"); 1378 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1379 } 1380 1381 bool HasLoopExit = false; 1382 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1383 PreserveLCSSA, HasLoopExit); 1384 1385 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1386 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1387 1388 // Move the remaining edges from OrigBB to point to NewBB2. 1389 SmallVector<BasicBlock*, 8> NewBB2Preds; 1390 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1391 i != e; ) { 1392 BasicBlock *Pred = *i++; 1393 if (Pred == NewBB1) continue; 1394 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1395 "Cannot split an edge from an IndirectBrInst"); 1396 NewBB2Preds.push_back(Pred); 1397 e = pred_end(OrigBB); 1398 } 1399 1400 BasicBlock *NewBB2 = nullptr; 1401 if (!NewBB2Preds.empty()) { 1402 // Create another basic block for the rest of OrigBB's predecessors. 1403 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1404 OrigBB->getName() + Suffix2, 1405 OrigBB->getParent(), OrigBB); 1406 NewBBs.push_back(NewBB2); 1407 1408 // The new block unconditionally branches to the old block. 1409 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1410 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1411 1412 // Move the remaining edges from OrigBB to point to NewBB2. 1413 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1414 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1415 1416 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1417 HasLoopExit = false; 1418 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1419 PreserveLCSSA, HasLoopExit); 1420 1421 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1422 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1423 } 1424 1425 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1426 Instruction *Clone1 = LPad->clone(); 1427 Clone1->setName(Twine("lpad") + Suffix1); 1428 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1429 1430 if (NewBB2) { 1431 Instruction *Clone2 = LPad->clone(); 1432 Clone2->setName(Twine("lpad") + Suffix2); 1433 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1434 1435 // Create a PHI node for the two cloned landingpad instructions only 1436 // if the original landingpad instruction has some uses. 1437 if (!LPad->use_empty()) { 1438 assert(!LPad->getType()->isTokenTy() && 1439 "Split cannot be applied if LPad is token type. Otherwise an " 1440 "invalid PHINode of token type would be created."); 1441 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1442 PN->addIncoming(Clone1, NewBB1); 1443 PN->addIncoming(Clone2, NewBB2); 1444 LPad->replaceAllUsesWith(PN); 1445 } 1446 LPad->eraseFromParent(); 1447 } else { 1448 // There is no second clone. Just replace the landing pad with the first 1449 // clone. 1450 LPad->replaceAllUsesWith(Clone1); 1451 LPad->eraseFromParent(); 1452 } 1453 } 1454 1455 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1456 ArrayRef<BasicBlock *> Preds, 1457 const char *Suffix1, const char *Suffix2, 1458 SmallVectorImpl<BasicBlock *> &NewBBs, 1459 DominatorTree *DT, LoopInfo *LI, 1460 MemorySSAUpdater *MSSAU, 1461 bool PreserveLCSSA) { 1462 return SplitLandingPadPredecessorsImpl( 1463 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1464 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1465 } 1466 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1467 ArrayRef<BasicBlock *> Preds, 1468 const char *Suffix1, const char *Suffix2, 1469 SmallVectorImpl<BasicBlock *> &NewBBs, 1470 DomTreeUpdater *DTU, LoopInfo *LI, 1471 MemorySSAUpdater *MSSAU, 1472 bool PreserveLCSSA) { 1473 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1474 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1475 PreserveLCSSA); 1476 } 1477 1478 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1479 BasicBlock *Pred, 1480 DomTreeUpdater *DTU) { 1481 Instruction *UncondBranch = Pred->getTerminator(); 1482 // Clone the return and add it to the end of the predecessor. 1483 Instruction *NewRet = RI->clone(); 1484 NewRet->insertInto(Pred, Pred->end()); 1485 1486 // If the return instruction returns a value, and if the value was a 1487 // PHI node in "BB", propagate the right value into the return. 1488 for (Use &Op : NewRet->operands()) { 1489 Value *V = Op; 1490 Instruction *NewBC = nullptr; 1491 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1492 // Return value might be bitcasted. Clone and insert it before the 1493 // return instruction. 