xref: /llvm-project/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp (revision c6c265527dd16bea1069b53760f56577c840036c)
1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/DenseMap.h"
10 #include "llvm/ADT/MapVector.h"
11 #include "llvm/ADT/PostOrderIterator.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <utility>
52 
53 using namespace llvm;
54 using namespace llvm::PatternMatch;
55 
56 #define DEBUG_TYPE "structurizecfg"
57 
58 // The name for newly created blocks.
59 static const char *const FlowBlockName = "Flow";
60 
61 namespace {
62 
63 static cl::opt<bool> ForceSkipUniformRegions(
64   "structurizecfg-skip-uniform-regions",
65   cl::Hidden,
66   cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
67   cl::init(false));
68 
69 static cl::opt<bool>
70     RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
71                           cl::desc("Allow relaxed uniform region checks"),
72                           cl::init(true));
73 
74 // Definition of the complex types used in this pass.
75 
76 using BBValuePair = std::pair<BasicBlock *, Value *>;
77 
78 using RNVector = SmallVector<RegionNode *, 8>;
79 using BBVector = SmallVector<BasicBlock *, 8>;
80 using BranchVector = SmallVector<BranchInst *, 8>;
81 using BBValueVector = SmallVector<BBValuePair, 2>;
82 
83 using BBSet = SmallPtrSet<BasicBlock *, 8>;
84 
85 using PhiMap = MapVector<PHINode *, BBValueVector>;
86 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
87 
88 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
89 using BBPredicates = DenseMap<BasicBlock *, Value *>;
90 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
91 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
92 
93 /// Finds the nearest common dominator of a set of BasicBlocks.
94 ///
95 /// For every BB you add to the set, you can specify whether we "remember" the
96 /// block.  When you get the common dominator, you can also ask whether it's one
97 /// of the blocks we remembered.
98 class NearestCommonDominator {
99   DominatorTree *DT;
100   BasicBlock *Result = nullptr;
101   bool ResultIsRemembered = false;
102 
103   /// Add BB to the resulting dominator.
104   void addBlock(BasicBlock *BB, bool Remember) {
105     if (!Result) {
106       Result = BB;
107       ResultIsRemembered = Remember;
108       return;
109     }
110 
111     BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
112     if (NewResult != Result)
113       ResultIsRemembered = false;
114     if (NewResult == BB)
115       ResultIsRemembered |= Remember;
116     Result = NewResult;
117   }
118 
119 public:
120   explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
121 
122   void addBlock(BasicBlock *BB) {
123     addBlock(BB, /* Remember = */ false);
124   }
125 
126   void addAndRememberBlock(BasicBlock *BB) {
127     addBlock(BB, /* Remember = */ true);
128   }
129 
130   /// Get the nearest common dominator of all the BBs added via addBlock() and
131   /// addAndRememberBlock().
132   BasicBlock *result() { return Result; }
133 
134   /// Is the BB returned by getResult() one of the blocks we added to the set
135   /// with addAndRememberBlock()?
136   bool resultIsRememberedBlock() { return ResultIsRemembered; }
137 };
138 
139 /// Transforms the control flow graph on one single entry/exit region
140 /// at a time.
141 ///
142 /// After the transform all "If"/"Then"/"Else" style control flow looks like
143 /// this:
144 ///
145 /// \verbatim
146 /// 1
147 /// ||
148 /// | |
149 /// 2 |
150 /// | /
151 /// |/
152 /// 3
153 /// ||   Where:
154 /// | |  1 = "If" block, calculates the condition
155 /// 4 |  2 = "Then" subregion, runs if the condition is true
156 /// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
157 /// |/   4 = "Else" optional subregion, runs if the condition is false
158 /// 5    5 = "End" block, also rejoins the control flow
159 /// \endverbatim
160 ///
161 /// Control flow is expressed as a branch where the true exit goes into the
162 /// "Then"/"Else" region, while the false exit skips the region
163 /// The condition for the optional "Else" region is expressed as a PHI node.
164 /// The incoming values of the PHI node are true for the "If" edge and false
165 /// for the "Then" edge.
