1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 return true; 337 } 338 339 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 340 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 341 LoopInfo *LI) { 342 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 343 344 bool BlocksHaveBeenMerged = false; 345 while (!MergeBlocks.empty()) { 346 BasicBlock *BB = *MergeBlocks.begin(); 347 BasicBlock *Dest = BB->getSingleSuccessor(); 348 if (Dest && (!L || L->contains(Dest))) { 349 BasicBlock *Fold = Dest->getUniquePredecessor(); 350 (void)Fold; 351 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 352 assert(Fold == BB && 353 "Expecting BB to be unique predecessor of the Dest block"); 354 MergeBlocks.erase(Dest); 355 BlocksHaveBeenMerged = true; 356 } else 357 MergeBlocks.erase(BB); 358 } else 359 MergeBlocks.erase(BB); 360 } 361 return BlocksHaveBeenMerged; 362 } 363 364 /// Remove redundant instructions within sequences of consecutive dbg.value 365 /// instructions. This is done using a backward scan to keep the last dbg.value 366 /// describing a specific variable/fragment. 367 /// 368 /// BackwardScan strategy: 369 /// ---------------------- 370 /// Given a sequence of consecutive DbgValueInst like this 371 /// 372 /// dbg.value ..., "x", FragmentX1 (*) 373 /// dbg.value ..., "y", FragmentY1 374 /// dbg.value ..., "x", FragmentX2 375 /// dbg.value ..., "x", FragmentX1 (**) 376 /// 377 /// then the instruction marked with (*) can be removed (it is guaranteed to be 378 /// obsoleted by the instruction marked with (**) as the latter instruction is 379 /// describing the same variable using the same fragment info). 380 /// 381 /// Possible improvements: 382 /// - Check fully overlapping fragments and not only identical fragments. 383 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 384 /// part of the sequence of consecutive instructions. 385 static bool 386 DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 387 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 388 SmallDenseSet<DebugVariable> VariableSet; 389 for (auto &I : reverse(*BB)) { 390 for (DbgRecord &DR : reverse(I.getDbgRecordRange())) { 391 if (isa<DbgLabelRecord>(DR)) { 392 // Emulate existing behaviour (see comment below for dbg.declares). 393 // FIXME: Don't do this. 394 VariableSet.clear(); 395 continue; 396 } 397 398 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 399 // Skip declare-type records, as the debug intrinsic method only works 400 // on dbg.value intrinsics. 401 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 402 // The debug intrinsic method treats dbg.declares are "non-debug" 403 // instructions (i.e., a break in a consecutive range of debug 404 // intrinsics). Emulate that to create identical outputs. See 405 // "Possible improvements" above. 406 // FIXME: Delete the line below. 407 VariableSet.clear(); 408 continue; 409 } 410 411 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 412 DVR.getDebugLoc()->getInlinedAt()); 413 auto R = VariableSet.insert(Key); 414 // If the same variable fragment is described more than once it is enough 415 // to keep the last one (i.e. the first found since we for reverse 416 // iteration). 417 if (R.second) 418 continue; 419 420 if (DVR.isDbgAssign()) { 421 // Don't delete dbg.assign intrinsics that are linked to instructions. 422 if (!at::getAssignmentInsts(&DVR).empty()) 423 continue; 424 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 425 } 426 427 ToBeRemoved.push_back(&DVR); 428 continue; 429 } 430 // Sequence with consecutive dbg.value instrs ended. Clear the map to 431 // restart identifying redundant instructions if case we find another 432 // dbg.value sequence. 433 VariableSet.clear(); 434 } 435 436 for (auto &DVR : ToBeRemoved) 437 DVR->eraseFromParent(); 438 439 return !ToBeRemoved.empty(); 440 } 441 442 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 443 if (BB->IsNewDbgInfoFormat) 444 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB); 445 446 SmallVector<DbgValueInst *, 8> ToBeRemoved; 447 SmallDenseSet<DebugVariable> VariableSet; 448 for (auto &I : reverse(*BB)) { 449 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 450 DebugVariable Key(DVI->getVariable(), 451 DVI->getExpression(), 452 DVI->getDebugLoc()->getInlinedAt()); 453 auto R = VariableSet.insert(Key); 454 // If the variable fragment hasn't been seen before then we don't want 455 // to remove this dbg intrinsic. 456 if (R.second) 457 continue; 458 459 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 460 // Don't delete dbg.assign intrinsics that are linked to instructions. 461 if (!at::getAssignmentInsts(DAI).empty()) 462 continue; 463 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 464 } 465 466 // If the same variable fragment is described more than once it is enough 467 // to keep the last one (i.e. the first found since we for reverse 468 // iteration). 469 ToBeRemoved.push_back(DVI); 470 continue; 471 } 472 // Sequence with consecutive dbg.value instrs ended. Clear the map to 473 // restart identifying redundant instructions if case we find another 474 // dbg.value sequence. 475 VariableSet.clear(); 476 } 477 478 for (auto &Instr : ToBeRemoved) 479 Instr->eraseFromParent(); 480 481 return !ToBeRemoved.empty(); 482 } 483 484 /// Remove redundant dbg.value instructions using a forward scan. This can 485 /// remove a dbg.value instruction that is redundant due to indicating that a 486 /// variable has the same value as already being indicated by an earlier 487 /// dbg.value. 488 /// 489 /// ForwardScan strategy: 490 /// --------------------- 491 /// Given two identical dbg.value instructions, separated by a block of 492 /// instructions that isn't describing the same variable, like this 493 /// 494 /// dbg.value X1, "x", FragmentX1 (**) 495 /// <block of instructions, none being "dbg.value ..., "x", ..."> 496 /// dbg.value X1, "x", FragmentX1 (*) 497 /// 498 /// then the instruction marked with (*) can be removed. Variable "x" is already 499 /// described as being mapped to the SSA value X1. 500 /// 501 /// Possible improvements: 502 /// - Keep track of non-overlapping fragments. 503 static bool 504 DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 505 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 506 SmallDenseMap<DebugVariable, 507 std::pair<SmallVector<Value *, 4>, DIExpression *>, 4> 508 VariableMap; 509 for (auto &I : *BB) { 510 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 511 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 512 continue; 513 DebugVariable Key(DVR.getVariable(), std::nullopt, 514 DVR.getDebugLoc()->getInlinedAt()); 515 auto VMI = VariableMap.find(Key); 516 // A dbg.assign with no linked instructions can be treated like a 517 // dbg.value (i.e. can be deleted). 518 bool IsDbgValueKind = 519 (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty()); 520 521 // Update the map if we found a new value/expression describing the 522 // variable, or if the variable wasn't mapped already. 523 SmallVector<Value *, 4> Values(DVR.location_ops()); 524 if (VMI == VariableMap.end() || VMI->second.first != Values || 525 VMI->second.second != DVR.getExpression()) { 526 if (IsDbgValueKind) 527 VariableMap[Key] = {Values, DVR.getExpression()}; 528 else 529 VariableMap[Key] = {Values, nullptr}; 530 continue; 531 } 532 // Don't delete dbg.assign intrinsics that are linked to instructions. 