xref: /llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 6942c64e8128e4ccd891b813d0240f574f80f59e)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "basicblock-utils"
55 
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58     cl::desc("Set the maximum path length when checking whether a basic block "
59              "is followed by a block that either has a terminating "
60              "deoptimizing call or is terminated with an unreachable"));
61 
62 void llvm::detachDeadBlocks(
63     ArrayRef<BasicBlock *> BBs,
64     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65     bool KeepOneInputPHIs) {
66   for (auto *BB : BBs) {
67     // Loop through all of our successors and make sure they know that one
68     // of their predecessors is going away.
69     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70     for (BasicBlock *Succ : successors(BB)) {
71       Succ->removePredecessor(BB, KeepOneInputPHIs);
72       if (Updates && UniqueSuccessors.insert(Succ).second)
73         Updates->push_back({DominatorTree::Delete, BB, Succ});
74     }
75 
76     // Zap all the instructions in the block.
77     while (!BB->empty()) {
78       Instruction &I = BB->back();
79       // If this instruction is used, replace uses with an arbitrary value.
80       // Because control flow can't get here, we don't care what we replace the
81       // value with.  Note that since this block is unreachable, and all values
82       // contained within it must dominate their uses, that all uses will
83       // eventually be removed (they are themselves dead).
84       if (!I.use_empty())
85         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
86       BB->back().eraseFromParent();
87     }
88     new UnreachableInst(BB->getContext(), BB);
89     assert(BB->size() == 1 &&
90            isa<UnreachableInst>(BB->getTerminator()) &&
91            "The successor list of BB isn't empty before "
92            "applying corresponding DTU updates.");
93   }
94 }
95 
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97                            bool KeepOneInputPHIs) {
98   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99 }
100 
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102                             bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104   // Make sure that all predecessors of each dead block is also dead.
105   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107   for (auto *BB : Dead)
108     for (BasicBlock *Pred : predecessors(BB))
109       assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
111 
112   SmallVector<DominatorTree::UpdateType, 4> Updates;
113   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114 
115   if (DTU)
116     DTU->applyUpdates(Updates);
117 
118   for (BasicBlock *BB : BBs)
119     if (DTU)
120       DTU->deleteBB(BB);
121     else
122       BB->eraseFromParent();
123 }
124 
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126                                       bool KeepOneInputPHIs) {
127   df_iterator_default_set<BasicBlock*> Reachable;
128 
129   // Mark all reachable blocks.
130   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131     (void)BB/* Mark all reachable blocks */;
132 
133   // Collect all dead blocks.
134   std::vector<BasicBlock*> DeadBlocks;
135   for (BasicBlock &BB : F)
136     if (!Reachable.count(&BB))
137       DeadBlocks.push_back(&BB);
138 
139   // Delete the dead blocks.
140   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141 
142   return !DeadBlocks.empty();
143 }
144 
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146                                    MemoryDependenceResults *MemDep) {
147   if (!isa<PHINode>(BB->begin()))
148     return false;
149 
150   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151     if (PN->getIncomingValue(0) != PN)
152       PN->replaceAllUsesWith(PN->getIncomingValue(0));
153     else
154       PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
155 
156     if (MemDep)
157       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
158 
159     PN->eraseFromParent();
160   }
161   return true;
162 }
163 
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165                           MemorySSAUpdater *MSSAU) {
166   // Recursively deleting a PHI may cause multiple PHIs to be deleted
167   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168   SmallVector<WeakTrackingVH, 8> PHIs;
169   for (PHINode &PN : BB->phis())
170     PHIs.push_back(&PN);
171 
172   bool Changed = false;
173   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176 
177   return Changed;
178 }
179 
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
182                                      MemoryDependenceResults *MemDep,
183                                      bool PredecessorWithTwoSuccessors,
184                                      DominatorTree *DT) {
185   if (BB->hasAddressTaken())
186     return false;
187 
188   // Can't merge if there are multiple predecessors, or no predecessors.
189   BasicBlock *PredBB = BB->getUniquePredecessor();
190   if (!PredBB) return false;
191 
192   // Don't break self-loops.
193   if (PredBB == BB) return false;
194 
195   // Don't break unwinding instructions or terminators with other side-effects.
196   Instruction *PTI = PredBB->getTerminator();
197   if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
198     return false;
199 
200   // Can't merge if there are multiple distinct successors.
201   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
202     return false;
203 
204   // Currently only allow PredBB to have two predecessors, one being BB.
205   // Update BI to branch to BB's only successor instead of BB.
206   BranchInst *PredBB_BI;
207   BasicBlock *NewSucc = nullptr;
208   unsigned FallThruPath;
209   if (PredecessorWithTwoSuccessors) {
210     if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
211       return false;
212     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
213     if (!BB_JmpI || !BB_JmpI->isUnconditional())
214       return false;
215     NewSucc = BB_JmpI->getSuccessor(0);
216     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
217   }
218 
219   // Can't merge if there is PHI loop.
220   for (PHINode &PN : BB->phis())
221     if (llvm::is_contained(PN.incoming_values(), &PN))
222       return false;
223 
224   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
225                     << PredBB->getName() << "\n");
226 
227   // Begin by getting rid of unneeded PHIs.
228   SmallVector<AssertingVH<Value>, 4> IncomingValues;
229   if (isa<PHINode>(BB->front())) {
230     for (PHINode &PN : BB->phis())
231       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
232           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
233         IncomingValues.push_back(PN.getIncomingValue(0));
234     FoldSingleEntryPHINodes(BB, MemDep);
235   }
236 
237   if (DT) {
238     assert(!DTU && "cannot use both DT and DTU for updates");
239     DomTreeNode *PredNode = DT->getNode(PredBB);
240     DomTreeNode *BBNode = DT->getNode(BB);
241     if (PredNode) {
242       assert(BBNode && "PredNode unreachable but BBNode reachable?");
243       for (DomTreeNode *C : to_vector(BBNode->children()))
244         C->setIDom(PredNode);
245     }
246   }
247   // DTU update: Collect all the edges that exit BB.
248   // These dominator edges will be redirected from Pred.
249   std::vector<DominatorTree::UpdateType> Updates;
250   if (DTU) {
251     assert(!DT && "cannot use both DT and DTU for updates");
252     // To avoid processing the same predecessor more than once.
253     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
254     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
255                                                succ_end(PredBB));
256     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
257     // Add insert edges first. Experimentally, for the particular case of two
258     // blocks that can be merged, with a single successor and single predecessor
259     // respectively, it is beneficial to have all insert updates first. Deleting
260     // edges first may lead to unreachable blocks, followed by inserting edges
261     // making the blocks reachable again. Such DT updates lead to high compile
262     // times. We add inserts before deletes here to reduce compile time.
263     for (BasicBlock *SuccOfBB : successors(BB))
264       // This successor of BB may already be a PredBB's successor.
265       if (!SuccsOfPredBB.contains(SuccOfBB))
266         if (SeenSuccs.insert(SuccOfBB).second)
267           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
268     SeenSuccs.clear();
269     for (BasicBlock *SuccOfBB : successors(BB))
270       if (SeenSuccs.insert(SuccOfBB).second)
271         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
272     Updates.push_back({DominatorTree::Delete, PredBB, BB});
273   }
274 
275   Instruction *STI = BB->getTerminator();
276   Instruction *Start = &*BB->begin();
277   // If there's nothing to move, mark the starting instruction as the last
278   // instruction in the block. Terminator instruction is handled separately.
279   if (Start == STI)
280     Start = PTI;
281 
282   // Move all definitions in the successor to the predecessor...
283   PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
284 
285   if (MSSAU)
286     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
287 
288   // Make all PHI nodes that referred to BB now refer to Pred as their
289   // source...
290   BB->replaceAllUsesWith(PredBB);
291 
292   if (PredecessorWithTwoSuccessors) {
293     // Delete the unconditional branch from BB.
294     BB->back().eraseFromParent();
295 
296     // Update branch in the predecessor.
297     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
298   } else {
299     // Delete the unconditional branch from the predecessor.
300     PredBB->back().eraseFromParent();
301 
302     // Move terminator instruction.
303     BB->back().moveBeforePreserving(*PredBB, PredBB->end());
304 
305     // Terminator may be a memory accessing instruction too.
306     if (MSSAU)
307       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
308               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
309         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
310   }
311   // Add unreachable to now empty BB.
312   new UnreachableInst(BB->getContext(), BB);
313 
314   // Inherit predecessors name if it exists.