1494 V = BCI->getOperand(0); 1495 NewBC = BCI->clone(); 1496 NewBC->insertInto(Pred, NewRet->getIterator()); 1497 Op = NewBC; 1498 } 1499 1500 Instruction *NewEV = nullptr; 1501 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1502 V = EVI->getOperand(0); 1503 NewEV = EVI->clone(); 1504 if (NewBC) { 1505 NewBC->setOperand(0, NewEV); 1506 NewEV->insertInto(Pred, NewBC->getIterator()); 1507 } else { 1508 NewEV->insertInto(Pred, NewRet->getIterator()); 1509 Op = NewEV; 1510 } 1511 } 1512 1513 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1514 if (PN->getParent() == BB) { 1515 if (NewEV) { 1516 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1517 } else if (NewBC) 1518 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1519 else 1520 Op = PN->getIncomingValueForBlock(Pred); 1521 } 1522 } 1523 } 1524 1525 // Update any PHI nodes in the returning block to realize that we no 1526 // longer branch to them. 1527 BB->removePredecessor(Pred); 1528 UncondBranch->eraseFromParent(); 1529 1530 if (DTU) 1531 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1532 1533 return cast<ReturnInst>(NewRet); 1534 } 1535 1536 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1537 BasicBlock::iterator SplitBefore, 1538 bool Unreachable, 1539 MDNode *BranchWeights, 1540 DomTreeUpdater *DTU, LoopInfo *LI, 1541 BasicBlock *ThenBlock) { 1542 SplitBlockAndInsertIfThenElse( 1543 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1544 /* UnreachableThen */ Unreachable, 1545 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1546 return ThenBlock->getTerminator(); 1547 } 1548 1549 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1550 BasicBlock::iterator SplitBefore, 1551 bool Unreachable, 1552 MDNode *BranchWeights, 1553 DomTreeUpdater *DTU, LoopInfo *LI, 1554 BasicBlock *ElseBlock) { 1555 SplitBlockAndInsertIfThenElse( 1556 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1557 /* UnreachableThen */ false, 1558 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1559 return ElseBlock->getTerminator(); 1560 } 1561 1562 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1563 Instruction **ThenTerm, 1564 Instruction **ElseTerm, 1565 MDNode *BranchWeights, 1566 DomTreeUpdater *DTU, LoopInfo *LI) { 1567 BasicBlock *ThenBlock = nullptr; 1568 BasicBlock *ElseBlock = nullptr; 1569 SplitBlockAndInsertIfThenElse( 1570 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1571 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1572 1573 *ThenTerm = ThenBlock->getTerminator(); 1574 *ElseTerm = ElseBlock->getTerminator(); 1575 } 1576 1577 void llvm::SplitBlockAndInsertIfThenElse( 1578 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1579 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1580 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1581 assert((ThenBlock || ElseBlock) && 1582 "At least one branch block must be created"); 1583 assert((!UnreachableThen || !UnreachableElse) && 1584 "Split block tail must be reachable"); 1585 1586 SmallVector<DominatorTree::UpdateType, 8> Updates; 1587 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1588 BasicBlock *Head = SplitBefore->getParent(); 1589 if (DTU) { 1590 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1591 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1592 } 1593 1594 LLVMContext &C = Head->getContext(); 1595 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1596 BasicBlock *TrueBlock = Tail; 1597 BasicBlock *FalseBlock = Tail; 1598 bool ThenToTailEdge = false; 1599 bool ElseToTailEdge = false; 1600 1601 // Encapsulate the logic around creation/insertion/etc of a new block. 1602 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1603 bool &ToTailEdge) { 1604 if (PBB == nullptr) 1605 return; // Do not create/insert a block. 1606 1607 if (*PBB) 1608 BB = *PBB; // Caller supplied block, use it. 1609 else { 1610 // Create a new block. 1611 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1612 if (Unreachable) 1613 (void)new UnreachableInst(C, BB); 1614 else { 1615 (void)BranchInst::Create(Tail, BB); 1616 ToTailEdge = true; 1617 } 1618 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1619 // Pass the new block back to the caller. 1620 *PBB = BB; 1621 } 1622 }; 1623 1624 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1625 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1626 1627 Instruction *HeadOldTerm = Head->getTerminator(); 1628 BranchInst *HeadNewTerm = 1629 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1630 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1631 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1632 1633 if (DTU) { 1634 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1635 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1636 if (ThenToTailEdge) 1637 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1638 if (ElseToTailEdge) 1639 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1640 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1641 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1642 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1643 