166 ///
167 /// Additionally to that even complicated loops look like this:
168 ///
169 /// \verbatim
170 /// 1
171 /// ||
172 /// | |
173 /// 2 ^  Where:
174 /// | /  1 = "Entry" block
175 /// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
176 /// 3    3 = "Flow" block, with back edge to entry block
177 /// |
178 /// \endverbatim
179 ///
180 /// The back edge of the "Flow" block is always on the false side of the branch
181 /// while the true side continues the general flow. So the loop condition
182 /// consist of a network of PHI nodes where the true incoming values expresses
183 /// breaks and the false values expresses continue states.
184 class StructurizeCFG : public RegionPass {
185   bool SkipUniformRegions;
186 
187   Type *Boolean;
188   ConstantInt *BoolTrue;
189   ConstantInt *BoolFalse;
190   UndefValue *BoolUndef;
191 
192   Function *Func;
193   Region *ParentRegion;
194 
195   LegacyDivergenceAnalysis *DA;
196   DominatorTree *DT;
197   LoopInfo *LI;
198 
199   SmallVector<RegionNode *, 8> Order;
200   BBSet Visited;
201 
202   SmallVector<WeakVH, 8> AffectedPhis;
203   BBPhiMap DeletedPhis;
204   BB2BBVecMap AddedPhis;
205 
206   PredMap Predicates;
207   BranchVector Conditions;
208 
209   BB2BBMap Loops;
210   PredMap LoopPreds;
211   BranchVector LoopConds;
212 
213   RegionNode *PrevNode;
214 
215   void orderNodes();
216 
217   Loop *getAdjustedLoop(RegionNode *RN);
218   unsigned getAdjustedLoopDepth(RegionNode *RN);
219 
220   void analyzeLoops(RegionNode *N);
221 
222   Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
223 
224   void gatherPredicates(RegionNode *N);
225 
226   void collectInfos();
227 
228   void insertConditions(bool Loops);
229 
230   void delPhiValues(BasicBlock *From, BasicBlock *To);
231 
232   void addPhiValues(BasicBlock *From, BasicBlock *To);
233 
234   void setPhiValues();
235 
236   void simplifyAffectedPhis();
237 
238   void killTerminator(BasicBlock *BB);
239 
240   void changeExit(RegionNode *Node, BasicBlock *NewExit,
241                   bool IncludeDominator);
242 
243   BasicBlock *getNextFlow(BasicBlock *Dominator);
244 
245   BasicBlock *needPrefix(bool NeedEmpty);
246 
247   BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
248 
249   void setPrevNode(BasicBlock *BB);
250 
251   bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
252 
253   bool isPredictableTrue(RegionNode *Node);
254 
255   void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
256 
257   void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
258 
259   void createFlow();
260 
261   void rebuildSSA();
262 
263 public:
264   static char ID;
265 
266   explicit StructurizeCFG(bool SkipUniformRegions_ = false)
267       : RegionPass(ID),
268         SkipUniformRegions(SkipUniformRegions_) {
269     if (ForceSkipUniformRegions.getNumOccurrences())
270       SkipUniformRegions = ForceSkipUniformRegions.getValue();
271     initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
272   }
273 
274   bool doInitialization(Region *R, RGPassManager &RGM) override;
275 
276   bool runOnRegion(Region *R, RGPassManager &RGM) override;
277 
278   StringRef getPassName() const override { return "Structurize control flow"; }
279 
280   void getAnalysisUsage(AnalysisUsage &AU) const override {
281     if (SkipUniformRegions)
282       AU.addRequired<LegacyDivergenceAnalysis>();
283     AU.addRequiredID(LowerSwitchID);
284     AU.addRequired<DominatorTreeWrapperPass>();
285     AU.addRequired<LoopInfoWrapperPass>();
286 
287     AU.addPreserved<DominatorTreeWrapperPass>();
288     RegionPass::getAnalysisUsage(AU);
289   }
290 };
291 
292 } // end anonymous namespace
293 
294 char StructurizeCFG::ID = 0;
295 
296 INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
297                       false, false)
298 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
299 INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
300 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
302 INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
303                     false, false)
304 
305 /// Initialize the types and constants used in the pass
306 bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
307   LLVMContext &Context = R->getEntry()->getContext();
308 
309   Boolean = Type::getInt1Ty(Context);
310   BoolTrue = ConstantInt::getTrue(Context);
311   BoolFalse = ConstantInt::getFalse(Context);
312   BoolUndef = UndefValue::get(Boolean);
313 
314   return false;
315 }
316 
317 /// Use the exit block to determine the loop if RN is a SubRegion.