315   if (!PredBB->hasName())
316     PredBB->takeName(BB);
317 
318   if (LI)
319     LI->removeBlock(BB);
320 
321   if (MemDep)
322     MemDep->invalidateCachedPredecessors();
323 
324   if (DTU)
325     DTU->applyUpdates(Updates);
326 
327   if (DT) {
328     assert(succ_empty(BB) &&
329            "successors should have been transferred to PredBB");
330     DT->eraseNode(BB);
331   }
332 
333   // Finally, erase the old block and update dominator info.
334   DeleteDeadBlock(BB, DTU);
335 
336   return true;
337 }
338 
339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
340     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
341     LoopInfo *LI) {
342   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
343 
344   bool BlocksHaveBeenMerged = false;
345   while (!MergeBlocks.empty()) {
346     BasicBlock *BB = *MergeBlocks.begin();
347     BasicBlock *Dest = BB->getSingleSuccessor();
348     if (Dest && (!L || L->contains(Dest))) {
349       BasicBlock *Fold = Dest->getUniquePredecessor();
350       (void)Fold;
351       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
352         assert(Fold == BB &&
353                "Expecting BB to be unique predecessor of the Dest block");
354         MergeBlocks.erase(Dest);
355         BlocksHaveBeenMerged = true;
356       } else
357         MergeBlocks.erase(BB);
358     } else
359       MergeBlocks.erase(BB);
360   }
361   return BlocksHaveBeenMerged;
362 }
363 
364 /// Remove redundant instructions within sequences of consecutive dbg.value
365 /// instructions. This is done using a backward scan to keep the last dbg.value
366 /// describing a specific variable/fragment.
367 ///
368 /// BackwardScan strategy:
369 /// ----------------------
370 /// Given a sequence of consecutive DbgValueInst like this
371 ///
372 ///   dbg.value ..., "x", FragmentX1  (*)
373 ///   dbg.value ..., "y", FragmentY1
374 ///   dbg.value ..., "x", FragmentX2
375 ///   dbg.value ..., "x", FragmentX1  (**)
376 ///
377 /// then the instruction marked with (*) can be removed (it is guaranteed to be
378 /// obsoleted by the instruction marked with (**) as the latter instruction is
379 /// describing the same variable using the same fragment info).
380 ///
381 /// Possible improvements:
382 /// - Check fully overlapping fragments and not only identical fragments.
383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being
384 ///   part of the sequence of consecutive instructions.
385 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
386   SmallVector<DbgValueInst *, 8> ToBeRemoved;
387   SmallDenseSet<DebugVariable> VariableSet;
388   for (auto &I : reverse(*BB)) {
389     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
390       DebugVariable Key(DVI->getVariable(),
391                         DVI->getExpression(),
392                         DVI->getDebugLoc()->getInlinedAt());
393       auto R = VariableSet.insert(Key);
394       // If the variable fragment hasn't been seen before then we don't want
395       // to remove this dbg intrinsic.
396       if (R.second)
397         continue;
398 
399       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
400         // Don't delete dbg.assign intrinsics that are linked to instructions.
401         if (!at::getAssignmentInsts(DAI).empty())
402           continue;
403         // Unlinked dbg.assign intrinsics can be treated like dbg.values.
404       }
405 
406       // If the same variable fragment is described more than once it is enough
407       // to keep the last one (i.e. the first found since we for reverse
408       // iteration).
409       ToBeRemoved.push_back(DVI);
410       continue;
411     }
412     // Sequence with consecutive dbg.value instrs ended. Clear the map to
413     // restart identifying redundant instructions if case we find another
414     // dbg.value sequence.
415     VariableSet.clear();
416   }
417 
418   for (auto &Instr : ToBeRemoved)
419     Instr->eraseFromParent();
420 
421   return !ToBeRemoved.empty();
422 }
423 
424 /// Remove redundant dbg.value instructions using a forward scan. This can
425 /// remove a dbg.value instruction that is redundant due to indicating that a
426 /// variable has the same value as already being indicated by an earlier
427 /// dbg.value.
428 ///
429 /// ForwardScan strategy:
430 /// ---------------------
431 /// Given two identical dbg.value instructions, separated by a block of
432 /// instructions that isn't describing the same variable, like this
433 ///
434 ///   dbg.value X1, "x", FragmentX1  (**)
435 ///   <block of instructions, none being "dbg.value ..., "x", ...">
436 ///   dbg.value X1, "x", FragmentX1  (*)
437 ///
438 /// then the instruction marked with (*) can be removed. Variable "x" is already
439 /// described as being mapped to the SSA value X1.
440 ///
441 /// Possible improvements:
442 /// - Keep track of non-overlapping fragments.
443 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
444   SmallVector<DbgValueInst *, 8> ToBeRemoved;
445   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
446       VariableMap;
447   for (auto &I : *BB) {
448     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
449       DebugVariable Key(DVI->getVariable(), std::nullopt,
450                         DVI->getDebugLoc()->getInlinedAt());
451       auto VMI = VariableMap.find(Key);
452       auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
453       // A dbg.assign with no linked instructions can be treated like a
454       // dbg.value (i.e. can be deleted).
455       bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
456 
457       // Update the map if we found a new value/expression describing the
458       // variable, or if the variable wasn't mapped already.
459       SmallVector<Value *, 4> Values(DVI->getValues());
460       if (VMI == VariableMap.end() || VMI->second.first != Values ||
461           VMI->second.second != DVI->getExpression()) {
462         // Use a sentinal value (nullptr) for the DIExpression when we see a
463         // linked dbg.assign so that the next debug intrinsic will never match
464         // it (i.e. always treat linked dbg.assigns as if they're unique).
465         if (IsDbgValueKind)
466           VariableMap[Key] = {Values, DVI->getExpression()};
467         else
468           VariableMap[Key] = {Values, nullptr};
469         continue;
470       }
471 
472       // Don't delete dbg.assign intrinsics that are linked to instructions.
473       if (!IsDbgValueKind)
474         continue;
475       ToBeRemoved.push_back(DVI);
476     }
477   }
478 
479   for (auto &Instr : ToBeRemoved)
480     Instr->eraseFromParent();
481 
482   return !ToBeRemoved.empty();
483 }
484 
485 /// Remove redundant undef dbg.assign intrinsic from an entry block using a
486 /// forward scan.
487 /// Strategy:
488 /// ---------------------
489 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
490 /// linked to an intrinsic, and don't share an aggregate variable with a debug
491 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
492 /// that come before non-undef debug intrinsics for the variable are
493 /// deleted. Given:
494 ///
495 ///   dbg.assign undef, "x", FragmentX1 (*)
496 ///   <block of instructions, none being "dbg.value ..., "x", ...">
497 ///   dbg.value %V, "x", FragmentX2
498 ///   <block of instructions, none being "dbg.value ..., "x", ...">
499 ///   dbg.assign undef, "x", FragmentX1
500 ///
501 /// then (only) the instruction marked with (*) can be removed.
502 /// Possible improvements:
503 /// - Keep track of non-overlapping fragments.
504 static bool remomveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
505   assert(BB->isEntryBlock() && "expected entry block");
506   SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
507   DenseSet<DebugVariable> SeenDefForAggregate;
508   // Returns the DebugVariable for DVI with no fragment info.
509   auto GetAggregateVariable = [](DbgValueInst *DVI) {
510     return DebugVariable(DVI->getVariable(), std::nullopt,
511                          DVI->getDebugLoc()->getInlinedAt());
512   };
513 
514   // Remove undef dbg.assign intrinsics that are encountered before
515   // any non-undef intrinsics from the entry block.
516   for (auto &I : *BB) {
517     DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
518     if (!DVI)
519       continue;
520     auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
521     bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
522     DebugVariable Aggregate = GetAggregateVariable(DVI);
523     if (!SeenDefForAggregate.contains(Aggregate)) {
524       bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
525       if (!IsKill) {
526         SeenDefForAggregate.insert(Aggregate);
527       } else if (DAI) {
528         ToBeRemoved.push_back(DAI);
529       }
530     }
531   }
532 
533   for (DbgAssignIntrinsic *DAI : ToBeRemoved)
534     DAI->eraseFromParent();
535 
536   return !ToBeRemoved.empty();
537 }
538 
539 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
540   bool MadeChanges = false;
541   // By using the "backward scan" strategy before the "forward scan" strategy we
542   // can remove both dbg.value (2) and (3) in a situation like this:
543   //
544   //   (1) dbg.value V1, "x", DIExpression()
545   //       ...
546   //   (2) dbg.value V2, "x", DIExpression()
547   //   (3) dbg.value V1, "x", DIExpression()
548   //
549   // The backward scan will remove (2), it is made obsolete by (3). After
550   // getting (2) out of the way, the foward scan will remove (3) since "x"
551   // already is described as having the value V1 at (1).