533 if (!IsDbgValueKind) 534 continue; 535 // Found an identical mapping. Remember the instruction for later removal. 536 ToBeRemoved.push_back(&DVR); 537 } 538 } 539 540 for (auto *DVR : ToBeRemoved) 541 DVR->eraseFromParent(); 542 543 return !ToBeRemoved.empty(); 544 } 545 546 static bool 547 DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 548 assert(BB->isEntryBlock() && "expected entry block"); 549 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 550 DenseSet<DebugVariable> SeenDefForAggregate; 551 // Returns the DebugVariable for DVI with no fragment info. 552 auto GetAggregateVariable = [](const DbgVariableRecord &DVR) { 553 return DebugVariable(DVR.getVariable(), std::nullopt, 554 DVR.getDebugLoc().getInlinedAt()); 555 }; 556 557 // Remove undef dbg.assign intrinsics that are encountered before 558 // any non-undef intrinsics from the entry block. 559 for (auto &I : *BB) { 560 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 561 if (!DVR.isDbgValue() && !DVR.isDbgAssign()) 562 continue; 563 bool IsDbgValueKind = 564 (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty()); 565 DebugVariable Aggregate = GetAggregateVariable(DVR); 566 if (!SeenDefForAggregate.contains(Aggregate)) { 567 bool IsKill = DVR.isKillLocation() && IsDbgValueKind; 568 if (!IsKill) { 569 SeenDefForAggregate.insert(Aggregate); 570 } else if (DVR.isDbgAssign()) { 571 ToBeRemoved.push_back(&DVR); 572 } 573 } 574 } 575 } 576 577 for (DbgVariableRecord *DVR : ToBeRemoved) 578 DVR->eraseFromParent(); 579 580 return !ToBeRemoved.empty(); 581 } 582 583 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 584 if (BB->IsNewDbgInfoFormat) 585 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB); 586 587 SmallVector<DbgValueInst *, 8> ToBeRemoved; 588 SmallDenseMap<DebugVariable, 589 std::pair<SmallVector<Value *, 4>, DIExpression *>, 4> 590 VariableMap; 591 for (auto &I : *BB) { 592 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 593 DebugVariable Key(DVI->getVariable(), std::nullopt, 594 DVI->getDebugLoc()->getInlinedAt()); 595 auto VMI = VariableMap.find(Key); 596 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 597 // A dbg.assign with no linked instructions can be treated like a 598 // dbg.value (i.e. can be deleted). 599 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 600 601 // Update the map if we found a new value/expression describing the 602 // variable, or if the variable wasn't mapped already. 603 SmallVector<Value *, 4> Values(DVI->getValues()); 604 if (VMI == VariableMap.end() || VMI->second.first != Values || 605 VMI->second.second != DVI->getExpression()) { 606 // Use a sentinel value (nullptr) for the DIExpression when we see a 607 // linked dbg.assign so that the next debug intrinsic will never match 608 // it (i.e. always treat linked dbg.assigns as if they're unique). 609 if (IsDbgValueKind) 610 VariableMap[Key] = {Values, DVI->getExpression()}; 611 else 612 VariableMap[Key] = {Values, nullptr}; 613 continue; 614 } 615 616 // Don't delete dbg.assign intrinsics that are linked to instructions. 617 if (!IsDbgValueKind) 618 continue; 619 ToBeRemoved.push_back(DVI); 620 } 621 } 622 623 for (auto &Instr : ToBeRemoved) 624 Instr->eraseFromParent(); 625 626 return !ToBeRemoved.empty(); 627 } 628 629 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 630 /// forward scan. 631 /// Strategy: 632 /// --------------------- 633 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 634 /// linked to an intrinsic, and don't share an aggregate variable with a debug 635 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 636 /// that come before non-undef debug intrinsics for the variable are 637 /// deleted. Given: 638 /// 639 /// dbg.assign undef, "x", FragmentX1 (*) 640 /// <block of instructions, none being "dbg.value ..., "x", ..."> 641 /// dbg.value %V, "x", FragmentX2 642 /// <block of instructions, none being "dbg.value ..., "x", ..."> 643 /// dbg.assign undef, "x", FragmentX1 644 /// 645 /// then (only) the instruction marked with (*) can be removed. 646 /// Possible improvements: 647 /// - Keep track of non-overlapping fragments. 648 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 649 if (BB->IsNewDbgInfoFormat) 650 return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB); 651 652 assert(BB->isEntryBlock() && "expected entry block"); 653 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 654 DenseSet<DebugVariable> SeenDefForAggregate; 655 // Returns the DebugVariable for DVI with no fragment info. 656 auto GetAggregateVariable = [](DbgValueInst *DVI) { 657 return DebugVariable(DVI->getVariable(), std::nullopt, 658 DVI->getDebugLoc()->getInlinedAt()); 659 }; 660 661 // Remove undef dbg.assign intrinsics that are encountered before 662 // any non-undef intrinsics from the entry block. 663 for (auto &I : *BB) { 664 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 665 if (!DVI) 666 continue; 667 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 668 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 669 DebugVariable Aggregate = GetAggregateVariable(DVI); 670 if (!SeenDefForAggregate.contains(Aggregate)) { 671 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 672 if (!IsKill) { 673 SeenDefForAggregate.insert(Aggregate); 674 } else if (DAI) { 675 ToBeRemoved.push_back(DAI); 676 } 677 } 678 } 679 680 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 681 DAI->eraseFromParent(); 682 683 return !ToBeRemoved.empty(); 684 } 685 686 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 687 bool MadeChanges = false; 688 // By using the "backward scan" strategy before the "forward scan" strategy we 689 // can remove both dbg.value (2) and (3) in a situation like this: 690 // 691 // (1) dbg.value V1, "x", DIExpression() 692 // ... 693 // (2) dbg.value V2, "x", DIExpression() 694 // (3) dbg.value V1, "x", DIExpression() 695 // 696 // The backward scan will remove (2), it is made obsolete by (3). After 697 // getting (2) out of the way, the foward scan will remove (3) since "x" 698 // already is described as having the value V1 at (1). 699 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 700 if (BB->isEntryBlock() && 701 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 702 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); 703 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 704 705 if (MadeChanges) 706 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 707 << BB->getName() << "\n"); 708 return MadeChanges; 709 } 710 711 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 712 Instruction &I = *BI; 713 // Replaces all of the uses of the instruction with uses of the value 714 I.replaceAllUsesWith(V); 715 716 // Make sure to propagate a name if there is one already. 717 if (I.hasName() && !V->hasName()) 718 V->takeName(&I); 719 720 // Delete the unnecessary instruction now... 721 BI = BI->eraseFromParent(); 722 } 723 724 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 725 Instruction *I) { 726 assert(I->getParent() == nullptr && 727 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 728 729 // Copy debug location to newly added instruction, if it wasn't already set 730 // by the caller. 