318 Loop *StructurizeCFG::getAdjustedLoop(RegionNode *RN) {
319   if (RN->isSubRegion()) {
320     Region *SubRegion = RN->getNodeAs<Region>();
321     return LI->getLoopFor(SubRegion->getExit());
322   }
323 
324   return LI->getLoopFor(RN->getEntry());
325 }
326 
327 /// Use the exit block to determine the loop depth if RN is a SubRegion.
328 unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode *RN) {
329   if (RN->isSubRegion()) {
330     Region *SubR = RN->getNodeAs<Region>();
331     return LI->getLoopDepth(SubR->getExit());
332   }
333 
334   return LI->getLoopDepth(RN->getEntry());
335 }
336 
337 /// Build up the general order of nodes
338 void StructurizeCFG::orderNodes() {
339   ReversePostOrderTraversal<Region*> RPOT(ParentRegion);
340   SmallDenseMap<Loop*, unsigned, 8> LoopBlocks;
341 
342   // The reverse post-order traversal of the list gives us an ordering close
343   // to what we want.  The only problem with it is that sometimes backedges
344   // for outer loops will be visited before backedges for inner loops.
345   for (RegionNode *RN : RPOT) {
346     Loop *Loop = getAdjustedLoop(RN);
347     ++LoopBlocks[Loop];
348   }
349 
350   unsigned CurrentLoopDepth = 0;
351   Loop *CurrentLoop = nullptr;
352   for (auto I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
353     RegionNode *RN = cast<RegionNode>(*I);
354     unsigned LoopDepth = getAdjustedLoopDepth(RN);
355 
356     if (is_contained(Order, *I))
357       continue;
358 
359     if (LoopDepth < CurrentLoopDepth) {
360       // Make sure we have visited all blocks in this loop before moving back to
361       // the outer loop.
362 
363       auto LoopI = I;
364       while (unsigned &BlockCount = LoopBlocks[CurrentLoop]) {
365         LoopI++;
366         if (getAdjustedLoop(cast<RegionNode>(*LoopI)) == CurrentLoop) {
367           --BlockCount;
368           Order.push_back(*LoopI);
369         }
370       }
371     }
372 
373     CurrentLoop = getAdjustedLoop(RN);
374     if (CurrentLoop)
375       LoopBlocks[CurrentLoop]--;
376 
377     CurrentLoopDepth = LoopDepth;
378     Order.push_back(*I);
379   }
380 
381   // This pass originally used a post-order traversal and then operated on
382   // the list in reverse. Now that we are using a reverse post-order traversal
383   // rather than re-working the whole pass to operate on the list in order,
384   // we just reverse the list and continue to operate on it in reverse.