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1644 DTU->applyUpdates(Updates); 1645 } 1646 1647 if (LI) { 1648 if (Loop *L = LI->getLoopFor(Head); L) { 1649 if (ThenToTailEdge) 1650 L->addBasicBlockToLoop(TrueBlock, *LI); 1651 if (ElseToTailEdge) 1652 L->addBasicBlockToLoop(FalseBlock, *LI); 1653 L->addBasicBlockToLoop(Tail, *LI); 1654 } 1655 } 1656 } 1657 1658 std::pair<Instruction*, Value*> 1659 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1660 BasicBlock *LoopPred = SplitBefore->getParent(); 1661 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1662 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1663 1664 auto *Ty = End->getType(); 1665 auto &DL = SplitBefore->getModule()->getDataLayout(); 1666 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1667 1668 IRBuilder<> Builder(LoopBody->getTerminator()); 1669 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1670 auto *IVNext = 1671 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1672 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1673 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1674 IV->getName() + ".check"); 1675 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1676 LoopBody->getTerminator()->eraseFromParent(); 1677 1678 // Populate the IV PHI. 1679 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1680 IV->addIncoming(IVNext, LoopBody); 1681 1682 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1683 } 1684 1685 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1686 Type *IndexTy, Instruction *InsertBefore, 1687 std::function<void(IRBuilderBase&, Value*)> Func) { 1688 1689 IRBuilder<> IRB(InsertBefore); 1690 1691 if (EC.isScalable()) { 1692 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1693 1694 auto [BodyIP, Index] = 1695 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1696 1697 IRB.SetInsertPoint(BodyIP); 1698 Func(IRB, Index); 1699 return; 1700 } 1701 1702 unsigned Num = EC.getFixedValue(); 1703 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1704 IRB.SetInsertPoint(InsertBefore); 1705 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1706 } 1707 } 1708 1709 void llvm::SplitBlockAndInsertForEachLane( 1710 Value *EVL, Instruction *InsertBefore, 1711 std::function<void(IRBuilderBase &, Value *)> Func) { 1712 1713 IRBuilder<> IRB(InsertBefore); 1714 Type *Ty = EVL->getType(); 1715 1716 if (!isa<ConstantInt>(EVL)) { 1717 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1718 IRB.SetInsertPoint(BodyIP); 1719 Func(IRB, Index); 1720 return; 1721 } 1722 1723 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1724 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1725 IRB.SetInsertPoint(InsertBefore); 1726 Func(IRB, ConstantInt::get(Ty, Idx)); 1727 } 1728 } 1729 1730 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1731 BasicBlock *&IfFalse) { 1732 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1733 BasicBlock *Pred1 = nullptr; 1734 BasicBlock *Pred2 = nullptr; 1735 1736 if (SomePHI) { 1737 if (SomePHI->getNumIncomingValues() != 2) 1738 return nullptr; 1739 Pred1 = SomePHI->getIncomingBlock(0); 1740 Pred2 = SomePHI->getIncomingBlock(1); 1741 } else { 1742 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1743 if (PI == PE) // No predecessor 1744 return nullptr; 1745 Pred1 = *PI++; 1746 if (PI == PE) // Only one predecessor 1747 return nullptr; 1748 Pred2 = *PI++; 1749 if (PI != PE) // More than two predecessors 1750 return nullptr; 1751 } 1752 1753 // We can only handle branches. Other control flow will be lowered to 1754 // branches if possible anyway. 1755 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1756 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1757 if (!Pred1Br || !Pred2Br) 1758 return nullptr; 1759 1760 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1761 // either are. 1762 if (Pred2Br->isConditional()) { 1763 // If both branches are conditional, we don't have an "if statement". In 1764 // reality, we could transform this case, but since the condition will be 1765 // required anyway, we stand no chance of eliminating it, so the xform is 1766 // probably not profitable. 1767 if (Pred1Br->isConditional()) 1768 return nullptr; 1769 1770 std::swap(Pred1, Pred2); 1771 std::swap(Pred1Br, Pred2Br); 1772 } 1773 1774 if (Pred1Br->isConditional()) { 1775 // The only thing we have to watch out for here is to make sure that Pred2 1776 // doesn't have incoming edges from other blocks. If it does, the condition 1777 // doesn't dominate BB. 1778 if (!Pred2->getSinglePredecessor()) 1779 return nullptr; 1780 1781 // If we found a conditional branch predecessor, make sure that it branches 1782 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1783 if (Pred1Br->getSuccessor(0) == BB && 1784 Pred1Br->getSuccessor(1) == Pred2) { 1785 IfTrue = Pred1; 1786 IfFalse = Pred2; 1787 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1788 Pred1Br->getSuccessor(1) == BB) { 1789 IfTrue = Pred2; 1790 IfFalse = Pred1; 1791 } else { 1792 // We know that one arm of the conditional goes to BB, so the other must 1793 // go somewhere unrelated, and this must not be an "if statement". 