1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth( 57 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is followed by a block that either has a terminating " 60 "deoptimizing call or is terminated with an unreachable")); 61 62 void llvm::detachDeadBlocks( 63 ArrayRef<BasicBlock *> BBs, 64 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 65 bool KeepOneInputPHIs) { 66 for (auto *BB : BBs) { 67 // Loop through all of our successors and make sure they know that one 68 // of their predecessors is going away. 69 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 70 for (BasicBlock *Succ : successors(BB)) { 71 Succ->removePredecessor(BB, KeepOneInputPHIs); 72 if (Updates && UniqueSuccessors.insert(Succ).second) 73 Updates->push_back({DominatorTree::Delete, BB, Succ}); 74 } 75 76 // Zap all the instructions in the block. 77 while (!BB->empty()) { 78 Instruction &I = BB->back(); 79 // If this instruction is used, replace uses with an arbitrary value. 80 // Because control flow can't get here, we don't care what we replace the 81 // value with. Note that since this block is unreachable, and all values 82 // contained within it must dominate their uses, that all uses will 83 // eventually be removed (they are themselves dead). 84 if (!I.use_empty()) 85 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 86 BB->back().eraseFromParent(); 87 } 88 new UnreachableInst(BB->getContext(), BB); 89 assert(BB->size() == 1 && 90 isa<UnreachableInst>(BB->getTerminator()) && 91 "The successor list of BB isn't empty before " 92 "applying corresponding DTU updates."); 93 } 94 } 95 96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 97 bool KeepOneInputPHIs) { 98 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 99 } 100 101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 102 bool KeepOneInputPHIs) { 103 #ifndef NDEBUG 104 // Make sure that all predecessors of each dead block is also dead. 105 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 106 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 107 for (auto *BB : Dead) 108 for (BasicBlock *Pred : predecessors(BB)) 109 assert(Dead.count(Pred) && "All predecessors must be dead!"); 110 #endif 111 112 SmallVector<DominatorTree::UpdateType, 4> Updates; 113 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 114 115 if (DTU) 116 DTU->applyUpdates(Updates); 117 118 for (BasicBlock *BB : BBs) 119 if (DTU) 120 DTU->deleteBB(BB); 121 else 122 BB->eraseFromParent(); 123 } 124 125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 126 bool KeepOneInputPHIs) { 127 df_iterator_default_set<BasicBlock*> Reachable; 128 129 // Mark all reachable blocks. 130 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 131 (void)BB/* Mark all reachable blocks */; 132 133 // Collect all dead blocks. 134 std::vector<BasicBlock*> DeadBlocks; 135 for (BasicBlock &BB : F) 136 if (!Reachable.count(&BB)) 137 DeadBlocks.push_back(&BB); 138 139 // Delete the dead blocks. 140 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 141 142 return !DeadBlocks.empty(); 143 } 144 145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 146 MemoryDependenceResults *MemDep) { 147 if (!isa<PHINode>(BB->begin())) 148 return false; 149 150 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 151 if (PN->getIncomingValue(0) != PN) 152 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 153 else 154 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 155 156 if (MemDep) 157 MemDep->removeInstruction(PN); // Memdep updates AA itself. 158 159 PN->eraseFromParent(); 160 } 161 return true; 162 } 163 164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 165 MemorySSAUpdater *MSSAU) { 166 // Recursively deleting a PHI may cause multiple PHIs to be deleted 167 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 168 SmallVector<WeakTrackingVH, 8> PHIs; 169 for (PHINode &PN : BB->phis()) 170 PHIs.push_back(&PN); 171 172 bool Changed = false; 173 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 174 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 175 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 176 177 return Changed; 178 } 179 180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 181 LoopInfo *LI, MemorySSAUpdater *MSSAU, 182 MemoryDependenceResults *MemDep, 183 bool PredecessorWithTwoSuccessors, 184 DominatorTree *DT) { 185 if (BB->hasAddressTaken()) 186 return false; 187 188 // Can't merge if there are multiple predecessors, or no predecessors. 189 BasicBlock *PredBB = BB->getUniquePredecessor(); 190 if (!PredBB) return false; 191 192 // Don't break self-loops. 193 if (PredBB == BB) return false; 194 195 // Don't break unwinding instructions or terminators with other side-effects. 196 Instruction *PTI = PredBB->getTerminator(); 197 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects()) 198 return false; 199 200 // Can't merge if there are multiple distinct successors. 201 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 202 return false; 203 204 // Currently only allow PredBB to have two predecessors, one being BB. 205 // Update BI to branch to BB's only successor instead of BB. 206 BranchInst *PredBB_BI; 207 BasicBlock *NewSucc = nullptr; 208 unsigned FallThruPath; 209 if (PredecessorWithTwoSuccessors) { 210 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI))) 211 return false; 212 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 214 return false; 215 NewSucc = BB_JmpI->getSuccessor(0); 216 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 217 } 218 219 // Can't merge if there is PHI loop. 220 for (PHINode &PN : BB->phis()) 221 if (llvm::is_contained(PN.incoming_values(), &PN)) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 225 << PredBB->getName() << "\n"); 226 227 // Begin by getting rid of unneeded PHIs. 228 SmallVector<AssertingVH<Value>, 4> IncomingValues; 229 if (isa<PHINode>(BB->front())) { 230 for (PHINode &PN : BB->phis()) 231 if (!isa<PHINode>(PN.getIncomingValue(0)) || 232 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 233 IncomingValues.push_back(PN.getIncomingValue(0)); 234 FoldSingleEntryPHINodes(BB, MemDep); 235 } 236 237 if (DT) { 238 assert(!DTU && "cannot use both DT and DTU for updates"); 239 DomTreeNode *PredNode = DT->getNode(PredBB); 240 DomTreeNode *BBNode = DT->getNode(BB); 241 if (PredNode) { 242 assert(BBNode && "PredNode unreachable but BBNode reachable?"); 243 for (DomTreeNode *C : to_vector(BBNode->children())) 244 C->setIDom(PredNode); 245 } 246 } 247 // DTU update: Collect all the edges that exit BB. 248 // These dominator edges will be redirected from Pred. 249 std::vector<DominatorTree::UpdateType> Updates; 250 if (DTU) { 251 assert(!DT && "cannot use both DT and DTU for updates"); 252 // To avoid processing the same predecessor more than once. 253 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 254 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 255 succ_end(PredBB)); 256 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1); 257 // Add insert edges first. Experimentally, for the particular case of two 258 // blocks that can be merged, with a single successor and single predecessor 259 // respectively, it is beneficial to have all insert updates first. Deleting 260 // edges first may lead to unreachable blocks, followed by inserting edges 261 // making the blocks reachable again. Such DT updates lead to high compile 262 // times. We add inserts before deletes here to reduce compile time. 263 for (BasicBlock *SuccOfBB : successors(BB)) 264 // This successor of BB may already be a PredBB's successor. 265 if (!SuccsOfPredBB.contains(SuccOfBB)) 266 if (SeenSuccs.insert(SuccOfBB).second) 267 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 268 SeenSuccs.clear(); 269 for (BasicBlock *SuccOfBB : successors(BB)) 270 if (SeenSuccs.insert(SuccOfBB).second) 271 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 272 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 273 } 274 275 Instruction *STI = BB->getTerminator(); 276 Instruction *Start = &*BB->begin(); 277 // If there's nothing to move, mark the starting instruction as the last 278 // instruction in the block. Terminator instruction is handled separately. 279 if (Start == STI) 280 Start = PTI; 281 282 // Move all definitions in the successor to the predecessor... 283 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator()); 284 285 if (MSSAU) 286 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 287 288 // Make all PHI nodes that referred to BB now refer to Pred as their 289 // source... 290 BB->replaceAllUsesWith(PredBB); 291 292 if (PredecessorWithTwoSuccessors) { 293 // Delete the unconditional branch from BB. 294 BB->back().eraseFromParent(); 295 296 // Update branch in the predecessor. 297 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 298 } else { 299 // Delete the unconditional branch from the predecessor. 300 PredBB->back().eraseFromParent(); 301 302 // Move terminator instruction. 303 BB->back().moveBeforePreserving(*PredBB, PredBB->end()); 304 305 // Terminator may be a memory accessing instruction too. 306 if (MSSAU) 307 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 308 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 309 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 310 } 311 // Add unreachable to now empty BB. 312 new UnreachableInst(BB->getContext(), BB); 313 314 // Inherit predecessors name if it exists. 315 if (!PredBB->hasName()) 316 PredBB->takeName(BB); 317 318 if (LI) 319 LI->removeBlock(BB); 320 321 if (MemDep) 322 MemDep->invalidateCachedPredecessors(); 323 324 if (DTU) 325 DTU->applyUpdates(Updates); 326 327 if (DT) { 328 assert(succ_empty(BB) && 329 "successors should have been transferred to PredBB"); 330 DT->eraseNode(BB); 331 } 332 333 // Finally, erase the old block and update dominator info. 334 DeleteDeadBlock(BB, DTU); 335 336 // Remove redundant "llvm.dbg" instrunctions after blocks have been merged. 