1 //===- StructurizeCFG.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/DenseMap.h" 10 #include "llvm/ADT/MapVector.h" 11 #include "llvm/ADT/PostOrderIterator.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/RegionInfo.h" 19 #include "llvm/Analysis/RegionIterator.h" 20 #include "llvm/Analysis/RegionPass.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <utility> 49 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "structurizecfg" 54 55 // The name for newly created blocks. 56 static const char *const FlowBlockName = "Flow"; 57 58 namespace { 59 60 static cl::opt<bool> ForceSkipUniformRegions( 61 "structurizecfg-skip-uniform-regions", 62 cl::Hidden, 63 cl::desc("Force whether the StructurizeCFG pass skips uniform regions"), 64 cl::init(false)); 65 66 static cl::opt<bool> 67 RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden, 68 cl::desc("Allow relaxed uniform region checks"), 69 cl::init(true)); 70 71 // Definition of the complex types used in this pass. 72 73 using BBValuePair = std::pair<BasicBlock *, Value *>; 74 75 using RNVector = SmallVector<RegionNode *, 8>; 76 using BBVector = SmallVector<BasicBlock *, 8>; 77 using BranchVector = SmallVector<BranchInst *, 8>; 78 using BBValueVector = SmallVector<BBValuePair, 2>; 79 80 using BBSet = SmallPtrSet<BasicBlock *, 8>; 81 82 using PhiMap = MapVector<PHINode *, BBValueVector>; 83 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>; 84 85 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>; 86 using BBPredicates = DenseMap<BasicBlock *, Value *>; 87 using PredMap = DenseMap<BasicBlock *, BBPredicates>; 88 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>; 89 90 /// Finds the nearest common dominator of a set of BasicBlocks. 91 /// 92 /// For every BB you add to the set, you can specify whether we "remember" the 93 /// block. When you get the common dominator, you can also ask whether it's one 94 /// of the blocks we remembered. 95 class NearestCommonDominator { 96 DominatorTree *DT; 97 BasicBlock *Result = nullptr; 98 bool ResultIsRemembered = false; 99 100 /// Add BB to the resulting dominator. 101 void addBlock(BasicBlock *BB, bool Remember) { 102 if (!Result) { 103 Result = BB; 104 ResultIsRemembered = Remember; 105 return; 106 } 107 108 BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB); 109 if (NewResult != Result) 110 ResultIsRemembered = false; 111 if (NewResult == BB) 112 ResultIsRemembered |= Remember; 113 Result = NewResult; 114 } 115 116 public: 117 explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {} 118 119 void addBlock(BasicBlock *BB) { 120 addBlock(BB, /* Remember = */ false); 121 } 122 123 void addAndRememberBlock(BasicBlock *BB) { 124 addBlock(BB, /* Remember = */ true); 125 } 126 127 /// Get the nearest common dominator of all the BBs added via addBlock() and 128 /// addAndRememberBlock(). 129 BasicBlock *result() { return Result; } 130 131 /// Is the BB returned by getResult() one of the blocks we added to the set 132 /// with addAndRememberBlock()? 133 bool resultIsRememberedBlock() { return ResultIsRemembered; } 134 }; 135 136 /// Transforms the control flow graph on one single entry/exit region 137 /// at a time. 138 /// 139 /// After the transform all "If"/"Then"/"Else" style control flow looks like 140 /// this: 141 /// 142 /// \verbatim 143 /// 1 144 /// || 145 /// | | 146 /// 2 | 147 /// | / 148 /// |/ 149 /// 3 150 /// || Where: 151 /// | | 1 = "If" block, calculates the condition 152 /// 4 | 2 = "Then" subregion, runs if the condition is true 153 /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow 154 /// |/ 4 = "Else" optional subregion, runs if the condition is false 155 /// 5 5 = "End" block, also rejoins the control flow 156 /// \endverbatim 157 /// 158 /// Control flow is expressed as a branch where the true exit goes into the 159 /// "Then"/"Else" region, while the false exit skips the region 160 /// The condition for the optional "Else" region