1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 386 SmallVector<DPValue *, 8> ToBeRemoved; 387 SmallDenseSet<DebugVariable> VariableSet; 388 for (auto &I : reverse(*BB)) { 389 for (DbgRecord &DR : reverse(I.getDbgValueRange())) { 390 if (isa<DPLabel>(DR)) { 391 // Emulate existing behaviour (see comment below for dbg.declares). 392 // FIXME: Don't do this. 393 VariableSet.clear(); 394 continue; 395 } 396 397 DPValue &DPV = cast<DPValue>(DR); 398 // Skip declare-type records, as the debug intrinsic method only works 399 // on dbg.value intrinsics. 400 if (DPV.getType() == DPValue::LocationType::Declare) { 401 // The debug intrinsic method treats dbg.declares are "non-debug" 402 // instructions (i.e., a break in a consecutive range of debug 403 // intrinsics). Emulate that to create identical outputs. See 404 // "Possible improvements" above. 405 // FIXME: Delete the line below. 406 VariableSet.clear(); 407 continue; 408 } 409 410 DebugVariable Key(DPV.getVariable(), DPV.getExpression(), 411 DPV.getDebugLoc()->getInlinedAt()); 412 auto R = VariableSet.insert(Key); 413 // If the same variable fragment is described more than once it is enough 414 // to keep the last one (i.e. the first found since we for reverse 415 // iteration). 416 if (R.second) 417 continue; 418 419 if (DPV.isDbgAssign()) { 420 // Don't delete dbg.assign intrinsics that are linked to instructions. 421 if (!at::getAssignmentInsts(&DPV).empty()) 422 continue; 423 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 424 } 425 426 ToBeRemoved.push_back(&DPV); 427 continue; 428 } 429 // Sequence with consecutive dbg.value instrs ended. Clear the map to 430 // restart identifying redundant instructions if case we find another 431 // dbg.value sequence. 432 VariableSet.clear(); 433 } 434 435 for (auto &DPV : ToBeRemoved) 436 DPV->eraseFromParent(); 437 438 return !ToBeRemoved.empty(); 439 } 440 441 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 442 if (BB->IsNewDbgInfoFormat) 443 return DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BB); 444 445 SmallVector<DbgValueInst *, 8> ToBeRemoved; 446 SmallDenseSet<DebugVariable> VariableSet; 447 for (auto &I : reverse(*BB)) { 448 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 449 DebugVariable Key(DVI->getVariable(), 450 DVI->getExpression(), 451 DVI->getDebugLoc()->getInlinedAt()); 452 auto R = VariableSet.insert(Key); 453 // If the variable fragment hasn't been seen before then we don't want 454 // to remove this dbg intrinsic. 455 if (R.second) 456 continue; 457 458 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 459 // Don't delete dbg.assign intrinsics that are linked to instructions. 460 if (!at::getAssignmentInsts(DAI).empty()) 461 continue; 462 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 463 } 464 465 // If the same variable fragment is described more than once it is enough 466 // to keep the last one (i.e. the first found since we for reverse 467 // iteration). 468 ToBeRemoved.push_back(DVI); 469 continue; 470 } 471 // Sequence with consecutive dbg.value instrs ended. Clear the map to 472 // restart identifying redundant instructions if case we find another 473 // dbg.value sequence. 474 VariableSet.clear(); 475 } 476 477 for (auto &Instr : ToBeRemoved) 478 Instr->eraseFromParent(); 479 480 return !ToBeRemoved.empty(); 481 } 482 483 /// Remove redundant dbg.value instructions using a forward scan. This can 484 /// remove a dbg.value instruction that is redundant due to indicating that a 485 /// variable has the same value as already being indicated by an earlier 486 /// dbg.value. 487 /// 488 /// ForwardScan strategy: 489 /// --------------------- 490 /// Given two identical dbg.value instructions, separated by a block of 491 /// instructions that isn't describing the same variable, like this 492 /// 493 /// dbg.value X1, "x", FragmentX1 (**) 494 /// <block of instructions, none being "dbg.value ..., "x", ..."> 495 /// dbg.value X1, "x", FragmentX1 (*) 496 /// 497 /// then the instruction marked with (*) can be removed. Variable "x" is already 498 /// described as being mapped to the SSA value X1. 499 /// 500 /// Possible improvements: 501 /// - Keep track of non-overlapping fragments. 502 static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 503 SmallVector<DPValue *, 8> ToBeRemoved; 504 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 505 VariableMap; 506 for (auto &I : *BB) { 507 for (DPValue &DPV : DPValue::filter(I.getDbgValueRange())) { 508 if (DPV.getType() == DPValue::LocationType::Declare) 509 continue; 510 DebugVariable Key(DPV.getVariable(), std::nullopt, 511 DPV.getDebugLoc()->getInlinedAt()); 512 auto VMI = VariableMap.find(Key); 513 // A dbg.assign with no linked instructions can be treated like a 514 // dbg.value (i.e. can be deleted). 515 bool IsDbgValueKind = 516 (!DPV.isDbgAssign() || at::getAssignmentInsts(&DPV).empty()); 517 518 // Update the map if we found a new value/expression describing the 519 // variable, or if the variable wasn't mapped already. 520 SmallVector<Value *, 4> Values(DPV.location_ops()); 521 if (VMI == VariableMap.end() || VMI->second.first != Values || 522 VMI->second.second != DPV.getExpression()) { 523 if (IsDbgValueKind) 524 VariableMap[Key] = {Values, DPV.getExpression()}; 525 else 526 VariableMap[Key] = {Values, nullptr}; 527 continue; 528 } 529 // Don't delete dbg.assign intrinsics that are linked to instructions. 530 if (!IsDbgValueKind) 531 continue; 532 // Found an identical mapping. Remember the instruction for later removal. 533 ToBeRemoved.push_back(&DPV); 534 } 535 } 536 537 for (auto *DPV : ToBeRemoved) 538 DPV->eraseFromParent(); 539 540 return !ToBeRemoved.empty(); 541 } 542 543 static bool DPValuesRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 544 assert(BB->isEntryBlock() && "expected entry block"); 545 SmallVector<DPValue *, 8> ToBeRemoved; 546 DenseSet<DebugVariable> SeenDefForAggregate; 547 // Returns the DebugVariable for DVI with no fragment info. 548 auto GetAggregateVariable = [](const DPValue &DPV) { 549 return DebugVariable(DPV.getVariable(), std::nullopt, 550 DPV.getDebugLoc().getInlinedAt()); 551 }; 552 553 // Remove undef dbg.assign intrinsics that are encountered before 554 // any non-undef intrinsics from the entry block. 555 for (auto &I : *BB) { 556 for (DPValue &DPV : DPValue::filter(I.getDbgValueRange())) { 557 if (!DPV.isDbgValue() && !DPV.isDbgAssign()) 558 continue; 559 bool IsDbgValueKind = 560 (DPV.isDbgValue() || at::getAssignmentInsts(&DPV).empty()); 561 DebugVariable Aggregate = GetAggregateVariable(DPV); 562 if (!SeenDefForAggregate.contains(Aggregate)) { 563 bool IsKill = DPV.isKillLocation() && IsDbgValueKind; 564 if (!IsKill) { 565 SeenDefForAggregate.insert(Aggregate); 566 } else if (DPV.isDbgAssign()) { 567 ToBeRemoved.push_back(&DPV); 568 } 569 } 570 } 571 } 572 573 for (DPValue *DPV : ToBeRemoved) 574 DPV->eraseFromParent(); 575 576 return !ToBeRemoved.empty(); 577 } 578 579 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 580 if (BB->IsNewDbgInfoFormat) 581 return DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BB); 582 583 SmallVector<DbgValueInst *, 8> ToBeRemoved; 584 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 585 VariableMap; 586 for (auto &I : *BB) { 587 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 588 DebugVariable Key(DVI->getVariable(), std::nullopt, 589 DVI->getDebugLoc()->getInlinedAt()); 590 auto VMI = VariableMap.find(Key); 591 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 592 // A dbg.assign with no linked instructions can be treated like a 593 // dbg.value (i.e. can be deleted). 594 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 595 596 // Update the map if we found a new value/expression describing the 597 // variable, or if the variable wasn't mapped already. 598 SmallVector<Value *, 4> Values(DVI->getValues()); 599 if (VMI == VariableMap.end() || VMI->second.first != Values || 600 VMI->second.second != DVI->getExpression()) { 601 // Use a sentinel value (nullptr) for the DIExpression when we see a 602 // linked dbg.assign so that the next debug intrinsic will never match 603 // it (i.e. always treat linked dbg.assigns as if they're unique). 604 if (IsDbgValueKind) 605 VariableMap[Key] = {Values, DVI->getExpression()}; 606 else 607 VariableMap[Key] = {Values, nullptr}; 608 continue; 609 } 610 611 // Don't delete dbg.assign intrinsics that are linked to instructions. 