385   std::reverse(Order.begin(), Order.end());
386 }
387 
388 /// Determine the end of the loops
389 void StructurizeCFG::analyzeLoops(RegionNode *N) {
390   if (N->isSubRegion()) {
391     // Test for exit as back edge
392     BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
393     if (Visited.count(Exit))
394       Loops[Exit] = N->getEntry();
395 
396   } else {
397     // Test for successors as back edge
398     BasicBlock *BB = N->getNodeAs<BasicBlock>();
399     BranchInst *Term = cast<BranchInst>(BB->getTerminator());
400 
401     for (BasicBlock *Succ : Term->successors())
402       if (Visited.count(Succ))
403         Loops[Succ] = BB;
404   }
405 }
406 
407 /// Build the condition for one edge
408 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
409                                       bool Invert) {
410   Value *Cond = Invert ? BoolFalse : BoolTrue;
411   if (Term->isConditional()) {
412     Cond = Term->getCondition();
413 
414     if (Idx != (unsigned)Invert)
415       Cond = invertCondition(Cond);
416   }
417   return Cond;
418 }
419 
420 /// Analyze the predecessors of each block and build up predicates
421 void StructurizeCFG::gatherPredicates(RegionNode *N) {
422   RegionInfo *RI = ParentRegion->getRegionInfo();
423   BasicBlock *BB = N->getEntry();
424   BBPredicates &Pred = Predicates[BB];
425   BBPredicates &LPred = LoopPreds[BB];
426 
427   for (BasicBlock *P : predecessors(BB)) {
428     // Ignore it if it's a branch from outside into our region entry
429     if (!ParentRegion->contains(P))
430       continue;
431 
432     Region *R = RI->getRegionFor(P);
433     if (R == ParentRegion) {
434       // It's a top level block in our region
435       BranchInst *Term = cast<BranchInst>(P->getTerminator());
436       for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
437         BasicBlock *Succ = Term->getSuccessor(i);
438         if (Succ != BB)
439           continue;
440 
441         if (Visited.count(P)) {
442           // Normal forward edge
443           if (Term->isConditional()) {
444             // Try to treat it like an ELSE block
445             BasicBlock *Other = Term->getSuccessor(!i);
446             if (Visited.count(Other) && !Loops.count(Other) &&
447                 !Pred.count(Other) && !Pred.count(P)) {
448 
449               Pred[Other] = BoolFalse;
450               Pred[P] = BoolTrue;
451               continue;
452             }
453           }
454           Pred[P] = buildCondition(Term, i, false);
455         } else {
456           // Back edge
457           LPred[P] = buildCondition(Term, i, true);
458         }
459       }
460     } else {
461       // It's an exit from a sub region
462       while (R->getParent() != ParentRegion)
463         R = R->getParent();
464 
465       // Edge from inside a subregion to its entry, ignore it
466       if (*R == *N)
467         continue;
468 
469       BasicBlock *Entry = R->getEntry();
470       if (Visited.count(Entry))
471         Pred[Entry] = BoolTrue;
472       else
473         LPred[Entry] = BoolFalse;
474     }
475   }
476 }
477 
478 /// Collect various loop and predicate infos
479 void StructurizeCFG::collectInfos() {
480   // Reset predicate
481   Predicates.clear();
482 
483   // and loop infos
484   Loops.clear();
485   LoopPreds.clear();
486 
487   // Reset the visited nodes
488   Visited.clear();
489 
490   for (RegionNode *RN : reverse(Order)) {
491     LLVM_DEBUG(dbgs() << "Visiting: "
492                       << (RN->isSubRegion() ? "SubRegion with entry: " : "")
493                       << RN->getEntry()->getName() << " Loop Depth: "
494                       << LI->getLoopDepth(RN->getEntry()) << "\n");
495 
496     // Analyze all the conditions leading to a node
497     gatherPredicates(RN);
498 
499     // Remember that we've seen this node
500     Visited.insert(RN->getEntry());
501 
502     // Find the last back edges
503     analyzeLoops(RN);
504   }
505 }
506 
507 /// Insert the missing branch conditions
508 void StructurizeCFG::insertConditions(bool Loops) {
509   BranchVector &Conds = Loops ? LoopConds : Conditions;
510   Value *Default = Loops ? BoolTrue : BoolFalse;
511   SSAUpdater PhiInserter;
512 
513   for (BranchInst *Term : Conds) {
514     assert(Term->isConditional());
515 
516     BasicBlock *Parent = Term->getParent();
517     BasicBlock *SuccTrue = Term->getSuccessor(0);
518     BasicBlock *SuccFalse = Term->getSuccessor(1);
519 
520     PhiInserter.Initialize(Boolean, "");
521     PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
522     PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
523 