731 if (!I->getDebugLoc()) 732 I->setDebugLoc(BI->getDebugLoc()); 733 734 // Insert the new instruction into the basic block... 735 BasicBlock::iterator New = I->insertInto(BB, BI); 736 737 // Replace all uses of the old instruction, and delete it. 738 ReplaceInstWithValue(BI, I); 739 740 // Move BI back to point to the newly inserted instruction 741 BI = New; 742 } 743 744 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 745 // Remember visited blocks to avoid infinite loop 746 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 747 unsigned Depth = 0; 748 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 749 VisitedBlocks.insert(BB).second) { 750 if (isa<UnreachableInst>(BB->getTerminator()) || 751 BB->getTerminatingDeoptimizeCall()) 752 return true; 753 BB = BB->getUniqueSuccessor(); 754 } 755 return false; 756 } 757 758 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 759 BasicBlock::iterator BI(From); 760 ReplaceInstWithInst(From->getParent(), BI, To); 761 } 762 763 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 764 LoopInfo *LI, MemorySSAUpdater *MSSAU, 765 const Twine &BBName) { 766 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 767 768 Instruction *LatchTerm = BB->getTerminator(); 769 770 CriticalEdgeSplittingOptions Options = 771 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 772 773 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 774 // If it is a critical edge, and the succesor is an exception block, handle 775 // the split edge logic in this specific function 776 if (Succ->isEHPad()) 777 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 778 779 // If this is a critical edge, let SplitKnownCriticalEdge do it. 780 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 781 } 782 783 // If the edge isn't critical, then BB has a single successor or Succ has a 784 // single pred. Split the block. 785 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 786 // If the successor only has a single pred, split the top of the successor 787 // block. 788 assert(SP == BB && "CFG broken"); 789 (void)SP; 790 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 791 /*Before=*/true); 792 } 793 794 // Otherwise, if BB has a single successor, split it at the bottom of the 795 // block. 796 assert(BB->getTerminator()->getNumSuccessors() == 1 && 797 "Should have a single succ!"); 798 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 799 } 800 801 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 802 if (auto *II = dyn_cast<InvokeInst>(TI)) 803 II->setUnwindDest(Succ); 804 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 805 CS->setUnwindDest(Succ); 806 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 807 CR->setUnwindDest(Succ); 808 else 809 llvm_unreachable("unexpected terminator instruction"); 810 } 811 812 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 813 BasicBlock *NewPred, PHINode *Until) { 814 int BBIdx = 0; 815 for (PHINode &PN : DestBB->phis()) { 816 // We manually update the LandingPadReplacement PHINode and it is the last 817 // PHI Node. So, if we find it, we are done. 818 if (Until == &PN) 819 break; 820 821 // Reuse the previous value of BBIdx if it lines up. In cases where we 822 // have multiple phi nodes with *lots* of predecessors, this is a speed 823 // win because we don't have to scan the PHI looking for TIBB. This 824 // happens because the BB list of PHI nodes are usually in the same 825 // order. 826 if (PN.getIncomingBlock(BBIdx) != OldPred) 827 BBIdx = PN.getBasicBlockIndex(OldPred); 828 829 assert(BBIdx != -1 && "Invalid PHI Index!"); 830 PN.setIncomingBlock(BBIdx, NewPred); 831 } 832 } 833 834 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 835 LandingPadInst *OriginalPad, 836 PHINode *LandingPadReplacement, 837 const CriticalEdgeSplittingOptions &Options, 838 const Twine &BBName) { 839 840 auto *PadInst = Succ->getFirstNonPHI(); 841 if (!LandingPadReplacement && !PadInst->isEHPad()) 842 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 843 844 auto *LI = Options.LI; 845 SmallVector<BasicBlock *, 4> LoopPreds; 846 // Check if extra modifications will be required to preserve loop-simplify 847 // form after splitting. If it would require splitting blocks with IndirectBr 848 // terminators, bail out if preserving loop-simplify form is requested. 849 if (Options.PreserveLoopSimplify && LI) { 850 if (Loop *BBLoop = LI->getLoopFor(BB)) { 851 852 // The only way that we can break LoopSimplify form by splitting a 853 // critical edge is when there exists some edge from BBLoop to Succ *and* 854 // the only edge into Succ from outside of BBLoop is that of NewBB after 855 // the split. If the first isn't true, then LoopSimplify still holds, 856 // NewBB is the new exit block and it has no non-loop predecessors. If the 857 // second isn't true, then Succ was not in LoopSimplify form prior to 858 // the split as it had a non-loop predecessor. In both of these cases, 859 // the predecessor must be directly in BBLoop, not in a subloop, or again 860 // LoopSimplify doesn't hold. 861 for (BasicBlock *P : predecessors(Succ)) { 862 if (P == BB) 863 continue; // The new block is known. 864 if (LI->getLoopFor(P) != BBLoop) { 865 // Loop is not in LoopSimplify form, no need to re simplify after 866 // splitting edge. 867 LoopPreds.clear(); 868 break; 869 } 870 LoopPreds.push_back(P); 871 } 872 // Loop-simplify form can be preserved, if we can split all in-loop 873 // predecessors. 874 if (any_of(LoopPreds, [](BasicBlock *Pred) { 875 return isa<IndirectBrInst>(Pred->getTerminator()); 876 })) { 877 return nullptr; 878 } 879 } 880 } 881 882 auto *NewBB = 883 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 884 setUnwindEdgeTo(BB->getTerminator(), NewBB); 885 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 886 887 if (LandingPadReplacement) { 888 auto *NewLP = OriginalPad->clone(); 889 auto *Terminator = BranchInst::Create(Succ, NewBB); 890 NewLP->insertBefore(Terminator); 891 LandingPadReplacement->addIncoming(NewLP, NewBB); 892 } else { 893 Value *ParentPad = nullptr; 894 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 895 ParentPad = FuncletPad->getParentPad(); 896 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 897 ParentPad = CatchSwitch->getParentPad(); 898 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 899 ParentPad = CleanupPad->getParentPad(); 900 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 901 ParentPad = LandingPad->getParent(); 902 else 903 llvm_unreachable("handling for other EHPads not implemented yet"); 904 905 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 906 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 907 } 908 909 auto *DT = Options.DT; 910 auto *MSSAU = Options.MSSAU; 911 if (!DT && !LI) 912 return NewBB; 913 914 if (DT) { 915 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 916 SmallVector<DominatorTree::UpdateType, 3> Updates; 917 918 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 919 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 920 Updates.push_back({DominatorTree::Delete, BB, Succ}); 921 922 DTU.applyUpdates(Updates); 923 DTU.flush(); 924 925 if (MSSAU) { 926 MSSAU->applyUpdates(Updates, *DT); 927 if (VerifyMemorySSA) 928 MSSAU->getMemorySSA()->verifyMemorySSA(); 929 } 930 } 931 932 if (LI) { 933 if (Loop *BBLoop = LI->getLoopFor(BB)) { 934 // If one or the other blocks were not in a loop, the new block is not 935 // either, and thus LI doesn't need to be updated. 