612 if (!IsDbgValueKind) 613 continue; 614 ToBeRemoved.push_back(DVI); 615 } 616 } 617 618 for (auto &Instr : ToBeRemoved) 619 Instr->eraseFromParent(); 620 621 return !ToBeRemoved.empty(); 622 } 623 624 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 625 /// forward scan. 626 /// Strategy: 627 /// --------------------- 628 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 629 /// linked to an intrinsic, and don't share an aggregate variable with a debug 630 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 631 /// that come before non-undef debug intrinsics for the variable are 632 /// deleted. Given: 633 /// 634 /// dbg.assign undef, "x", FragmentX1 (*) 635 /// <block of instructions, none being "dbg.value ..., "x", ..."> 636 /// dbg.value %V, "x", FragmentX2 637 /// <block of instructions, none being "dbg.value ..., "x", ..."> 638 /// dbg.assign undef, "x", FragmentX1 639 /// 640 /// then (only) the instruction marked with (*) can be removed. 641 /// Possible improvements: 642 /// - Keep track of non-overlapping fragments. 643 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 644 if (BB->IsNewDbgInfoFormat) 645 return DPValuesRemoveUndefDbgAssignsFromEntryBlock(BB); 646 647 assert(BB->isEntryBlock() && "expected entry block"); 648 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 649 DenseSet<DebugVariable> SeenDefForAggregate; 650 // Returns the DebugVariable for DVI with no fragment info. 651 auto GetAggregateVariable = [](DbgValueInst *DVI) { 652 return DebugVariable(DVI->getVariable(), std::nullopt, 653 DVI->getDebugLoc()->getInlinedAt()); 654 }; 655 656 // Remove undef dbg.assign intrinsics that are encountered before 657 // any non-undef intrinsics from the entry block. 658 for (auto &I : *BB) { 659 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 660 if (!DVI) 661 continue; 662 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 663 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 664 DebugVariable Aggregate = GetAggregateVariable(DVI); 665 if (!SeenDefForAggregate.contains(Aggregate)) { 666 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 667 if (!IsKill) { 668 SeenDefForAggregate.insert(Aggregate); 669 } else if (DAI) { 670 ToBeRemoved.push_back(DAI); 671 } 672 } 673 } 674 675 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 676 DAI->eraseFromParent(); 677 678 return !ToBeRemoved.empty(); 679 } 680 681 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 682 bool MadeChanges = false; 683 // By using the "backward scan" strategy before the "forward scan" strategy we 684 // can remove both dbg.value (2) and (3) in a situation like this: 685 // 686 // (1) dbg.value V1, "x", DIExpression() 687 // ... 688 // (2) dbg.value V2, "x", DIExpression() 689 // (3) dbg.value V1, "x", DIExpression() 690 // 691 // The backward scan will remove (2), it is made obsolete by (3). After 692 // getting (2) out of the way, the foward scan will remove (3) since "x" 693 // already is described as having the value V1 at (1). 694 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 695 if (BB->isEntryBlock() && 696 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 697 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); 698 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 699 700 if (MadeChanges) 701 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 702 << BB->getName() << "\n"); 703 return MadeChanges; 704 } 705 706 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 707 Instruction &I = *BI; 708 // Replaces all of the uses of the instruction with uses of the value 709 I.replaceAllUsesWith(V); 710 711 // Make sure to propagate a name if there is one already. 712 if (I.hasName() && !V->hasName()) 713 V->takeName(&I); 714 715 // Delete the unnecessary instruction now... 716 BI = BI->eraseFromParent(); 717 } 718 719 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 720 Instruction *I) { 721 assert(I->getParent() == nullptr && 722 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 723 724 // Copy debug location to newly added instruction, if it wasn't already set 725 // by the caller. 726 if (!I->getDebugLoc()) 727 I->setDebugLoc(BI->getDebugLoc()); 728 729 // Insert the new instruction into the basic block... 730 BasicBlock::iterator New = I->insertInto(BB, BI); 731 732 // Replace all uses of the old instruction, and delete it. 733 ReplaceInstWithValue(BI, I); 734 735 // Move BI back to point to the newly inserted instruction 736 BI = New; 737 } 738 739 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 740 // Remember visited blocks to avoid infinite loop 741 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 742 unsigned Depth = 0; 743 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 744 VisitedBlocks.insert(BB).second) { 745 if (isa<UnreachableInst>(BB->getTerminator()) || 746 BB->getTerminatingDeoptimizeCall()) 747 return true; 748 BB = BB->getUniqueSuccessor(); 749 } 750 return false; 751 } 752 753 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 754 BasicBlock::iterator BI(From); 755 ReplaceInstWithInst(From->getParent(), BI, To); 756 } 757 758 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 759 LoopInfo *LI, MemorySSAUpdater *MSSAU, 760 const Twine &BBName) { 761 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 762 763 Instruction *LatchTerm = BB->getTerminator(); 764 765 CriticalEdgeSplittingOptions Options = 766 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 767 768 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 769 // If it is a critical edge, and the succesor is an exception block, handle 770 // the split edge logic in this specific function 771 if (Succ->isEHPad()) 772 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 773 774 // If this is a critical edge, let SplitKnownCriticalEdge do it. 775 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 776 } 777 778 // If the edge isn't critical, then BB has a single successor or Succ has a 779 // single pred. Split the block. 780 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 781 // If the successor only has a single pred, split the top of the successor 782 // block. 783 assert(SP == BB && "CFG broken"); 784 SP = nullptr; 785 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 786 /*Before=*/true); 787 } 788 789 // Otherwise, if BB has a single successor, split it at the bottom of the 790 // block. 791 assert(BB->getTerminator()->getNumSuccessors() == 1 && 792 "Should have a single succ!"); 793 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 794 } 795 796 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 797 if (auto *II = dyn_cast<InvokeInst>(TI)) 798 II->setUnwindDest(Succ); 799 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 800 CS->setUnwindDest(Succ); 801 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 802 CR->setUnwindDest(Succ); 803 else 804 llvm_unreachable("unexpected terminator instruction"); 805 } 806 807 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 808 BasicBlock *NewPred, PHINode *Until) { 809 int BBIdx = 0; 810 for (PHINode &PN : DestBB->phis()) { 811 // We manually update the LandingPadReplacement PHINode and it is the last 812 // PHI Node. So, if we find it, we are done. 813 if (Until == &PN) 814 break; 815 816 // Reuse the previous value of BBIdx if it lines up. In cases where we 817 // have multiple phi nodes with *lots* of predecessors, this is a speed 818 // win because we don't have to scan the PHI looking for TIBB. This 819 // happens because the BB list of PHI nodes are usually in the same 820 // order. 821 if (PN.getIncomingBlock(BBIdx) != OldPred) 822 BBIdx = PN.getBasicBlockIndex(OldPred); 823 824 assert(BBIdx != -1 && "Invalid PHI Index!"); 825 PN.setIncomingBlock(BBIdx, NewPred); 826 } 827 } 828 829 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 830 LandingPadInst *OriginalPad, 831 PHINode *LandingPadReplacement, 832 const CriticalEdgeSplittingOptions &Options, 833 const Twine &BBName) { 834 835 auto *PadInst = Succ->getFirstNonPHI(); 836 if (!LandingPadReplacement && !PadInst->isEHPad()) 837 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 838 839 auto *LI = Options.LI; 840 SmallVector<BasicBlock *, 4> LoopPreds; 841 // Check if extra modifications will be required to preserve loop-simplify 842 // form after splitting. If it would require splitting blocks with IndirectBr 843 // terminators, bail out if preserving loop-simplify form is requested. 