337 if (PredBB->getParent()->getSubprogram()) 338 RemoveRedundantDbgInstrs(PredBB); 339 340 return true; 341 } 342 343 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 344 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 345 LoopInfo *LI) { 346 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 347 348 bool BlocksHaveBeenMerged = false; 349 while (!MergeBlocks.empty()) { 350 BasicBlock *BB = *MergeBlocks.begin(); 351 BasicBlock *Dest = BB->getSingleSuccessor(); 352 if (Dest && (!L || L->contains(Dest))) { 353 BasicBlock *Fold = Dest->getUniquePredecessor(); 354 (void)Fold; 355 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 356 assert(Fold == BB && 357 "Expecting BB to be unique predecessor of the Dest block"); 358 MergeBlocks.erase(Dest); 359 BlocksHaveBeenMerged = true; 360 } else 361 MergeBlocks.erase(BB); 362 } else 363 MergeBlocks.erase(BB); 364 } 365 return BlocksHaveBeenMerged; 366 } 367 368 /// Remove redundant instructions within sequences of consecutive dbg.value 369 /// instructions. This is done using a backward scan to keep the last dbg.value 370 /// describing a specific variable/fragment. 371 /// 372 /// BackwardScan strategy: 373 /// ---------------------- 374 /// Given a sequence of consecutive DbgValueInst like this 375 /// 376 /// dbg.value ..., "x", FragmentX1 (*) 377 /// dbg.value ..., "y", FragmentY1 378 /// dbg.value ..., "x", FragmentX2 379 /// dbg.value ..., "x", FragmentX1 (**) 380 /// 381 /// then the instruction marked with (*) can be removed (it is guaranteed to be 382 /// obsoleted by the instruction marked with (**) as the latter instruction is 383 /// describing the same variable using the same fragment info). 384 /// 385 /// Possible improvements: 386 /// - Check fully overlapping fragments and not only identical fragments. 387 /// - Support dbg.declare. dbg.label, and possibly other meta instructions being 388 /// part of the sequence of consecutive instructions. 389 static bool 390 DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 391 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 392 SmallDenseSet<DebugVariable> VariableSet; 393 for (auto &I : reverse(*BB)) { 394 for (DbgRecord &DR : reverse(I.getDbgRecordRange())) { 395 if (isa<DbgLabelRecord>(DR)) { 396 // Emulate existing behaviour (see comment below for dbg.declares). 397 // FIXME: Don't do this. 398 VariableSet.clear(); 399 continue; 400 } 401 402 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 403 // Skip declare-type records, as the debug intrinsic method only works 404 // on dbg.value intrinsics. 405 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 406 // The debug intrinsic method treats dbg.declares are "non-debug" 407 // instructions (i.e., a break in a consecutive range of debug 408 // intrinsics). Emulate that to create identical outputs. See 409 // "Possible improvements" above. 410 // FIXME: Delete the line below. 411 VariableSet.clear(); 412 continue; 413 } 414 415 DebugVariable Key(DVR.getVariable(), DVR.getExpression(), 416 DVR.getDebugLoc()->getInlinedAt()); 417 auto R = VariableSet.insert(Key); 418 // If the same variable fragment is described more than once it is enough 419 // to keep the last one (i.e. the first found since we for reverse 420 // iteration). 421 if (R.second) 422 continue; 423 424 if (DVR.isDbgAssign()) { 425 // Don't delete dbg.assign intrinsics that are linked to instructions. 426 if (!at::getAssignmentInsts(&DVR).empty()) 427 continue; 428 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 429 } 430 431 ToBeRemoved.push_back(&DVR); 432 continue; 433 } 434 // Sequence with consecutive dbg.value instrs ended. Clear the map to 435 // restart identifying redundant instructions if case we find another 436 // dbg.value sequence. 437 VariableSet.clear(); 438 } 439 440 for (auto &DVR : ToBeRemoved) 441 DVR->eraseFromParent(); 442 443 return !ToBeRemoved.empty(); 444 } 445 446 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 447 if (BB->IsNewDbgInfoFormat) 448 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingBackwardScan(BB); 449 450 SmallVector<DbgValueInst *, 8> ToBeRemoved; 451 SmallDenseSet<DebugVariable> VariableSet; 452 for (auto &I : reverse(*BB)) { 453 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 454 DebugVariable Key(DVI->getVariable(), 455 DVI->getExpression(), 456 DVI->getDebugLoc()->getInlinedAt()); 457 auto R = VariableSet.insert(Key); 458 // If the variable fragment hasn't been seen before then we don't want 459 // to remove this dbg intrinsic. 460 if (R.second) 461 continue; 462 463 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) { 464 // Don't delete dbg.assign intrinsics that are linked to instructions. 465 if (!at::getAssignmentInsts(DAI).empty()) 466 continue; 467 // Unlinked dbg.assign intrinsics can be treated like dbg.values. 468 } 469 470 // If the same variable fragment is described more than once it is enough 471 // to keep the last one (i.e. the first found since we for reverse 472 // iteration). 473 ToBeRemoved.push_back(DVI); 474 continue; 475 } 476 // Sequence with consecutive dbg.value instrs ended. Clear the map to 477 // restart identifying redundant instructions if case we find another 478 // dbg.value sequence. 479 VariableSet.clear(); 480 } 481 482 for (auto &Instr : ToBeRemoved) 483 Instr->eraseFromParent(); 484 485 return !ToBeRemoved.empty(); 486 } 487 488 /// Remove redundant dbg.value instructions using a forward scan. This can 489 /// remove a dbg.value instruction that is redundant due to indicating that a 490 /// variable has the same value as already being indicated by an earlier 491 /// dbg.value. 492 /// 493 /// ForwardScan strategy: 494 /// --------------------- 495 /// Given two identical dbg.value instructions, separated by a block of 496 /// instructions that isn't describing the same variable, like this 497 /// 498 /// dbg.value X1, "x", FragmentX1 (**) 499 /// <block of instructions, none being "dbg.value ..., "x", ..."> 500 /// dbg.value X1, "x", FragmentX1 (*) 501 /// 502 /// then the instruction marked with (*) can be removed. Variable "x" is already 503 /// described as being mapped to the SSA value X1. 504 /// 505 /// Possible improvements: 506 /// - Keep track of non-overlapping fragments. 507 static bool 508 DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 509 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 510 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 511 VariableMap; 512 for (auto &I : *BB) { 513 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 514 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 515 continue; 516 DebugVariable Key(DVR.getVariable(), std::nullopt, 517 DVR.getDebugLoc()->getInlinedAt()); 518 auto VMI = VariableMap.find(Key); 519 // A dbg.assign with no linked instructions can be treated like a 520 // dbg.value (i.e. can be deleted). 521 bool IsDbgValueKind = 522 (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty()); 523 524 // Update the map if we found a new value/expression describing the 525 // variable, or if the variable wasn't mapped already. 526 SmallVector<Value *, 4> Values(DVR.location_ops()); 527 if (VMI == VariableMap.end() || VMI->second.first != Values || 528 VMI->second.second != DVR.getExpression()) { 529 if (IsDbgValueKind) 530 VariableMap[Key] = {Values, DVR.getExpression()}; 531 else 532 VariableMap[Key] = {Values, nullptr}; 533 continue; 534 } 535 // Don't delete dbg.assign intrinsics that are linked to instructions. 536 if (!IsDbgValueKind) 537 continue; 538 // Found an identical mapping. Remember the instruction for later removal. 539 ToBeRemoved.push_back(&DVR); 540 } 541 } 542 543 for (auto *DVR : ToBeRemoved) 544 DVR->eraseFromParent(); 545 546 return !ToBeRemoved.empty(); 547 } 548 549 static bool 550 DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 551 assert(BB->isEntryBlock() && "expected entry block"); 552 SmallVector<DbgVariableRecord *, 8> ToBeRemoved; 553 DenseSet<DebugVariable> SeenDefForAggregate; 554 // Returns the DebugVariable for DVI with no fragment info. 555 auto GetAggregateVariable = [](const DbgVariableRecord &DVR) { 556 return DebugVariable(DVR.getVariable(), std::nullopt, 557 DVR.getDebugLoc().getInlinedAt()); 558 }; 559 560 // Remove undef dbg.assign intrinsics that are encountered before 561 // any non-undef intrinsics from the entry block. 562 for (auto &I : *BB) { 563 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 564 if (!DVR.isDbgValue() && !DVR.isDbgAssign()) 565 continue; 566 bool IsDbgValueKind = 567 (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty()); 568 DebugVariable Aggregate = GetAggregateVariable(DVR); 569 if (!SeenDefForAggregate.contains(Aggregate)) { 570 bool IsKill = DVR.isKillLocation() && IsDbgValueKind; 571 if (!IsKill) { 572 SeenDefForAggregate.insert(Aggregate); 573 } else if (DVR.isDbgAssign()) { 574 ToBeRemoved.push_back(&DVR); 575 } 576 } 577 } 578 } 579 580 for (DbgVariableRecord *DVR : ToBeRemoved) 581 DVR->eraseFromParent(); 582 583 return !ToBeRemoved.empty(); 584 } 585 586 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 587 if (BB->IsNewDbgInfoFormat) 588 return DbgVariableRecordsRemoveRedundantDbgInstrsUsingForwardScan(BB); 589 590 SmallVector<DbgValueInst *, 8> ToBeRemoved; 591 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 592 VariableMap; 593 for (auto &I : *BB) { 594 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 595 DebugVariable Key(DVI->getVariable(), std::nullopt, 596 DVI->getDebugLoc()->getInlinedAt()); 597 auto VMI = VariableMap.find(Key); 598 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 599 // A dbg.assign with no linked instructions can be treated like a 600 // dbg.value (i.e. can be deleted). 601 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 602 603 // Update the map if we found a new value/expression describing the 604 // variable, or if the variable wasn't mapped already. 605 SmallVector<Value *, 4> Values(DVI->getValues()); 606 if (VMI == VariableMap.end() || VMI->second.first != Values || 607 VMI->second.second != DVI->getExpression()) { 608 // Use a sentinel value (nullptr) for the DIExpression when we see a 609 // linked dbg.assign so that the next debug intrinsic will never match 610 // it (i.e. always treat linked dbg.assigns as if they're unique). 