936 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 937 if (BBLoop == SuccLoop) { 938 // Both in the same loop, the NewBB joins loop. 939 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 940 } else if (BBLoop->contains(SuccLoop)) { 941 // Edge from an outer loop to an inner loop. Add to the outer loop. 942 BBLoop->addBasicBlockToLoop(NewBB, *LI); 943 } else if (SuccLoop->contains(BBLoop)) { 944 // Edge from an inner loop to an outer loop. Add to the outer loop. 945 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 946 } else { 947 // Edge from two loops with no containment relation. Because these 948 // are natural loops, we know that the destination block must be the 949 // header of its loop (adding a branch into a loop elsewhere would 950 // create an irreducible loop). 951 assert(SuccLoop->getHeader() == Succ && 952 "Should not create irreducible loops!"); 953 if (Loop *P = SuccLoop->getParentLoop()) 954 P->addBasicBlockToLoop(NewBB, *LI); 955 } 956 } 957 958 // If BB is in a loop and Succ is outside of that loop, we may need to 959 // update LoopSimplify form and LCSSA form. 960 if (!BBLoop->contains(Succ)) { 961 assert(!BBLoop->contains(NewBB) && 962 "Split point for loop exit is contained in loop!"); 963 964 // Update LCSSA form in the newly created exit block. 965 if (Options.PreserveLCSSA) { 966 createPHIsForSplitLoopExit(BB, NewBB, Succ); 967 } 968 969 if (!LoopPreds.empty()) { 970 BasicBlock *NewExitBB = SplitBlockPredecessors( 971 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 972 if (Options.PreserveLCSSA) 973 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 974 } 975 } 976 } 977 } 978 979 return NewBB; 980 } 981 982 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 983 BasicBlock *SplitBB, BasicBlock *DestBB) { 984 // SplitBB shouldn't have anything non-trivial in it yet. 985 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 986 SplitBB->isLandingPad()) && 987 "SplitBB has non-PHI nodes!"); 988 989 // For each PHI in the destination block. 990 for (PHINode &PN : DestBB->phis()) { 991 int Idx = PN.getBasicBlockIndex(SplitBB); 992 assert(Idx >= 0 && "Invalid Block Index"); 993 Value *V = PN.getIncomingValue(Idx); 994 995 // If the input is a PHI which already satisfies LCSSA, don't create 996 // a new one. 997 if (const PHINode *VP = dyn_cast<PHINode>(V)) 998 if (VP->getParent() == SplitBB) 999 continue; 1000 1001 // Otherwise a new PHI is needed. Create one and populate it. 1002 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 1003 BasicBlock::iterator InsertPos = 1004 SplitBB->isLandingPad() ? SplitBB->begin() 1005 : SplitBB->getTerminator()->getIterator(); 1006 NewPN->insertBefore(InsertPos); 1007 for (BasicBlock *BB : Preds) 1008 NewPN->addIncoming(V, BB); 1009 1010 // Update the original PHI. 1011 PN.setIncomingValue(Idx, NewPN); 1012 } 1013 } 1014 1015 unsigned 1016 llvm::SplitAllCriticalEdges(Function &F, 1017 const CriticalEdgeSplittingOptions &Options) { 1018 unsigned NumBroken = 0; 1019 for (BasicBlock &BB : F) { 1020 Instruction *TI = BB.getTerminator(); 1021 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 1022 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1023 if (SplitCriticalEdge(TI, i, Options)) 1024 ++NumBroken; 1025 } 1026 return NumBroken; 1027 } 1028 1029 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 1030 DomTreeUpdater *DTU, DominatorTree *DT, 1031 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1032 const Twine &BBName, bool Before) { 1033 if (Before) { 1034 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1035 return splitBlockBefore(Old, SplitPt, 1036 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 1037 BBName); 1038 } 1039 BasicBlock::iterator SplitIt = SplitPt; 1040 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 1041 ++SplitIt; 1042 assert(SplitIt != SplitPt->getParent()->end()); 1043 } 1044 std::string Name = BBName.str(); 1045 BasicBlock *New = Old->splitBasicBlock( 1046 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 1047 1048 // The new block lives in whichever loop the old one did. This preserves 1049 // LCSSA as well, because we force the split point to be after any PHI nodes. 1050 if (LI) 1051 if (Loop *L = LI->getLoopFor(Old)) 1052 L->addBasicBlockToLoop(New, *LI); 1053 1054 if (DTU) { 1055 SmallVector<DominatorTree::UpdateType, 8> Updates; 1056 // Old dominates New. New node dominates all other nodes dominated by Old. 1057 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 1058 Updates.push_back({DominatorTree::Insert, Old, New}); 1059 Updates.reserve(Updates.size() + 2 * succ_size(New)); 1060 for (BasicBlock *SuccessorOfOld : successors(New)) 1061 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 1062 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 1063 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 1064 } 1065 1066 DTU->applyUpdates(Updates); 1067 } else if (DT) 1068 // Old dominates New. New node dominates all other nodes dominated by Old. 1069 if (DomTreeNode *OldNode = DT->getNode(Old)) { 1070 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1071 1072 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 1073 for (DomTreeNode *I : Children) 1074 DT->changeImmediateDominator(I, NewNode); 1075 } 1076 1077 // Move MemoryAccesses still tracked in Old, but part of New now. 1078 // Update accesses in successor blocks accordingly. 1079 if (MSSAU) 1080 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 1081 1082 return New; 1083 } 1084 1085 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1086 DominatorTree *DT, LoopInfo *LI, 1087 MemorySSAUpdater *MSSAU, const Twine &BBName, 1088 bool Before) { 1089 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1090 Before); 1091 } 1092 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1093 DomTreeUpdater *DTU, LoopInfo *LI, 1094 MemorySSAUpdater *MSSAU, const Twine &BBName, 1095 bool Before) { 1096 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1097 Before); 1098 } 1099 1100 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1101 DomTreeUpdater *DTU, LoopInfo *LI, 1102 MemorySSAUpdater *MSSAU, 1103 const Twine &BBName) { 1104 1105 BasicBlock::iterator SplitIt = SplitPt; 1106 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1107 ++SplitIt; 1108 std::string Name = BBName.str(); 1109 BasicBlock *New = Old->splitBasicBlock( 1110 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1111 /* Before=*/true); 1112 1113 // The new block lives in whichever loop the old one did. This preserves 1114 // LCSSA as well, because we force the split point to be after any PHI nodes. 1115 if (LI) 1116 if (Loop *L = LI->getLoopFor(Old)) 1117 L->addBasicBlockToLoop(New, *LI); 1118 1119 if (DTU) { 1120 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1121 // New dominates Old. The predecessor nodes of the Old node dominate 1122 // New node. 1123 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1124 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1125 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1126 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1127 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1128 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1129 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1130 } 1131 1132 DTU->applyUpdates(DTUpdates); 1133 1134 // Move MemoryAccesses still tracked in Old, but part of New now. 1135 // Update accesses in successor blocks accordingly. 