844 if (Options.PreserveLoopSimplify && LI) { 845 if (Loop *BBLoop = LI->getLoopFor(BB)) { 846 847 // The only way that we can break LoopSimplify form by splitting a 848 // critical edge is when there exists some edge from BBLoop to Succ *and* 849 // the only edge into Succ from outside of BBLoop is that of NewBB after 850 // the split. If the first isn't true, then LoopSimplify still holds, 851 // NewBB is the new exit block and it has no non-loop predecessors. If the 852 // second isn't true, then Succ was not in LoopSimplify form prior to 853 // the split as it had a non-loop predecessor. In both of these cases, 854 // the predecessor must be directly in BBLoop, not in a subloop, or again 855 // LoopSimplify doesn't hold. 856 for (BasicBlock *P : predecessors(Succ)) { 857 if (P == BB) 858 continue; // The new block is known. 859 if (LI->getLoopFor(P) != BBLoop) { 860 // Loop is not in LoopSimplify form, no need to re simplify after 861 // splitting edge. 862 LoopPreds.clear(); 863 break; 864 } 865 LoopPreds.push_back(P); 866 } 867 // Loop-simplify form can be preserved, if we can split all in-loop 868 // predecessors. 869 if (any_of(LoopPreds, [](BasicBlock *Pred) { 870 return isa<IndirectBrInst>(Pred->getTerminator()); 871 })) { 872 return nullptr; 873 } 874 } 875 } 876 877 auto *NewBB = 878 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 879 setUnwindEdgeTo(BB->getTerminator(), NewBB); 880 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 881 882 if (LandingPadReplacement) { 883 auto *NewLP = OriginalPad->clone(); 884 auto *Terminator = BranchInst::Create(Succ, NewBB); 885 NewLP->insertBefore(Terminator); 886 LandingPadReplacement->addIncoming(NewLP, NewBB); 887 } else { 888 Value *ParentPad = nullptr; 889 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 890 ParentPad = FuncletPad->getParentPad(); 891 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 892 ParentPad = CatchSwitch->getParentPad(); 893 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 894 ParentPad = CleanupPad->getParentPad(); 895 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 896 ParentPad = LandingPad->getParent(); 897 else 898 llvm_unreachable("handling for other EHPads not implemented yet"); 899 900 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 901 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 902 } 903 904 auto *DT = Options.DT; 905 auto *MSSAU = Options.MSSAU; 906 if (!DT && !LI) 907 return NewBB; 908 909 if (DT) { 910 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 911 SmallVector<DominatorTree::UpdateType, 3> Updates; 912 913 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 914 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 915 Updates.push_back({DominatorTree::Delete, BB, Succ}); 916 917 DTU.applyUpdates(Updates); 918 DTU.flush(); 919 920 if (MSSAU) { 921 MSSAU->applyUpdates(Updates, *DT); 922 if (VerifyMemorySSA) 923 MSSAU->getMemorySSA()->verifyMemorySSA(); 924 } 925 } 926 927 if (LI) { 928 if (Loop *BBLoop = LI->getLoopFor(BB)) { 929 // If one or the other blocks were not in a loop, the new block is not 930 // either, and thus LI doesn't need to be updated. 931 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 932 if (BBLoop == SuccLoop) { 933 // Both in the same loop, the NewBB joins loop. 934 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 935 } else if (BBLoop->contains(SuccLoop)) { 936 // Edge from an outer loop to an inner loop. Add to the outer loop. 937 BBLoop->addBasicBlockToLoop(NewBB, *LI); 938 } else if (SuccLoop->contains(BBLoop)) { 939 // Edge from an inner loop to an outer loop. Add to the outer loop. 940 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 941 } else { 942 // Edge from two loops with no containment relation. Because these 943 // are natural loops, we know that the destination block must be the 944 // header of its loop (adding a branch into a loop elsewhere would 945 // create an irreducible loop). 946 assert(SuccLoop->getHeader() == Succ && 947 "Should not create irreducible loops!"); 948 if (Loop *P = SuccLoop->getParentLoop()) 949 P->addBasicBlockToLoop(NewBB, *LI); 950 } 951 } 952 953 // If BB is in a loop and Succ is outside of that loop, we may need to 954 // update LoopSimplify form and LCSSA form. 955 if (!BBLoop->contains(Succ)) { 956 assert(!BBLoop->contains(NewBB) && 957 "Split point for loop exit is contained in loop!"); 958 959 // Update LCSSA form in the newly created exit block. 960 if (Options.PreserveLCSSA) { 961 createPHIsForSplitLoopExit(BB, NewBB, Succ); 962 } 963 964 if (!LoopPreds.empty()) { 965 BasicBlock *NewExitBB = SplitBlockPredecessors( 966 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 967 if (Options.PreserveLCSSA) 968 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 969 } 970 } 971 } 972 } 973 974 return NewBB; 975 } 976 977 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 978 BasicBlock *SplitBB, BasicBlock *DestBB) { 979 // SplitBB shouldn't have anything non-trivial in it yet. 980 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 981 SplitBB->isLandingPad()) && 982 "SplitBB has non-PHI nodes!"); 983 984 // For each PHI in the destination block. 985 for (PHINode &PN : DestBB->phis()) { 986 int Idx = PN.getBasicBlockIndex(SplitBB); 987 assert(Idx >= 0 && "Invalid Block Index"); 988 Value *V = PN.getIncomingValue(Idx); 989 990 // If the input is a PHI which already satisfies LCSSA, don't create 991 // a new one. 992 if (const PHINode *VP = dyn_cast<PHINode>(V)) 993 if (VP->getParent() == SplitBB) 994 continue; 995 996 // Otherwise a new PHI is needed. Create one and populate it. 997 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 998 BasicBlock::iterator InsertPos = 999 SplitBB->isLandingPad() ? SplitBB->begin() 1000 : SplitBB->getTerminator()->getIterator(); 1001 NewPN->insertBefore(InsertPos); 1002 for (BasicBlock *BB : Preds) 1003 NewPN->addIncoming(V, BB); 1004 1005 // Update the original PHI. 1006 PN.setIncomingValue(Idx, NewPN); 1007 } 1008 } 1009 1010 unsigned 1011 llvm::SplitAllCriticalEdges(Function &F, 1012 const CriticalEdgeSplittingOptions &Options) { 1013 unsigned NumBroken = 0; 1014 for (BasicBlock &BB : F) { 1015 Instruction *TI = BB.getTerminator(); 1016 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 1017 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1018 if (SplitCriticalEdge(TI, i, Options)) 1019 ++NumBroken; 1020 } 1021 return NumBroken; 1022 } 1023 1024 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 1025 DomTreeUpdater *DTU, DominatorTree *DT, 1026 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1027 const Twine &BBName, bool Before) { 1028 if (Before) { 1029 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1030 return splitBlockBefore(Old, SplitPt, 1031 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 1032 BBName); 1033 } 1034 BasicBlock::iterator SplitIt = SplitPt; 1035 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 1036 ++SplitIt; 1037 assert(SplitIt != SplitPt->getParent()->end()); 1038 } 1039 std::string Name = BBName.str(); 1040 BasicBlock *New = Old->splitBasicBlock( 1041 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 1042 1043 // The new block lives in whichever loop the old one did. This preserves 1044 // LCSSA as well, because we force the split point to be after any PHI nodes. 1045 if (LI) 1046 if (Loop *L = LI->getLoopFor(Old)) 1047 L->addBasicBlockToLoop(New, *LI); 1048 1049 if (DTU) { 1050 SmallVector<DominatorTree::UpdateType, 8> Updates; 1051 // Old dominates New. New node dominates all other nodes dominated by Old. 1052 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 1053 Updates.push_back({DominatorTree::Insert, Old, New}); 1054 Updates.reserve(Updates.size() + 2 * succ_size(New)); 1055 for (BasicBlock *SuccessorOfOld : successors(New)) 1056 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 1057 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 1058 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 1059 } 1060 1061 DTU->applyUpdates(Updates); 1062 } else if (DT) 1063 // Old dominates New. New node dominates all other nodes dominated by Old. 1064 if (DomTreeNode *OldNode = DT->getNode(Old)) { 1065 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1066 1067 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 1068 for (DomTreeNode *I : Children) 1069 DT->changeImmediateDominator(I, NewNode); 1070 } 1071 1072 // Move MemoryAccesses still tracked in Old, but part of New now. 1073 // Update accesses in successor blocks accordingly. 