552   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
553   if (BB->isEntryBlock() &&
554       isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
555     MadeChanges |= remomveUndefDbgAssignsFromEntryBlock(BB);
556   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
557 
558   if (MadeChanges)
559     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
560                       << BB->getName() << "\n");
561   return MadeChanges;
562 }
563 
564 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
565   Instruction &I = *BI;
566   // Replaces all of the uses of the instruction with uses of the value
567   I.replaceAllUsesWith(V);
568 
569   // Make sure to propagate a name if there is one already.
570   if (I.hasName() && !V->hasName())
571     V->takeName(&I);
572 
573   // Delete the unnecessary instruction now...
574   BI = BI->eraseFromParent();
575 }
576 
577 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
578                                Instruction *I) {
579   assert(I->getParent() == nullptr &&
580          "ReplaceInstWithInst: Instruction already inserted into basic block!");
581 
582   // Copy debug location to newly added instruction, if it wasn't already set
583   // by the caller.
584   if (!I->getDebugLoc())
585     I->setDebugLoc(BI->getDebugLoc());
586 
587   // Insert the new instruction into the basic block...
588   BasicBlock::iterator New = I->insertInto(BB, BI);
589 
590   // Replace all uses of the old instruction, and delete it.
591   ReplaceInstWithValue(BI, I);
592 
593   // Move BI back to point to the newly inserted instruction
594   BI = New;
595 }
596 
597 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
598   // Remember visited blocks to avoid infinite loop
599   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
600   unsigned Depth = 0;
601   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
602          VisitedBlocks.insert(BB).second) {
603     if (isa<UnreachableInst>(BB->getTerminator()) ||
604         BB->getTerminatingDeoptimizeCall())
605       return true;
606     BB = BB->getUniqueSuccessor();
607   }
608   return false;
609 }
610 
611 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
612   BasicBlock::iterator BI(From);
613   ReplaceInstWithInst(From->getParent(), BI, To);
614 }
615 
616 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
617                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
618                             const Twine &BBName) {
619   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
620 
621   Instruction *LatchTerm = BB->getTerminator();
622 
623   CriticalEdgeSplittingOptions Options =
624       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
625 
626   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
627     // If it is a critical edge, and the succesor is an exception block, handle
628     // the split edge logic in this specific function
629     if (Succ->isEHPad())
630       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
631 
632     // If this is a critical edge, let SplitKnownCriticalEdge do it.
633     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
634   }
635 
636   // If the edge isn't critical, then BB has a single successor or Succ has a
637   // single pred.  Split the block.
638   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
639     // If the successor only has a single pred, split the top of the successor
640     // block.
641     assert(SP == BB && "CFG broken");
642     SP = nullptr;
643     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
644                       /*Before=*/true);
645   }
646 
647   // Otherwise, if BB has a single successor, split it at the bottom of the
648   // block.
649   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
650          "Should have a single succ!");
651   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
652 }
653 
654 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
655   if (auto *II = dyn_cast<InvokeInst>(TI))
656     II->setUnwindDest(Succ);
657   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
658     CS->setUnwindDest(Succ);
659   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
660     CR->setUnwindDest(Succ);
661   else
662     llvm_unreachable("unexpected terminator instruction");
663 }
664 
665 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
666                           BasicBlock *NewPred, PHINode *Until) {
667   int BBIdx = 0;
668   for (PHINode &PN : DestBB->phis()) {
669     // We manually update the LandingPadReplacement PHINode and it is the last
670     // PHI Node. So, if we find it, we are done.
671     if (Until == &PN)
672       break;
673 
674     // Reuse the previous value of BBIdx if it lines up.  In cases where we
675     // have multiple phi nodes with *lots* of predecessors, this is a speed
676     // win because we don't have to scan the PHI looking for TIBB.  This
677     // happens because the BB list of PHI nodes are usually in the same
678     // order.
679     if (PN.getIncomingBlock(BBIdx) != OldPred)
680       BBIdx = PN.getBasicBlockIndex(OldPred);
681 
682     assert(BBIdx != -1 && "Invalid PHI Index!");
683     PN.setIncomingBlock(BBIdx, NewPred);
684   }
685 }
686 
687 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
688                                    LandingPadInst *OriginalPad,
689                                    PHINode *LandingPadReplacement,
690                                    const CriticalEdgeSplittingOptions &Options,
691                                    const Twine &BBName) {
692 
693   auto *PadInst = Succ->getFirstNonPHI();
694   if (!LandingPadReplacement && !PadInst->isEHPad())
695     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
696 
697   auto *LI = Options.LI;
698   SmallVector<BasicBlock *, 4> LoopPreds;
699   // Check if extra modifications will be required to preserve loop-simplify
700   // form after splitting. If it would require splitting blocks with IndirectBr
701   // terminators, bail out if preserving loop-simplify form is requested.
702   if (Options.PreserveLoopSimplify && LI) {
703     if (Loop *BBLoop = LI->getLoopFor(BB)) {
704 
705       // The only way that we can break LoopSimplify form by splitting a
706       // critical edge is when there exists some edge from BBLoop to Succ *and*
707       // the only edge into Succ from outside of BBLoop is that of NewBB after
708       // the split. If the first isn't true, then LoopSimplify still holds,
709       // NewBB is the new exit block and it has no non-loop predecessors. If the
710       // second isn't true, then Succ was not in LoopSimplify form prior to
711       // the split as it had a non-loop predecessor. In both of these cases,
712       // the predecessor must be directly in BBLoop, not in a subloop, or again
713       // LoopSimplify doesn't hold.
714       for (BasicBlock *P : predecessors(Succ)) {
715         if (P == BB)
716           continue; // The new block is known.
717         if (LI->getLoopFor(P) != BBLoop) {
718           // Loop is not in LoopSimplify form, no need to re simplify after
719           // splitting edge.
720           LoopPreds.clear();
721           break;
722         }
723         LoopPreds.push_back(P);
724       }
725       // Loop-simplify form can be preserved, if we can split all in-loop
726       // predecessors.
727       if (any_of(LoopPreds, [](BasicBlock *Pred) {
728             return isa<IndirectBrInst>(Pred->getTerminator());
729           })) {
730         return nullptr;
731       }
732     }
733   }
734 
735   auto *NewBB =
736       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
737   setUnwindEdgeTo(BB->getTerminator(), NewBB);
738   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
739 
740   if (LandingPadReplacement) {
741     auto *NewLP = OriginalPad->clone();
742     auto *Terminator = BranchInst::Create(Succ, NewBB);
743     NewLP->insertBefore(Terminator);
744     LandingPadReplacement->addIncoming(NewLP, NewBB);
745   } else {
746     Value *ParentPad = nullptr;
747     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
748       ParentPad = FuncletPad->getParentPad();
749     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
750       ParentPad = CatchSwitch->getParentPad();
751     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
752       ParentPad = CleanupPad->getParentPad();
753     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
754       ParentPad = LandingPad->getParent();
755     else
756       llvm_unreachable("handling for other EHPads not implemented yet");
757 
758     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
759     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
760   }
761 
762   auto *DT = Options.DT;
763   auto *MSSAU = Options.MSSAU;
764   if (!DT && !LI)
765     return NewBB;
766 
767   if (DT) {
768     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
769     SmallVector<DominatorTree::UpdateType, 3> Updates;
770 
771     Updates.push_back({DominatorTree::Insert, BB, NewBB});
772     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
773     Updates.push_back({DominatorTree::Delete, BB, Succ});
774 
775     DTU.applyUpdates(Updates);
776     DTU.flush();
777 
778     if (MSSAU) {
779       MSSAU->applyUpdates(Updates, *DT);
780       if (VerifyMemorySSA)
781         MSSAU->getMemorySSA()->verifyMemorySSA();
782     }
783   }
784 
785   if (LI) {
786     if (Loop *BBLoop = LI->getLoopFor(BB)) {
787       // If one or the other blocks were not in a loop, the new block is not
788       // either, and thus LI doesn't need to be updated.
789       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
790         if (BBLoop == SuccLoop) {
791           // Both in the same loop, the NewBB joins loop.
792           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
793         } else if (BBLoop->contains(SuccLoop)) {
794           // Edge from an outer loop to an inner loop.  Add to the outer loop.
795           BBLoop->addBasicBlockToLoop(NewBB, *LI);
796         } else if (SuccLoop->contains(BBLoop)) {
797           // Edge from an inner loop to an outer loop.  Add to the outer loop.
798           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
799         } else {
800           // Edge from two loops with no containment relation.  Because these
801           // are natural loops, we know that the destination block must be the
802           // header of its loop (adding a branch into a loop elsewhere would
803           // create an irreducible loop).
804           assert(SuccLoop->getHeader() == Succ &&
805                  "Should not create irreducible loops!");
806           if (Loop *P = SuccLoop->getParentLoop())
807             P->addBasicBlockToLoop(NewBB, *LI);
808         }
809       }
810 
811       // If BB is in a loop and Succ is outside of that loop, we may need to
812       // update LoopSimplify form and LCSSA form.
