1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks, when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Sink.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/CFG.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Scalar.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "sink" 31 32 STATISTIC(NumSunk, "Number of instructions sunk"); 33 STATISTIC(NumSinkIter, "Number of sinking iterations"); 34 35 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA, 36 SmallPtrSetImpl<Instruction *> &Stores) { 37 38 if (Inst->mayWriteToMemory()) { 39 Stores.insert(Inst); 40 return false; 41 } 42 43 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 44 MemoryLocation Loc = MemoryLocation::get(L); 45 for (Instruction *S : Stores) 46 if (isModSet(AA.getModRefInfo(S, Loc))) 47 return false; 48 } 49 50 if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() || 51 Inst->mayThrow()) 52 return false; 53 54 if (auto *Call = dyn_cast<CallBase>(Inst)) { 55 // Convergent operations cannot be made control-dependent on additional 56 // values. 57 if (Call->isConvergent()) 58 return false; 59 60 for (Instruction *S : Stores) 61 if (isModSet(AA.getModRefInfo(S, Call))) 62 return false; 63 } 64 65 return true; 66 } 67 68 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 69 /// in the specified basic block. 70 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo, 71 DominatorTree &DT, LoopInfo &LI) { 72 assert(Inst && "Instruction to be sunk is null"); 73 assert(SuccToSinkTo && "Candidate sink target is null"); 74 75 // It's never legal to sink an instruction into a block which terminates in an 76 // EH-pad. 77 if (SuccToSinkTo->getTerminator()->isExceptionalTerminator()) 78 return false; 79 80 // If the block has multiple predecessors, this would introduce computation 81 // on different code paths. We could split the critical edge, but for now we 82 // just punt. 83 // FIXME: Split critical edges if not backedges. 84 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 85 // We cannot sink a load across a critical edge - there may be stores in 86 // other code paths. 87 if (Inst->mayReadFromMemory()) 88 return false; 89 90 // We don't want to sink across a critical edge if we don't dominate the 91 // successor. We could be introducing calculations to new code paths. 92 if (!DT.dominates(Inst->getParent(), SuccToSinkTo)) 93 return false; 94 95 // Don't sink instructions into a loop. 96 Loop *succ = LI.getLoopFor(SuccToSinkTo); 97 Loop *cur = LI.getLoopFor(Inst->getParent()); 98 if (succ != nullptr && succ != cur) 99 return false; 100 } 101 102 return true; 103 } 104 105 /// SinkInstruction - Determine whether it is safe to sink the specified machine 106 /// instruction out of its current block into a successor. 107 static bool SinkInstruction(Instruction *Inst, 108 SmallPtrSetImpl<Instruction *> &Stores, 109 DominatorTree &DT, LoopInfo &LI, AAResults &AA) { 110 111 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 112 // entry block are dynamically sized stack objects. 113 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 114 if (AI->isStaticAlloca()) 115 return false; 116 117 // Check if it's safe to move the instruction. 118 if (!isSafeToMove(Inst, AA, Stores)) 119 return false; 120 121 // FIXME: This should include support for sinking instructions within the 122 // block they are currently in to shorten the live ranges. We often get 123 // instructions sunk into the top of a large block, but it would be better to 124 // also sink them down before their first use in the block. This xform has to 125 // be careful not to *increase* register pressure though, e.g. sinking 126 // "x = y + z" down if it kills y and z would increase the live ranges of y 127 // and z and only shrink the live range of x. 128 129 // SuccToSinkTo - This is the successor to sink this instruction to, once we 130 // decide. 131 BasicBlock *SuccToSinkTo = nullptr; 132 133 // Find the nearest common dominator of all users as the candidate. 134 BasicBlock *BB = Inst->getParent(); 135 for (Use &U : Inst->uses()) { 136 Instruction *UseInst = cast<Instruction>(U.getUser()); 137 BasicBlock *UseBlock = UseInst->getParent(); 138 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 139 // PHI nodes use the operand in the predecessor block, not the block with 140 // the PHI. 141 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 142 UseBlock = PN->getIncomingBlock(Num); 143 } 144 if (SuccToSinkTo) 145 SuccToSinkTo = DT.findNearestCommonDominator(SuccToSinkTo, UseBlock); 146 else 147 SuccToSinkTo = UseBlock; 148 // The current basic block needs to dominate the candidate. 