1136 if (MSSAU) { 1137 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1138 if (VerifyMemorySSA) 1139 MSSAU->getMemorySSA()->verifyMemorySSA(); 1140 } 1141 } 1142 return New; 1143 } 1144 1145 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1146 /// Invalidates DFS Numbering when DTU or DT is provided. 1147 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1148 ArrayRef<BasicBlock *> Preds, 1149 DomTreeUpdater *DTU, DominatorTree *DT, 1150 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1151 bool PreserveLCSSA, bool &HasLoopExit) { 1152 // Update dominator tree if available. 1153 if (DTU) { 1154 // Recalculation of DomTree is needed when updating a forward DomTree and 1155 // the Entry BB is replaced. 1156 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1157 // The entry block was removed and there is no external interface for 1158 // the dominator tree to be notified of this change. In this corner-case 1159 // we recalculate the entire tree. 1160 DTU->recalculate(*NewBB->getParent()); 1161 } else { 1162 // Split block expects NewBB to have a non-empty set of predecessors. 1163 SmallVector<DominatorTree::UpdateType, 8> Updates; 1164 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1165 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1166 Updates.reserve(Updates.size() + 2 * Preds.size()); 1167 for (auto *Pred : Preds) 1168 if (UniquePreds.insert(Pred).second) { 1169 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1170 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1171 } 1172 DTU->applyUpdates(Updates); 1173 } 1174 } else if (DT) { 1175 if (OldBB == DT->getRootNode()->getBlock()) { 1176 assert(NewBB->isEntryBlock()); 1177 DT->setNewRoot(NewBB); 1178 } else { 1179 // Split block expects NewBB to have a non-empty set of predecessors. 1180 DT->splitBlock(NewBB); 1181 } 1182 } 1183 1184 // Update MemoryPhis after split if MemorySSA is available 1185 if (MSSAU) 1186 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1187 1188 // The rest of the logic is only relevant for updating the loop structures. 1189 if (!LI) 1190 return; 1191 1192 if (DTU && DTU->hasDomTree()) 1193 DT = &DTU->getDomTree(); 1194 assert(DT && "DT should be available to update LoopInfo!"); 1195 Loop *L = LI->getLoopFor(OldBB); 1196 1197 // If we need to preserve loop analyses, collect some information about how 1198 // this split will affect loops. 1199 bool IsLoopEntry = !!L; 1200 bool SplitMakesNewLoopHeader = false; 1201 for (BasicBlock *Pred : Preds) { 1202 // Preds that are not reachable from entry should not be used to identify if 1203 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1204 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1205 // as true and make the NewBB the header of some loop. This breaks LI. 1206 if (!DT->isReachableFromEntry(Pred)) 1207 continue; 1208 // If we need to preserve LCSSA, determine if any of the preds is a loop 1209 // exit. 1210 if (PreserveLCSSA) 1211 if (Loop *PL = LI->getLoopFor(Pred)) 1212 if (!PL->contains(OldBB)) 1213 HasLoopExit = true; 1214 1215 // If we need to preserve LoopInfo, note whether any of the preds crosses 1216 // an interesting loop boundary. 1217 if (!L) 1218 continue; 1219 if (L->contains(Pred)) 1220 IsLoopEntry = false; 1221 else 1222 SplitMakesNewLoopHeader = true; 1223 } 1224 1225 // Unless we have a loop for OldBB, nothing else to do here. 1226 if (!L) 1227 return; 1228 1229 if (IsLoopEntry) { 1230 // Add the new block to the nearest enclosing loop (and not an adjacent 1231 // loop). To find this, examine each of the predecessors and determine which 1232 // loops enclose them, and select the most-nested loop which contains the 1233 // loop containing the block being split. 1234 Loop *InnermostPredLoop = nullptr; 1235 for (BasicBlock *Pred : Preds) { 1236 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1237 // Seek a loop which actually contains the block being split (to avoid 1238 // adjacent loops). 1239 while (PredLoop && !PredLoop->contains(OldBB)) 1240 PredLoop = PredLoop->getParentLoop(); 1241 1242 // Select the most-nested of these loops which contains the block. 1243 if (PredLoop && PredLoop->contains(OldBB) && 1244 (!InnermostPredLoop || 1245 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1246 InnermostPredLoop = PredLoop; 1247 } 1248 } 1249 1250 if (InnermostPredLoop) 1251 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1252 } else { 1253 L->addBasicBlockToLoop(NewBB, *LI); 1254 if (SplitMakesNewLoopHeader) 1255 L->moveToHeader(NewBB); 1256 } 1257 } 1258 1259 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1260 /// This also updates AliasAnalysis, if available. 1261 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1262 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1263 bool HasLoopExit) { 1264 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1265 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1266 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1267 PHINode *PN = cast<PHINode>(I++); 1268 1269 // Check to see if all of the values coming in are the same. If so, we 1270 // don't need to create a new PHI node, unless it's needed for LCSSA. 1271 Value *InVal = nullptr; 1272 if (!HasLoopExit) { 1273 InVal = PN->getIncomingValueForBlock(Preds[0]); 1274 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1275 if (!PredSet.count(PN->getIncomingBlock(i))) 1276 continue; 1277 if (!InVal) 1278 InVal = PN->getIncomingValue(i); 1279 else if (InVal != PN->getIncomingValue(i)) { 1280 InVal = nullptr; 1281 break; 1282 } 1283 } 1284 } 1285 1286 if (InVal) { 1287 // If all incoming values for the new PHI would be the same, just don't 1288 // make a new PHI. Instead, just remove the incoming values from the old 1289 // PHI. 1290 PN->removeIncomingValueIf( 1291 [&](unsigned Idx) { 1292 return PredSet.contains(PN->getIncomingBlock(Idx)); 1293 }, 1294 /* DeletePHIIfEmpty */ false); 1295 1296 // Add an incoming value to the PHI node in the loop for the preheader 1297 // edge. 1298 PN->addIncoming(InVal, NewBB); 1299 continue; 1300 } 1301 1302 // If the values coming into the block are not the same, we need a new 1303 // PHI. 1304 // Create the new PHI node, insert it into NewBB at the end of the block 1305 PHINode *NewPHI = 1306 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator()); 1307 1308 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1309 // the cost of removal if we end up removing a large number of values, and 1310 // second off, this ensures that the indices for the incoming values aren't 1311 // invalidated when we remove one. 1312 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1313 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1314 if (PredSet.count(IncomingBB)) { 1315 Value *V = PN->removeIncomingValue(i, false); 1316 NewPHI->addIncoming(V, IncomingBB); 1317 } 1318 } 1319 1320 PN->addIncoming(NewPHI, NewBB); 1321 } 1322 } 1323 1324 static void SplitLandingPadPredecessorsImpl( 1325 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1326 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1327 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1328 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1329 1330 static BasicBlock * 1331 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1332 const char *Suffix, DomTreeUpdater *DTU, 1333 DominatorTree *DT, LoopInfo *LI, 1334 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1335 // Do not attempt to split that which cannot be split. 