813       if (!BBLoop->contains(Succ)) {
814         assert(!BBLoop->contains(NewBB) &&
815                "Split point for loop exit is contained in loop!");
816 
817         // Update LCSSA form in the newly created exit block.
818         if (Options.PreserveLCSSA) {
819           createPHIsForSplitLoopExit(BB, NewBB, Succ);
820         }
821 
822         if (!LoopPreds.empty()) {
823           BasicBlock *NewExitBB = SplitBlockPredecessors(
824               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
825           if (Options.PreserveLCSSA)
826             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
827         }
828       }
829     }
830   }
831 
832   return NewBB;
833 }
834 
835 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
836                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
837   // SplitBB shouldn't have anything non-trivial in it yet.
838   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
839           SplitBB->isLandingPad()) &&
840          "SplitBB has non-PHI nodes!");
841 
842   // For each PHI in the destination block.
843   for (PHINode &PN : DestBB->phis()) {
844     int Idx = PN.getBasicBlockIndex(SplitBB);
845     assert(Idx >= 0 && "Invalid Block Index");
846     Value *V = PN.getIncomingValue(Idx);
847 
848     // If the input is a PHI which already satisfies LCSSA, don't create
849     // a new one.
850     if (const PHINode *VP = dyn_cast<PHINode>(V))
851       if (VP->getParent() == SplitBB)
852         continue;
853 
854     // Otherwise a new PHI is needed. Create one and populate it.
855     PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
856     BasicBlock::iterator InsertPos =
857         SplitBB->isLandingPad() ? SplitBB->begin()
858                                 : SplitBB->getTerminator()->getIterator();
859     NewPN->insertBefore(InsertPos);
860     for (BasicBlock *BB : Preds)
861       NewPN->addIncoming(V, BB);
862 
863     // Update the original PHI.
864     PN.setIncomingValue(Idx, NewPN);
865   }
866 }
867 
868 unsigned
869 llvm::SplitAllCriticalEdges(Function &F,
870                             const CriticalEdgeSplittingOptions &Options) {
871   unsigned NumBroken = 0;
872   for (BasicBlock &BB : F) {
873     Instruction *TI = BB.getTerminator();
874     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
875       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
876         if (SplitCriticalEdge(TI, i, Options))
877           ++NumBroken;
878   }
879   return NumBroken;
880 }
881 
882 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
883                                   DomTreeUpdater *DTU, DominatorTree *DT,
884                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
885                                   const Twine &BBName, bool Before) {
886   if (Before) {
887     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
888     return splitBlockBefore(Old, SplitPt,
889                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
890                             BBName);
891   }
892   BasicBlock::iterator SplitIt = SplitPt->getIterator();
893   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
894     ++SplitIt;
895     assert(SplitIt != SplitPt->getParent()->end());
896   }
897   std::string Name = BBName.str();
898   BasicBlock *New = Old->splitBasicBlock(
899       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
900 
901   // The new block lives in whichever loop the old one did. This preserves
902   // LCSSA as well, because we force the split point to be after any PHI nodes.
903   if (LI)
904     if (Loop *L = LI->getLoopFor(Old))
905       L->addBasicBlockToLoop(New, *LI);
906 
907   if (DTU) {
908     SmallVector<DominatorTree::UpdateType, 8> Updates;
909     // Old dominates New. New node dominates all other nodes dominated by Old.
910     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
911     Updates.push_back({DominatorTree::Insert, Old, New});
912     Updates.reserve(Updates.size() + 2 * succ_size(New));
913     for (BasicBlock *SuccessorOfOld : successors(New))
914       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
915         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
916         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
917       }
918 
919     DTU->applyUpdates(Updates);
920   } else if (DT)
921     // Old dominates New. New node dominates all other nodes dominated by Old.
922     if (DomTreeNode *OldNode = DT->getNode(Old)) {
923       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
924 
925       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
926       for (DomTreeNode *I : Children)
927         DT->changeImmediateDominator(I, NewNode);
928     }
929 
930   // Move MemoryAccesses still tracked in Old, but part of New now.
931   // Update accesses in successor blocks accordingly.
932   if (MSSAU)
933     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
934 
935   return New;
936 }
937 
938 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
939                              DominatorTree *DT, LoopInfo *LI,
940                              MemorySSAUpdater *MSSAU, const Twine &BBName,
941                              bool Before) {
942   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
943                         Before);
944 }
945 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
946                              DomTreeUpdater *DTU, LoopInfo *LI,
947                              MemorySSAUpdater *MSSAU, const Twine &BBName,
948                              bool Before) {
949   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
950                         Before);
951 }
952 
953 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
954                                    DomTreeUpdater *DTU, LoopInfo *LI,
955                                    MemorySSAUpdater *MSSAU,
956                                    const Twine &BBName) {
957 
958   BasicBlock::iterator SplitIt = SplitPt->getIterator();
959   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
960     ++SplitIt;
961   std::string Name = BBName.str();
962   BasicBlock *New = Old->splitBasicBlock(
963       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
964       /* Before=*/true);
965 
966   // The new block lives in whichever loop the old one did. This preserves
967   // LCSSA as well, because we force the split point to be after any PHI nodes.
968   if (LI)
969     if (Loop *L = LI->getLoopFor(Old))
970       L->addBasicBlockToLoop(New, *LI);
971 
972   if (DTU) {
973     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
974     // New dominates Old. The predecessor nodes of the Old node dominate
975     // New node.
976     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
977     DTUpdates.push_back({DominatorTree::Insert, New, Old});
978     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
979     for (BasicBlock *PredecessorOfOld : predecessors(New))
980       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
981         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
982         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
983       }
984 
985     DTU->applyUpdates(DTUpdates);
986 
987     // Move MemoryAccesses still tracked in Old, but part of New now.
988     // Update accesses in successor blocks accordingly.
989     if (MSSAU) {
990       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
991       if (VerifyMemorySSA)
992         MSSAU->getMemorySSA()->verifyMemorySSA();
993     }
994   }
995   return New;
996 }
997 
998 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
999 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
1000                                       ArrayRef<BasicBlock *> Preds,
1001                                       DomTreeUpdater *DTU, DominatorTree *DT,
1002                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
1003                                       bool PreserveLCSSA, bool &HasLoopExit) {
1004   // Update dominator tree if available.
1005   if (DTU) {
1006     // Recalculation of DomTree is needed when updating a forward DomTree and
1007     // the Entry BB is replaced.
1008     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1009       // The entry block was removed and there is no external interface for
1010       // the dominator tree to be notified of this change. In this corner-case
1011       // we recalculate the entire tree.
1012       DTU->recalculate(*NewBB->getParent());
1013     } else {
1014       // Split block expects NewBB to have a non-empty set of predecessors.
1015       SmallVector<DominatorTree::UpdateType, 8> Updates;
1016       SmallPtrSet<BasicBlock *, 8> UniquePreds;
1017       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1018       Updates.reserve(Updates.size() + 2 * Preds.size());
1019       for (auto *Pred : Preds)
1020         if (UniquePreds.insert(Pred).second) {
1021           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1022           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1023         }
1024       DTU->applyUpdates(Updates);
1025     }
1026   } else if (DT) {
1027     if (OldBB == DT->getRootNode()->getBlock()) {
1028       assert(NewBB->isEntryBlock());
1029       DT->setNewRoot(NewBB);
1030     } else {
1031       // Split block expects NewBB to have a non-empty set of predecessors.
1032       DT->splitBlock(NewBB);
1033     }
1034   }
1035 
1036   // Update MemoryPhis after split if MemorySSA is available
1037   if (MSSAU)
1038     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1039 
1040   // The rest of the logic is only relevant for updating the loop structures.
1041   if (!LI)
1042     return;
1043 
1044   if (DTU && DTU->hasDomTree())
1045     DT = &DTU->getDomTree();
1046   assert(DT && "DT should be available to update LoopInfo!");
1047   Loop *L = LI->getLoopFor(OldBB);
1048 
1049   // If we need to preserve loop analyses, collect some information about how
1050   // this split will affect loops.
1051   bool IsLoopEntry = !!L;
1052   bool SplitMakesNewLoopHeader = false;
1053   for (BasicBlock *Pred : Preds) {
1054     // Preds that are not reachable from entry should not be used to identify if
1055     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1056     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1057     // as true and make the NewBB the header of some loop. This breaks LI.
1058     if (!DT->isReachableFromEntry(Pred))
1059       continue;
1060     // If we need to preserve LCSSA, determine if any of the preds is a loop
1061     // exit.