611 if (IsDbgValueKind) 612 VariableMap[Key] = {Values, DVI->getExpression()}; 613 else 614 VariableMap[Key] = {Values, nullptr}; 615 continue; 616 } 617 618 // Don't delete dbg.assign intrinsics that are linked to instructions. 619 if (!IsDbgValueKind) 620 continue; 621 ToBeRemoved.push_back(DVI); 622 } 623 } 624 625 for (auto &Instr : ToBeRemoved) 626 Instr->eraseFromParent(); 627 628 return !ToBeRemoved.empty(); 629 } 630 631 /// Remove redundant undef dbg.assign intrinsic from an entry block using a 632 /// forward scan. 633 /// Strategy: 634 /// --------------------- 635 /// Scanning forward, delete dbg.assign intrinsics iff they are undef, not 636 /// linked to an intrinsic, and don't share an aggregate variable with a debug 637 /// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns 638 /// that come before non-undef debug intrinsics for the variable are 639 /// deleted. Given: 640 /// 641 /// dbg.assign undef, "x", FragmentX1 (*) 642 /// <block of instructions, none being "dbg.value ..., "x", ..."> 643 /// dbg.value %V, "x", FragmentX2 644 /// <block of instructions, none being "dbg.value ..., "x", ..."> 645 /// dbg.assign undef, "x", FragmentX1 646 /// 647 /// then (only) the instruction marked with (*) can be removed. 648 /// Possible improvements: 649 /// - Keep track of non-overlapping fragments. 650 static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) { 651 if (BB->IsNewDbgInfoFormat) 652 return DbgVariableRecordsRemoveUndefDbgAssignsFromEntryBlock(BB); 653 654 assert(BB->isEntryBlock() && "expected entry block"); 655 SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved; 656 DenseSet<DebugVariable> SeenDefForAggregate; 657 // Returns the DebugVariable for DVI with no fragment info. 658 auto GetAggregateVariable = [](DbgValueInst *DVI) { 659 return DebugVariable(DVI->getVariable(), std::nullopt, 660 DVI->getDebugLoc()->getInlinedAt()); 661 }; 662 663 // Remove undef dbg.assign intrinsics that are encountered before 664 // any non-undef intrinsics from the entry block. 665 for (auto &I : *BB) { 666 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I); 667 if (!DVI) 668 continue; 669 auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI); 670 bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty()); 671 DebugVariable Aggregate = GetAggregateVariable(DVI); 672 if (!SeenDefForAggregate.contains(Aggregate)) { 673 bool IsKill = DVI->isKillLocation() && IsDbgValueKind; 674 if (!IsKill) { 675 SeenDefForAggregate.insert(Aggregate); 676 } else if (DAI) { 677 ToBeRemoved.push_back(DAI); 678 } 679 } 680 } 681 682 for (DbgAssignIntrinsic *DAI : ToBeRemoved) 683 DAI->eraseFromParent(); 684 685 return !ToBeRemoved.empty(); 686 } 687 688 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 689 bool MadeChanges = false; 690 // By using the "backward scan" strategy before the "forward scan" strategy we 691 // can remove both dbg.value (2) and (3) in a situation like this: 692 // 693 // (1) dbg.value V1, "x", DIExpression() 694 // ... 695 // (2) dbg.value V2, "x", DIExpression() 696 // (3) dbg.value V1, "x", DIExpression() 697 // 698 // The backward scan will remove (2), it is made obsolete by (3). After 699 // getting (2) out of the way, the foward scan will remove (3) since "x" 700 // already is described as having the value V1 at (1). 701 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 702 if (BB->isEntryBlock() && 703 isAssignmentTrackingEnabled(*BB->getParent()->getParent())) 704 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB); 705 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 706 707 if (MadeChanges) 708 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 709 << BB->getName() << "\n"); 710 return MadeChanges; 711 } 712 713 void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) { 714 Instruction &I = *BI; 715 // Replaces all of the uses of the instruction with uses of the value 716 I.replaceAllUsesWith(V); 717 718 // Make sure to propagate a name if there is one already. 719 if (I.hasName() && !V->hasName()) 720 V->takeName(&I); 721 722 // Delete the unnecessary instruction now... 723 BI = BI->eraseFromParent(); 724 } 725 726 void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, 727 Instruction *I) { 728 assert(I->getParent() == nullptr && 729 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 730 731 // Copy debug location to newly added instruction, if it wasn't already set 732 // by the caller. 733 if (!I->getDebugLoc()) 734 I->setDebugLoc(BI->getDebugLoc()); 735 736 // Insert the new instruction into the basic block... 737 BasicBlock::iterator New = I->insertInto(BB, BI); 738 739 // Replace all uses of the old instruction, and delete it. 740 ReplaceInstWithValue(BI, I); 741 742 // Move BI back to point to the newly inserted instruction 743 BI = New; 744 } 745 746 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 747 // Remember visited blocks to avoid infinite loop 748 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 749 unsigned Depth = 0; 750 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth && 751 VisitedBlocks.insert(BB).second) { 752 if (isa<UnreachableInst>(BB->getTerminator()) || 753 BB->getTerminatingDeoptimizeCall()) 754 return true; 755 BB = BB->getUniqueSuccessor(); 756 } 757 return false; 758 } 759 760 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 761 BasicBlock::iterator BI(From); 762 ReplaceInstWithInst(From->getParent(), BI, To); 763 } 764 765 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 766 LoopInfo *LI, MemorySSAUpdater *MSSAU, 767 const Twine &BBName) { 768 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 769 770 Instruction *LatchTerm = BB->getTerminator(); 771 772 CriticalEdgeSplittingOptions Options = 773 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 774 775 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 776 // If it is a critical edge, and the succesor is an exception block, handle 777 // the split edge logic in this specific function 778 if (Succ->isEHPad()) 779 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 780 781 // If this is a critical edge, let SplitKnownCriticalEdge do it. 782 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 783 } 784 785 // If the edge isn't critical, then BB has a single successor or Succ has a 786 // single pred. Split the block. 787 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 788 // If the successor only has a single pred, split the top of the successor 789 // block. 790 assert(SP == BB && "CFG broken"); 791 (void)SP; 792 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 793 /*Before=*/true); 794 } 795 796 // Otherwise, if BB has a single successor, split it at the bottom of the 797 // block. 798 assert(BB->getTerminator()->getNumSuccessors() == 1 && 799 "Should have a single succ!"); 800 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 801 } 802 803 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 804 if (auto *II = dyn_cast<InvokeInst>(TI)) 805 II->setUnwindDest(Succ); 806 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 807 CS->setUnwindDest(Succ); 808 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 809 CR->setUnwindDest(Succ); 810 else 811 llvm_unreachable("unexpected terminator instruction"); 812 } 813 814 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 815 BasicBlock *NewPred, PHINode *Until) { 816 int BBIdx = 0; 817 for (PHINode &PN : DestBB->phis()) { 818 // We manually update the LandingPadReplacement PHINode and it is the last 819 // PHI Node. So, if we find it, we are done. 820 if (Until == &PN) 821 break; 822 823 // Reuse the previous value of BBIdx if it lines up. In cases where we 824 // have multiple phi nodes with *lots* of predecessors, this is a speed 825 // win because we don't have to scan the PHI looking for TIBB. This 826 // happens because the BB list of PHI nodes are usually in the same 827 // order. 828 if (PN.getIncomingBlock(BBIdx) != OldPred) 829 BBIdx = PN.getBasicBlockIndex(OldPred); 830 831 assert(BBIdx != -1 && "Invalid PHI Index!"); 832 PN.setIncomingBlock(BBIdx, NewPred); 833 } 834 } 835 836 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 837 LandingPadInst *OriginalPad, 838 PHINode *LandingPadReplacement, 839 const CriticalEdgeSplittingOptions &Options, 840 const Twine &BBName) { 841 842 auto *PadInst = Succ->getFirstNonPHI(); 843 if (!LandingPadReplacement && !PadInst->isEHPad()) 844 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 845 846 auto *LI = Options.LI; 847 SmallVector<BasicBlock *, 4> LoopPreds; 848 // Check if extra modifications will be required to preserve loop-simplify 849 // form after splitting. If it would require splitting blocks with IndirectBr 850 // terminators, bail out if preserving loop-simplify form is requested. 851 if (Options.PreserveLoopSimplify && LI) { 852 if (Loop *BBLoop = LI->getLoopFor(BB)) { 853 854 // The only way that we can break LoopSimplify form by splitting a 855 // critical edge is when there exists some edge from BBLoop to Succ *and* 856 // the only edge into Succ from outside of BBLoop is that of NewBB after 857 // the split. If the first isn't true, then LoopSimplify still holds, 858 // NewBB is the new exit block and it has no non-loop predecessors. If the 859 // second isn't true, then Succ was not in LoopSimplify form prior to 860 // the split as it had a non-loop predecessor. In both of these cases, 861 // the predecessor must be directly in BBLoop, not in a subloop, or again 862 // LoopSimplify doesn't hold. 863 for (BasicBlock *P : predecessors(Succ)) { 864 if (P == BB) 865 continue; // The new block is known. 866 if (LI->getLoopFor(P) != BBLoop) { 867 // Loop is not in LoopSimplify form, no need to re simplify after 868 // splitting edge. 869 LoopPreds.clear(); 870 break; 871 } 872 LoopPreds.push_back(P); 873 } 874 // Loop-simplify form can be preserved, if we can split all in-loop 875 // predecessors. 