1794 return nullptr; 1795 } 1796 1797 return Pred1Br; 1798 } 1799 1800 // Ok, if we got here, both predecessors end with an unconditional branch to 1801 // BB. Don't panic! If both blocks only have a single (identical) 1802 // predecessor, and THAT is a conditional branch, then we're all ok! 1803 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1804 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1805 return nullptr; 1806 1807 // Otherwise, if this is a conditional branch, then we can use it! 1808 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1809 if (!BI) return nullptr; 1810 1811 assert(BI->isConditional() && "Two successors but not conditional?"); 1812 if (BI->getSuccessor(0) == Pred1) { 1813 IfTrue = Pred1; 1814 IfFalse = Pred2; 1815 } else { 1816 IfTrue = Pred2; 1817 IfFalse = Pred1; 1818 } 1819 return BI; 1820 } 1821 1822 // After creating a control flow hub, the operands of PHINodes in an outgoing 1823 // block Out no longer match the predecessors of that block. Predecessors of Out 1824 // that are incoming blocks to the hub are now replaced by just one edge from 1825 // the hub. To match this new control flow, the corresponding values from each 1826 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1827 // 1828 // This operation cannot be performed with SSAUpdater, because it involves one 1829 // new use: If the block Out is in the list of Incoming blocks, then the newly 1830 // created PHI in the Hub will use itself along that edge from Out to Hub. 1831 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1832 const SetVector<BasicBlock *> &Incoming, 1833 BasicBlock *FirstGuardBlock) { 1834 auto I = Out->begin(); 1835 while (I != Out->end() && isa<PHINode>(I)) { 1836 auto Phi = cast<PHINode>(I); 1837 auto NewPhi = 1838 PHINode::Create(Phi->getType(), Incoming.size(), 1839 Phi->getName() + ".moved", &FirstGuardBlock->front()); 1840 for (auto *In : Incoming) { 1841 Value *V = UndefValue::get(Phi->getType()); 1842 if (In == Out) { 1843 V = NewPhi; 1844 } else if (Phi->getBasicBlockIndex(In) != -1) { 1845 V = Phi->removeIncomingValue(In, false); 1846 } 1847 NewPhi->addIncoming(V, In); 1848 } 1849 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1850 if (Phi->getNumOperands() == 0) { 1851 Phi->replaceAllUsesWith(NewPhi); 1852 I = Phi->eraseFromParent(); 1853 continue; 1854 } 1855 Phi->addIncoming(NewPhi, GuardBlock); 1856 ++I; 1857 } 1858 } 1859 1860 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1861 using BBSetVector = SetVector<BasicBlock *>; 1862 1863 // Redirects the terminator of the incoming block to the first guard 1864 // block in the hub. The condition of the original terminator (if it 1865 // was conditional) and its original successors are returned as a 1866 // tuple <condition, succ0, succ1>. The function additionally filters 1867 // out successors that are not in the set of outgoing blocks. 1868 // 1869 // - condition is non-null iff the branch is conditional. 1870 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1871 // - Succ2 is non-null iff condition is non-null and the fallthrough 1872 // target is an outgoing block. 1873 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1874 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1875 const BBSetVector &Outgoing) { 1876 assert(isa<BranchInst>(BB->getTerminator()) && 1877 "Only support branch terminator."); 1878 auto Branch = cast<BranchInst>(BB->getTerminator()); 1879 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1880 1881 BasicBlock *Succ0 = Branch->getSuccessor(0); 1882 BasicBlock *Succ1 = nullptr; 1883 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1884 1885 if (Branch->isUnconditional()) { 1886 Branch->setSuccessor(0, FirstGuardBlock); 1887 assert(Succ0); 1888 } else { 1889 Succ1 = Branch->getSuccessor(1); 1890 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1891 assert(Succ0 || Succ1); 1892 if (Succ0 && !Succ1) { 1893 Branch->setSuccessor(0, FirstGuardBlock); 1894 } else if (Succ1 && !Succ0) { 1895 Branch->setSuccessor(1, FirstGuardBlock); 1896 } else { 1897 Branch->eraseFromParent(); 1898 BranchInst::Create(FirstGuardBlock, BB); 1899 } 1900 } 1901 1902 assert(Succ0 || Succ1); 1903 return std::make_tuple(Condition, Succ0, Succ1); 1904 } 1905 // Setup the branch instructions for guard blocks. 