1074 if (MSSAU) 1075 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 1076 1077 return New; 1078 } 1079 1080 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1081 DominatorTree *DT, LoopInfo *LI, 1082 MemorySSAUpdater *MSSAU, const Twine &BBName, 1083 bool Before) { 1084 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1085 Before); 1086 } 1087 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1088 DomTreeUpdater *DTU, LoopInfo *LI, 1089 MemorySSAUpdater *MSSAU, const Twine &BBName, 1090 bool Before) { 1091 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1092 Before); 1093 } 1094 1095 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1096 DomTreeUpdater *DTU, LoopInfo *LI, 1097 MemorySSAUpdater *MSSAU, 1098 const Twine &BBName) { 1099 1100 BasicBlock::iterator SplitIt = SplitPt; 1101 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1102 ++SplitIt; 1103 std::string Name = BBName.str(); 1104 BasicBlock *New = Old->splitBasicBlock( 1105 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1106 /* Before=*/true); 1107 1108 // The new block lives in whichever loop the old one did. This preserves 1109 // LCSSA as well, because we force the split point to be after any PHI nodes. 1110 if (LI) 1111 if (Loop *L = LI->getLoopFor(Old)) 1112 L->addBasicBlockToLoop(New, *LI); 1113 1114 if (DTU) { 1115 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1116 // New dominates Old. The predecessor nodes of the Old node dominate 1117 // New node. 1118 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1119 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1120 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1121 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1122 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1123 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1124 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1125 } 1126 1127 DTU->applyUpdates(DTUpdates); 1128 1129 // Move MemoryAccesses still tracked in Old, but part of New now. 1130 // Update accesses in successor blocks accordingly. 1131 if (MSSAU) { 1132 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1133 if (VerifyMemorySSA) 1134 MSSAU->getMemorySSA()->verifyMemorySSA(); 1135 } 1136 } 1137 return New; 1138 } 1139 1140 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1141 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1142 ArrayRef<BasicBlock *> Preds, 1143 DomTreeUpdater *DTU, DominatorTree *DT, 1144 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1145 bool PreserveLCSSA, bool &HasLoopExit) { 1146 // Update dominator tree if available. 1147 if (DTU) { 1148 // Recalculation of DomTree is needed when updating a forward DomTree and 1149 // the Entry BB is replaced. 1150 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1151 // The entry block was removed and there is no external interface for 1152 // the dominator tree to be notified of this change. In this corner-case 1153 // we recalculate the entire tree. 1154 DTU->recalculate(*NewBB->getParent()); 1155 } else { 1156 // Split block expects NewBB to have a non-empty set of predecessors. 1157 SmallVector<DominatorTree::UpdateType, 8> Updates; 1158 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1159 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1160 Updates.reserve(Updates.size() + 2 * Preds.size()); 1161 for (auto *Pred : Preds) 1162 if (UniquePreds.insert(Pred).second) { 1163 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1164 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1165 } 1166 DTU->applyUpdates(Updates); 1167 } 1168 } else if (DT) { 1169 if (OldBB == DT->getRootNode()->getBlock()) { 1170 assert(NewBB->isEntryBlock()); 1171 DT->setNewRoot(NewBB); 1172 } else { 1173 // Split block expects NewBB to have a non-empty set of predecessors. 1174 DT->splitBlock(NewBB); 1175 } 1176 } 1177 1178 // Update MemoryPhis after split if MemorySSA is available 1179 if (MSSAU) 1180 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1181 1182 // The rest of the logic is only relevant for updating the loop structures. 1183 if (!LI) 1184 return; 1185 1186 if (DTU && DTU->hasDomTree()) 1187 DT = &DTU->getDomTree(); 1188 assert(DT && "DT should be available to update LoopInfo!"); 1189 Loop *L = LI->getLoopFor(OldBB); 1190 1191 // If we need to preserve loop analyses, collect some information about how 1192 // this split will affect loops. 1193 bool IsLoopEntry = !!L; 1194 bool SplitMakesNewLoopHeader = false; 1195 for (BasicBlock *Pred : Preds) { 1196 // Preds that are not reachable from entry should not be used to identify if 1197 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1198 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1199 // as true and make the NewBB the header of some loop. This breaks LI. 1200 if (!DT->isReachableFromEntry(Pred)) 1201 continue; 1202 // If we need to preserve LCSSA, determine if any of the preds is a loop 1203 // exit. 1204 if (PreserveLCSSA) 1205 if (Loop *PL = LI->getLoopFor(Pred)) 1206 if (!PL->contains(OldBB)) 1207 HasLoopExit = true; 1208 1209 // If we need to preserve LoopInfo, note whether any of the preds crosses 1210 // an interesting loop boundary. 1211 if (!L) 1212 continue; 1213 if (L->contains(Pred)) 1214 IsLoopEntry = false; 1215 else 1216 SplitMakesNewLoopHeader = true; 1217 } 1218 1219 // Unless we have a loop for OldBB, nothing else to do here. 1220 if (!L) 1221 return; 1222 1223 if (IsLoopEntry) { 1224 // Add the new block to the nearest enclosing loop (and not an adjacent 1225 // loop). To find this, examine each of the predecessors and determine which 1226 // loops enclose them, and select the most-nested loop which contains the 1227 // loop containing the block being split. 1228 Loop *InnermostPredLoop = nullptr; 1229 for (BasicBlock *Pred : Preds) { 1230 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1231 // Seek a loop which actually contains the block being split (to avoid 1232 // adjacent loops). 1233 while (PredLoop && !PredLoop->contains(OldBB)) 1234 PredLoop = PredLoop->getParentLoop(); 1235 1236 // Select the most-nested of these loops which contains the block. 1237 if (PredLoop && PredLoop->contains(OldBB) && 1238 (!InnermostPredLoop || 1239 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1240 InnermostPredLoop = PredLoop; 1241 } 1242 } 1243 1244 if (InnermostPredLoop) 1245 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1246 } else { 1247 L->addBasicBlockToLoop(NewBB, *LI); 1248 if (SplitMakesNewLoopHeader) 1249 L->moveToHeader(NewBB); 1250 } 1251 } 1252 1253 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1254 /// This also updates AliasAnalysis, if available. 1255 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1256 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1257 bool HasLoopExit) { 1258 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1259 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1260 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1261 PHINode *PN = cast<PHINode>(I++); 1262 1263 // Check to see if all of the values coming in are the same. If so, we 1264 // don't need to create a new PHI node, unless it's needed for LCSSA. 1265 Value *InVal = nullptr; 1266 if (!HasLoopExit) { 1267 InVal = PN->getIncomingValueForBlock(Preds[0]); 1268 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1269 if (!PredSet.count(PN->getIncomingBlock(i))) 1270 continue; 1271 if (!InVal) 1272 InVal = PN->getIncomingValue(i); 1273 else if (InVal != PN->getIncomingValue(i)) { 1274 InVal = nullptr; 1275 break; 1276 } 1277 } 1278 } 1279 1280 if (InVal) { 1281 // If all incoming values for the new PHI would be the same, just don't 1282 // make a new PHI. Instead, just remove the incoming values from the old 1283 // PHI. 1284 PN->removeIncomingValueIf( 1285 [&](unsigned Idx) { 1286 return PredSet.contains(PN->getIncomingBlock(Idx)); 1287 }, 1288 /* DeletePHIIfEmpty */ false); 1289 1290 // Add an incoming value to the PHI node in the loop for the preheader 1291 // edge. 1292 PN->addIncoming(InVal, NewBB); 1293 continue; 1294 } 1295 1296 // If the values coming into the block are not the same, we need a new 1297 // PHI. 1298 // Create the new PHI node, insert it into NewBB at the end of the block 1299 PHINode *NewPHI = 1300 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator()); 1301 1302 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1303 // the cost of removal if we end up removing a large number of values, and 1304 // second off, this ensures that the indices for the incoming values aren't 1305 // invalidated when we remove one. 1306 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1307 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1308 if (PredSet.count(IncomingBB)) { 1309 Value *V = PN->removeIncomingValue(i, false); 1310 NewPHI->addIncoming(V, IncomingBB); 1311 } 1312 } 1313 1314 PN->addIncoming(NewPHI, NewBB); 1315 } 1316 } 1317 1318 static void SplitLandingPadPredecessorsImpl( 1319 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1320 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1321 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1322 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1323 1324 static BasicBlock * 1325 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1326 const char *Suffix, DomTreeUpdater *DTU, 1327 DominatorTree *DT, LoopInfo *LI, 1328 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1329 // Do not attempt to split that which cannot be split. 