876 if (any_of(LoopPreds, [](BasicBlock *Pred) { 877 return isa<IndirectBrInst>(Pred->getTerminator()); 878 })) { 879 return nullptr; 880 } 881 } 882 } 883 884 auto *NewBB = 885 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 886 setUnwindEdgeTo(BB->getTerminator(), NewBB); 887 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 888 889 if (LandingPadReplacement) { 890 auto *NewLP = OriginalPad->clone(); 891 auto *Terminator = BranchInst::Create(Succ, NewBB); 892 NewLP->insertBefore(Terminator); 893 LandingPadReplacement->addIncoming(NewLP, NewBB); 894 } else { 895 Value *ParentPad = nullptr; 896 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 897 ParentPad = FuncletPad->getParentPad(); 898 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 899 ParentPad = CatchSwitch->getParentPad(); 900 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 901 ParentPad = CleanupPad->getParentPad(); 902 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 903 ParentPad = LandingPad->getParent(); 904 else 905 llvm_unreachable("handling for other EHPads not implemented yet"); 906 907 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 908 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 909 } 910 911 auto *DT = Options.DT; 912 auto *MSSAU = Options.MSSAU; 913 if (!DT && !LI) 914 return NewBB; 915 916 if (DT) { 917 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 918 SmallVector<DominatorTree::UpdateType, 3> Updates; 919 920 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 921 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 922 Updates.push_back({DominatorTree::Delete, BB, Succ}); 923 924 DTU.applyUpdates(Updates); 925 DTU.flush(); 926 927 if (MSSAU) { 928 MSSAU->applyUpdates(Updates, *DT); 929 if (VerifyMemorySSA) 930 MSSAU->getMemorySSA()->verifyMemorySSA(); 931 } 932 } 933 934 if (LI) { 935 if (Loop *BBLoop = LI->getLoopFor(BB)) { 936 // If one or the other blocks were not in a loop, the new block is not 937 // either, and thus LI doesn't need to be updated. 938 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 939 if (BBLoop == SuccLoop) { 940 // Both in the same loop, the NewBB joins loop. 941 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 942 } else if (BBLoop->contains(SuccLoop)) { 943 // Edge from an outer loop to an inner loop. Add to the outer loop. 944 BBLoop->addBasicBlockToLoop(NewBB, *LI); 945 } else if (SuccLoop->contains(BBLoop)) { 946 // Edge from an inner loop to an outer loop. Add to the outer loop. 947 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 948 } else { 949 // Edge from two loops with no containment relation. Because these 950 // are natural loops, we know that the destination block must be the 951 // header of its loop (adding a branch into a loop elsewhere would 952 // create an irreducible loop). 953 assert(SuccLoop->getHeader() == Succ && 954 "Should not create irreducible loops!"); 955 if (Loop *P = SuccLoop->getParentLoop()) 956 P->addBasicBlockToLoop(NewBB, *LI); 957 } 958 } 959 960 // If BB is in a loop and Succ is outside of that loop, we may need to 961 // update LoopSimplify form and LCSSA form. 962 if (!BBLoop->contains(Succ)) { 963 assert(!BBLoop->contains(NewBB) && 964 "Split point for loop exit is contained in loop!"); 965 966 // Update LCSSA form in the newly created exit block. 967 if (Options.PreserveLCSSA) { 968 createPHIsForSplitLoopExit(BB, NewBB, Succ); 969 } 970 971 if (!LoopPreds.empty()) { 972 BasicBlock *NewExitBB = SplitBlockPredecessors( 973 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 974 if (Options.PreserveLCSSA) 975 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 976 } 977 } 978 } 979 } 980 981 return NewBB; 982 } 983 984 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 985 BasicBlock *SplitBB, BasicBlock *DestBB) { 986 // SplitBB shouldn't have anything non-trivial in it yet. 987 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 988 SplitBB->isLandingPad()) && 989 "SplitBB has non-PHI nodes!"); 990 991 // For each PHI in the destination block. 992 for (PHINode &PN : DestBB->phis()) { 993 int Idx = PN.getBasicBlockIndex(SplitBB); 994 assert(Idx >= 0 && "Invalid Block Index"); 995 Value *V = PN.getIncomingValue(Idx); 996 997 // If the input is a PHI which already satisfies LCSSA, don't create 998 // a new one. 999 if (const PHINode *VP = dyn_cast<PHINode>(V)) 1000 if (VP->getParent() == SplitBB) 1001 continue; 1002 1003 // Otherwise a new PHI is needed. Create one and populate it. 1004 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split"); 1005 BasicBlock::iterator InsertPos = 1006 SplitBB->isLandingPad() ? SplitBB->begin() 1007 : SplitBB->getTerminator()->getIterator(); 1008 NewPN->insertBefore(InsertPos); 1009 for (BasicBlock *BB : Preds) 1010 NewPN->addIncoming(V, BB); 1011 1012 // Update the original PHI. 1013 PN.setIncomingValue(Idx, NewPN); 1014 } 1015 } 1016 1017 unsigned 1018 llvm::SplitAllCriticalEdges(Function &F, 1019 const CriticalEdgeSplittingOptions &Options) { 1020 unsigned NumBroken = 0; 1021 for (BasicBlock &BB : F) { 1022 Instruction *TI = BB.getTerminator(); 1023 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 1024 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1025 if (SplitCriticalEdge(TI, i, Options)) 1026 ++NumBroken; 1027 } 1028 return NumBroken; 1029 } 1030 1031 static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, 1032 DomTreeUpdater *DTU, DominatorTree *DT, 1033 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1034 const Twine &BBName, bool Before) { 1035 if (Before) { 1036 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1037 return splitBlockBefore(Old, SplitPt, 1038 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 1039 BBName); 1040 } 1041 BasicBlock::iterator SplitIt = SplitPt; 1042 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 1043 ++SplitIt; 1044 assert(SplitIt != SplitPt->getParent()->end()); 1045 } 1046 std::string Name = BBName.str(); 1047 BasicBlock *New = Old->splitBasicBlock( 1048 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 1049 1050 // The new block lives in whichever loop the old one did. This preserves 1051 // LCSSA as well, because we force the split point to be after any PHI nodes. 1052 if (LI) 1053 if (Loop *L = LI->getLoopFor(Old)) 1054 L->addBasicBlockToLoop(New, *LI); 1055 1056 if (DTU) { 1057 SmallVector<DominatorTree::UpdateType, 8> Updates; 1058 // Old dominates New. New node dominates all other nodes dominated by Old. 1059 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld; 1060 Updates.push_back({DominatorTree::Insert, Old, New}); 1061 Updates.reserve(Updates.size() + 2 * succ_size(New)); 1062 for (BasicBlock *SuccessorOfOld : successors(New)) 1063 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) { 1064 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld}); 1065 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld}); 1066 } 1067 1068 DTU->applyUpdates(Updates); 1069 } else if (DT) 1070 // Old dominates New. New node dominates all other nodes dominated by Old. 1071 if (DomTreeNode *OldNode = DT->getNode(Old)) { 1072 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1073 1074 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 1075 for (DomTreeNode *I : Children) 1076 DT->changeImmediateDominator(I, NewNode); 1077 } 1078 1079 // Move MemoryAccesses still tracked in Old, but part of New now. 1080 // Update accesses in successor blocks accordingly. 1081 if (MSSAU) 1082 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 1083 1084 return New; 1085 } 1086 1087 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1088 DominatorTree *DT, LoopInfo *LI, 1089 MemorySSAUpdater *MSSAU, const Twine &BBName, 1090 bool Before) { 1091 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 1092 Before); 1093 } 1094 BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, 1095 DomTreeUpdater *DTU, LoopInfo *LI, 1096 MemorySSAUpdater *MSSAU, const Twine &BBName, 1097 bool Before) { 1098 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 1099 Before); 1100 } 1101 1102 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, 1103 DomTreeUpdater *DTU, LoopInfo *LI, 1104 MemorySSAUpdater *MSSAU, 1105 const Twine &BBName) { 1106 1107 BasicBlock::iterator SplitIt = SplitPt; 1108 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 1109 ++SplitIt; 1110 std::string Name = BBName.str(); 1111 BasicBlock *New = Old->splitBasicBlock( 1112 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 1113 /* Before=*/true); 1114 1115 // The new block lives in whichever loop the old one did. This preserves 1116 // LCSSA as well, because we force the split point to be after any PHI nodes. 1117 if (LI) 1118 if (Loop *L = LI->getLoopFor(Old)) 1119 L->addBasicBlockToLoop(New, *LI); 1120 1121 if (DTU) { 1122 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 1123 // New dominates Old. The predecessor nodes of the Old node dominate 1124 // New node. 1125 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld; 1126 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 1127 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New)); 1128 for (BasicBlock *PredecessorOfOld : predecessors(New)) 1129 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) { 1130 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New}); 1131 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old}); 1132 } 1133 1134 DTU->applyUpdates(DTUpdates); 1135 1136 // Move MemoryAccesses still tracked in Old, but part of New now. 1137 // Update accesses in successor blocks accordingly. 1138 if (MSSAU) { 1139 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 1140 if (VerifyMemorySSA) 1141 MSSAU->getMemorySSA()->verifyMemorySSA(); 1142 } 1143 } 1144 return New; 1145 } 1146 1147 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 1148 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 1149 ArrayRef<BasicBlock *> Preds, 1150 DomTreeUpdater *DTU, DominatorTree *DT, 1151 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1152 bool PreserveLCSSA, bool &HasLoopExit) { 1153 // Update dominator tree if available. 1154 if (DTU) { 1155 // Recalculation of DomTree is needed when updating a forward DomTree and 1156 // the Entry BB is replaced. 1157 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 1158 // The entry block was removed and there is no external interface for 1159 // the dominator tree to be notified of this change. In this corner-case 1160 // we recalculate the entire tree. 1161 DTU->recalculate(*NewBB->getParent()); 1162 } else { 1163 // Split block expects NewBB to have a non-empty set of predecessors. 