is expressed as a PHI node. 161 /// The incoming values of the PHI node are true for the "If" edge and false 162 /// for the "Then" edge. 163 /// 164 /// Additionally to that even complicated loops look like this: 165 /// 166 /// \verbatim 167 /// 1 168 /// || 169 /// | | 170 /// 2 ^ Where: 171 /// | / 1 = "Entry" block 172 /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block 173 /// 3 3 = "Flow" block, with back edge to entry block 174 /// | 175 /// \endverbatim 176 /// 177 /// The back edge of the "Flow" block is always on the false side of the branch 178 /// while the true side continues the general flow. So the loop condition 179 /// consist of a network of PHI nodes where the true incoming values expresses 180 /// breaks and the false values expresses continue states. 181 class StructurizeCFG : public RegionPass { 182 bool SkipUniformRegions; 183 184 Type *Boolean; 185 ConstantInt *BoolTrue; 186 ConstantInt *BoolFalse; 187 UndefValue *BoolUndef; 188 189 Function *Func; 190 Region *ParentRegion; 191 192 LegacyDivergenceAnalysis *DA; 193 DominatorTree *DT; 194 LoopInfo *LI; 195 196 SmallVector<RegionNode *, 8> Order; 197 BBSet Visited; 198 199 BBPhiMap DeletedPhis; 200 BB2BBVecMap AddedPhis; 201 202 PredMap Predicates; 203 BranchVector Conditions; 204 205 BB2BBMap Loops; 206 PredMap LoopPreds; 207 BranchVector LoopConds; 208 209 RegionNode *PrevNode; 210 211 void orderNodes(); 212 213 Loop *getAdjustedLoop(RegionNode *RN); 214 unsigned getAdjustedLoopDepth(RegionNode *RN); 215 216 void analyzeLoops(RegionNode *N); 217 218 Value *invert(Value *Condition); 219 220 Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert); 221 222 void gatherPredicates(RegionNode *N); 223 224 void collectInfos(); 225 226 void insertConditions(bool Loops); 227 228 void delPhiValues(BasicBlock *From, BasicBlock *To); 229 230 void addPhiValues(BasicBlock *From, BasicBlock *To); 231 232 void setPhiValues(); 233 234 void killTerminator(BasicBlock *BB); 235 236 void changeExit(RegionNode *Node, BasicBlock *NewExit, 237 bool IncludeDominator); 238 239 BasicBlock *getNextFlow(BasicBlock *Dominator); 240 241 BasicBlock *needPrefix(bool NeedEmpty); 242 243 BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed); 244 245 void setPrevNode(BasicBlock *BB); 246 247 bool dominatesPredicates(BasicBlock *BB, RegionNode *Node); 248 249 bool isPredictableTrue(RegionNode *Node); 250 251 void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd); 252 253 void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd); 254 255 void createFlow(); 256 257 void rebuildSSA(); 258 259 public: 260 static char ID; 261 262 explicit StructurizeCFG(bool SkipUniformRegions_ = false) 263 : RegionPass(ID), 264 SkipUniformRegions(SkipUniformRegions_) { 265 if (ForceSkipUniformRegions.getNumOccurrences()) 266 SkipUniformRegions = ForceSkipUniformRegions.getValue(); 267 initializeStructurizeCFGPass(*PassRegistry::getPassRegistry()); 268 } 269 270 bool doInitialization(Region *R, RGPassManager &RGM) override; 271 272 bool runOnRegion(Region *R, RGPassManager &RGM) override; 273 274 StringRef getPassName() const override { return "Structurize control flow"; } 275 276 void getAnalysisUsage(AnalysisUsage &AU) const override { 277 if (SkipUniformRegions) 278 AU.addRequired<LegacyDivergenceAnalysis>(); 279 AU.addRequiredID(LowerSwitchID); 280 AU.addRequired<DominatorTreeWrapperPass>(); 281 AU.addRequired<LoopInfoWrapperPass>(); 282 283 AU.addPreserved<DominatorTreeWrapperPass>(); 284 RegionPass::getAnalysisUsage(AU); 285 } 286 }; 287 288 } // end anonymous namespace 289 290 char StructurizeCFG::ID = 0; 291 292 INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG", 293 false, false) 294 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 295 INITIALIZE_PASS_DEPENDENCY(LowerSwitch) 296 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 297 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) 298 INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG", 299 false, false) 300 301 /// Initialize the types and constants used in the pass 302 bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) { 303 LLVMContext &Context = R->getEntry()->getContext(); 304 305 Boolean = Type::getInt1Ty(Context); 306 BoolTrue = ConstantInt::getTrue(Context); 307 BoolFalse = ConstantInt::getFalse(Context); 308 BoolUndef = UndefValue::get(Boolean); 309 310 return false; 311 } 312 313 /// Use the exit block to determine the loop if RN is a SubRegion. 