1330 if (!BB->canSplitPredecessors()) 1331 return nullptr; 1332 1333 // For the landingpads we need to act a bit differently. 1334 // Delegate this work to the SplitLandingPadPredecessors. 1335 if (BB->isLandingPad()) { 1336 SmallVector<BasicBlock*, 2> NewBBs; 1337 std::string NewName = std::string(Suffix) + ".split-lp"; 1338 1339 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1340 DTU, DT, LI, MSSAU, PreserveLCSSA); 1341 return NewBBs[0]; 1342 } 1343 1344 // Create new basic block, insert right before the original block. 1345 BasicBlock *NewBB = BasicBlock::Create( 1346 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1347 1348 // The new block unconditionally branches to the old block. 1349 BranchInst *BI = BranchInst::Create(BB, NewBB); 1350 1351 Loop *L = nullptr; 1352 BasicBlock *OldLatch = nullptr; 1353 // Splitting the predecessors of a loop header creates a preheader block. 1354 if (LI && LI->isLoopHeader(BB)) { 1355 L = LI->getLoopFor(BB); 1356 // Using the loop start line number prevents debuggers stepping into the 1357 // loop body for this instruction. 1358 BI->setDebugLoc(L->getStartLoc()); 1359 1360 // If BB is the header of the Loop, it is possible that the loop is 1361 // modified, such that the current latch does not remain the latch of the 1362 // loop. If that is the case, the loop metadata from the current latch needs 1363 // to be applied to the new latch. 1364 OldLatch = L->getLoopLatch(); 1365 } else 1366 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1367 1368 // Move the edges from Preds to point to NewBB instead of BB. 1369 for (BasicBlock *Pred : Preds) { 1370 // This is slightly more strict than necessary; the minimum requirement 1371 // is that there be no more than one indirectbr branching to BB. And 1372 // all BlockAddress uses would need to be updated. 1373 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1374 "Cannot split an edge from an IndirectBrInst"); 1375 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1376 } 1377 1378 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1379 // node becomes an incoming value for BB's phi node. However, if the Preds 1380 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1381 // account for the newly created predecessor. 1382 if (Preds.empty()) { 1383 // Insert dummy values as the incoming value. 1384 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1385 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1386 } 1387 1388 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1389 bool HasLoopExit = false; 1390 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1391 HasLoopExit); 1392 1393 if (!Preds.empty()) { 1394 // Update the PHI nodes in BB with the values coming from NewBB. 1395 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1396 } 1397 1398 if (OldLatch) { 1399 BasicBlock *NewLatch = L->getLoopLatch(); 1400 if (NewLatch != OldLatch) { 1401 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1402 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1403 // It's still possible that OldLatch is the latch of another inner loop, 1404 // in which case we do not remove the metadata. 1405 Loop *IL = LI->getLoopFor(OldLatch); 1406 if (IL && IL->getLoopLatch() != OldLatch) 1407 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1408 } 1409 } 1410 1411 return NewBB; 1412 } 1413 1414 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1415 ArrayRef<BasicBlock *> Preds, 1416 const char *Suffix, DominatorTree *DT, 1417 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1418 bool PreserveLCSSA) { 1419 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1420 MSSAU, PreserveLCSSA); 1421 } 1422 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1423 ArrayRef<BasicBlock *> Preds, 1424 const char *Suffix, 1425 DomTreeUpdater *DTU, LoopInfo *LI, 1426 MemorySSAUpdater *MSSAU, 1427 bool PreserveLCSSA) { 1428 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1429 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1430 } 1431 1432 static void SplitLandingPadPredecessorsImpl( 1433 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1434 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1435 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1436 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1437 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1438 1439 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1440 // it right before the original block. 1441 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1442 OrigBB->getName() + Suffix1, 1443 OrigBB->getParent(), OrigBB); 1444 NewBBs.push_back(NewBB1); 1445 1446 // The new block unconditionally branches to the old block. 1447 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1448 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1449 1450 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1451 for (BasicBlock *Pred : Preds) { 1452 // This is slightly more strict than necessary; the minimum requirement 1453 // is that there be no more than one indirectbr branching to BB. And 1454 // all BlockAddress uses would need to be updated. 1455 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1456 "Cannot split an edge from an IndirectBrInst"); 1457 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1458 } 1459 1460 bool HasLoopExit = false; 1461 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1462 PreserveLCSSA, HasLoopExit); 1463 1464 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1465 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1466 1467 // Move the remaining edges from OrigBB to point to NewBB2. 1468 SmallVector<BasicBlock*, 8> NewBB2Preds; 1469 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1470 i != e; ) { 1471 BasicBlock *Pred = *i++; 1472 if (Pred == NewBB1) continue; 1473 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1474 "Cannot split an edge from an IndirectBrInst"); 1475 NewBB2Preds.push_back(Pred); 1476 e = pred_end(OrigBB); 1477 } 1478 1479 BasicBlock *NewBB2 = nullptr; 1480 if (!NewBB2Preds.empty()) { 1481 // Create another basic block for the rest of OrigBB's predecessors. 1482 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1483 OrigBB->getName() + Suffix2, 1484 OrigBB->getParent(), OrigBB); 1485 NewBBs.push_back(NewBB2); 1486 1487 // The new block unconditionally branches to the old block. 1488 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1489 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1490 1491 // Move the remaining edges from OrigBB to point to NewBB2. 1492 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1493 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1494 1495 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1496 HasLoopExit = false; 1497 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1498 PreserveLCSSA, HasLoopExit); 1499 1500 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1501 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1502 } 1503 1504 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1505 Instruction *Clone1 = LPad->clone(); 1506 Clone1->setName(Twine("lpad") + Suffix1); 1507 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1508 1509 if (NewBB2) { 1510 Instruction *Clone2 = LPad->clone(); 1511 Clone2->setName(Twine("lpad") + Suffix2); 1512 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1513 1514 // Create a PHI node for the two cloned landingpad instructions only 1515 // if the original landingpad instruction has some uses. 1516 if (!LPad->use_empty()) { 1517 assert(!LPad->getType()->isTokenTy() && 1518 "Split cannot be applied if LPad is token type. Otherwise an " 1519 "invalid PHINode of token type would be created."); 1520 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator()); 1521 PN->addIncoming(Clone1, NewBB1); 1522 PN->addIncoming(Clone2, NewBB2); 1523 LPad->replaceAllUsesWith(PN); 1524 } 1525 LPad->eraseFromParent(); 1526 } else { 1527 // There is no second clone. Just replace the landing pad with the first 1528 // clone. 