1062     if (PreserveLCSSA)
1063       if (Loop *PL = LI->getLoopFor(Pred))
1064         if (!PL->contains(OldBB))
1065           HasLoopExit = true;
1066 
1067     // If we need to preserve LoopInfo, note whether any of the preds crosses
1068     // an interesting loop boundary.
1069     if (!L)
1070       continue;
1071     if (L->contains(Pred))
1072       IsLoopEntry = false;
1073     else
1074       SplitMakesNewLoopHeader = true;
1075   }
1076 
1077   // Unless we have a loop for OldBB, nothing else to do here.
1078   if (!L)
1079     return;
1080 
1081   if (IsLoopEntry) {
1082     // Add the new block to the nearest enclosing loop (and not an adjacent
1083     // loop). To find this, examine each of the predecessors and determine which
1084     // loops enclose them, and select the most-nested loop which contains the
1085     // loop containing the block being split.
1086     Loop *InnermostPredLoop = nullptr;
1087     for (BasicBlock *Pred : Preds) {
1088       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1089         // Seek a loop which actually contains the block being split (to avoid
1090         // adjacent loops).
1091         while (PredLoop && !PredLoop->contains(OldBB))
1092           PredLoop = PredLoop->getParentLoop();
1093 
1094         // Select the most-nested of these loops which contains the block.
1095         if (PredLoop && PredLoop->contains(OldBB) &&
1096             (!InnermostPredLoop ||
1097              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1098           InnermostPredLoop = PredLoop;
1099       }
1100     }
1101 
1102     if (InnermostPredLoop)
1103       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1104   } else {
1105     L->addBasicBlockToLoop(NewBB, *LI);
1106     if (SplitMakesNewLoopHeader)
1107       L->moveToHeader(NewBB);
1108   }
1109 }
1110 
1111 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1112 /// This also updates AliasAnalysis, if available.
1113 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1114                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1115                            bool HasLoopExit) {
1116   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1117   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1118   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1119     PHINode *PN = cast<PHINode>(I++);
1120 
1121     // Check to see if all of the values coming in are the same.  If so, we
1122     // don't need to create a new PHI node, unless it's needed for LCSSA.
1123     Value *InVal = nullptr;
1124     if (!HasLoopExit) {
1125       InVal = PN->getIncomingValueForBlock(Preds[0]);
1126       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1127         if (!PredSet.count(PN->getIncomingBlock(i)))
1128           continue;
1129         if (!InVal)
1130           InVal = PN->getIncomingValue(i);
1131         else if (InVal != PN->getIncomingValue(i)) {
1132           InVal = nullptr;
1133           break;
1134         }
1135       }
1136     }
1137 
1138     if (InVal) {
1139       // If all incoming values for the new PHI would be the same, just don't
1140       // make a new PHI.  Instead, just remove the incoming values from the old
1141       // PHI.
1142       PN->removeIncomingValueIf(
1143           [&](unsigned Idx) {
1144             return PredSet.contains(PN->getIncomingBlock(Idx));
1145           },
1146           /* DeletePHIIfEmpty */ false);
1147 
1148       // Add an incoming value to the PHI node in the loop for the preheader
1149       // edge.
1150       PN->addIncoming(InVal, NewBB);
1151       continue;
1152     }
1153 
1154     // If the values coming into the block are not the same, we need a new
1155     // PHI.
1156     // Create the new PHI node, insert it into NewBB at the end of the block
1157     PHINode *NewPHI =
1158         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1159 
1160     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1161     // the cost of removal if we end up removing a large number of values, and
1162     // second off, this ensures that the indices for the incoming values aren't
1163     // invalidated when we remove one.
1164     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1165       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1166       if (PredSet.count(IncomingBB)) {
1167         Value *V = PN->removeIncomingValue(i, false);
1168         NewPHI->addIncoming(V, IncomingBB);
1169       }
1170     }
1171 
1172     PN->addIncoming(NewPHI, NewBB);
1173   }
1174 }
1175 
1176 static void SplitLandingPadPredecessorsImpl(
1177     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1178     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1179     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1180     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1181 
1182 static BasicBlock *
1183 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1184                            const char *Suffix, DomTreeUpdater *DTU,
1185                            DominatorTree *DT, LoopInfo *LI,
1186                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1187   // Do not attempt to split that which cannot be split.
1188   if (!BB->canSplitPredecessors())
1189     return nullptr;
1190 
1191   // For the landingpads we need to act a bit differently.
1192   // Delegate this work to the SplitLandingPadPredecessors.
1193   if (BB->isLandingPad()) {
1194     SmallVector<BasicBlock*, 2> NewBBs;
1195     std::string NewName = std::string(Suffix) + ".split-lp";
1196 
1197     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1198                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1199     return NewBBs[0];
1200   }
1201 
1202   // Create new basic block, insert right before the original block.
1203   BasicBlock *NewBB = BasicBlock::Create(
1204       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1205 
1206   // The new block unconditionally branches to the old block.
1207   BranchInst *BI = BranchInst::Create(BB, NewBB);
1208 
1209   Loop *L = nullptr;
1210   BasicBlock *OldLatch = nullptr;
1211   // Splitting the predecessors of a loop header creates a preheader block.
1212   if (LI && LI->isLoopHeader(BB)) {
1213     L = LI->getLoopFor(BB);
1214     // Using the loop start line number prevents debuggers stepping into the
1215     // loop body for this instruction.
1216     BI->setDebugLoc(L->getStartLoc());
1217 
1218     // If BB is the header of the Loop, it is possible that the loop is
1219     // modified, such that the current latch does not remain the latch of the
1220     // loop. If that is the case, the loop metadata from the current latch needs
1221     // to be applied to the new latch.
1222     OldLatch = L->getLoopLatch();
1223   } else
1224     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1225 
1226   // Move the edges from Preds to point to NewBB instead of BB.
1227   for (BasicBlock *Pred : Preds) {
1228     // This is slightly more strict than necessary; the minimum requirement
1229     // is that there be no more than one indirectbr branching to BB. And
1230     // all BlockAddress uses would need to be updated.
1231     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1232            "Cannot split an edge from an IndirectBrInst");
1233     Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1234   }
1235 
1236   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1237   // node becomes an incoming value for BB's phi node.  However, if the Preds
1238   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1239   // account for the newly created predecessor.
1240   if (Preds.empty()) {
1241     // Insert dummy values as the incoming value.
1242     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1243       cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1244   }
1245 
1246   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1247   bool HasLoopExit = false;
1248   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1249                             HasLoopExit);
1250 
1251   if (!Preds.empty()) {
1252     // Update the PHI nodes in BB with the values coming from NewBB.
1253     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1254   }
1255 
1256   if (OldLatch) {
1257     BasicBlock *NewLatch = L->getLoopLatch();
1258     if (NewLatch != OldLatch) {
1259       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1260       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1261       // It's still possible that OldLatch is the latch of another inner loop,
1262       // in which case we do not remove the metadata.
1263       Loop *IL = LI->getLoopFor(OldLatch);
1264       if (IL && IL->getLoopLatch() != OldLatch)
1265         OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1266     }
1267   }
1268 
1269   return NewBB;
1270 }
1271 
1272 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1273                                          ArrayRef<BasicBlock *> Preds,
1274                                          const char *Suffix, DominatorTree *DT,
1275                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1276                                          bool PreserveLCSSA) {
1277   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1278                                     MSSAU, PreserveLCSSA);
1279 }
1280 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1281                                          ArrayRef<BasicBlock *> Preds,
1282                                          const char *Suffix,
1283                                          DomTreeUpdater *DTU, LoopInfo *LI,
1284                                          MemorySSAUpdater *MSSAU,
1285                                          bool PreserveLCSSA) {
1286   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1287                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1288 }
1289 
1290 static void SplitLandingPadPredecessorsImpl(
1291     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1292     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1293     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1294     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1295   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1296 
1297   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1298   // it right before the original block.
1299   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1300                                           OrigBB->getName() + Suffix1,
1301                                           OrigBB->getParent(), OrigBB);
1302   NewBBs.push_back(NewBB1);
1303 
1304   // The new block unconditionally branches to the old block.
1305   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1306   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1307 
1308   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1309   for (BasicBlock *Pred : Preds) {
1310     // This is slightly more strict than necessary; the minimum requirement
1311     // is that there be no more than one indirectbr branching to BB. And
1312     // all BlockAddress uses would need to be updated.
1313     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1314            "Cannot split an edge from an IndirectBrInst");
1315     Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1316   }
1317 
1318   bool HasLoopExit = false;
1319   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1320                             PreserveLCSSA, HasLoopExit);
1321 
1322   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1323   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1324 
1325   // Move the remaining edges from OrigBB to point to NewBB2.