314 Loop *StructurizeCFG::getAdjustedLoop(RegionNode *RN) { 315 if (RN->isSubRegion()) { 316 Region *SubRegion = RN->getNodeAs<Region>(); 317 return LI->getLoopFor(SubRegion->getExit()); 318 } 319 320 return LI->getLoopFor(RN->getEntry()); 321 } 322 323 /// Use the exit block to determine the loop depth if RN is a SubRegion. 324 unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode *RN) { 325 if (RN->isSubRegion()) { 326 Region *SubR = RN->getNodeAs<Region>(); 327 return LI->getLoopDepth(SubR->getExit()); 328 } 329 330 return LI->getLoopDepth(RN->getEntry()); 331 } 332 333 /// Build up the general order of nodes 334 void StructurizeCFG::orderNodes() { 335 ReversePostOrderTraversal<Region*> RPOT(ParentRegion); 336 SmallDenseMap<Loop*, unsigned, 8> LoopBlocks; 337 338 // The reverse post-order traversal of the list gives us an ordering close 339 // to what we want. The only problem with it is that sometimes backedges 340 // for outer loops will be visited before backedges for inner loops. 341 for (RegionNode *RN : RPOT) { 342 Loop *Loop = getAdjustedLoop(RN); 343 ++LoopBlocks[Loop]; 344 } 345 346 unsigned CurrentLoopDepth = 0; 347 Loop *CurrentLoop = nullptr; 348 for (auto I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 349 RegionNode *RN = cast<RegionNode>(*I); 350 unsigned LoopDepth = getAdjustedLoopDepth(RN); 351 352 if (is_contained(Order, *I)) 353 continue; 354 355 if (LoopDepth < CurrentLoopDepth) { 356 // Make sure we have visited all blocks in this loop before moving back to 357 // the outer loop. 358 359 auto LoopI = I; 360 while (unsigned &BlockCount = LoopBlocks[CurrentLoop]) { 361 LoopI++; 362 if (getAdjustedLoop(cast<RegionNode>(*LoopI)) == CurrentLoop) { 363 --BlockCount; 364 Order.push_back(*LoopI); 365 } 366 } 367 } 368 369 CurrentLoop = getAdjustedLoop(RN); 370 if (CurrentLoop) 371 LoopBlocks[CurrentLoop]--; 372 373 CurrentLoopDepth = LoopDepth; 374 Order.push_back(*I); 375 } 376 377 // This pass originally used a post-order traversal and then operated on 378 // the list in reverse. Now that we are using a reverse post-order traversal 379 // rather than re-working the whole pass to operate on the list in order, 380 // we just reverse the list and continue to operate on it in reverse. 381 std::reverse(Order.begin(), Order.end()); 382 } 383 384 /// Determine the end of the loops 385 void StructurizeCFG::analyzeLoops(RegionNode *N) { 386 if (N->isSubRegion()) { 387 // Test for exit as back edge 388 BasicBlock *Exit = N->getNodeAs<Region>()->getExit(); 389 if (Visited.count(Exit)) 390 Loops[Exit] = N->getEntry(); 391 392 } else { 393 // Test for successors as back edge 394 BasicBlock *BB = N->getNodeAs<BasicBlock>(); 395 BranchInst *Term = cast<BranchInst>(BB->getTerminator()); 396 397 for (BasicBlock *Succ : Term->successors()) 398 if (Visited.count(Succ)) 399 Loops[Succ] = BB; 400 } 401 } 402 403 /// Invert the given condition 404 Value *StructurizeCFG::invert(Value *Condition) { 405 // First: Check if it's a constant 406 if (Constant *C = dyn_cast<Constant>(Condition)) 407 return ConstantExpr::getNot(C); 408 409 // Second: If the condition is already inverted, return the original value 410 Value *NotCondition; 411 if (match(Condition, m_Not(m_Value(NotCondition)))) 412 return NotCondition; 413 414 if (Instruction *Inst = dyn_cast<Instruction>(Condition)) { 415 // Third: Check all the users for an invert 416 BasicBlock *Parent = Inst->getParent(); 