1529 LPad->replaceAllUsesWith(Clone1); 1530 LPad->eraseFromParent(); 1531 } 1532 } 1533 1534 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1535 ArrayRef<BasicBlock *> Preds, 1536 const char *Suffix1, const char *Suffix2, 1537 SmallVectorImpl<BasicBlock *> &NewBBs, 1538 DomTreeUpdater *DTU, LoopInfo *LI, 1539 MemorySSAUpdater *MSSAU, 1540 bool PreserveLCSSA) { 1541 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1542 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1543 PreserveLCSSA); 1544 } 1545 1546 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1547 BasicBlock *Pred, 1548 DomTreeUpdater *DTU) { 1549 Instruction *UncondBranch = Pred->getTerminator(); 1550 // Clone the return and add it to the end of the predecessor. 1551 Instruction *NewRet = RI->clone(); 1552 NewRet->insertInto(Pred, Pred->end()); 1553 1554 // If the return instruction returns a value, and if the value was a 1555 // PHI node in "BB", propagate the right value into the return. 1556 for (Use &Op : NewRet->operands()) { 1557 Value *V = Op; 1558 Instruction *NewBC = nullptr; 1559 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1560 // Return value might be bitcasted. Clone and insert it before the 1561 // return instruction. 1562 V = BCI->getOperand(0); 1563 NewBC = BCI->clone(); 1564 NewBC->insertInto(Pred, NewRet->getIterator()); 1565 Op = NewBC; 1566 } 1567 1568 Instruction *NewEV = nullptr; 1569 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1570 V = EVI->getOperand(0); 1571 NewEV = EVI->clone(); 1572 if (NewBC) { 1573 NewBC->setOperand(0, NewEV); 1574 NewEV->insertInto(Pred, NewBC->getIterator()); 1575 } else { 1576 NewEV->insertInto(Pred, NewRet->getIterator()); 1577 Op = NewEV; 1578 } 1579 } 1580 1581 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1582 if (PN->getParent() == BB) { 1583 if (NewEV) { 1584 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1585 } else if (NewBC) 1586 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1587 else 1588 Op = PN->getIncomingValueForBlock(Pred); 1589 } 1590 } 1591 } 1592 1593 // Update any PHI nodes in the returning block to realize that we no 1594 // longer branch to them. 1595 BB->removePredecessor(Pred); 1596 UncondBranch->eraseFromParent(); 1597 1598 if (DTU) 1599 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1600 1601 return cast<ReturnInst>(NewRet); 1602 } 1603 1604 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1605 BasicBlock::iterator SplitBefore, 1606 bool Unreachable, 1607 MDNode *BranchWeights, 1608 DomTreeUpdater *DTU, LoopInfo *LI, 1609 BasicBlock *ThenBlock) { 1610 SplitBlockAndInsertIfThenElse( 1611 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1612 /* UnreachableThen */ Unreachable, 1613 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1614 return ThenBlock->getTerminator(); 1615 } 1616 1617 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1618 BasicBlock::iterator SplitBefore, 1619 bool Unreachable, 1620 MDNode *BranchWeights, 1621 DomTreeUpdater *DTU, LoopInfo *LI, 1622 BasicBlock *ElseBlock) { 1623 SplitBlockAndInsertIfThenElse( 1624 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1625 /* UnreachableThen */ false, 1626 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1627 return ElseBlock->getTerminator(); 1628 } 1629 1630 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1631 Instruction **ThenTerm, 1632 Instruction **ElseTerm, 1633 MDNode *BranchWeights, 1634 DomTreeUpdater *DTU, LoopInfo *LI) { 1635 BasicBlock *ThenBlock = nullptr; 1636 BasicBlock *ElseBlock = nullptr; 1637 SplitBlockAndInsertIfThenElse( 1638 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1639 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1640 1641 *ThenTerm = ThenBlock->getTerminator(); 1642 *ElseTerm = ElseBlock->getTerminator(); 1643 } 1644 1645 void llvm::SplitBlockAndInsertIfThenElse( 1646 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1647 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1648 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1649 assert((ThenBlock || ElseBlock) && 1650 "At least one branch block must be created"); 1651 assert((!UnreachableThen || !UnreachableElse) && 1652 "Split block tail must be reachable"); 1653 1654 SmallVector<DominatorTree::UpdateType, 8> Updates; 1655 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1656 BasicBlock *Head = SplitBefore->getParent(); 1657 if (DTU) { 1658 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1659 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1660 } 1661 1662 LLVMContext &C = Head->getContext(); 1663 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1664 BasicBlock *TrueBlock = Tail; 1665 BasicBlock *FalseBlock = Tail; 1666 bool ThenToTailEdge = false; 1667 bool ElseToTailEdge = false; 1668 1669 // Encapsulate the logic around creation/insertion/etc of a new block. 1670 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1671 bool &ToTailEdge) { 1672 if (PBB == nullptr) 1673 return; // Do not create/insert a block. 1674 1675 if (*PBB) 1676 BB = *PBB; // Caller supplied block, use it. 1677 else { 1678 // Create a new block. 1679 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1680 if (Unreachable) 1681 (void)new UnreachableInst(C, BB); 1682 else { 1683 (void)BranchInst::Create(Tail, BB); 1684 ToTailEdge = true; 1685 } 1686 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1687 // Pass the new block back to the caller. 1688 *PBB = BB; 1689 } 1690 }; 1691 1692 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1693 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1694 1695 Instruction *HeadOldTerm = Head->getTerminator(); 1696 BranchInst *HeadNewTerm = 1697 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1698 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1699 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1700 1701 if (DTU) { 1702 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1703 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1704 if (ThenToTailEdge) 1705 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1706 if (ElseToTailEdge) 1707 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1708 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1709 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1710 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1711 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1712 DTU->applyUpdates(Updates); 1713 } 1714 1715 if (LI) { 1716 if (Loop *L = LI->getLoopFor(Head); L) { 1717 if (ThenToTailEdge) 1718 L->addBasicBlockToLoop(TrueBlock, *LI); 1719 if (ElseToTailEdge) 1720 L->addBasicBlockToLoop(FalseBlock, *LI); 1721 L->addBasicBlockToLoop(Tail, *LI); 1722 } 1723 } 1724 } 1725 1726 std::pair<Instruction*, Value*> 1727 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1728 BasicBlock *LoopPred = SplitBefore->getParent(); 1729 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1730 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1731 1732 auto *Ty = End->getType(); 1733 auto &DL = SplitBefore->getModule()->getDataLayout(); 1734 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1735 1736 IRBuilder<> Builder(LoopBody->getTerminator()); 1737 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1738 auto *IVNext = 1739 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1740 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1741 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1742 IV->getName() + ".check"); 1743 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1744 LoopBody->getTerminator()->eraseFromParent(); 1745 1746 // Populate the IV PHI. 1747 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1748 IV->addIncoming(IVNext, LoopBody); 1749 1750 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1751 } 1752 1753 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1754 Type *IndexTy, Instruction *InsertBefore, 1755 std::function<void(IRBuilderBase&, Value*)> Func) { 1756 1757 IRBuilder<> IRB(InsertBefore); 1758 1759 if (EC.isScalable()) { 1760 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1761 1762 auto [BodyIP, Index] = 1763 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1764 1765 IRB.SetInsertPoint(BodyIP); 1766 Func(IRB, Index); 1767 return; 1768 } 1769 1770 unsigned Num = EC.getFixedValue(); 1771 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1772 IRB.SetInsertPoint(InsertBefore); 1773 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1774 } 1775 } 1776 1777 void llvm::SplitBlockAndInsertForEachLane( 1778 Value *EVL, Instruction *InsertBefore, 1779 std::function<void(IRBuilderBase &, Value *)> Func) { 1780 1781 IRBuilder<> IRB(InsertBefore); 1782 Type *Ty = EVL->getType(); 1783 1784 if (!isa<ConstantInt>(EVL)) { 1785 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1786 IRB.SetInsertPoint(BodyIP); 1787 Func(IRB, Index); 1788 return; 1789 } 1790 1791 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1792 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1793 IRB.SetInsertPoint(InsertBefore); 1794 Func(IRB, ConstantInt::get(Ty, Idx)); 1795 } 1796 } 1797 1798 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1799 BasicBlock *&IfFalse) { 1800 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1801 BasicBlock *Pred1 = nullptr; 1802 BasicBlock *Pred2 = nullptr; 1803 1804 if (SomePHI) { 1805 if (SomePHI->getNumIncomingValues() != 2) 1806 return nullptr; 1807 Pred1 = SomePHI->getIncomingBlock(0); 1808 Pred2 = SomePHI->getIncomingBlock(1); 1809 } else { 1810 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1811 if (PI == PE) // No predecessor 1812 return nullptr; 1813 Pred1 = *PI++; 1814 if (PI == PE) // Only one predecessor 1815 return nullptr; 1816 Pred2 = *PI++; 1817 if (PI != PE) // More than two predecessors 1818 return nullptr; 1819 } 1820 1821 // We can only handle branches. Other control flow will be lowered to 1822 // branches if possible anyway. 