1164 SmallVector<DominatorTree::UpdateType, 8> Updates; 1165 SmallPtrSet<BasicBlock *, 8> UniquePreds; 1166 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 1167 Updates.reserve(Updates.size() + 2 * Preds.size()); 1168 for (auto *Pred : Preds) 1169 if (UniquePreds.insert(Pred).second) { 1170 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 1171 Updates.push_back({DominatorTree::Delete, Pred, OldBB}); 1172 } 1173 DTU->applyUpdates(Updates); 1174 } 1175 } else if (DT) { 1176 if (OldBB == DT->getRootNode()->getBlock()) { 1177 assert(NewBB->isEntryBlock()); 1178 DT->setNewRoot(NewBB); 1179 } else { 1180 // Split block expects NewBB to have a non-empty set of predecessors. 1181 DT->splitBlock(NewBB); 1182 } 1183 } 1184 1185 // Update MemoryPhis after split if MemorySSA is available 1186 if (MSSAU) 1187 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 1188 1189 // The rest of the logic is only relevant for updating the loop structures. 1190 if (!LI) 1191 return; 1192 1193 if (DTU && DTU->hasDomTree()) 1194 DT = &DTU->getDomTree(); 1195 assert(DT && "DT should be available to update LoopInfo!"); 1196 Loop *L = LI->getLoopFor(OldBB); 1197 1198 // If we need to preserve loop analyses, collect some information about how 1199 // this split will affect loops. 1200 bool IsLoopEntry = !!L; 1201 bool SplitMakesNewLoopHeader = false; 1202 for (BasicBlock *Pred : Preds) { 1203 // Preds that are not reachable from entry should not be used to identify if 1204 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 1205 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 1206 // as true and make the NewBB the header of some loop. This breaks LI. 1207 if (!DT->isReachableFromEntry(Pred)) 1208 continue; 1209 // If we need to preserve LCSSA, determine if any of the preds is a loop 1210 // exit. 1211 if (PreserveLCSSA) 1212 if (Loop *PL = LI->getLoopFor(Pred)) 1213 if (!PL->contains(OldBB)) 1214 HasLoopExit = true; 1215 1216 // If we need to preserve LoopInfo, note whether any of the preds crosses 1217 // an interesting loop boundary. 1218 if (!L) 1219 continue; 1220 if (L->contains(Pred)) 1221 IsLoopEntry = false; 1222 else 1223 SplitMakesNewLoopHeader = true; 1224 } 1225 1226 // Unless we have a loop for OldBB, nothing else to do here. 1227 if (!L) 1228 return; 1229 1230 if (IsLoopEntry) { 1231 // Add the new block to the nearest enclosing loop (and not an adjacent 1232 // loop). To find this, examine each of the predecessors and determine which 1233 // loops enclose them, and select the most-nested loop which contains the 1234 // loop containing the block being split. 1235 Loop *InnermostPredLoop = nullptr; 1236 for (BasicBlock *Pred : Preds) { 1237 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 1238 // Seek a loop which actually contains the block being split (to avoid 1239 // adjacent loops). 1240 while (PredLoop && !PredLoop->contains(OldBB)) 1241 PredLoop = PredLoop->getParentLoop(); 1242 1243 // Select the most-nested of these loops which contains the block. 1244 if (PredLoop && PredLoop->contains(OldBB) && 1245 (!InnermostPredLoop || 1246 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 1247 InnermostPredLoop = PredLoop; 1248 } 1249 } 1250 1251 if (InnermostPredLoop) 1252 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 1253 } else { 1254 L->addBasicBlockToLoop(NewBB, *LI); 1255 if (SplitMakesNewLoopHeader) 1256 L->moveToHeader(NewBB); 1257 } 1258 } 1259 1260 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1261 /// This also updates AliasAnalysis, if available. 1262 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1263 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1264 bool HasLoopExit) { 1265 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1266 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1267 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1268 PHINode *PN = cast<PHINode>(I++); 1269 1270 // Check to see if all of the values coming in are the same. If so, we 1271 // don't need to create a new PHI node, unless it's needed for LCSSA. 1272 Value *InVal = nullptr; 1273 if (!HasLoopExit) { 1274 InVal = PN->getIncomingValueForBlock(Preds[0]); 1275 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1276 if (!PredSet.count(PN->getIncomingBlock(i))) 1277 continue; 1278 if (!InVal) 1279 InVal = PN->getIncomingValue(i); 1280 else if (InVal != PN->getIncomingValue(i)) { 1281 InVal = nullptr; 1282 break; 1283 } 1284 } 1285 } 1286 1287 if (InVal) { 1288 // If all incoming values for the new PHI would be the same, just don't 1289 // make a new PHI. Instead, just remove the incoming values from the old 1290 // PHI. 1291 PN->removeIncomingValueIf( 1292 [&](unsigned Idx) { 1293 return PredSet.contains(PN->getIncomingBlock(Idx)); 1294 }, 1295 /* DeletePHIIfEmpty */ false); 1296 1297 // Add an incoming value to the PHI node in the loop for the preheader 1298 // edge. 1299 PN->addIncoming(InVal, NewBB); 1300 continue; 1301 } 1302 1303 // If the values coming into the block are not the same, we need a new 1304 // PHI. 1305 // Create the new PHI node, insert it into NewBB at the end of the block 1306 PHINode *NewPHI = 1307 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator()); 1308 1309 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1310 // the cost of removal if we end up removing a large number of values, and 1311 // second off, this ensures that the indices for the incoming values aren't 1312 // invalidated when we remove one. 1313 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1314 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1315 if (PredSet.count(IncomingBB)) { 1316 Value *V = PN->removeIncomingValue(i, false); 1317 NewPHI->addIncoming(V, IncomingBB); 1318 } 1319 } 1320 1321 PN->addIncoming(NewPHI, NewBB); 1322 } 1323 } 1324 1325 static void SplitLandingPadPredecessorsImpl( 1326 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1327 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1328 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1329 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1330 1331 static BasicBlock * 1332 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1333 const char *Suffix, DomTreeUpdater *DTU, 1334 DominatorTree *DT, LoopInfo *LI, 1335 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1336 // Do not attempt to split that which cannot be split. 1337 if (!BB->canSplitPredecessors()) 1338 return nullptr; 1339 1340 // For the landingpads we need to act a bit differently. 1341 // Delegate this work to the SplitLandingPadPredecessors. 1342 if (BB->isLandingPad()) { 1343 SmallVector<BasicBlock*, 2> NewBBs; 1344 std::string NewName = std::string(Suffix) + ".split-lp"; 1345 1346 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1347 DTU, DT, LI, MSSAU, PreserveLCSSA); 1348 return NewBBs[0]; 1349 } 1350 1351 // Create new basic block, insert right before the original block. 1352 BasicBlock *NewBB = BasicBlock::Create( 1353 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1354 1355 // The new block unconditionally branches to the old block. 1356 BranchInst *BI = BranchInst::Create(BB, NewBB); 1357 1358 Loop *L = nullptr; 1359 BasicBlock *OldLatch = nullptr; 1360 // Splitting the predecessors of a loop header creates a preheader block. 1361 if (LI && LI->isLoopHeader(BB)) { 1362 L = LI->getLoopFor(BB); 1363 // Using the loop start line number prevents debuggers stepping into the 1364 // loop body for this instruction. 1365 BI->setDebugLoc(L->getStartLoc()); 1366 1367 // If BB is the header of the Loop, it is possible that the loop is 1368 // modified, such that the current latch does not remain the latch of the 1369 // loop. If that is the case, the loop metadata from the current latch needs 1370 // to be applied to the new latch. 1371 OldLatch = L->getLoopLatch(); 1372 } else 1373 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1374 1375 // Move the edges from Preds to point to NewBB instead of BB. 1376 for (BasicBlock *Pred : Preds) { 1377 // This is slightly more strict than necessary; the minimum requirement 1378 // is that there be no more than one indirectbr branching to BB. And 1379 // all BlockAddress uses would need to be updated. 1380 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1381 "Cannot split an edge from an IndirectBrInst"); 1382 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB); 1383 } 1384 1385 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1386 // node becomes an incoming value for BB's phi node. However, if the Preds 1387 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1388 // account for the newly created predecessor. 1389 if (Preds.empty()) { 1390 // Insert dummy values as the incoming value. 1391 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1392 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB); 1393 } 1394 1395 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1396 bool HasLoopExit = false; 1397 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1398 HasLoopExit); 1399 1400 if (!Preds.empty()) { 1401 // Update the PHI nodes in BB with the values coming from NewBB. 1402 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1403 } 1404 1405 if (OldLatch) { 1406 BasicBlock *NewLatch = L->getLoopLatch(); 1407 if (NewLatch != OldLatch) { 1408 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1409 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1410 // It's still possible that OldLatch is the latch of another inner loop, 1411 // in which case we do not remove the metadata. 