417 for (User *U : Condition->users()) 418 if (Instruction *I = dyn_cast<Instruction>(U)) 419 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 420 return I; 421 422 // Last option: Create a new instruction 423 return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator()); 424 } 425 426 if (Argument *Arg = dyn_cast<Argument>(Condition)) { 427 BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock(); 428 return BinaryOperator::CreateNot(Condition, 429 Arg->getName() + ".inv", 430 EntryBlock.getTerminator()); 431 } 432 433 llvm_unreachable("Unhandled condition to invert"); 434 } 435 436 /// Build the condition for one edge 437 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx, 438 bool Invert) { 439 Value *Cond = Invert ? BoolFalse : BoolTrue; 440 if (Term->isConditional()) { 441 Cond = Term->getCondition(); 442 443 if (Idx != (unsigned)Invert) 444 Cond = invert(Cond); 445 } 446 return Cond; 447 } 448 449 /// Analyze the predecessors of each block and build up predicates 450 void StructurizeCFG::gatherPredicates(RegionNode *N) { 451 RegionInfo *RI = ParentRegion->getRegionInfo(); 452 BasicBlock *BB = N->getEntry(); 453 BBPredicates &Pred = Predicates[BB]; 454 BBPredicates &LPred = LoopPreds[BB]; 455 456 for (BasicBlock *P : predecessors(BB)) { 457 // Ignore it if it's a branch from outside into our region entry 458 if (!ParentRegion->contains(P)) 459 continue; 460 461 Region *R = RI->getRegionFor(P); 462 if (R == ParentRegion) { 463 // It's a top level block in our region 464 BranchInst *Term = cast<BranchInst>(P->getTerminator()); 465 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 466 BasicBlock *Succ = Term->getSuccessor(i); 467 if (Succ != BB) 468 continue; 469 470 if (Visited.count(P)) { 471 // Normal forward edge 472 if (Term->isConditional()) { 473 // Try to treat it like an ELSE block 474 BasicBlock *Other = Term->getSuccessor(!i); 475 if (Visited.count(Other) && !Loops.count(Other) && 476 !Pred.count(Other) && !Pred.count(P)) { 477 478 Pred[Other] = BoolFalse; 479 Pred[P] = BoolTrue; 480 continue; 481 } 482 } 483 Pred[P] = buildCondition(Term, i, false); 484 } else { 485 // Back edge 486 LPred[P] = buildCondition(Term, i, true); 487 } 488 } 489 } else { 490 // It's an exit from a sub region 491 while (R->getParent() != ParentRegion) 492 R = R->getParent(); 493 494 // Edge from inside a subregion to its entry, ignore it 495 if (*R == *N) 496 continue; 497 498 BasicBlock *Entry = R->getEntry(); 499 if (Visited.count(Entry)) 500 Pred[Entry] = BoolTrue; 501 else 502 LPred[Entry] = BoolFalse; 503 } 504 } 505 } 506 507 /// Collect various loop and predicate infos 508 void StructurizeCFG::collectInfos() { 509 // Reset predicate 510 Predicates.clear(); 511 512 // and loop infos 513 Loops.clear(); 514 LoopPreds.clear(); 515 516 // Reset the visited nodes 517 Visited.clear(); 518 519 for (RegionNode *RN : reverse(Order)) { 520 LLVM_DEBUG(dbgs() << "Visiting: " 521 << (RN->isSubRegion() ? "SubRegion with entry: " : "") 522 << RN->getEntry()->getName() << " Loop Depth: " 523 << LI->getLoopDepth(RN->getEntry()) << "\n"); 524 525 // Analyze all the conditions leading to a node 526 gatherPredicates(RN); 527 528 // Remember that we've seen this node 529 Visited.insert(RN->getEntry()); 530 531 // Find the last back edges 532 analyzeLoops(RN); 533 } 534 } 535 536 /// Insert the missing branch conditions 537 void StructurizeCFG::insertConditions(bool Loops) { 538 BranchVector &Conds = Loops ? LoopConds : Conditions; 539 Value *Default = Loops ? BoolTrue : BoolFalse; 540 SSAUpdater PhiInserter; 541 542 for (BranchInst *Term : Conds) { 543 assert(Term->isConditional()); 544 545 BasicBlock *Parent = Term->getParent(); 546 BasicBlock *SuccTrue = Term->getSuccessor(0); 547 BasicBlock *SuccFalse = Term->getSuccessor(1); 548 549 PhiInserter.Initialize(Boolean, ""); 550 PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default); 551 PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default); 