1823 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1824 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1825 if (!Pred1Br || !Pred2Br) 1826 return nullptr; 1827 1828 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1829 // either are. 1830 if (Pred2Br->isConditional()) { 1831 // If both branches are conditional, we don't have an "if statement". In 1832 // reality, we could transform this case, but since the condition will be 1833 // required anyway, we stand no chance of eliminating it, so the xform is 1834 // probably not profitable. 1835 if (Pred1Br->isConditional()) 1836 return nullptr; 1837 1838 std::swap(Pred1, Pred2); 1839 std::swap(Pred1Br, Pred2Br); 1840 } 1841 1842 if (Pred1Br->isConditional()) { 1843 // The only thing we have to watch out for here is to make sure that Pred2 1844 // doesn't have incoming edges from other blocks. If it does, the condition 1845 // doesn't dominate BB. 1846 if (!Pred2->getSinglePredecessor()) 1847 return nullptr; 1848 1849 // If we found a conditional branch predecessor, make sure that it branches 1850 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1851 if (Pred1Br->getSuccessor(0) == BB && 1852 Pred1Br->getSuccessor(1) == Pred2) { 1853 IfTrue = Pred1; 1854 IfFalse = Pred2; 1855 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1856 Pred1Br->getSuccessor(1) == BB) { 1857 IfTrue = Pred2; 1858 IfFalse = Pred1; 1859 } else { 1860 // We know that one arm of the conditional goes to BB, so the other must 1861 // go somewhere unrelated, and this must not be an "if statement". 1862 return nullptr; 1863 } 1864 1865 return Pred1Br; 1866 } 1867 1868 // Ok, if we got here, both predecessors end with an unconditional branch to 1869 // BB. Don't panic! If both blocks only have a single (identical) 1870 // predecessor, and THAT is a conditional branch, then we're all ok! 1871 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1872 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1873 return nullptr; 1874 1875 // Otherwise, if this is a conditional branch, then we can use it! 1876 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1877 if (!BI) return nullptr; 1878 1879 assert(BI->isConditional() && "Two successors but not conditional?"); 1880 if (BI->getSuccessor(0) == Pred1) { 1881 IfTrue = Pred1; 1882 IfFalse = Pred2; 1883 } else { 1884 IfTrue = Pred2; 1885 IfFalse = Pred1; 1886 } 1887 return BI; 1888 } 1889 1890 // After creating a control flow hub, the operands of PHINodes in an outgoing 1891 // block Out no longer match the predecessors of that block. Predecessors of Out 1892 // that are incoming blocks to the hub are now replaced by just one edge from 1893 // the hub. To match this new control flow, the corresponding values from each 1894 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1895 // 1896 // This operation cannot be performed with SSAUpdater, because it involves one 1897 // new use: If the block Out is in the list of Incoming blocks, then the newly 1898 // created PHI in the Hub will use itself along that edge from Out to Hub. 1899 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1900 const SetVector<BasicBlock *> &Incoming, 1901 BasicBlock *FirstGuardBlock) { 1902 auto I = Out->begin(); 1903 while (I != Out->end() && isa<PHINode>(I)) { 1904 auto Phi = cast<PHINode>(I); 1905 auto NewPhi = 1906 PHINode::Create(Phi->getType(), Incoming.size(), 1907 Phi->getName() + ".moved", FirstGuardBlock->begin()); 1908 for (auto *In : Incoming) { 1909 Value *V = UndefValue::get(Phi->getType()); 1910 if (In == Out) { 1911 V = NewPhi; 1912 } else if (Phi->getBasicBlockIndex(In) != -1) { 1913 V = Phi->removeIncomingValue(In, false); 1914 } 1915 NewPhi->addIncoming(V, In); 1916 } 1917 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1918 if (Phi->getNumOperands() == 0) { 1919 Phi->replaceAllUsesWith(NewPhi); 1920 I = Phi->eraseFromParent(); 1921 continue; 1922 } 1923 Phi->addIncoming(NewPhi, GuardBlock); 1924 ++I; 1925 } 1926 } 1927 1928 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1929 using BBSetVector = SetVector<BasicBlock *>; 1930 1931 // Redirects the terminator of the incoming block to the first guard 1932 // block in the hub. The condition of the original terminator (if it 1933 // was conditional) and its original successors are returned as a 1934 // tuple <condition, succ0, succ1>. The function additionally filters 1935 // out successors that are not in the set of outgoing blocks. 1936 // 1937 // - condition is non-null iff the branch is conditional. 1938 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1939 // - Succ2 is non-null iff condition is non-null and the fallthrough 1940 // target is an outgoing block. 1941 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1942 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1943 const BBSetVector &Outgoing) { 1944 assert(isa<BranchInst>(BB->getTerminator()) && 1945 "Only support branch terminator."); 1946 auto Branch = cast<BranchInst>(BB->getTerminator()); 1947 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1948 1949 BasicBlock *Succ0 = Branch->getSuccessor(0); 1950 BasicBlock *Succ1 = nullptr; 1951 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1952 1953 if (Branch->isUnconditional()) { 1954 Branch->setSuccessor(0, FirstGuardBlock); 1955 assert(Succ0); 1956 } else { 1957 Succ1 = Branch->getSuccessor(1); 1958 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1959 assert(Succ0 || Succ1); 1960 if (Succ0 && !Succ1) { 1961 Branch->setSuccessor(0, FirstGuardBlock); 1962 } else if (Succ1 && !Succ0) { 1963 Branch->setSuccessor(1, FirstGuardBlock); 1964 } else { 1965 Branch->eraseFromParent(); 1966 BranchInst::Create(FirstGuardBlock, BB); 1967 } 1968 } 1969 1970 assert(Succ0 || Succ1); 1971 return std::make_tuple(Condition, Succ0, Succ1); 1972 } 1973 // Setup the branch instructions for guard blocks. 1974 // 1975 // Each guard block terminates in a conditional branch that transfers 1976 // control to the corresponding outgoing block or the next guard 1977 // block. The last guard block has two outgoing blocks as successors 1978 // since the condition for the final outgoing block is trivially 1979 // true. So we create one less block (including the first guard block) 1980 // than the number of outgoing blocks. 1981 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1982 const BBSetVector &Outgoing, 1983 BBPredicates &GuardPredicates) { 1984 // To help keep the loop simple, temporarily append the last 1985 // outgoing block to the list of guard blocks. 1986 GuardBlocks.push_back(Outgoing.back()); 1987 1988 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1989 auto Out = Outgoing[i]; 1990 assert(GuardPredicates.count(Out)); 1991 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1992 GuardBlocks[i]); 1993 } 1994 1995 // Remove the last block from the guard list. 1996 GuardBlocks.pop_back(); 1997 } 1998 1999 /// We are using one integer to represent the block we are branching to. Then at 2000 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 2001 static void calcPredicateUsingInteger( 2002 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2003 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 2004 auto &Context = Incoming.front()->getContext(); 2005 auto FirstGuardBlock = GuardBlocks.front(); 2006 2007 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 2008 "merged.bb.idx", FirstGuardBlock); 2009 2010 for (auto In : Incoming) { 2011 Value *Condition; 2012 BasicBlock *Succ0; 2013 BasicBlock *Succ1; 2014 std::tie(Condition, Succ0, Succ1) = 2015 redirectToHub(In, FirstGuardBlock, Outgoing); 2016 Value *IncomingId = nullptr; 2017 if (Succ0 && Succ1) { 2018 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 2019 auto Succ0Iter = find(Outgoing, Succ0); 2020 auto Succ1Iter = find(Outgoing, Succ1); 2021 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 2022 std::distance(Outgoing.begin(), Succ0Iter)); 2023 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 2024 std::distance(Outgoing.begin(), Succ1Iter)); 2025 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 2026 In->getTerminator()->getIterator()); 2027 } else { 2028 // Get the index of the non-null successor. 