1326   SmallVector<BasicBlock*, 8> NewBB2Preds;
1327   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1328        i != e; ) {
1329     BasicBlock *Pred = *i++;
1330     if (Pred == NewBB1) continue;
1331     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1332            "Cannot split an edge from an IndirectBrInst");
1333     NewBB2Preds.push_back(Pred);
1334     e = pred_end(OrigBB);
1335   }
1336 
1337   BasicBlock *NewBB2 = nullptr;
1338   if (!NewBB2Preds.empty()) {
1339     // Create another basic block for the rest of OrigBB's predecessors.
1340     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1341                                 OrigBB->getName() + Suffix2,
1342                                 OrigBB->getParent(), OrigBB);
1343     NewBBs.push_back(NewBB2);
1344 
1345     // The new block unconditionally branches to the old block.
1346     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1347     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1348 
1349     // Move the remaining edges from OrigBB to point to NewBB2.
1350     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1351       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1352 
1353     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1354     HasLoopExit = false;
1355     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1356                               PreserveLCSSA, HasLoopExit);
1357 
1358     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1359     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1360   }
1361 
1362   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1363   Instruction *Clone1 = LPad->clone();
1364   Clone1->setName(Twine("lpad") + Suffix1);
1365   Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1366 
1367   if (NewBB2) {
1368     Instruction *Clone2 = LPad->clone();
1369     Clone2->setName(Twine("lpad") + Suffix2);
1370     Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1371 
1372     // Create a PHI node for the two cloned landingpad instructions only
1373     // if the original landingpad instruction has some uses.
1374     if (!LPad->use_empty()) {
1375       assert(!LPad->getType()->isTokenTy() &&
1376              "Split cannot be applied if LPad is token type. Otherwise an "
1377              "invalid PHINode of token type would be created.");
1378       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1379       PN->addIncoming(Clone1, NewBB1);
1380       PN->addIncoming(Clone2, NewBB2);
1381       LPad->replaceAllUsesWith(PN);
1382     }
1383     LPad->eraseFromParent();
1384   } else {
1385     // There is no second clone. Just replace the landing pad with the first
1386     // clone.
1387     LPad->replaceAllUsesWith(Clone1);
1388     LPad->eraseFromParent();
1389   }
1390 }
1391 
1392 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1393                                        ArrayRef<BasicBlock *> Preds,
1394                                        const char *Suffix1, const char *Suffix2,
1395                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1396                                        DominatorTree *DT, LoopInfo *LI,
1397                                        MemorySSAUpdater *MSSAU,
1398                                        bool PreserveLCSSA) {
1399   return SplitLandingPadPredecessorsImpl(
1400       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1401       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1402 }
1403 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1404                                        ArrayRef<BasicBlock *> Preds,
1405                                        const char *Suffix1, const char *Suffix2,
1406                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1407                                        DomTreeUpdater *DTU, LoopInfo *LI,
1408                                        MemorySSAUpdater *MSSAU,
1409                                        bool PreserveLCSSA) {
1410   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1411                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1412                                          PreserveLCSSA);
1413 }
1414 
1415 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1416                                              BasicBlock *Pred,
1417                                              DomTreeUpdater *DTU) {
1418   Instruction *UncondBranch = Pred->getTerminator();
1419   // Clone the return and add it to the end of the predecessor.
1420   Instruction *NewRet = RI->clone();
1421   NewRet->insertInto(Pred, Pred->end());
1422 
1423   // If the return instruction returns a value, and if the value was a
1424   // PHI node in "BB", propagate the right value into the return.
1425   for (Use &Op : NewRet->operands()) {
1426     Value *V = Op;
1427     Instruction *NewBC = nullptr;
1428     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1429       // Return value might be bitcasted. Clone and insert it before the
1430       // return instruction.
1431       V = BCI->getOperand(0);
1432       NewBC = BCI->clone();
1433       NewBC->insertInto(Pred, NewRet->getIterator());
1434       Op = NewBC;
1435     }
1436 
1437     Instruction *NewEV = nullptr;
1438     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1439       V = EVI->getOperand(0);
1440       NewEV = EVI->clone();
1441       if (NewBC) {
1442         NewBC->setOperand(0, NewEV);
1443         NewEV->insertInto(Pred, NewBC->getIterator());
1444       } else {
1445         NewEV->insertInto(Pred, NewRet->getIterator());
1446         Op = NewEV;
1447       }
1448     }
1449 
1450     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1451       if (PN->getParent() == BB) {
1452         if (NewEV) {
1453           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1454         } else if (NewBC)
1455           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1456         else
1457           Op = PN->getIncomingValueForBlock(Pred);
1458       }
1459     }
1460   }
1461 
1462   // Update any PHI nodes in the returning block to realize that we no
1463   // longer branch to them.
1464   BB->removePredecessor(Pred);
1465   UncondBranch->eraseFromParent();
1466 
1467   if (DTU)
1468     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1469 
1470   return cast<ReturnInst>(NewRet);
1471 }
1472 
1473 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1474                                              Instruction *SplitBefore,
1475                                              bool Unreachable,
1476                                              MDNode *BranchWeights,
1477                                              DomTreeUpdater *DTU, LoopInfo *LI,
1478                                              BasicBlock *ThenBlock) {
1479   SplitBlockAndInsertIfThenElse(
1480       Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1481       /* UnreachableThen */ Unreachable,
1482       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1483   return ThenBlock->getTerminator();
1484 }
1485 
1486 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
1487                                              Instruction *SplitBefore,
1488                                              bool Unreachable,
1489                                              MDNode *BranchWeights,
1490                                              DomTreeUpdater *DTU, LoopInfo *LI,
1491                                              BasicBlock *ElseBlock) {
1492   SplitBlockAndInsertIfThenElse(
1493       Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1494       /* UnreachableThen */ false,
1495       /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1496   return ElseBlock->getTerminator();
1497 }
1498 
1499 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1500                                          Instruction **ThenTerm,
1501                                          Instruction **ElseTerm,
1502                                          MDNode *BranchWeights,
1503                                          DomTreeUpdater *DTU, LoopInfo *LI) {
1504   BasicBlock *ThenBlock = nullptr;
1505   BasicBlock *ElseBlock = nullptr;
1506   SplitBlockAndInsertIfThenElse(
1507       Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1508       /* UnreachableElse */ false, BranchWeights, DTU, LI);
1509 
1510   *ThenTerm = ThenBlock->getTerminator();
1511   *ElseTerm = ElseBlock->getTerminator();
1512 }
1513 
1514 void llvm::SplitBlockAndInsertIfThenElse(
1515     Value *Cond, Instruction *SplitBefore, BasicBlock **ThenBlock,
1516     BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1517     MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1518   assert((ThenBlock || ElseBlock) &&
1519          "At least one branch block must be created");
1520   assert((!UnreachableThen || !UnreachableElse) &&
1521          "Split block tail must be reachable");
1522 
1523   SmallVector<DominatorTree::UpdateType, 8> Updates;
1524   SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1525   BasicBlock *Head = SplitBefore->getParent();
1526   if (DTU) {
1527     UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
1528     Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1529   }
1530 
1531   LLVMContext &C = Head->getContext();
1532   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1533   BasicBlock *TrueBlock = Tail;
1534   BasicBlock *FalseBlock = Tail;
1535   bool ThenToTailEdge = false;
1536   bool ElseToTailEdge = false;
1537 
1538   // Encapsulate the logic around creation/insertion/etc of a new block.
1539   auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1540                          bool &ToTailEdge) {
1541     if (PBB == nullptr)
1542       return; // Do not create/insert a block.
1543 
1544     if (*PBB)
1545       BB = *PBB; // Caller supplied block, use it.
1546     else {
1547       // Create a new block.
1548       BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1549       if (Unreachable)
1550         (void)new UnreachableInst(C, BB);
1551       else {
1552         (void)BranchInst::Create(Tail, BB);
1553         ToTailEdge = true;
1554       }
1555       BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1556       // Pass the new block back to the caller.
1557       *PBB = BB;
1558     }
1559   };
1560 
1561   handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1562   handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1563 
1564   Instruction *HeadOldTerm = Head->getTerminator();
1565   BranchInst *HeadNewTerm =
1566       BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1567   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1568   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1569 
1570   if (DTU) {
1571     Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1572     Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1573     if (ThenToTailEdge)
1574       Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1575     if (ElseToTailEdge)
1576       Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1577     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1578       Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1579     for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1580       Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1581     DTU->applyUpdates(Updates);
1582   }
1583 
1584   if (LI) {
1585     if (Loop *L = LI->getLoopFor(Head); L) {
1586       if (ThenToTailEdge)
1587         L->addBasicBlockToLoop(TrueBlock, *LI);
1588       if (ElseToTailEdge)
1589         L->addBasicBlockToLoop(FalseBlock, *LI);
1590       L->addBasicBlockToLoop(Tail, *LI);
1591     }
1592   }
1593 }
1594 
1595 std::pair<Instruction*, Value*>
1596 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
1597   BasicBlock *LoopPred = SplitBefore->getParent();
1598   BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1599   BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1600 
1601   auto *Ty = End->getType();
1602   auto &DL = SplitBefore->getModule()->getDataLayout();
1603   const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1604 
1605   IRBuilder<> Builder(LoopBody->getTerminator());
1606   auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1607   auto *IVNext =
1608     Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1609                       /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1610   auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1611                                        IV->getName() + ".check");
1612   Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1613   LoopBody->getTerminator()->eraseFromParent();
1614 
1615   // Populate the IV PHI.