552 553 BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue]; 554 555 NearestCommonDominator Dominator(DT); 556 Dominator.addBlock(Parent); 557 558 Value *ParentValue = nullptr; 559 for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) { 560 BasicBlock *BB = BBAndPred.first; 561 Value *Pred = BBAndPred.second; 562 563 if (BB == Parent) { 564 ParentValue = Pred; 565 break; 566 } 567 PhiInserter.AddAvailableValue(BB, Pred); 568 Dominator.addAndRememberBlock(BB); 569 } 570 571 if (ParentValue) { 572 Term->setCondition(ParentValue); 573 } else { 574 if (!Dominator.resultIsRememberedBlock()) 575 PhiInserter.AddAvailableValue(Dominator.result(), Default); 576 577 Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent)); 578 } 579 } 580 } 581 582 /// Remove all PHI values coming from "From" into "To" and remember 583 /// them in DeletedPhis 584 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) { 585 PhiMap &Map = DeletedPhis[To]; 586 for (PHINode &Phi : To->phis()) { 587 while (Phi.getBasicBlockIndex(From) != -1) { 588 Value *Deleted = Phi.removeIncomingValue(From, false); 589 Map[&Phi].push_back(std::make_pair(From, Deleted)); 590 } 591 } 592 } 593 594 /// Add a dummy PHI value as soon as we knew the new predecessor 595 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) { 596 for (PHINode &Phi : To->phis()) { 597 Value *Undef = UndefValue::get(Phi.getType()); 598 Phi.addIncoming(Undef, From); 599 } 600 AddedPhis[To].push_back(From); 601 } 602 603 /// Add the real PHI value as soon as everything is set up 604 void StructurizeCFG::setPhiValues() { 605 SmallVector<PHINode *, 8> InsertedPhis; 606 SSAUpdater Updater(&InsertedPhis); 607 for (const auto &AddedPhi : AddedPhis) { 608 BasicBlock *To = AddedPhi.first; 609 const BBVector &From = AddedPhi.second; 610 611 if (!DeletedPhis.count(To)) 612 continue; 613 614 PhiMap &Map = DeletedPhis[To]; 615 for (const auto &PI : Map) { 616 PHINode *Phi = PI.first; 617 Value *Undef = UndefValue::get(Phi->getType()); 618 Updater.Initialize(Phi->getType(), ""); 619 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); 620 Updater.AddAvailableValue(To, Undef); 621 622 NearestCommonDominator Dominator(DT); 623 Dominator.addBlock(To); 624 for (const auto &VI : PI.second) { 625 Updater.AddAvailableValue(VI.first, VI.second); 626 Dominator.addAndRememberBlock(VI.first); 627 } 628 629 if (!Dominator.resultIsRememberedBlock()) 630 Updater.AddAvailableValue(Dominator.result(), Undef); 631 632 for (BasicBlock *FI : From) 633 Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI)); 634 } 635 636 DeletedPhis.erase(To); 637 } 638 assert(DeletedPhis.empty()); 639 640 // Simplify any phis inserted by the SSAUpdater if possible 641 bool Changed; 642 do { 643 Changed = false; 644 645 SimplifyQuery Q(Func->getParent()->getDataLayout()); 646 Q.DT = DT; 647 for (size_t i = 0; i < InsertedPhis.size(); ++i) { 648 PHINode *Phi = InsertedPhis[i]; 649 if (Value *V = SimplifyInstruction(Phi, Q)) { 650 Phi->replaceAllUsesWith(V); 651 Phi->eraseFromParent(); 652 InsertedPhis[i] = InsertedPhis.back(); 653 InsertedPhis.pop_back(); 654 i--; 655 Changed = true; 656 } 657 } 658 } while (Changed); 659 } 660 661 /// Remove phi values from all successors and then remove the terminator. 662 void StructurizeCFG::killTerminator(BasicBlock *BB) { 663 Instruction *Term = BB->getTerminator(); 664 if (!Term) 665 return; 666 667 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 668 SI != SE; ++SI) 669 delPhiValues(BB, *SI); 670 671 if (DA) 672 DA->removeValue(Term); 673 Term->eraseFromParent(); 674 } 675 676 /// Let node exit(s) point to NewExit 677 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit, 678 bool IncludeDominator) { 679 if (Node->isSubRegion()) { 680 Region *SubRegion = Node->getNodeAs<Region>(); 681 BasicBlock *OldExit = SubRegion->getExit(); 682 BasicBlock *Dominator = nullptr; 683 684 // Find all the edges from the sub region to the exit 685 for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) { 686 // Incrememt BBI before mucking with BB's terminator. 