1336 if (!BB->canSplitPredecessors()) 1337 return nullptr; 1338 1339 // For the landingpads we need to act a bit differently. 1340 // Delegate this work to the SplitLandingPadPredecessors. 1341 if (BB->isLandingPad()) { 1342 SmallVector<BasicBlock*, 2> NewBBs; 1343 std::string NewName = std::string(Suffix) + ".split-lp"; 1344 1345 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1346 DTU, DT, LI, MSSAU, PreserveLCSSA); 1347 return NewBBs[0]; 1348 } 1349 1350 // Create new basic block, insert right before the original block. 1351 BasicBlock *NewBB = BasicBlock::Create( 1352 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1353 1354 // The new block unconditionally branches to the old block. 1355 BranchInst *BI = BranchInst::Create(BB, NewBB); 1356 1357 Loop *L = nullptr; 1358 BasicBlock *OldLatch = nullptr; 1359 // Splitting the predecessors of a loop header creates a preheader block. 1360 if (LI && LI->isLoopHeader(BB)) { 1361 L = LI->getLoopFor(BB); 1362 // Using the loop start line number prevents debuggers stepping into the 1363 // loop body for this instruction. 1364 BI->setDebugLoc(L->getStartLoc()); 1365 1366 // If BB is the header of the Loop, it is possible that the loop is 1367 // modified, such that the current latch does not remain the latch of the 1368 // loop. If that is the case, the loop metadata from the current latch needs 1369 // to be applied to the new latch. 1370 OldLatch = L->getLoopLatch(); 1371 } else 1372 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1373 1374 // Move the edges from Preds to point to NewBB instead of BB. 1375 for (BasicBlock *Pred : Preds) { 1376 // This is slightly more strict than necessary; the minimum requirement 1377 // is that there be no more than one indirectbr branching to BB. And 1378 // all BlockAddress uses would need to be updated. 1379 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1380 "Cannot split an edge from an IndirectBrInst"); 1381 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1382 } 1383 1384 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1385 // node becomes an incoming value for BB's phi node. However, if the Preds 1386 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1387 // account for the newly created predecessor. 1388 if (Preds.empty()) { 1389 // Insert dummy values as the incoming value. 1390 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1391 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1392 } 1393 1394 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1395 bool HasLoopExit = false; 1396 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1397 HasLoopExit); 1398 1399 if (!Preds.empty()) { 1400 // Update the PHI nodes in BB with the values coming from NewBB. 1401 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1402 } 1403 1404 if (OldLatch) { 1405 BasicBlock *NewLatch = L->getLoopLatch(); 1406 if (NewLatch != OldLatch) { 1407 MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop); 1408 NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD); 1409 // It's still possible that OldLatch is the latch of another inner loop, 1410 // in which case we do not remove the metadata. 1411 Loop *IL = LI->getLoopFor(OldLatch); 1412 if (IL && IL->getLoopLatch() != OldLatch) 1413 OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr); 1414 } 1415 } 1416 1417 return NewBB; 1418 } 1419 1420 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1421 ArrayRef<BasicBlock *> Preds, 1422 const char *Suffix, DominatorTree *DT, 1423 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1424 bool PreserveLCSSA) { 1425 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1426 MSSAU, PreserveLCSSA); 1427 } 1428 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1429 ArrayRef<BasicBlock *> Preds, 1430 const char *Suffix, 1431 DomTreeUpdater *DTU, LoopInfo *LI, 1432 MemorySSAUpdater *MSSAU, 1433 bool PreserveLCSSA) { 1434 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1435 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1436 } 1437 1438 static void SplitLandingPadPredecessorsImpl( 1439 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1440 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1441 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1442 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1443 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1444 1445 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1446 // it right before the original block. 1447 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1448 OrigBB->getName() + Suffix1, 1449 OrigBB->getParent(), OrigBB); 1450 NewBBs.push_back(NewBB1); 1451 1452 // The new block unconditionally branches to the old block. 1453 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1454 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1455 1456 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1457 for (BasicBlock *Pred : Preds) { 1458 // This is slightly more strict than necessary; the minimum requirement 1459 // is that there be no more than one indirectbr branching to BB. And 1460 // all BlockAddress uses would need to be updated. 1461 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1462 "Cannot split an edge from an IndirectBrInst"); 1463 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1464 } 1465 1466 bool HasLoopExit = false; 1467 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1468 PreserveLCSSA, HasLoopExit); 1469 1470 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1471 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1472 1473 // Move the remaining edges from OrigBB to point to NewBB2. 1474 SmallVector<BasicBlock*, 8> NewBB2Preds; 1475 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1476 i != e; ) { 1477 BasicBlock *Pred = *i++; 1478 if (Pred == NewBB1) continue; 1479 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1480 "Cannot split an edge from an IndirectBrInst"); 1481 NewBB2Preds.push_back(Pred); 1482 e = pred_end(OrigBB); 1483 } 1484 1485 BasicBlock *NewBB2 = nullptr; 1486 if (!NewBB2Preds.empty()) { 1487 // Create another basic block for the rest of OrigBB's predecessors. 1488 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1489 OrigBB->getName() + Suffix2, 1490 OrigBB->getParent(), OrigBB); 1491 NewBBs.push_back(NewBB2); 1492 1493 // The new block unconditionally branches to the old block. 1494 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1495 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1496 1497 // Move the remaining edges from OrigBB to point to NewBB2. 