1906 // 1907 // Each guard block terminates in a conditional branch that transfers 1908 // control to the corresponding outgoing block or the next guard 1909 // block. The last guard block has two outgoing blocks as successors 1910 // since the condition for the final outgoing block is trivially 1911 // true. So we create one less block (including the first guard block) 1912 // than the number of outgoing blocks. 1913 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1914 const BBSetVector &Outgoing, 1915 BBPredicates &GuardPredicates) { 1916 // To help keep the loop simple, temporarily append the last 1917 // outgoing block to the list of guard blocks. 1918 GuardBlocks.push_back(Outgoing.back()); 1919 1920 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1921 auto Out = Outgoing[i]; 1922 assert(GuardPredicates.count(Out)); 1923 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1924 GuardBlocks[i]); 1925 } 1926 1927 // Remove the last block from the guard list. 1928 GuardBlocks.pop_back(); 1929 } 1930 1931 /// We are using one integer to represent the block we are branching to. Then at 1932 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 1933 static void calcPredicateUsingInteger( 1934 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1935 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 1936 auto &Context = Incoming.front()->getContext(); 1937 auto FirstGuardBlock = GuardBlocks.front(); 1938 1939 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 1940 "merged.bb.idx", FirstGuardBlock); 1941 1942 for (auto In : Incoming) { 1943 Value *Condition; 1944 BasicBlock *Succ0; 1945 BasicBlock *Succ1; 1946 std::tie(Condition, Succ0, Succ1) = 1947 redirectToHub(In, FirstGuardBlock, Outgoing); 1948 Value *IncomingId = nullptr; 1949 if (Succ0 && Succ1) { 1950 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 1951 auto Succ0Iter = find(Outgoing, Succ0); 1952 auto Succ1Iter = find(Outgoing, Succ1); 1953 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 1954 std::distance(Outgoing.begin(), Succ0Iter)); 1955 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 1956 std::distance(Outgoing.begin(), Succ1Iter)); 1957 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 1958 In->getTerminator()); 1959 } else { 1960 // Get the index of the non-null successor. 1961 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 1962 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 1963 std::distance(Outgoing.begin(), SuccIter)); 1964 } 1965 Phi->addIncoming(IncomingId, In); 1966 } 1967 1968 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1969 auto Out = Outgoing[i]; 1970 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 1971 ConstantInt::get(Type::getInt32Ty(Context), i), 1972 Out->getName() + ".predicate", GuardBlocks[i]); 1973 GuardPredicates[Out] = Cmp; 1974 } 1975 } 1976 1977 /// We record the predicate of each outgoing block using a phi of boolean. 1978 static void calcPredicateUsingBooleans( 1979 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1980 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 1981 SmallVectorImpl<WeakVH> &DeletionCandidates) { 1982 auto &Context = Incoming.front()->getContext(); 1983 auto BoolTrue = ConstantInt::getTrue(Context); 1984 auto BoolFalse = ConstantInt::getFalse(Context); 1985 auto FirstGuardBlock = GuardBlocks.front(); 1986 1987 // The predicate for the last outgoing is trivially true, and so we 1988 // process only the first N-1 successors. 1989 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1990 auto Out = Outgoing[i]; 1991 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1992 1993 auto Phi = 1994 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1995 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1996 GuardPredicates[Out] = Phi; 1997 } 1998 1999 for (auto *In : Incoming) { 2000 Value *Condition; 2001 BasicBlock *Succ0; 2002 BasicBlock *Succ1; 2003 std::tie(Condition, Succ0, Succ1) = 2004 redirectToHub(In, FirstGuardBlock, Outgoing); 2005 2006 // Optimization: Consider an incoming block A with both successors 2007 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 2008 // for Succ0 and Succ1 complement each other. If Succ0 is visited 2009 // first in the loop below, control will branch to Succ0 using the 2010 // corresponding predicate. But if that branch is not taken, then 2011 // control must reach Succ1, which means that the incoming value of 2012 // the predicate from `In` is true for Succ1. 