687 BasicBlock *BB = *BBI++; 688 689 if (!SubRegion->contains(BB)) 690 continue; 691 692 // Modify the edges to point to the new exit 693 delPhiValues(BB, OldExit); 694 BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit); 695 addPhiValues(BB, NewExit); 696 697 // Find the new dominator (if requested) 698 if (IncludeDominator) { 699 if (!Dominator) 700 Dominator = BB; 701 else 702 Dominator = DT->findNearestCommonDominator(Dominator, BB); 703 } 704 } 705 706 // Change the dominator (if requested) 707 if (Dominator) 708 DT->changeImmediateDominator(NewExit, Dominator); 709 710 // Update the region info 711 SubRegion->replaceExit(NewExit); 712 } else { 713 BasicBlock *BB = Node->getNodeAs<BasicBlock>(); 714 killTerminator(BB); 715 BranchInst::Create(NewExit, BB); 716 addPhiValues(BB, NewExit); 717 if (IncludeDominator) 718 DT->changeImmediateDominator(NewExit, BB); 719 } 720 } 721 722 /// Create a new flow node and update dominator tree and region info 723 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) { 724 LLVMContext &Context = Func->getContext(); 725 BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() : 726 Order.back()->getEntry(); 727 BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName, 728 Func, Insert); 729 DT->addNewBlock(Flow, Dominator); 730 ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion); 731 return Flow; 732 } 733 734 /// Create a new or reuse the previous node as flow node 735 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) { 736 BasicBlock *Entry = PrevNode->getEntry(); 737 738 if (!PrevNode->isSubRegion()) { 739 killTerminator(Entry); 740 if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end()) 741 return Entry; 742 } 743 744 // create a new flow node 745 BasicBlock *Flow = getNextFlow(Entry); 746 747 // and wire it up 748 changeExit(PrevNode, Flow, true); 749 PrevNode = ParentRegion->getBBNode(Flow); 750 return Flow; 751 } 752 753 /// Returns the region exit if possible, otherwise just a new flow node 754 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow, 755 bool ExitUseAllowed) { 756 if (!Order.empty() || !ExitUseAllowed) 757 return getNextFlow(Flow); 758 759 BasicBlock *Exit = ParentRegion->getExit(); 760 DT->changeImmediateDominator(Exit, Flow); 761 addPhiValues(Flow, Exit); 762 return Exit; 763 } 764 765 /// Set the previous node 766 void StructurizeCFG::setPrevNode(BasicBlock *BB) { 767 PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB) 768 : nullptr; 769 } 770 771 /// Does BB dominate all the predicates of Node? 772 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) { 773 BBPredicates &Preds = Predicates[Node->getEntry()]; 774 return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) { 775 return DT->dominates(BB, Pred.first); 776 }); 777 } 778 779 /// Can we predict that this node will always be called? 780 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) { 781 BBPredicates &Preds = Predicates[Node->getEntry()]; 782 bool Dominated = false; 783 784 // Regionentry is always true 785 if (!PrevNode) 786 return true; 787 788 for (std::pair<BasicBlock*, Value*> Pred : Preds) { 789 BasicBlock *BB = Pred.first; 790 Value *V = Pred.second; 791 792 if (V != BoolTrue) 793 return false; 794 795 if (!Dominated && DT->dominates(BB, PrevNode->getEntry())) 796 Dominated = true; 797 } 798 799 // TODO: The dominator check is too strict 800 return Dominated; 801 } 802 803 /// Take one node from the order vector and wire it up 804 void StructurizeCFG::wireFlow(bool ExitUseAllowed, 805 BasicBlock *LoopEnd) { 806 RegionNode *Node = Order.pop_back_val(); 807 Visited.insert(Node->getEntry()); 808 809 if (isPredictableTrue(Node)) { 810 // Just a linear flow 811 if (PrevNode) { 812 changeExit(PrevNode, Node->getEntry(), true); 813 } 814 PrevNode = Node; 815 } else { 816 // Insert extra prefix node (or reuse last one) 817 BasicBlock *Flow = needPrefix(false); 818 819 // Insert extra postfix node (or use exit instead) 820 BasicBlock *Entry = Node->getEntry(); 821 BasicBlock *Next = needPostfix(Flow, ExitUseAllowed); 822 823 // let it point to entry and next block 824 Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow)); 825 addPhiValues(Flow, Entry); 826 DT->changeImmediateDominator(Entry, Flow); 827 828 PrevNode = Node; 829 while (!Order.empty() && !Visited.count(LoopEnd) && 830 dominatesPredicates(Entry, Order.back())) { 831 handleLoops(false, LoopEnd); 832 } 833 834 changeExit(PrevNode, Next, false); 835 setPrevNode(Next); 836 } 837 } 838 839 void StructurizeCFG::handleLoops(bool ExitUseAllowed, 840 BasicBlock *LoopEnd) { 841 RegionNode *Node = Order.back(); 842 BasicBlock *LoopStart = Node->getEntry(); 843 844 if (!Loops.count(LoopStart)) { 845 wireFlow(ExitUseAllowed, LoopEnd); 846 return; 847 } 848 849 if (!isPredictableTrue(Node)) 850 LoopStart = needPrefix(true); 851 852 LoopEnd = Loops[Node->getEntry()]; 853 wireFlow(false, LoopEnd); 854 while (!Visited.count(LoopEnd)) { 855 handleLoops(false, LoopEnd); 856 } 857 858 // If the start of the loop is the entry block, we can't branch to it so 859 // insert a new dummy entry block. 860 Function *LoopFunc = LoopStart->getParent(); 861 if (LoopStart == &LoopFunc->getEntryBlock()) { 862 LoopStart->setName("entry.orig"); 863 864 BasicBlock *NewEntry = 865 BasicBlock::Create(LoopStart->getContext(), 866 "entry", 867 LoopFunc, 868 LoopStart); 869 BranchInst::Create(LoopStart, NewEntry); 870 DT->setNewRoot(NewEntry); 871 } 872 873 // Create an extra loop end node 874 LoopEnd = needPrefix(false); 875 BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed); 876 LoopConds.push_back(BranchInst::Create(Next, LoopStart, 877 BoolUndef, LoopEnd)); 878 addPhiValues(LoopEnd, LoopStart); 879 setPrevNode(Next); 880 } 881 882 /// After this function control flow looks like it should be, but 883 /// branches and PHI nodes only have undefined conditions. 884 void StructurizeCFG::createFlow() { 885 BasicBlock *Exit = ParentRegion->getExit(); 886 bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit); 887 888 DeletedPhis.clear(); 889 AddedPhis.clear(); 890 Conditions.clear(); 891 LoopConds.clear(); 892 893 PrevNode = nullptr; 894 Visited.clear(); 895 896 while (!Order.empty()) { 897 handleLoops(EntryDominatesExit, nullptr); 898 } 899 900 if (PrevNode) 901 changeExit(PrevNode, Exit, EntryDominatesExit); 902 else 903 assert(EntryDominatesExit); 904 } 905 906 /// Handle a rare case where the disintegrated nodes instructions 907 /// no longer dominate all their uses. Not sure if this is really necessary 908 void StructurizeCFG::rebuildSSA() { 909 SSAUpdater Updater; 910 for (BasicBlock *BB : ParentRegion->blocks()) 911 for (Instruction &I : *BB) { 912 bool Initialized = false; 913 // We may modify the use list as we iterate over it, so be careful to 914 // compute the next element in the use list at the top of the loop. 915 for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) { 916 Use &U = *UI++; 917 Instruction *User = cast<Instruction>(U.getUser()); 918 if (User->getParent() == BB) { 919 continue; 920 } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 921 if (UserPN->getIncomingBlock(U) == BB) 922 continue; 923 } 924 925 if (DT->dominates(&I, User)) 926 continue; 927 928 if (!Initialized) { 929 Value *Undef = UndefValue::get(I.getType()); 930 Updater.Initialize(I.getType(), ""); 931 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); 932 Updater.AddAvailableValue(BB, &I); 933 Initialized = true; 934 } 935 Updater.RewriteUseAfterInsertions(U); 936 } 937 } 938 } 939 940 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID, 941 const LegacyDivergenceAnalysis &DA) { 942 // Bool for if all sub-regions are uniform. 943 bool SubRegionsAreUniform = true; 944 // Count of how many direct children are conditional. 