149 if (!DT.dominates(BB, SuccToSinkTo)) 150 return false; 151 } 152 153 if (SuccToSinkTo) { 154 // The nearest common dominator may be in a parent loop of BB, which may not 155 // be beneficial. Find an ancestor. 156 while (SuccToSinkTo != BB && 157 !IsAcceptableTarget(Inst, SuccToSinkTo, DT, LI)) 158 SuccToSinkTo = DT.getNode(SuccToSinkTo)->getIDom()->getBlock(); 159 if (SuccToSinkTo == BB) 160 SuccToSinkTo = nullptr; 161 } 162 163 // If we couldn't find a block to sink to, ignore this instruction. 164 if (!SuccToSinkTo) 165 return false; 166 167 LLVM_DEBUG(dbgs() << "Sink" << *Inst << " ("; 168 Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> "; 169 SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n"); 170 171 // Move the instruction. 172 Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt()); 173 return true; 174 } 175 176 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, 177 AAResults &AA) { 178 // Can't sink anything out of a block that has less than two successors. 179 if (BB.getTerminator()->getNumSuccessors() <= 1) return false; 180 181 // Don't bother sinking code out of unreachable blocks. In addition to being 182 // unprofitable, it can also lead to infinite looping, because in an 183 // unreachable loop there may be nowhere to stop. 184 if (!DT.isReachableFromEntry(&BB)) return false; 185 186 bool MadeChange = false; 187 188 // Walk the basic block bottom-up. Remember if we saw a store. 189 BasicBlock::iterator I = BB.end(); 190 --I; 191 bool ProcessedBegin = false; 192 SmallPtrSet<Instruction *, 8> Stores; 193 do { 194 Instruction *Inst = &*I; // The instruction to sink. 195 196 // Predecrement I (if it's not begin) so that it isn't invalidated by 197 // sinking. 198 ProcessedBegin = I == BB.begin(); 199 if (!ProcessedBegin) 200 --I; 201 202 if (isa<DbgInfoIntrinsic>(Inst)) 203 continue; 204 205 if (SinkInstruction(Inst, Stores, DT, LI, AA)) { 206 ++NumSunk; 207 MadeChange = true; 208 } 209 210 // If we just processed the first instruction in the block, we're done. 211 } while (!ProcessedBegin); 212 213 return MadeChange; 214 } 215 216 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT, 217 LoopInfo &LI, AAResults &AA) { 218 bool MadeChange, EverMadeChange = false; 219 220 do { 221 MadeChange = false; 222 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 223 // Process all basic blocks. 224 for (BasicBlock &I : F) 225 MadeChange |= ProcessBlock(I, DT, LI, AA); 226 EverMadeChange |= MadeChange; 227 NumSinkIter++; 228 } while (MadeChange); 229 230 return EverMadeChange; 231 } 232 233 PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) { 234 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 235 auto &LI = AM.getResult<LoopAnalysis>(F); 236 auto &AA = AM.getResult<AAManager>(F); 237 238 if (!iterativelySinkInstructions(F, DT, LI, AA)) 239 return PreservedAnalyses::all(); 240 241 PreservedAnalyses PA; 242 PA.preserveSet<CFGAnalyses>(); 243 return PA; 244 } 245 246 namespace { 247 class SinkingLegacyPass : public FunctionPass { 248 public: 249 static char ID; // Pass identification 250 SinkingLegacyPass() : FunctionPass(ID) { 251 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry()); 252 } 253 254 bool runOnFunction(Function &F) override { 255 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 256 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 257 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 258 259 return iterativelySinkInstructions(F, DT, LI, AA); 260 } 261 262 void getAnalysisUsage(AnalysisUsage &AU) const override { 263 AU.setPreservesCFG(); 264 FunctionPass::getAnalysisUsage(AU); 265 AU.addRequired<AAResultsWrapperPass>(); 266 AU.addRequired<DominatorTreeWrapperPass>(); 267 AU.addRequired<LoopInfoWrapperPass>(); 268 AU.addPreserved<DominatorTreeWrapperPass>(); 269 AU.addPreserved<LoopInfoWrapperPass>(); 270 } 271 }; 272 } // end anonymous namespace 273 274 char SinkingLegacyPass::ID = 0; 275 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 277 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 278 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 279 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false) 280 281 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); } 282