524     BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
525 
526     NearestCommonDominator Dominator(DT);
527     Dominator.addBlock(Parent);
528 
529     Value *ParentValue = nullptr;
530     for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
531       BasicBlock *BB = BBAndPred.first;
532       Value *Pred = BBAndPred.second;
533 
534       if (BB == Parent) {
535         ParentValue = Pred;
536         break;
537       }
538       PhiInserter.AddAvailableValue(BB, Pred);
539       Dominator.addAndRememberBlock(BB);
540     }
541 
542     if (ParentValue) {
543       Term->setCondition(ParentValue);
544     } else {
545       if (!Dominator.resultIsRememberedBlock())
546         PhiInserter.AddAvailableValue(Dominator.result(), Default);
547 
548       Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
549     }
550   }
551 }
552 
553 /// Remove all PHI values coming from "From" into "To" and remember
554 /// them in DeletedPhis
555 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
556   PhiMap &Map = DeletedPhis[To];
557   for (PHINode &Phi : To->phis()) {
558     bool Recorded = false;
559     while (Phi.getBasicBlockIndex(From) != -1) {
560       Value *Deleted = Phi.removeIncomingValue(From, false);
561       Map[&Phi].push_back(std::make_pair(From, Deleted));
562       if (!Recorded) {
563         AffectedPhis.push_back(&Phi);
564         Recorded = true;
565       }
566     }
567   }
568 }
569 
570 /// Add a dummy PHI value as soon as we knew the new predecessor
571 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
572   for (PHINode &Phi : To->phis()) {
573     Value *Undef = UndefValue::get(Phi.getType());
574     Phi.addIncoming(Undef, From);
575   }
576   AddedPhis[To].push_back(From);
577 }
578 
579 /// Add the real PHI value as soon as everything is set up
580 void StructurizeCFG::setPhiValues() {
581   SmallVector<PHINode *, 8> InsertedPhis;
582   SSAUpdater Updater(&InsertedPhis);
583   for (const auto &AddedPhi : AddedPhis) {
584     BasicBlock *To = AddedPhi.first;
585     const BBVector &From = AddedPhi.second;
586 
587     if (!DeletedPhis.count(To))
588       continue;
589 
590     PhiMap &Map = DeletedPhis[To];
591     for (const auto &PI : Map) {
592       PHINode *Phi = PI.first;
593       Value *Undef = UndefValue::get(Phi->getType());
594       Updater.Initialize(Phi->getType(), "");
595       Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
596       Updater.AddAvailableValue(To, Undef);
597 
598       NearestCommonDominator Dominator(DT);
599       Dominator.addBlock(To);
600       for (const auto &VI : PI.second) {
601         Updater.AddAvailableValue(VI.first, VI.second);
602         Dominator.addAndRememberBlock(VI.first);
603       }
604 
605       if (!Dominator.resultIsRememberedBlock())
606         Updater.AddAvailableValue(Dominator.result(), Undef);
607 
608       for (BasicBlock *FI : From)
609         Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
610       AffectedPhis.push_back(Phi);
611     }
612 
613     DeletedPhis.erase(To);
614   }
615   assert(DeletedPhis.empty());
616 
617   AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
618 }
619 
620 void StructurizeCFG::simplifyAffectedPhis() {
621   bool Changed;
622   do {
623     Changed = false;
624     SimplifyQuery Q(Func->getParent()->getDataLayout());
625     Q.DT = DT;
626     for (WeakVH VH : AffectedPhis) {
627       if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
628         if (auto NewValue = SimplifyInstruction(Phi, Q)) {
629           Phi->replaceAllUsesWith(NewValue);
630           Phi->eraseFromParent();
631           Changed = true;
632         }
633       }
634     }
635   } while (Changed);
636 }
637 
638 /// Remove phi values from all successors and then remove the terminator.
639 void StructurizeCFG::killTerminator(BasicBlock *BB) {
640   Instruction *Term = BB->getTerminator();
641   if (!Term)
642     return;
643 
644   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
645        SI != SE; ++SI)
646     delPhiValues(BB, *SI);
647 
648   if (DA)
649     DA->removeValue(Term);
650   Term->eraseFromParent();
651 }
652 
653 /// Let node exit(s) point to NewExit
654 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
655                                 bool IncludeDominator) {
656   if (Node->isSubRegion()) {
657     Region *SubRegion = Node->getNodeAs<Region>();
658     BasicBlock *OldExit = SubRegion->getExit();
659     BasicBlock *Dominator = nullptr;
660 
661     // Find all the edges from the sub region to the exit
662     for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
663       // Incrememt BBI before mucking with BB's terminator.