1412 Loop *IL = LI->getLoopFor(OldLatch); 1413 if (IL && IL->getLoopLatch() != OldLatch) 1414 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1415 } 1416 } 1417 1418 return NewBB; 1419 } 1420 1421 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1422 ArrayRef<BasicBlock *> Preds, 1423 const char *Suffix, DominatorTree *DT, 1424 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1425 bool PreserveLCSSA) { 1426 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1427 MSSAU, PreserveLCSSA); 1428 } 1429 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1430 ArrayRef<BasicBlock *> Preds, 1431 const char *Suffix, 1432 DomTreeUpdater *DTU, LoopInfo *LI, 1433 MemorySSAUpdater *MSSAU, 1434 bool PreserveLCSSA) { 1435 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1436 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1437 } 1438 1439 static void SplitLandingPadPredecessorsImpl( 1440 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1441 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1442 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1443 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1444 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1445 1446 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1447 // it right before the original block. 1448 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1449 OrigBB->getName() + Suffix1, 1450 OrigBB->getParent(), OrigBB); 1451 NewBBs.push_back(NewBB1); 1452 1453 // The new block unconditionally branches to the old block. 1454 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1455 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1456 1457 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1458 for (BasicBlock *Pred : Preds) { 1459 // This is slightly more strict than necessary; the minimum requirement 1460 // is that there be no more than one indirectbr branching to BB. And 1461 // all BlockAddress uses would need to be updated. 1462 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1463 "Cannot split an edge from an IndirectBrInst"); 1464 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1465 } 1466 1467 bool HasLoopExit = false; 1468 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1469 PreserveLCSSA, HasLoopExit); 1470 1471 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1472 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1473 1474 // Move the remaining edges from OrigBB to point to NewBB2. 1475 SmallVector<BasicBlock*, 8> NewBB2Preds; 1476 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1477 i != e; ) { 1478 BasicBlock *Pred = *i++; 1479 if (Pred == NewBB1) continue; 1480 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1481 "Cannot split an edge from an IndirectBrInst"); 1482 NewBB2Preds.push_back(Pred); 1483 e = pred_end(OrigBB); 1484 } 1485 1486 BasicBlock *NewBB2 = nullptr; 1487 if (!NewBB2Preds.empty()) { 1488 // Create another basic block for the rest of OrigBB's predecessors. 1489 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1490 OrigBB->getName() + Suffix2, 1491 OrigBB->getParent(), OrigBB); 1492 NewBBs.push_back(NewBB2); 1493 1494 // The new block unconditionally branches to the old block. 1495 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1496 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1497 1498 // Move the remaining edges from OrigBB to point to NewBB2. 1499 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1500 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1501 1502 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1503 HasLoopExit = false; 1504 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1505 PreserveLCSSA, HasLoopExit); 1506 1507 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1508 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1509 } 1510 1511 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1512 Instruction *Clone1 = LPad->clone(); 1513 Clone1->setName(Twine("lpad") + Suffix1); 1514 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt()); 1515 1516 if (NewBB2) { 1517 Instruction *Clone2 = LPad->clone(); 1518 Clone2->setName(Twine("lpad") + Suffix2); 1519 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt()); 1520 1521 // Create a PHI node for the two cloned landingpad instructions only 1522 // if the original landingpad instruction has some uses. 1523 if (!LPad->use_empty()) { 1524 assert(!LPad->getType()->isTokenTy() && 1525 "Split cannot be applied if LPad is token type. Otherwise an " 1526 "invalid PHINode of token type would be created."); 1527 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator()); 1528 PN->addIncoming(Clone1, NewBB1); 1529 PN->addIncoming(Clone2, NewBB2); 1530 LPad->replaceAllUsesWith(PN); 1531 } 1532 LPad->eraseFromParent(); 1533 } else { 1534 // There is no second clone. Just replace the landing pad with the first 1535 // clone. 1536 LPad->replaceAllUsesWith(Clone1); 1537 LPad->eraseFromParent(); 1538 } 1539 } 1540 1541 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1542 ArrayRef<BasicBlock *> Preds, 1543 const char *Suffix1, const char *Suffix2, 1544 SmallVectorImpl<BasicBlock *> &NewBBs, 1545 DomTreeUpdater *DTU, LoopInfo *LI, 1546 MemorySSAUpdater *MSSAU, 1547 bool PreserveLCSSA) { 1548 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1549 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1550 PreserveLCSSA); 1551 } 1552 1553 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1554 BasicBlock *Pred, 1555 DomTreeUpdater *DTU) { 1556 Instruction *UncondBranch = Pred->getTerminator(); 1557 // Clone the return and add it to the end of the predecessor. 1558 Instruction *NewRet = RI->clone(); 1559 NewRet->insertInto(Pred, Pred->end()); 1560 1561 // If the return instruction returns a value, and if the value was a 1562 // PHI node in "BB", propagate the right value into the return. 1563 for (Use &Op : NewRet->operands()) { 1564 Value *V = Op; 1565 Instruction *NewBC = nullptr; 1566 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1567 // Return value might be bitcasted. Clone and insert it before the 1568 // return instruction. 1569 V = BCI->getOperand(0); 1570 NewBC = BCI->clone(); 1571 NewBC->insertInto(Pred, NewRet->getIterator()); 1572 Op = NewBC; 1573 } 1574 1575 Instruction *NewEV = nullptr; 1576 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1577 V = EVI->getOperand(0); 1578 NewEV = EVI->clone(); 1579 if (NewBC) { 1580 NewBC->setOperand(0, NewEV); 1581 NewEV->insertInto(Pred, NewBC->getIterator()); 1582 } else { 1583 NewEV->insertInto(Pred, NewRet->getIterator()); 1584 Op = NewEV; 1585 } 1586 } 1587 1588 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1589 if (PN->getParent() == BB) { 1590 if (NewEV) { 1591 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1592 } else if (NewBC) 1593 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1594 else 1595 Op = PN->getIncomingValueForBlock(Pred); 1596 } 1597 } 1598 } 1599 1600 // Update any PHI nodes in the returning block to realize that we no 1601 // longer branch to them. 1602 BB->removePredecessor(Pred); 1603 UncondBranch->eraseFromParent(); 1604 1605 if (DTU) 1606 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1607 1608 return cast<ReturnInst>(NewRet); 1609 } 1610 1611 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1612 BasicBlock::iterator SplitBefore, 1613 bool Unreachable, 1614 MDNode *BranchWeights, 1615 DomTreeUpdater *DTU, LoopInfo *LI, 1616 BasicBlock *ThenBlock) { 1617 SplitBlockAndInsertIfThenElse( 1618 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr, 1619 /* UnreachableThen */ Unreachable, 1620 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1621 return ThenBlock->getTerminator(); 1622 } 1623 1624 Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond, 1625 BasicBlock::iterator SplitBefore, 1626 bool Unreachable, 1627 MDNode *BranchWeights, 1628 DomTreeUpdater *DTU, LoopInfo *LI, 1629 BasicBlock *ElseBlock) { 1630 SplitBlockAndInsertIfThenElse( 1631 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock, 1632 /* UnreachableThen */ false, 1633 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI); 1634 return ElseBlock->getTerminator(); 1635 } 1636 1637 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, 1638 Instruction **ThenTerm, 1639 Instruction **ElseTerm, 1640 MDNode *BranchWeights, 1641 DomTreeUpdater *DTU, LoopInfo *LI) { 1642 BasicBlock *ThenBlock = nullptr; 1643 BasicBlock *ElseBlock = nullptr; 1644 SplitBlockAndInsertIfThenElse( 1645 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false, 1646 /* UnreachableElse */ false, BranchWeights, DTU, LI); 1647 1648 *ThenTerm = ThenBlock->getTerminator(); 1649 *ElseTerm = ElseBlock->getTerminator(); 1650 } 1651 1652 void llvm::SplitBlockAndInsertIfThenElse( 1653 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock, 1654 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse, 1655 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) { 1656 assert((ThenBlock || ElseBlock) && 1657 "At least one branch block must be created"); 1658 assert((!UnreachableThen || !UnreachableElse) && 1659 "Split block tail must be reachable"); 1660 1661 SmallVector<DominatorTree::UpdateType, 8> Updates; 1662 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors; 1663 BasicBlock *Head = SplitBefore->getParent(); 1664 if (DTU) { 1665 UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head)); 1666 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size()); 1667 } 1668 1669 LLVMContext &C = Head->getContext(); 1670 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 1671 BasicBlock *TrueBlock = Tail; 1672 BasicBlock *FalseBlock = Tail; 1673 bool ThenToTailEdge = false; 1674 bool ElseToTailEdge = false; 1675 1676 // Encapsulate the logic around creation/insertion/etc of a new block. 1677 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB, 1678 bool &ToTailEdge) { 1679 if (PBB == nullptr) 1680 return; // Do not create/insert a block. 1681 1682 if (*PBB) 1683 BB = *PBB; // Caller supplied block, use it. 1684 else { 1685 // Create a new block. 1686 BB = BasicBlock::Create(C, "", Head->getParent(), Tail); 1687 if (Unreachable) 1688 (void)new UnreachableInst(C, BB); 1689 else { 1690 (void)BranchInst::Create(Tail, BB); 1691 ToTailEdge = true; 1692 } 1693 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc()); 1694 // Pass the new block back to the caller. 