1498 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1499 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1500 1501 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1502 HasLoopExit = false; 1503 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1504 PreserveLCSSA, HasLoopExit); 1505 1506 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1507 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1508 } 1509 1510 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1511 Instruction *Clone1 = LPad->clone(); 1512 Clone1->setName(Twine("lpad") + Suffix1); 1513 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1514 1515 if (NewBB2) { 1516 Instruction *Clone2 = LPad->clone(); 1517 Clone2->setName(Twine("lpad") + Suffix2); 1518 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1519 1520 // Create a PHI node for the two cloned landingpad instructions only 1521 // if the original landingpad instruction has some uses. 1522 if (!LPad->use_empty()) { 1523 assert(!LPad->getType()->isTokenTy() && 1524 "Split cannot be applied if LPad is token type. Otherwise an " 1525 "invalid PHINode of token type would be created."); 1526 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator()); 1527 PN->addIncoming(Clone1, NewBB1); 1528 PN->addIncoming(Clone2, NewBB2); 1529 LPad->replaceAllUsesWith(PN); 1530 } 1531 LPad->eraseFromParent(); 1532 } else { 1533 // There is no second clone. Just replace the landing pad with the first 1534 // clone. 1535 LPad->replaceAllUsesWith(Clone1); 1536 LPad->eraseFromParent(); 1537 } 1538 } 1539 1540 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1541 ArrayRef<BasicBlock *> Preds, 1542 const char *Suffix1, const char *Suffix2, 1543 SmallVectorImpl<BasicBlock *> &NewBBs, 1544 DomTreeUpdater *DTU, LoopInfo *LI, 1545 MemorySSAUpdater *MSSAU, 1546 bool PreserveLCSSA) { 1547 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1548 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1549 PreserveLCSSA); 1550 } 1551 1552 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1553 BasicBlock *Pred, 1554 DomTreeUpdater *DTU) { 1555 Instruction *UncondBranch = Pred->getTerminator(); 1556 // Clone the return and add it to the end of the predecessor. 1557 Instruction *NewRet = RI->clone(); 1558 NewRet->insertInto(Pred, Pred->end()); 1559 1560 // If the return instruction returns a value, and if the value was a 1561 // PHI node in "BB", propagate the right value into the return. 1562 for (Use &Op : NewRet->operands()) { 1563 Value *V = Op; 1564 Instruction *NewBC = nullptr; 1565 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1566 // Return value might be bitcasted. Clone and insert it before the 1567 // return instruction. 1568 V = BCI->getOperand(0); 1569 NewBC = BCI->clone(); 1570 NewBC->insertInto(Pred, NewRet->getIterator()); 1571 Op = NewBC; 1572 } 1573 1574 Instruction *NewEV = nullptr; 1575 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1576 V = EVI->getOperand(0); 1577 NewEV = EVI->clone(); 1578 if (NewBC) { 1579 NewBC->setOperand(0, NewEV); 1580 NewEV->insertInto(Pred, NewBC->getIterator()); 1581 } else { 1582 NewEV->insertInto(Pred, NewRet->getIterator()); 1583 Op = NewEV; 1584 } 1585 } 1586 1587 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1588 if (PN->getParent() == BB) { 1589 if (NewEV) { 1590 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1591 } else if (NewBC) 1592 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1593 else 1594 Op = PN->getIncomingValueForBlock(Pred); 1595 } 1596 } 1597 } 1598 1599 // Update any PHI nodes in the returning block to realize that we no 1600 // longer branch to them. 1601 BB->removePredecessor(Pred); 1602 UncondBranch->eraseFromParent(); 1603 1604 if (DTU) 1605 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1606 1607 return cast<ReturnInst>(NewRet); 1608 } 1609 1610 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1611 BasicBlock::iterator SplitBefore, 1612 bool Unreachable, 1613 MDNode *BranchWeights, 1614 DomTreeUpdater *DTU, LoopInfo *LI, 1615 BasicBlock *ThenBlock) { 1616 SplitBlockAndInsertIfThenElse( 1617 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1618 /* UnreachableThen */ Unreachable, 1619 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1620 return ThenBlock->getTerminator(); 1621 } 1622 1623 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1624 BasicBlock::iterator SplitBefore, 1625 bool Unreachable, 1626 MDNode *BranchWeights, 1627 DomTreeUpdater *DTU, LoopInfo *LI, 1628 BasicBlock *ElseBlock) { 1629 SplitBlockAndInsertIfThenElse( 1630 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1631 /* UnreachableThen */ false, 1632 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1633 return ElseBlock->getTerminator(); 1634 } 1635 1636 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1637 Instruction **ThenTerm, 1638 Instruction **ElseTerm, 1639 MDNode *BranchWeights, 1640 DomTreeUpdater *DTU, LoopInfo *LI) { 1641 BasicBlock *ThenBlock = nullptr; 1642 BasicBlock *ElseBlock = nullptr; 1643 SplitBlockAndInsertIfThenElse( 1644 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1645 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1646 1647 *ThenTerm = ThenBlock->getTerminator(); 1648 *ElseTerm = ElseBlock->getTerminator(); 1649 } 1650 1651 void llvm::SplitBlockAndInsertIfThenElse( 1652 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1653 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1654 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1655 assert((ThenBlock || ElseBlock) && 1656 "At least one branch block must be created"); 1657 assert((!UnreachableThen || !UnreachableElse) && 1658 "Split block tail must be reachable"); 1659 1660 SmallVector<DominatorTree::UpdateType, 8> Updates; 1661 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1662 BasicBlock *Head = SplitBefore->getParent(); 1663 if (DTU) { 1664 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1665 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1666 } 1667 1668 LLVMContext &C = Head->getContext(); 1669 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1670 BasicBlock *TrueBlock = Tail; 1671 BasicBlock *FalseBlock = Tail; 1672 bool ThenToTailEdge = false; 1673 bool ElseToTailEdge = false; 1674 1675 // Encapsulate the logic around creation/insertion/etc of a new block. 1676 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1677 bool &ToTailEdge) { 1678 if (PBB == nullptr) 1679 return; // Do not create/insert a block. 1680 1681 if (*PBB) 1682 BB = *PBB; // Caller supplied block, use it. 1683 else { 1684 // Create a new block. 1685 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1686 if (Unreachable) 1687 (void)new UnreachableInst(C, BB); 1688 else { 1689 (void)BranchInst::Create(Tail, BB); 1690 ToTailEdge = true; 1691 } 1692 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1693 // Pass the new block back to the caller. 