1616   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1617   IV->addIncoming(IVNext, LoopBody);
1618 
1619   return std::make_pair(LoopBody->getFirstNonPHI(), IV);
1620 }
1621 
1622 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
1623      Type *IndexTy, Instruction *InsertBefore,
1624      std::function<void(IRBuilderBase&, Value*)> Func) {
1625 
1626   IRBuilder<> IRB(InsertBefore);
1627 
1628   if (EC.isScalable()) {
1629     Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1630 
1631     auto [BodyIP, Index] =
1632       SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1633 
1634     IRB.SetInsertPoint(BodyIP);
1635     Func(IRB, Index);
1636     return;
1637   }
1638 
1639   unsigned Num = EC.getFixedValue();
1640   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1641     IRB.SetInsertPoint(InsertBefore);
1642     Func(IRB, ConstantInt::get(IndexTy, Idx));
1643   }
1644 }
1645 
1646 void llvm::SplitBlockAndInsertForEachLane(
1647     Value *EVL, Instruction *InsertBefore,
1648     std::function<void(IRBuilderBase &, Value *)> Func) {
1649 
1650   IRBuilder<> IRB(InsertBefore);
1651   Type *Ty = EVL->getType();
1652 
1653   if (!isa<ConstantInt>(EVL)) {
1654     auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1655     IRB.SetInsertPoint(BodyIP);
1656     Func(IRB, Index);
1657     return;
1658   }
1659 
1660   unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1661   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1662     IRB.SetInsertPoint(InsertBefore);
1663     Func(IRB, ConstantInt::get(Ty, Idx));
1664   }
1665 }
1666 
1667 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1668                                  BasicBlock *&IfFalse) {
1669   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1670   BasicBlock *Pred1 = nullptr;
1671   BasicBlock *Pred2 = nullptr;
1672 
1673   if (SomePHI) {
1674     if (SomePHI->getNumIncomingValues() != 2)
1675       return nullptr;
1676     Pred1 = SomePHI->getIncomingBlock(0);
1677     Pred2 = SomePHI->getIncomingBlock(1);
1678   } else {
1679     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1680     if (PI == PE) // No predecessor
1681       return nullptr;
1682     Pred1 = *PI++;
1683     if (PI == PE) // Only one predecessor
1684       return nullptr;
1685     Pred2 = *PI++;
1686     if (PI != PE) // More than two predecessors
1687       return nullptr;
1688   }
1689 
1690   // We can only handle branches.  Other control flow will be lowered to
1691   // branches if possible anyway.
1692   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1693   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1694   if (!Pred1Br || !Pred2Br)
1695     return nullptr;
1696 
1697   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1698   // either are.
1699   if (Pred2Br->isConditional()) {
1700     // If both branches are conditional, we don't have an "if statement".  In
1701     // reality, we could transform this case, but since the condition will be
1702     // required anyway, we stand no chance of eliminating it, so the xform is
1703     // probably not profitable.
1704     if (Pred1Br->isConditional())
1705       return nullptr;
1706 
1707     std::swap(Pred1, Pred2);
1708     std::swap(Pred1Br, Pred2Br);
1709   }
1710 
1711   if (Pred1Br->isConditional()) {
1712     // The only thing we have to watch out for here is to make sure that Pred2
1713     // doesn't have incoming edges from other blocks.  If it does, the condition
1714     // doesn't dominate BB.
1715     if (!Pred2->getSinglePredecessor())
1716       return nullptr;
1717 
1718     // If we found a conditional branch predecessor, make sure that it branches
1719     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1720     if (Pred1Br->getSuccessor(0) == BB &&
1721         Pred1Br->getSuccessor(1) == Pred2) {
1722       IfTrue = Pred1;
1723       IfFalse = Pred2;
1724     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1725                Pred1Br->getSuccessor(1) == BB) {
1726       IfTrue = Pred2;
1727       IfFalse = Pred1;
1728     } else {
1729       // We know that one arm of the conditional goes to BB, so the other must
1730       // go somewhere unrelated, and this must not be an "if statement".
1731       return nullptr;
1732     }
1733 
1734     return Pred1Br;
1735   }
1736 
1737   // Ok, if we got here, both predecessors end with an unconditional branch to
1738   // BB.  Don't panic!  If both blocks only have a single (identical)
1739   // predecessor, and THAT is a conditional branch, then we're all ok!
1740   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1741   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1742     return nullptr;
1743 
1744   // Otherwise, if this is a conditional branch, then we can use it!
1745   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1746   if (!BI) return nullptr;
1747 
1748   assert(BI->isConditional() && "Two successors but not conditional?");
1749   if (BI->getSuccessor(0) == Pred1) {
1750     IfTrue = Pred1;
1751     IfFalse = Pred2;
1752   } else {
1753     IfTrue = Pred2;
1754     IfFalse = Pred1;
1755   }
1756   return BI;
1757 }
1758 
1759 // After creating a control flow hub, the operands of PHINodes in an outgoing
1760 // block Out no longer match the predecessors of that block. Predecessors of Out
1761 // that are incoming blocks to the hub are now replaced by just one edge from
1762 // the hub. To match this new control flow, the corresponding values from each
1763 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1764 //
1765 // This operation cannot be performed with SSAUpdater, because it involves one
1766 // new use: If the block Out is in the list of Incoming blocks, then the newly
1767 // created PHI in the Hub will use itself along that edge from Out to Hub.
1768 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1769                           const SetVector<BasicBlock *> &Incoming,
1770                           BasicBlock *FirstGuardBlock) {
1771   auto I = Out->begin();
1772   while (I != Out->end() && isa<PHINode>(I)) {
1773     auto Phi = cast<PHINode>(I);
1774     auto NewPhi =
1775         PHINode::Create(Phi->getType(), Incoming.size(),
1776                         Phi->getName() + ".moved", &FirstGuardBlock->front());
1777     for (auto *In : Incoming) {
1778       Value *V = UndefValue::get(Phi->getType());
1779       if (In == Out) {
1780         V = NewPhi;
1781       } else if (Phi->getBasicBlockIndex(In) != -1) {
1782         V = Phi->removeIncomingValue(In, false);
1783       }
1784       NewPhi->addIncoming(V, In);
1785     }
1786     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1787     if (Phi->getNumOperands() == 0) {
1788       Phi->replaceAllUsesWith(NewPhi);
1789       I = Phi->eraseFromParent();
1790       continue;
1791     }
1792     Phi->addIncoming(NewPhi, GuardBlock);
1793     ++I;
1794   }
1795 }
1796 
1797 using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
1798 using BBSetVector = SetVector<BasicBlock *>;
1799 
1800 // Redirects the terminator of the incoming block to the first guard
1801 // block in the hub. The condition of the original terminator (if it
1802 // was conditional) and its original successors are returned as a
1803 // tuple <condition, succ0, succ1>. The function additionally filters
1804 // out successors that are not in the set of outgoing blocks.
1805 //
1806 // - condition is non-null iff the branch is conditional.
1807 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1808 // - Succ2 is non-null iff condition is non-null and the fallthrough
1809 //         target is an outgoing block.
1810 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1811 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1812               const BBSetVector &Outgoing) {
1813   assert(isa<BranchInst>(BB->getTerminator()) &&
1814          "Only support branch terminator.");
1815   auto Branch = cast<BranchInst>(BB->getTerminator());
1816   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1817 
1818   BasicBlock *Succ0 = Branch->getSuccessor(0);
1819   BasicBlock *Succ1 = nullptr;
1820   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1821 
1822   if (Branch->isUnconditional()) {
1823     Branch->setSuccessor(0, FirstGuardBlock);
1824     assert(Succ0);
1825   } else {
1826     Succ1 = Branch->getSuccessor(1);
1827     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1828     assert(Succ0 || Succ1);
1829     if (Succ0 && !Succ1) {
1830       Branch->setSuccessor(0, FirstGuardBlock);
1831     } else if (Succ1 && !Succ0) {
1832       Branch->setSuccessor(1, FirstGuardBlock);
1833     } else {
1834       Branch->eraseFromParent();
1835       BranchInst::Create(FirstGuardBlock, BB);
1836     }
1837   }
1838 
1839   assert(Succ0 || Succ1);
1840   return std::make_tuple(Condition, Succ0, Succ1);
1841 }
1842 // Setup the branch instructions for guard blocks.