1695 *PBB = BB; 1696 } 1697 }; 1698 1699 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge); 1700 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge); 1701 1702 Instruction *HeadOldTerm = Head->getTerminator(); 1703 BranchInst *HeadNewTerm = 1704 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond); 1705 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1706 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1707 1708 if (DTU) { 1709 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock); 1710 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock); 1711 if (ThenToTailEdge) 1712 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail); 1713 if (ElseToTailEdge) 1714 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail); 1715 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1716 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor); 1717 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors) 1718 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor); 1719 DTU->applyUpdates(Updates); 1720 } 1721 1722 if (LI) { 1723 if (Loop *L = LI->getLoopFor(Head); L) { 1724 if (ThenToTailEdge) 1725 L->addBasicBlockToLoop(TrueBlock, *LI); 1726 if (ElseToTailEdge) 1727 L->addBasicBlockToLoop(FalseBlock, *LI); 1728 L->addBasicBlockToLoop(Tail, *LI); 1729 } 1730 } 1731 } 1732 1733 std::pair<Instruction*, Value*> 1734 llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) { 1735 BasicBlock *LoopPred = SplitBefore->getParent(); 1736 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore); 1737 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore); 1738 1739 auto *Ty = End->getType(); 1740 auto &DL = SplitBefore->getModule()->getDataLayout(); 1741 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty); 1742 1743 IRBuilder<> Builder(LoopBody->getTerminator()); 1744 auto *IV = Builder.CreatePHI(Ty, 2, "iv"); 1745 auto *IVNext = 1746 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 1747 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 1748 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End, 1749 IV->getName() + ".check"); 1750 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody); 1751 LoopBody->getTerminator()->eraseFromParent(); 1752 1753 // Populate the IV PHI. 1754 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred); 1755 IV->addIncoming(IVNext, LoopBody); 1756 1757 return std::make_pair(LoopBody->getFirstNonPHI(), IV); 1758 } 1759 1760 void llvm::SplitBlockAndInsertForEachLane(ElementCount EC, 1761 Type *IndexTy, Instruction *InsertBefore, 1762 std::function<void(IRBuilderBase&, Value*)> Func) { 1763 1764 IRBuilder<> IRB(InsertBefore); 1765 1766 if (EC.isScalable()) { 1767 Value *NumElements = IRB.CreateElementCount(IndexTy, EC); 1768 1769 auto [BodyIP, Index] = 1770 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore); 1771 1772 IRB.SetInsertPoint(BodyIP); 1773 Func(IRB, Index); 1774 return; 1775 } 1776 1777 unsigned Num = EC.getFixedValue(); 1778 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1779 IRB.SetInsertPoint(InsertBefore); 1780 Func(IRB, ConstantInt::get(IndexTy, Idx)); 1781 } 1782 } 1783 1784 void llvm::SplitBlockAndInsertForEachLane( 1785 Value *EVL, Instruction *InsertBefore, 1786 std::function<void(IRBuilderBase &, Value *)> Func) { 1787 1788 IRBuilder<> IRB(InsertBefore); 1789 Type *Ty = EVL->getType(); 1790 1791 if (!isa<ConstantInt>(EVL)) { 1792 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore); 1793 IRB.SetInsertPoint(BodyIP); 1794 Func(IRB, Index); 1795 return; 1796 } 1797 1798 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue(); 1799 for (unsigned Idx = 0; Idx < Num; ++Idx) { 1800 IRB.SetInsertPoint(InsertBefore); 1801 Func(IRB, ConstantInt::get(Ty, Idx)); 1802 } 1803 } 1804 1805 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1806 BasicBlock *&IfFalse) { 1807 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1808 BasicBlock *Pred1 = nullptr; 1809 BasicBlock *Pred2 = nullptr; 1810 1811 if (SomePHI) { 1812 if (SomePHI->getNumIncomingValues() != 2) 1813 return nullptr; 1814 Pred1 = SomePHI->getIncomingBlock(0); 1815 Pred2 = SomePHI->getIncomingBlock(1); 1816 } else { 1817 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1818 if (PI == PE) // No predecessor 1819 return nullptr; 1820 Pred1 = *PI++; 1821 if (PI == PE) // Only one predecessor 1822 return nullptr; 1823 Pred2 = *PI++; 1824 if (PI != PE) // More than two predecessors 1825 return nullptr; 1826 } 1827 1828 // We can only handle branches. Other control flow will be lowered to 1829 // branches if possible anyway. 1830 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1831 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1832 if (!Pred1Br || !Pred2Br) 1833 return nullptr; 1834 1835 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1836 // either are. 1837 if (Pred2Br->isConditional()) { 1838 // If both branches are conditional, we don't have an "if statement". In 1839 // reality, we could transform this case, but since the condition will be 1840 // required anyway, we stand no chance of eliminating it, so the xform is 1841 // probably not profitable. 1842 if (Pred1Br->isConditional()) 1843 return nullptr; 1844 1845 std::swap(Pred1, Pred2); 1846 std::swap(Pred1Br, Pred2Br); 1847 } 1848 1849 if (Pred1Br->isConditional()) { 1850 // The only thing we have to watch out for here is to make sure that Pred2 1851 // doesn't have incoming edges from other blocks. If it does, the condition 1852 // doesn't dominate BB. 1853 if (!Pred2->getSinglePredecessor()) 1854 return nullptr; 1855 1856 // If we found a conditional branch predecessor, make sure that it branches 1857 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1858 if (Pred1Br->getSuccessor(0) == BB && 1859 Pred1Br->getSuccessor(1) == Pred2) { 1860 IfTrue = Pred1; 1861 IfFalse = Pred2; 1862 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1863 Pred1Br->getSuccessor(1) == BB) { 1864 IfTrue = Pred2; 1865 IfFalse = Pred1; 1866 } else { 1867 // We know that one arm of the conditional goes to BB, so the other must 1868 // go somewhere unrelated, and this must not be an "if statement". 1869 return nullptr; 1870 } 1871 1872 return Pred1Br; 1873 } 1874 1875 // Ok, if we got here, both predecessors end with an unconditional branch to 1876 // BB. Don't panic! If both blocks only have a single (identical) 1877 // predecessor, and THAT is a conditional branch, then we're all ok! 1878 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1879 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1880 return nullptr; 1881 1882 // Otherwise, if this is a conditional branch, then we can use it! 1883 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1884 if (!BI) return nullptr; 1885 1886 assert(BI->isConditional() && "Two successors but not conditional?"); 1887 if (BI->getSuccessor(0) == Pred1) { 1888 IfTrue = Pred1; 1889 IfFalse = Pred2; 1890 } else { 1891 IfTrue = Pred2; 1892 IfFalse = Pred1; 1893 } 1894 return BI; 1895 } 1896 1897 // After creating a control flow hub, the operands of PHINodes in an outgoing 1898 // block Out no longer match the predecessors of that block. Predecessors of Out 1899 // that are incoming blocks to the hub are now replaced by just one edge from 1900 // the hub. To match this new control flow, the corresponding values from each 1901 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1902 // 1903 // This operation cannot be performed with SSAUpdater, because it involves one 1904 // new use: If the block Out is in the list of Incoming blocks, then the newly 1905 // created PHI in the Hub will use itself along that edge from Out to Hub. 1906 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1907 const SetVector<BasicBlock *> &Incoming, 1908 BasicBlock *FirstGuardBlock) { 1909 auto I = Out->begin(); 1910 while (I != Out->end() && isa<PHINode>(I)) { 1911 auto Phi = cast<PHINode>(I); 1912 auto NewPhi = 1913 PHINode::Create(Phi->getType(), Incoming.size(), 1914 Phi->getName() + ".moved", FirstGuardBlock->begin()); 1915 for (auto *In : Incoming) { 1916 Value *V = UndefValue::get(Phi->getType()); 1917 if (In == Out) { 1918 V = NewPhi; 1919 } else if (Phi->getBasicBlockIndex(In) != -1) { 1920 V = Phi->removeIncomingValue(In, false); 1921 } 1922 NewPhi->addIncoming(V, In); 1923 } 1924 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1925 if (Phi->getNumOperands() == 0) { 1926 Phi->replaceAllUsesWith(NewPhi); 1927 I = Phi->eraseFromParent(); 1928 continue; 1929 } 1930 Phi->addIncoming(NewPhi, GuardBlock); 1931 ++I; 1932 } 1933 } 1934 1935 using BBPredicates = DenseMap<BasicBlock *, Instruction *>; 1936 using BBSetVector = SetVector<BasicBlock *>; 1937 1938 // Redirects the terminator of the incoming block to the first guard 1939 // block in the hub. The condition of the original terminator (if it 1940 // was conditional) and its original successors are returned as a 1941 // tuple <condition, succ0, succ1>. The function additionally filters 1942 // out successors that are not in the set of outgoing blocks. 1943 // 1944 // - condition is non-null iff the branch is conditional. 1945 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1946 // - Succ2 is non-null iff condition is non-null and the fallthrough 1947 // target is an outgoing block. 1948 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1949 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1950 const BBSetVector &Outgoing) { 1951 assert(isa<BranchInst>(BB->getTerminator()) && 1952 "Only support branch terminator."); 1953 auto Branch = cast<BranchInst>(BB->getTerminator()); 1954 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1955 1956 BasicBlock *Succ0 = Branch->getSuccessor(0); 1957 BasicBlock *Succ1 = nullptr; 1958 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1959 1960 if (Branch->isUnconditional()) { 1961 Branch->setSuccessor(0, FirstGuardBlock); 1962 assert(Succ0); 1963 } else { 1964 Succ1 = Branch->getSuccessor(1); 1965 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1966 assert(Succ0 || Succ1); 1967 if (Succ0 && !Succ1) { 1968 Branch->setSuccessor(0, FirstGuardBlock); 1969 } else if (Succ1 && !Succ0) { 1970 Branch->setSuccessor(1, FirstGuardBlock); 1971 } else { 1972 Branch->eraseFromParent(); 1973 BranchInst::Create(FirstGuardBlock, BB); 1974 } 1975 } 1976 1977 assert(Succ0 || Succ1); 1978 return std::make_tuple(Condition, Succ0, Succ1); 1979 } 1980 // Setup the branch instructions for guard blocks. 