1694 *PBB = BB; 1695 } 1696 }; 1697 1698 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1699 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1700 1701 Instruction *HeadOldTerm = Head->getTerminator(); 1702 BranchInst *HeadNewTerm = 1703 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1704 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1705 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1706 1707 if (DTU) { 1708 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1709 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1710 if (ThenToTailEdge) 1711 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1712 if (ElseToTailEdge) 1713 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1714 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1715 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1716 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1717 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1718 DTU->applyUpdates(Updates); 1719 } 1720 1721 if (LI) { 1722 if (Loop *L = LI->getLoopFor(Head); L) { 1723 if (ThenToTailEdge) 1724 L->addBasicBlockToLoop(TrueBlock, *LI); 1725 if (ElseToTailEdge) 1726 L->addBasicBlockToLoop(FalseBlock, *LI); 1727 L->addBasicBlockToLoop(Tail, *LI); 1728 } 1729 } 1730 } 1731 1732 std::pair<Instruction*, Value*> 1733 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1734 BasicBlock *LoopPred = SplitBefore->getParent(); 1735 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1736 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1737 1738 auto *Ty = End->getType(); 1739 auto &DL = SplitBefore->getDataLayout(); 1740 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1741 1742 IRBuilder<> Builder(LoopBody->getTerminator()); 1743 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1744 auto *IVNext = 1745 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1746 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1747 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1748 IV->getName() + ".check"); 1749 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1750 LoopBody->getTerminator()->eraseFromParent(); 1751 1752 // Populate the IV PHI. 1753 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1754 IV->addIncoming(IVNext, LoopBody); 1755 1756 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1757 } 1758 1759 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1760 Type *IndexTy, Instruction *InsertBefore, 1761 std::function<void(IRBuilderBase&, Value*)> Func) { 1762 1763 IRBuilder<> IRB(InsertBefore); 1764 1765 if (EC.isScalable()) { 1766 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1767 1768 auto [BodyIP, Index] = 1769 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1770 1771 IRB.SetInsertPoint(BodyIP); 1772 Func(IRB, Index); 1773 return; 1774 } 1775 1776 unsigned Num = EC.getFixedValue(); 1777 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1778 IRB.SetInsertPoint(InsertBefore); 1779 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1780 } 1781 } 1782 1783 void llvm::SplitBlockAndInsertForEachLane( 1784 Value *EVL, Instruction *InsertBefore, 1785 std::function<void(IRBuilderBase &, Value *)> Func) { 1786 1787 IRBuilder<> IRB(InsertBefore); 1788 Type *Ty = EVL->getType(); 1789 1790 if (!isa<ConstantInt>(EVL)) { 1791 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1792 IRB.SetInsertPoint(BodyIP); 1793 Func(IRB, Index); 1794 return; 1795 } 1796 1797 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1798 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1799 IRB.SetInsertPoint(InsertBefore); 1800 Func(IRB, ConstantInt::get(Ty, Idx)); 1801 } 1802 } 1803 1804 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1805 BasicBlock *&IfFalse) { 1806 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1807 BasicBlock *Pred1 = nullptr; 1808 BasicBlock *Pred2 = nullptr; 1809 1810 if (SomePHI) { 1811 if (SomePHI->getNumIncomingValues() != 2) 1812 return nullptr; 1813 Pred1 = SomePHI->getIncomingBlock(0); 1814 Pred2 = SomePHI->getIncomingBlock(1); 1815 } else { 1816 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1817 if (PI == PE) // No predecessor 1818 return nullptr; 1819 Pred1 = *PI++; 1820 if (PI == PE) // Only one predecessor 1821 return nullptr; 1822 Pred2 = *PI++; 1823 if (PI != PE) // More than two predecessors 1824 return nullptr; 1825 } 1826 1827 // We can only handle branches. Other control flow will be lowered to 1828 // branches if possible anyway. 1829 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1830 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1831 if (!Pred1Br || !Pred2Br) 1832 return nullptr; 1833 1834 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1835 // either are. 1836 if (Pred2Br->isConditional()) { 1837 // If both branches are conditional, we don't have an "if statement". In 1838 // reality, we could transform this case, but since the condition will be 1839 // required anyway, we stand no chance of eliminating it, so the xform is 1840 // probably not profitable. 1841 if (Pred1Br->isConditional()) 1842 return nullptr; 1843 1844 std::swap(Pred1, Pred2); 1845 std::swap(Pred1Br, Pred2Br); 1846 } 1847 1848 if (Pred1Br->isConditional()) { 1849 // The only thing we have to watch out for here is to make sure that Pred2 1850 // doesn't have incoming edges from other blocks. If it does, the condition 1851 // doesn't dominate BB. 1852 if (!Pred2->getSinglePredecessor()) 1853 return nullptr; 1854 1855 // If we found a conditional branch predecessor, make sure that it branches 1856 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1857 if (Pred1Br->getSuccessor(0) == BB && 1858 Pred1Br->getSuccessor(1) == Pred2) { 1859 IfTrue = Pred1; 1860 IfFalse = Pred2; 1861 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1862 Pred1Br->getSuccessor(1) == BB) { 1863 IfTrue = Pred2; 1864 IfFalse = Pred1; 1865 } else { 1866 // We know that one arm of the conditional goes to BB, so the other must 1867 // go somewhere unrelated, and this must not be an "if statement". 1868 return nullptr; 1869 } 1870 1871 return Pred1Br; 1872 } 1873 1874 // Ok, if we got here, both predecessors end with an unconditional branch to 1875 // BB. Don't panic! If both blocks only have a single (identical) 1876 // predecessor, and THAT is a conditional branch, then we're all ok! 1877 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1878 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1879 return nullptr; 1880 1881 // Otherwise, if this is a conditional branch, then we can use it! 1882 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1883 if (!BI) return nullptr; 1884 1885 assert(BI->isConditional() && "Two successors but not conditional?"); 1886 if (BI->getSuccessor(0) == Pred1) { 1887 IfTrue = Pred1; 1888 IfFalse = Pred2; 1889 } else { 1890 IfTrue = Pred2; 1891 IfFalse = Pred1; 1892 } 1893 return BI; 1894 } 1895 1896 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 1897 Value *NewCond = PBI->getCondition(); 1898 // If this is a "cmp" instruction, only used for branching (and nowhere 1899 // else), then we can simply invert the predicate. 1900 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 1901 CmpInst *CI = cast<CmpInst>(NewCond); 1902 CI->setPredicate(CI->getInversePredicate()); 1903 } else 1904 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 1905 1906 PBI->setCondition(NewCond); 1907 PBI->swapSuccessors(); 1908 } 1909 1910 bool llvm::hasOnlySimpleTerminator(const Function &F) { 1911 for (auto &BB : F) { 1912 auto *Term = BB.getTerminator(); 1913 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 1914 isa<BranchInst>(Term))) 1915 return false; 1916 } 1917 return true; 1918 } 1919 1920 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, 1921 const BasicBlock &Dest) { 1922 assert(Src.getParent() == Dest.getParent()); 1923 if (!Src.getParent()->isPresplitCoroutine()) 1924 return false; 1925 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator())) 1926 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition())) 1927 return Intr->getIntrinsicID() == Intrinsic::coro_suspend && 1928 SW->getDefaultDest() == &Dest; 1929 return false; 1930 } 1931