2013 bool OneSuccessorDone = false; 2014 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2015 auto Out = Outgoing[i]; 2016 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 2017 if (Out != Succ0 && Out != Succ1) { 2018 Phi->addIncoming(BoolFalse, In); 2019 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 2020 // Optimization: When only one successor is an outgoing block, 2021 // the incoming predicate from `In` is always true. 2022 Phi->addIncoming(BoolTrue, In); 2023 } else { 2024 assert(Succ0 && Succ1); 2025 if (Out == Succ0) { 2026 Phi->addIncoming(Condition, In); 2027 } else { 2028 auto Inverted = invertCondition(Condition); 2029 DeletionCandidates.push_back(Condition); 2030 Phi->addIncoming(Inverted, In); 2031 } 2032 OneSuccessorDone = true; 2033 } 2034 } 2035 } 2036 } 2037 2038 // Capture the existing control flow as guard predicates, and redirect 2039 // control flow from \p Incoming block through the \p GuardBlocks to the 2040 // \p Outgoing blocks. 2041 // 2042 // There is one guard predicate for each outgoing block OutBB. The 2043 // predicate represents whether the hub should transfer control flow 2044 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 2045 // them in the same order as the Outgoing set-vector, and control 2046 // branches to the first outgoing block whose predicate evaluates to true. 2047 static void 2048 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 2049 SmallVectorImpl<WeakVH> &DeletionCandidates, 2050 const BBSetVector &Incoming, 2051 const BBSetVector &Outgoing, const StringRef Prefix, 2052 std::optional<unsigned> MaxControlFlowBooleans) { 2053 BBPredicates GuardPredicates; 2054 auto F = Incoming.front()->getParent(); 2055 2056 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 2057 GuardBlocks.push_back( 2058 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 2059 2060 // When we are using an integer to record which target block to jump to, we 2061 // are creating less live values, actually we are using one single integer to 2062 // store the index of the target block. When we are using booleans to store 2063 // the branching information, we need (N-1) boolean values, where N is the 2064 // number of outgoing block. 2065 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2066 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2067 DeletionCandidates); 2068 else 2069 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2070 2071 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2072 } 2073 2074 BasicBlock *llvm::CreateControlFlowHub( 2075 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2076 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2077 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2078 if (Outgoing.size() < 2) 2079 return Outgoing.front(); 2080 2081 SmallVector<DominatorTree::UpdateType, 16> Updates; 2082 if (DTU) { 2083 for (auto *In : Incoming) { 2084 for (auto Succ : successors(In)) 2085 if (Outgoing.count(Succ)) 2086 Updates.push_back({DominatorTree::Delete, In, Succ}); 2087 } 2088 } 2089 2090 SmallVector<WeakVH, 8> DeletionCandidates; 2091 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2092 Prefix, MaxControlFlowBooleans); 2093 auto FirstGuardBlock = GuardBlocks.front(); 2094 2095 // Update the PHINodes in each outgoing block to match the new control flow. 2096 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2097 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2098 2099 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2100 2101 if (DTU) { 2102 int NumGuards = GuardBlocks.size(); 2103 assert((int)Outgoing.size() == NumGuards + 1); 2104 2105 for (auto In : Incoming) 2106 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2107 2108 for (int i = 0; i != NumGuards - 1; ++i) { 2109 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2110 Updates.push_back( 2111 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2112 } 2113 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2114 Outgoing[NumGuards - 1]}); 2115 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2116 Outgoing[NumGuards]}); 2117 DTU->applyUpdates(Updates); 2118 } 2119 2120 for (auto I : DeletionCandidates) { 2121 if (I->use_empty()) 2122 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2123 Inst->eraseFromParent(); 2124 } 2125 2126 return FirstGuardBlock; 2127 } 2128 2129 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2130 Value *NewCond = PBI->getCondition(); 2131 // If this is a "cmp" instruction, only used for branching (and nowhere 2132 // else), then we can simply invert the predicate. 2133 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2134 CmpInst *CI = cast<CmpInst>(NewCond); 2135 CI->setPredicate(CI->getInversePredicate()); 2136 } else 2137 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2138 2139 PBI->setCondition(NewCond); 2140 PBI->swapSuccessors(); 2141 } 2142 2143 bool llvm::hasOnlySimpleTerminator(const Function &F) { 2144 for (auto &BB : F) { 2145 auto *Term = BB.getTerminator(); 2146 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 2147 isa<BranchInst>(Term))) 2148 return false; 2149 } 2150 return true; 2151 } 2152