1843 //
1844 // Each guard block terminates in a conditional branch that transfers
1845 // control to the corresponding outgoing block or the next guard
1846 // block. The last guard block has two outgoing blocks as successors
1847 // since the condition for the final outgoing block is trivially
1848 // true. So we create one less block (including the first guard block)
1849 // than the number of outgoing blocks.
1850 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1851                                 const BBSetVector &Outgoing,
1852                                 BBPredicates &GuardPredicates) {
1853   // To help keep the loop simple, temporarily append the last
1854   // outgoing block to the list of guard blocks.
1855   GuardBlocks.push_back(Outgoing.back());
1856 
1857   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1858     auto Out = Outgoing[i];
1859     assert(GuardPredicates.count(Out));
1860     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1861                        GuardBlocks[i]);
1862   }
1863 
1864   // Remove the last block from the guard list.
1865   GuardBlocks.pop_back();
1866 }
1867 
1868 /// We are using one integer to represent the block we are branching to. Then at
1869 /// each guard block, the predicate was calcuated using a simple `icmp eq`.
1870 static void calcPredicateUsingInteger(
1871     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1872     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
1873   auto &Context = Incoming.front()->getContext();
1874   auto FirstGuardBlock = GuardBlocks.front();
1875 
1876   auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
1877                              "merged.bb.idx", FirstGuardBlock);
1878 
1879   for (auto In : Incoming) {
1880     Value *Condition;
1881     BasicBlock *Succ0;
1882     BasicBlock *Succ1;
1883     std::tie(Condition, Succ0, Succ1) =
1884         redirectToHub(In, FirstGuardBlock, Outgoing);
1885     Value *IncomingId = nullptr;
1886     if (Succ0 && Succ1) {
1887       // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
1888       auto Succ0Iter = find(Outgoing, Succ0);
1889       auto Succ1Iter = find(Outgoing, Succ1);
1890       Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
1891                                     std::distance(Outgoing.begin(), Succ0Iter));
1892       Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
1893                                     std::distance(Outgoing.begin(), Succ1Iter));
1894       IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
1895                                       In->getTerminator());
1896     } else {
1897       // Get the index of the non-null successor.
1898       auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
1899       IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
1900                                     std::distance(Outgoing.begin(), SuccIter));
1901     }
1902     Phi->addIncoming(IncomingId, In);
1903   }
1904 
1905   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1906     auto Out = Outgoing[i];
1907     auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
1908                                 ConstantInt::get(Type::getInt32Ty(Context), i),
1909                                 Out->getName() + ".predicate", GuardBlocks[i]);
1910     GuardPredicates[Out] = Cmp;
1911   }
1912 }
1913 
1914 /// We record the predicate of each outgoing block using a phi of boolean.
1915 static void calcPredicateUsingBooleans(
1916     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1917     SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
1918     SmallVectorImpl<WeakVH> &DeletionCandidates) {
1919   auto &Context = Incoming.front()->getContext();
1920   auto BoolTrue = ConstantInt::getTrue(Context);
1921   auto BoolFalse = ConstantInt::getFalse(Context);
1922   auto FirstGuardBlock = GuardBlocks.front();
1923 
1924   // The predicate for the last outgoing is trivially true, and so we
1925   // process only the first N-1 successors.
1926   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1927     auto Out = Outgoing[i];
1928     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1929 
1930     auto Phi =
1931         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1932                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1933     GuardPredicates[Out] = Phi;
1934   }
1935 
1936   for (auto *In : Incoming) {
1937     Value *Condition;
1938     BasicBlock *Succ0;
1939     BasicBlock *Succ1;
1940     std::tie(Condition, Succ0, Succ1) =
1941         redirectToHub(In, FirstGuardBlock, Outgoing);
1942 
1943     // Optimization: Consider an incoming block A with both successors
1944     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1945     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1946     // first in the loop below, control will branch to Succ0 using the
1947     // corresponding predicate. But if that branch is not taken, then
1948     // control must reach Succ1, which means that the incoming value of
1949     // the predicate from `In` is true for Succ1.
1950     bool OneSuccessorDone = false;
1951     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1952       auto Out = Outgoing[i];
1953       PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
1954       if (Out != Succ0 && Out != Succ1) {
1955         Phi->addIncoming(BoolFalse, In);
1956       } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
1957         // Optimization: When only one successor is an outgoing block,
1958         // the incoming predicate from `In` is always true.
1959         Phi->addIncoming(BoolTrue, In);
1960       } else {
1961         assert(Succ0 && Succ1);
1962         if (Out == Succ0) {
1963           Phi->addIncoming(Condition, In);
1964         } else {
1965           auto Inverted = invertCondition(Condition);
1966           DeletionCandidates.push_back(Condition);
1967           Phi->addIncoming(Inverted, In);
1968         }
1969         OneSuccessorDone = true;
1970       }
1971     }
1972   }
1973 }
1974 
1975 // Capture the existing control flow as guard predicates, and redirect
1976 // control flow from \p Incoming block through the \p GuardBlocks to the
1977 // \p Outgoing blocks.
1978 //
1979 // There is one guard predicate for each outgoing block OutBB. The
1980 // predicate represents whether the hub should transfer control flow
1981 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
1982 // them in the same order as the Outgoing set-vector, and control
1983 // branches to the first outgoing block whose predicate evaluates to true.
1984 static void
1985 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1986                          SmallVectorImpl<WeakVH> &DeletionCandidates,
1987                          const BBSetVector &Incoming,
1988                          const BBSetVector &Outgoing, const StringRef Prefix,
1989                          std::optional<unsigned> MaxControlFlowBooleans) {
1990   BBPredicates GuardPredicates;
1991   auto F = Incoming.front()->getParent();
1992 
1993   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
1994     GuardBlocks.push_back(
1995         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1996 
1997   // When we are using an integer to record which target block to jump to, we
1998   // are creating less live values, actually we are using one single integer to
1999   // store the index of the target block. When we are using booleans to store
2000   // the branching information, we need (N-1) boolean values, where N is the
2001   // number of outgoing block.
2002   if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
2003     calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
2004                                DeletionCandidates);
2005   else
2006     calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
2007 
2008   setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
2009 }
2010 
2011 BasicBlock *llvm::CreateControlFlowHub(
2012     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
2013     const BBSetVector &Incoming, const BBSetVector &Outgoing,
2014     const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
2015   if (Outgoing.size() < 2)
2016     return Outgoing.front();
2017 
2018   SmallVector<DominatorTree::UpdateType, 16> Updates;
2019   if (DTU) {
2020     for (auto *In : Incoming) {
2021       for (auto Succ : successors(In))
2022         if (Outgoing.count(Succ))
2023           Updates.push_back({DominatorTree::Delete, In, Succ});
2024     }
2025   }
2026 
2027   SmallVector<WeakVH, 8> DeletionCandidates;
2028   convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
2029                            Prefix, MaxControlFlowBooleans);
2030   auto FirstGuardBlock = GuardBlocks.front();
2031 
2032   // Update the PHINodes in each outgoing block to match the new control flow.
2033   for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
2034     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
2035 
2036   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
2037 
2038   if (DTU) {
2039     int NumGuards = GuardBlocks.size();
2040     assert((int)Outgoing.size() == NumGuards + 1);
2041 
2042     for (auto In : Incoming)
2043       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
2044 
2045     for (int i = 0; i != NumGuards - 1; ++i) {
2046       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
2047       Updates.push_back(
2048           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
2049     }
2050     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2051                        Outgoing[NumGuards - 1]});
2052     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
2053                        Outgoing[NumGuards]});
2054     DTU->applyUpdates(Updates);
2055   }
2056 
2057   for (auto I : DeletionCandidates) {
2058     if (I->use_empty())
2059       if (auto Inst = dyn_cast_or_null<Instruction>(I))
2060         Inst->eraseFromParent();
2061   }
2062 
2063   return FirstGuardBlock;
2064 }
2065 
2066 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
2067   Value *NewCond = PBI->getCondition();
2068   // If this is a "cmp" instruction, only used for branching (and nowhere
2069   // else), then we can simply invert the predicate.
2070   if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2071     CmpInst *CI = cast<CmpInst>(NewCond);
2072     CI->setPredicate(CI->getInversePredicate());
2073   } else
2074     NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
2075 
2076   PBI->setCondition(NewCond);
2077   PBI->swapSuccessors();
2078 }
2079