664       BasicBlock *BB = *BBI++;
665 
666       if (!SubRegion->contains(BB))
667         continue;
668 
669       // Modify the edges to point to the new exit
670       delPhiValues(BB, OldExit);
671       BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
672       addPhiValues(BB, NewExit);
673 
674       // Find the new dominator (if requested)
675       if (IncludeDominator) {
676         if (!Dominator)
677           Dominator = BB;
678         else
679           Dominator = DT->findNearestCommonDominator(Dominator, BB);
680       }
681     }
682 
683     // Change the dominator (if requested)
684     if (Dominator)
685       DT->changeImmediateDominator(NewExit, Dominator);
686 
687     // Update the region info
688     SubRegion->replaceExit(NewExit);
689   } else {
690     BasicBlock *BB = Node->getNodeAs<BasicBlock>();
691     killTerminator(BB);
692     BranchInst::Create(NewExit, BB);
693     addPhiValues(BB, NewExit);
694     if (IncludeDominator)
695       DT->changeImmediateDominator(NewExit, BB);
696   }
697 }
698 
699 /// Create a new flow node and update dominator tree and region info
700 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
701   LLVMContext &Context = Func->getContext();
702   BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
703                        Order.back()->getEntry();
704   BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
705                                         Func, Insert);
706   DT->addNewBlock(Flow, Dominator);
707   ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
708   return Flow;
709 }
710 
711 /// Create a new or reuse the previous node as flow node
712 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
713   BasicBlock *Entry = PrevNode->getEntry();
714 
715   if (!PrevNode->isSubRegion()) {
716     killTerminator(Entry);
717     if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
718       return Entry;
719   }
720 
721   // create a new flow node
722   BasicBlock *Flow = getNextFlow(Entry);
723 
724   // and wire it up
725   changeExit(PrevNode, Flow, true);
726   PrevNode = ParentRegion->getBBNode(Flow);
727   return Flow;
728 }
729 
730 /// Returns the region exit if possible, otherwise just a new flow node
731 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
732                                         bool ExitUseAllowed) {
733   if (!Order.empty() || !ExitUseAllowed)
734     return getNextFlow(Flow);
735 
736   BasicBlock *Exit = ParentRegion->getExit();
737   DT->changeImmediateDominator(Exit, Flow);
738   addPhiValues(Flow, Exit);
739   return Exit;
740 }
741 
742 /// Set the previous node
743 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
744   PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
745                                         : nullptr;
746 }
747 
748 /// Does BB dominate all the predicates of Node?
749 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
750   BBPredicates &Preds = Predicates[Node->getEntry()];
751   return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
752     return DT->dominates(BB, Pred.first);
753   });
754 }
755 
756 /// Can we predict that this node will always be called?