1981 // 1982 // Each guard block terminates in a conditional branch that transfers 1983 // control to the corresponding outgoing block or the next guard 1984 // block. The last guard block has two outgoing blocks as successors 1985 // since the condition for the final outgoing block is trivially 1986 // true. So we create one less block (including the first guard block) 1987 // than the number of outgoing blocks. 1988 static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1989 const BBSetVector &Outgoing, 1990 BBPredicates &GuardPredicates) { 1991 // To help keep the loop simple, temporarily append the last 1992 // outgoing block to the list of guard blocks. 1993 GuardBlocks.push_back(Outgoing.back()); 1994 1995 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1996 auto Out = Outgoing[i]; 1997 assert(GuardPredicates.count(Out)); 1998 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1999 GuardBlocks[i]); 2000 } 2001 2002 // Remove the last block from the guard list. 2003 GuardBlocks.pop_back(); 2004 } 2005 2006 /// We are using one integer to represent the block we are branching to. Then at 2007 /// each guard block, the predicate was calcuated using a simple `icmp eq`. 2008 static void calcPredicateUsingInteger( 2009 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2010 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) { 2011 auto &Context = Incoming.front()->getContext(); 2012 auto FirstGuardBlock = GuardBlocks.front(); 2013 2014 auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(), 2015 "merged.bb.idx", FirstGuardBlock); 2016 2017 for (auto In : Incoming) { 2018 Value *Condition; 2019 BasicBlock *Succ0; 2020 BasicBlock *Succ1; 2021 std::tie(Condition, Succ0, Succ1) = 2022 redirectToHub(In, FirstGuardBlock, Outgoing); 2023 Value *IncomingId = nullptr; 2024 if (Succ0 && Succ1) { 2025 // target_bb_index = Condition ? index_of_succ0 : index_of_succ1. 2026 auto Succ0Iter = find(Outgoing, Succ0); 2027 auto Succ1Iter = find(Outgoing, Succ1); 2028 Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context), 2029 std::distance(Outgoing.begin(), Succ0Iter)); 2030 Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context), 2031 std::distance(Outgoing.begin(), Succ1Iter)); 2032 IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx", 2033 In->getTerminator()->getIterator()); 2034 } else { 2035 // Get the index of the non-null successor. 2036 auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1); 2037 IncomingId = ConstantInt::get(Type::getInt32Ty(Context), 2038 std::distance(Outgoing.begin(), SuccIter)); 2039 } 2040 Phi->addIncoming(IncomingId, In); 2041 } 2042 2043 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2044 auto Out = Outgoing[i]; 2045 auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi, 2046 ConstantInt::get(Type::getInt32Ty(Context), i), 2047 Out->getName() + ".predicate", GuardBlocks[i]); 2048 GuardPredicates[Out] = Cmp; 2049 } 2050 } 2051 2052 /// We record the predicate of each outgoing block using a phi of boolean. 2053 static void calcPredicateUsingBooleans( 2054 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2055 SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates, 2056 SmallVectorImpl<WeakVH> &DeletionCandidates) { 2057 auto &Context = Incoming.front()->getContext(); 2058 auto BoolTrue = ConstantInt::getTrue(Context); 2059 auto BoolFalse = ConstantInt::getFalse(Context); 2060 auto FirstGuardBlock = GuardBlocks.front(); 2061 2062 // The predicate for the last outgoing is trivially true, and so we 2063 // process only the first N-1 successors. 2064 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2065 auto Out = Outgoing[i]; 2066 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 2067 2068 auto Phi = 2069 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 2070 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 2071 GuardPredicates[Out] = Phi; 2072 } 2073 2074 for (auto *In : Incoming) { 2075 Value *Condition; 2076 BasicBlock *Succ0; 2077 BasicBlock *Succ1; 2078 std::tie(Condition, Succ0, Succ1) = 2079 redirectToHub(In, FirstGuardBlock, Outgoing); 2080 2081 // Optimization: Consider an incoming block A with both successors 2082 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 2083 // for Succ0 and Succ1 complement each other. If Succ0 is visited 2084 // first in the loop below, control will branch to Succ0 using the 2085 // corresponding predicate. But if that branch is not taken, then 2086 // control must reach Succ1, which means that the incoming value of 2087 // the predicate from `In` is true for Succ1. 2088 bool OneSuccessorDone = false; 2089 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 2090 auto Out = Outgoing[i]; 2091 PHINode *Phi = cast<PHINode>(GuardPredicates[Out]); 2092 if (Out != Succ0 && Out != Succ1) { 2093 Phi->addIncoming(BoolFalse, In); 2094 } else if (!Succ0 || !Succ1 || OneSuccessorDone) { 2095 // Optimization: When only one successor is an outgoing block, 2096 // the incoming predicate from `In` is always true. 2097 Phi->addIncoming(BoolTrue, In); 2098 } else { 2099 assert(Succ0 && Succ1); 2100 if (Out == Succ0) { 2101 Phi->addIncoming(Condition, In); 2102 } else { 2103 auto Inverted = invertCondition(Condition); 2104 DeletionCandidates.push_back(Condition); 2105 Phi->addIncoming(Inverted, In); 2106 } 2107 OneSuccessorDone = true; 2108 } 2109 } 2110 } 2111 } 2112 2113 // Capture the existing control flow as guard predicates, and redirect 2114 // control flow from \p Incoming block through the \p GuardBlocks to the 2115 // \p Outgoing blocks. 2116 // 2117 // There is one guard predicate for each outgoing block OutBB. The 2118 // predicate represents whether the hub should transfer control flow 2119 // to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates 2120 // them in the same order as the Outgoing set-vector, and control 2121 // branches to the first outgoing block whose predicate evaluates to true. 2122 static void 2123 convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks, 2124 SmallVectorImpl<WeakVH> &DeletionCandidates, 2125 const BBSetVector &Incoming, 2126 const BBSetVector &Outgoing, const StringRef Prefix, 2127 std::optional<unsigned> MaxControlFlowBooleans) { 2128 BBPredicates GuardPredicates; 2129 auto F = Incoming.front()->getParent(); 2130 2131 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) 2132 GuardBlocks.push_back( 2133 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 2134 2135 // When we are using an integer to record which target block to jump to, we 2136 // are creating less live values, actually we are using one single integer to 2137 // store the index of the target block. When we are using booleans to store 2138 // the branching information, we need (N-1) boolean values, where N is the 2139 // number of outgoing block. 2140 if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans) 2141 calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates, 2142 DeletionCandidates); 2143 else 2144 calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates); 2145 2146 setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates); 2147 } 2148 2149 BasicBlock *llvm::CreateControlFlowHub( 2150 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 2151 const BBSetVector &Incoming, const BBSetVector &Outgoing, 2152 const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) { 2153 if (Outgoing.size() < 2) 2154 return Outgoing.front(); 2155 2156 SmallVector<DominatorTree::UpdateType, 16> Updates; 2157 if (DTU) { 2158 for (auto *In : Incoming) { 2159 for (auto Succ : successors(In)) 2160 if (Outgoing.count(Succ)) 2161 Updates.push_back({DominatorTree::Delete, In, Succ}); 2162 } 2163 } 2164 2165 SmallVector<WeakVH, 8> DeletionCandidates; 2166 convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing, 2167 Prefix, MaxControlFlowBooleans); 2168 auto FirstGuardBlock = GuardBlocks.front(); 2169 2170 // Update the PHINodes in each outgoing block to match the new control flow. 2171 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) 2172 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 2173 2174 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 2175 2176 if (DTU) { 2177 int NumGuards = GuardBlocks.size(); 2178 assert((int)Outgoing.size() == NumGuards + 1); 2179 2180 for (auto In : Incoming) 2181 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 2182 2183 for (int i = 0; i != NumGuards - 1; ++i) { 2184 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 2185 Updates.push_back( 2186 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 2187 } 2188 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2189 Outgoing[NumGuards - 1]}); 2190 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 2191 Outgoing[NumGuards]}); 2192 DTU->applyUpdates(Updates); 2193 } 2194 2195 for (auto I : DeletionCandidates) { 2196 if (I->use_empty()) 2197 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 2198 Inst->eraseFromParent(); 2199 } 2200 2201 return FirstGuardBlock; 2202 } 2203 2204 void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) { 2205 Value *NewCond = PBI->getCondition(); 2206 // If this is a "cmp" instruction, only used for branching (and nowhere 2207 // else), then we can simply invert the predicate. 2208 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2209 CmpInst *CI = cast<CmpInst>(NewCond); 2210 CI->setPredicate(CI->getInversePredicate()); 2211 } else 2212 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not"); 2213 2214 PBI->setCondition(NewCond); 2215 PBI->swapSuccessors(); 2216 } 2217 2218 bool llvm::hasOnlySimpleTerminator(const Function &F) { 2219 for (auto &BB : F) { 2220 auto *Term = BB.getTerminator(); 2221 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) || 2222 isa<BranchInst>(Term))) 2223 return false; 2224 } 2225 return true; 2226 } 2227 2228 bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src, 2229 const BasicBlock &Dest) { 2230 assert(Src.getParent() == Dest.getParent()); 2231 if (!Src.getParent()->isPresplitCoroutine()) 2232 return false; 2233 if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator())) 2234 if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition())) 2235 return Intr->getIntrinsicID() == Intrinsic::coro_suspend && 2236 SW->getDefaultDest() == &Dest; 2237 return false; 2238 } 2239