945 unsigned ConditionalDirectChildren = 0; 946 947 for (auto E : R->elements()) { 948 if (!E->isSubRegion()) { 949 auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator()); 950 if (!Br || !Br->isConditional()) 951 continue; 952 953 if (!DA.isUniform(Br)) 954 return false; 955 956 // One of our direct children is conditional. 957 ConditionalDirectChildren++; 958 959 LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName() 960 << " has uniform terminator\n"); 961 } else { 962 // Explicitly refuse to treat regions as uniform if they have non-uniform 963 // subregions. We cannot rely on DivergenceAnalysis for branches in 964 // subregions because those branches may have been removed and re-created, 965 // so we look for our metadata instead. 966 // 967 // Warning: It would be nice to treat regions as uniform based only on 968 // their direct child basic blocks' terminators, regardless of whether 969 // subregions are uniform or not. However, this requires a very careful 970 // look at SIAnnotateControlFlow to make sure nothing breaks there. 971 for (auto BB : E->getNodeAs<Region>()->blocks()) { 972 auto Br = dyn_cast<BranchInst>(BB->getTerminator()); 973 if (!Br || !Br->isConditional()) 974 continue; 975 976 if (!Br->getMetadata(UniformMDKindID)) { 977 // Early exit if we cannot have relaxed uniform regions. 978 if (!RelaxedUniformRegions) 979 return false; 980 981 SubRegionsAreUniform = false; 982 break; 983 } 984 } 985 } 986 } 987 988 // Our region is uniform if: 989 // 1. All conditional branches that are direct children are uniform (checked 990 // above). 991 // 2. And either: 992 // a. All sub-regions are uniform. 993 // b. There is one or less conditional branches among the direct children. 994 return SubRegionsAreUniform || (ConditionalDirectChildren <= 1); 995 } 996 997 /// Run the transformation for each region found 998 bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) { 999 if (R->isTopLevelRegion()) 1000 return false; 1001 1002 DA = nullptr; 1003 1004 if (SkipUniformRegions) { 1005 // TODO: We could probably be smarter here with how we handle sub-regions. 1006 // We currently rely on the fact that metadata is set by earlier invocations 1007 // of the pass on sub-regions, and that this metadata doesn't get lost -- 1008 // but we shouldn't rely on metadata for correctness! 1009 unsigned UniformMDKindID = 1010 R->getEntry()->getContext().getMDKindID("structurizecfg.uniform"); 1011 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1012 1013 if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) { 1014 LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R 1015 << '\n'); 1016 1017 // Mark all direct child block terminators as having been treated as 1018 // uniform. To account for a possible future in which non-uniform 1019 // sub-regions are treated more cleverly, indirect children are not 1020 // marked as uniform. 1021 MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {}); 1022 for (RegionNode *E : R->elements()) { 1023 if (E->isSubRegion()) 1024 continue; 1025 1026 if (Instruction *Term = E->getEntry()->getTerminator()) 1027 Term->setMetadata(UniformMDKindID, MD); 1028 } 1029 1030 return false; 1031 } 1032 } 1033 1034 Func = R->getEntry()->getParent(); 1035 ParentRegion = R; 1036 1037 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1038 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1039 1040 orderNodes(); 1041 collectInfos(); 1042 createFlow(); 1043 insertConditions(false); 1044 insertConditions(true); 1045 setPhiValues(); 1046 rebuildSSA(); 1047 1048 // Cleanup 1049 Order.clear(); 1050 Visited.clear(); 1051 DeletedPhis.clear(); 1052 AddedPhis.clear(); 1053 Predicates.clear(); 1054 Conditions.clear(); 1055 Loops.clear(); 1056 LoopPreds.clear(); 1057 LoopConds.clear(); 1058 1059 return true; 1060 } 1061 1062 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) { 1063 return new StructurizeCFG(SkipUniformRegions); 1064 } 1065