757 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
758   BBPredicates &Preds = Predicates[Node->getEntry()];
759   bool Dominated = false;
760 
761   // Regionentry is always true
762   if (!PrevNode)
763     return true;
764 
765   for (std::pair<BasicBlock*, Value*> Pred : Preds) {
766     BasicBlock *BB = Pred.first;
767     Value *V = Pred.second;
768 
769     if (V != BoolTrue)
770       return false;
771 
772     if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
773       Dominated = true;
774   }
775 
776   // TODO: The dominator check is too strict
777   return Dominated;
778 }
779 
780 /// Take one node from the order vector and wire it up
781 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
782                               BasicBlock *LoopEnd) {
783   RegionNode *Node = Order.pop_back_val();
784   Visited.insert(Node->getEntry());
785 
786   if (isPredictableTrue(Node)) {
787     // Just a linear flow
788     if (PrevNode) {
789       changeExit(PrevNode, Node->getEntry(), true);
790     }
791     PrevNode = Node;
792   } else {
793     // Insert extra prefix node (or reuse last one)
794     BasicBlock *Flow = needPrefix(false);
795 
796     // Insert extra postfix node (or use exit instead)
797     BasicBlock *Entry = Node->getEntry();
798     BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
799 
800     // let it point to entry and next block
801     Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
802     addPhiValues(Flow, Entry);
803     DT->changeImmediateDominator(Entry, Flow);
804 
805     PrevNode = Node;
806     while (!Order.empty() && !Visited.count(LoopEnd) &&
807            dominatesPredicates(Entry, Order.back())) {
808       handleLoops(false, LoopEnd);
809     }
810 
811     changeExit(PrevNode, Next, false);
812     setPrevNode(Next);
813   }
814 }
815 
816 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
817                                  BasicBlock *LoopEnd) {
818   RegionNode *Node = Order.back();
819   BasicBlock *LoopStart = Node->getEntry();
820 
821   if (!Loops.count(LoopStart)) {
822     wireFlow(ExitUseAllowed, LoopEnd);
823     return;
824   }
825 
826   if (!isPredictableTrue(Node))
827     LoopStart = needPrefix(true);
828 
829   LoopEnd = Loops[Node->getEntry()];
830   wireFlow(false, LoopEnd);
831   while (!Visited.count(LoopEnd)) {
832     handleLoops(false, LoopEnd);
833   }
834 
835   // If the start of the loop is the entry block, we can't branch to it so
836   // insert a new dummy entry block.
837   Function *LoopFunc = LoopStart->getParent();
838   if (LoopStart == &LoopFunc->getEntryBlock()) {
839     LoopStart->setName("entry.orig");
840 
841     BasicBlock *NewEntry =
842       BasicBlock::Create(LoopStart->getContext(),
843                          "entry",
844                          LoopFunc,
845                          LoopStart);
846     BranchInst::Create(LoopStart, NewEntry);
847     DT->setNewRoot(NewEntry);
848   }
849 
850   // Create an extra loop end node
851   LoopEnd = needPrefix(false);
852   BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
853   LoopConds.push_back(BranchInst::Create(Next, LoopStart,
854                                          BoolUndef, LoopEnd));
855   addPhiValues(LoopEnd, LoopStart);
856   setPrevNode(Next);
857 }
858 
859 /// After this function control flow looks like it should be, but
860 /// branches and PHI nodes only have undefined conditions.
861 void StructurizeCFG::createFlow() {
862   BasicBlock *Exit = ParentRegion->getExit();
863   bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
864 
865   AffectedPhis.clear();
866   DeletedPhis.clear();
867   AddedPhis.clear();
868   Conditions.clear();
869   LoopConds.clear();
870 
871   PrevNode = nullptr;
872   Visited.clear();
873 
874   while (!Order.empty()) {
875     handleLoops(EntryDominatesExit, nullptr);
876   }
877 
878   if (PrevNode)
879     changeExit(PrevNode, Exit, EntryDominatesExit);
880   else
881     assert(EntryDominatesExit);
882 }
883 
884 /// Handle a rare case where the disintegrated nodes instructions
885 /// no longer dominate all their uses. Not sure if this is really necessary
886 void StructurizeCFG::rebuildSSA() {
887   SSAUpdater Updater;
888   for (BasicBlock *BB : ParentRegion->blocks())
889     for (Instruction &I : *BB) {
890       bool Initialized = false;
891       // We may modify the use list as we iterate over it, so be careful to
892       // compute the next element in the use list at the top of the loop.
893       for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
894         Use &U = *UI++;
895         Instruction *User = cast<Instruction>(U.getUser());
896         if (User->getParent() == BB) {
897           continue;
898         } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
899           if (UserPN->getIncomingBlock(U) == BB)
900             continue;
901         }
902 
903         if (DT->dominates(&I, User))
904           continue;
905 
906         if (!Initialized) {
907           Value *Undef = UndefValue::get(I.getType());
908           Updater.Initialize(I.getType(), "");
909           Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
910           Updater.AddAvailableValue(BB, &I);
911           Initialized = true;
912         }
913         Updater.RewriteUseAfterInsertions(U);
914       }
915     }
916 }
917 
918 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
919                                    const LegacyDivergenceAnalysis &DA) {
920   // Bool for if all sub-regions are uniform.