2029 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 2030 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 2031 std::distance(Outgoing.begin(), SuccIter)); 2032 } 2033 Phi->addIncoming(IncomingId, In); 2034 } 2035 2036 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2037 auto Out = Outgoing[i]; 2038 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 2039 ConstantInt::get(Type::getInt32Ty(Context), i), 2040 Out->getName() + ".predicate", GuardBlocks[i]); 2041 GuardPredicates[Out] = Cmp; 2042 } 2043 } 2044 2045 /// We record the predicate of each outgoing block using a phi of boolean. 2046 static void calcPredicateUsingBooleans( 2047 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2048 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 2049 SmallVectorImpl<WeakVH> &DeletionCandidates) { 2050 auto &Context = Incoming.front()->getContext(); 2051 auto BoolTrue = ConstantInt::getTrue(Context); 2052 auto BoolFalse = ConstantInt::getFalse(Context); 2053 auto FirstGuardBlock = GuardBlocks.front(); 2054 2055 // The predicate for the last outgoing is trivially true, and so we 2056 // process only the first N-1 successors. 2057 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2058 auto Out = Outgoing[i]; 2059 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 2060 2061 auto Phi = 2062 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 2063 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 2064 GuardPredicates[Out] = Phi; 2065 } 2066 2067 for (auto *In : Incoming) { 2068 Value *Condition; 2069 BasicBlock *Succ0; 2070 BasicBlock *Succ1; 2071 std::tie(Condition, Succ0, Succ1) = 2072 redirectToHub(In, FirstGuardBlock, Outgoing); 2073 2074 // Optimization: Consider an incoming block A with both successors 2075 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 2076 // for Succ0 and Succ1 complement each other. If Succ0 is visited 2077 // first in the loop below, control will branch to Succ0 using the 2078 // corresponding predicate. But if that branch is not taken, then 2079 // control must reach Succ1, which means that the incoming value of 2080 // the predicate from `In` is true for Succ1. 2081 bool OneSuccessorDone = false; 2082 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2083 auto Out = Outgoing[i]; 2084 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 2085 if (Out != Succ0 && Out != Succ1) { 2086 Phi->addIncoming(BoolFalse, In); 2087 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 2088 // Optimization: When only one successor is an outgoing block, 2089 // the incoming predicate from `In` is always true. 2090 Phi->addIncoming(BoolTrue, In); 2091 } else { 2092 assert(Succ0 && Succ1); 2093 if (Out == Succ0) { 2094 Phi->addIncoming(Condition, In); 2095 } else { 2096 auto Inverted = invertCondition(Condition); 2097 DeletionCandidates.push_back(Condition); 2098 Phi->addIncoming(Inverted, In); 2099 } 2100 OneSuccessorDone = true; 2101 } 2102 } 2103 } 2104 } 2105 2106 // Capture the existing control flow as guard predicates, and redirect 2107 // control flow from \p Incoming block through the \p GuardBlocks to the 2108 // \p Outgoing blocks. 2109 // 2110 // There is one guard predicate for each outgoing block OutBB. The 2111 // predicate represents whether the hub should transfer control flow 2112 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 2113 // them in the same order as the Outgoing set-vector, and control 2114 // branches to the first outgoing block whose predicate evaluates to true. 2115 static void 2116 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 2117 SmallVectorImpl<WeakVH> &DeletionCandidates, 2118 const BBSetVector &Incoming, 2119 const BBSetVector &Outgoing, const StringRef Prefix, 2120 std::optional<unsigned> MaxControlFlowBooleans) { 2121 BBPredicates GuardPredicates; 2122 auto F = Incoming.front()->getParent(); 2123 2124 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 2125 GuardBlocks.push_back( 2126 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 2127 2128 // When we are using an integer to record which target block to jump to, we 2129 // are creating less live values, actually we are using one single integer to 2130 // store the index of the target block. When we are using booleans to store 2131 // the branching information, we need (N-1) boolean values, where N is the 2132 // number of outgoing block. 2133 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2134 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2135 DeletionCandidates); 2136 else 2137 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2138 2139 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2140 } 2141 2142 BasicBlock *llvm::CreateControlFlowHub( 2143 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2144 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2145 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2146 if (Outgoing.size() < 2) 2147 return Outgoing.front(); 2148 2149 SmallVector<DominatorTree::UpdateType, 16> Updates; 2150 if (DTU) { 2151 for (auto *In : Incoming) { 2152 for (auto Succ : successors(In)) 2153 if (Outgoing.count(Succ)) 2154 Updates.push_back({DominatorTree::Delete, In, Succ}); 2155 } 2156 } 2157 2158 SmallVector<WeakVH, 8> DeletionCandidates; 2159 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2160 Prefix, MaxControlFlowBooleans); 2161 auto FirstGuardBlock = GuardBlocks.front(); 2162 2163 // Update the PHINodes in each outgoing block to match the new control flow. 2164 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2165 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2166 2167 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2168 2169 if (DTU) { 2170 int NumGuards = GuardBlocks.size(); 2171 assert((int)Outgoing.size() == NumGuards + 1); 2172 2173 for (auto In : Incoming) 2174 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2175 2176 for (int i = 0; i != NumGuards - 1; ++i) { 2177 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2178 Updates.push_back( 2179 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2180 } 2181 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2182 Outgoing[NumGuards - 1]}); 2183 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2184 Outgoing[NumGuards]}); 2185 DTU->applyUpdates(Updates); 2186 } 2187 2188 for (auto I : DeletionCandidates) { 2189 if (I->use_empty()) 2190 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2191 Inst->eraseFromParent(); 2192 } 2193 2194 return FirstGuardBlock; 2195 } 2196 2197 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2198 Value *NewCond = PBI->getCondition(); 2199 // If this is a "cmp" instruction, only used for branching (and nowhere 2200 // else), then we can simply invert the predicate. 2201 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2202 CmpInst *CI = cast<CmpInst>(NewCond); 2203 CI->setPredicate(CI->getInversePredicate()); 2204 } else 2205 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2206 2207 PBI->setCondition(NewCond); 2208 PBI->swapSuccessors(); 2209 } 2210 2211 bool llvm::hasOnlySimpleTerminator(const Function &F) { 2212 for (auto &BB : F) { 2213 auto *Term = BB.getTerminator(); 2214 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 2215 isa<BranchInst>(Term))) 2216 return false; 2217 } 2218 return true; 2219 } 2220 2221 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, 2222 const BasicBlock &Dest) { 2223 assert(Src.getParent() == Dest.getParent()); 2224 if (!Src.getParent()->isPresplitCoroutine()) 2225 return false; 2226 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator())) 2227 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition())) 2228 return Intr->getIntrinsicID() == Intrinsic::coro_suspend && 2229 SW->getDefaultDest() == &Dest; 2230 return false; 2231 } 2232