921   bool SubRegionsAreUniform = true;
922   // Count of how many direct children are conditional.
923   unsigned ConditionalDirectChildren = 0;
924 
925   for (auto E : R->elements()) {
926     if (!E->isSubRegion()) {
927       auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
928       if (!Br || !Br->isConditional())
929         continue;
930 
931       if (!DA.isUniform(Br))
932         return false;
933 
934       // One of our direct children is conditional.
935       ConditionalDirectChildren++;
936 
937       LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
938                         << " has uniform terminator\n");
939     } else {
940       // Explicitly refuse to treat regions as uniform if they have non-uniform
941       // subregions. We cannot rely on DivergenceAnalysis for branches in
942       // subregions because those branches may have been removed and re-created,
943       // so we look for our metadata instead.
944       //
945       // Warning: It would be nice to treat regions as uniform based only on
946       // their direct child basic blocks' terminators, regardless of whether
947       // subregions are uniform or not. However, this requires a very careful
948       // look at SIAnnotateControlFlow to make sure nothing breaks there.
949       for (auto BB : E->getNodeAs<Region>()->blocks()) {
950         auto Br = dyn_cast<BranchInst>(BB->getTerminator());
951         if (!Br || !Br->isConditional())
952           continue;
953 
954         if (!Br->getMetadata(UniformMDKindID)) {
955           // Early exit if we cannot have relaxed uniform regions.
956           if (!RelaxedUniformRegions)
957             return false;
958 
959           SubRegionsAreUniform = false;
960           break;
961         }
962       }
963     }
964   }
965 
966   // Our region is uniform if:
967   // 1. All conditional branches that are direct children are uniform (checked
968   // above).
969   // 2. And either:
970   //   a. All sub-regions are uniform.
971   //   b. There is one or less conditional branches among the direct children.
972   return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
973 }
974 
975 /// Run the transformation for each region found
976 bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
977   if (R->isTopLevelRegion())
978     return false;
979 
980   DA = nullptr;
981 
982   if (SkipUniformRegions) {
983     // TODO: We could probably be smarter here with how we handle sub-regions.
984     // We currently rely on the fact that metadata is set by earlier invocations
985     // of the pass on sub-regions, and that this metadata doesn't get lost --
986     // but we shouldn't rely on metadata for correctness!
987     unsigned UniformMDKindID =
988         R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
989     DA = &getAnalysis<LegacyDivergenceAnalysis>();
990 
991     if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
992       LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
993                         << '\n');
994 
995       // Mark all direct child block terminators as having been treated as
996       // uniform. To account for a possible future in which non-uniform
997       // sub-regions are treated more cleverly, indirect children are not
998       // marked as uniform.
999       MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
1000       for (RegionNode *E : R->elements()) {
1001         if (E->isSubRegion())
1002           continue;
1003 
1004         if (Instruction *Term = E->getEntry()->getTerminator())
1005           Term->setMetadata(UniformMDKindID, MD);
1006       }
1007 
1008       return false;
1009     }
1010   }
1011 
1012   Func = R->getEntry()->getParent();
1013   ParentRegion = R;
1014 
1015   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1016   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1017 
1018   orderNodes();
1019   collectInfos();
1020   createFlow();
1021   insertConditions(false);
1022   insertConditions(true);
1023   setPhiValues();
1024   simplifyAffectedPhis();
1025   rebuildSSA();
1026 
1027   // Cleanup
1028   Order.clear();
1029   Visited.clear();
1030   DeletedPhis.clear();
1031   AddedPhis.clear();
1032   Predicates.clear();
1033   Conditions.clear();
1034   Loops.clear();
1035   LoopPreds.clear();
1036   LoopConds.clear();
1037 
1038   return true;
1039 }
1040 
1041 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1042   return new StructurizeCFG(SkipUniformRegions);
1043 }
1044