xref: /llvm-project/llvm/lib/Transforms/Scalar/Sink.cpp (revision 8ac477ffb509943c940ce37f45b8429388dfdf58)
1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks, when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sink"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Analysis/Dominators.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27 
28 STATISTIC(NumSunk, "Number of instructions sunk");
29 
30 namespace {
31   class Sinking : public FunctionPass {
32     DominatorTree *DT;
33     LoopInfo *LI;
34     AliasAnalysis *AA;
35 
36   public:
37     static char ID; // Pass identification
38     Sinking() : FunctionPass(ID) {}
39 
40     virtual bool runOnFunction(Function &F);
41 
42     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
43       AU.setPreservesCFG();
44       FunctionPass::getAnalysisUsage(AU);
45       AU.addRequired<AliasAnalysis>();
46       AU.addRequired<DominatorTree>();
47       AU.addRequired<LoopInfo>();
48       AU.addPreserved<DominatorTree>();
49       AU.addPreserved<LoopInfo>();
50     }
51   private:
52     bool ProcessBlock(BasicBlock &BB);
53     bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
54     bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
55   };
56 } // end anonymous namespace
57 
58 char Sinking::ID = 0;
59 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
60 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
61 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
62 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
63 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
64 
65 FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
66 
67 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
68 /// occur in blocks dominated by the specified block.
69 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
70                                       BasicBlock *BB) const {
71   // Ignoring debug uses is necessary so debug info doesn't affect the code.
72   // This may leave a referencing dbg_value in the original block, before
73   // the definition of the vreg.  Dwarf generator handles this although the
74   // user might not get the right info at runtime.
75   for (Value::use_iterator I = Inst->use_begin(),
76        E = Inst->use_end(); I != E; ++I) {
77     // Determine the block of the use.
78     Instruction *UseInst = cast<Instruction>(*I);
79     BasicBlock *UseBlock = UseInst->getParent();
80     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
81       // PHI nodes use the operand in the predecessor block, not the block with
82       // the PHI.
83       unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
84       UseBlock = PN->getIncomingBlock(Num);
85     }
86     // Check that it dominates.
87     if (!DT->dominates(BB, UseBlock))
88       return false;
89   }
90   return true;
91 }
92 
93 bool Sinking::runOnFunction(Function &F) {
94   DT = &getAnalysis<DominatorTree>();
95   LI = &getAnalysis<LoopInfo>();
96   AA = &getAnalysis<AliasAnalysis>();
97 
98   bool EverMadeChange = false;
99 
100   while (1) {
101     bool MadeChange = false;
102 
103     // Process all basic blocks.
104     for (Function::iterator I = F.begin(), E = F.end();
105          I != E; ++I)
106       MadeChange |= ProcessBlock(*I);
107 
108     // If this iteration over the code changed anything, keep iterating.
109     if (!MadeChange) break;
110     EverMadeChange = true;
111   }
112   return EverMadeChange;
113 }
114 
115 bool Sinking::ProcessBlock(BasicBlock &BB) {
116   // Can't sink anything out of a block that has less than two successors.
117   if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
118 
119   // Don't bother sinking code out of unreachable blocks. In addition to being
120   // unprofitable, it can also lead to infinite looping, because in an unreachable
121   // loop there may be nowhere to stop.
122   if (!DT->isReachableFromEntry(&BB)) return false;
123 
124   bool MadeChange = false;
125 
126   // Walk the basic block bottom-up.  Remember if we saw a store.
127   BasicBlock::iterator I = BB.end();
128   --I;
129   bool ProcessedBegin = false;
130   SmallPtrSet<Instruction *, 8> Stores;
131   do {
132     Instruction *Inst = I;  // The instruction to sink.
133 
134     // Predecrement I (if it's not begin) so that it isn't invalidated by
135     // sinking.
136     ProcessedBegin = I == BB.begin();
137     if (!ProcessedBegin)
138       --I;
139 
140     if (isa<DbgInfoIntrinsic>(Inst))
141       continue;
142 
143     if (SinkInstruction(Inst, Stores))
144       ++NumSunk, MadeChange = true;
145 
146     // If we just processed the first instruction in the block, we're done.
147   } while (!ProcessedBegin);
148 
149   return MadeChange;
150 }
151 
152 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
153                          SmallPtrSet<Instruction *, 8> &Stores) {
154   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
155     if (L->isVolatile()) return false;
156 
157     Value *Ptr = L->getPointerOperand();
158     unsigned Size = AA->getTypeStoreSize(L->getType());
159     for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
160          E = Stores.end(); I != E; ++I)
161       if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod)
162         return false;
163   }
164 
165   if (Inst->mayWriteToMemory()) {
166     Stores.insert(Inst);
167     return false;
168   }
169 
170   return Inst->isSafeToSpeculativelyExecute();
171 }
172 
173 /// SinkInstruction - Determine whether it is safe to sink the specified machine
174 /// instruction out of its current block into a successor.
175 bool Sinking::SinkInstruction(Instruction *Inst,
176                               SmallPtrSet<Instruction *, 8> &Stores) {
177   // Check if it's safe to move the instruction.
178   if (!isSafeToMove(Inst, AA, Stores))
179     return false;
180 
181   // FIXME: This should include support for sinking instructions within the
182   // block they are currently in to shorten the live ranges.  We often get
183   // instructions sunk into the top of a large block, but it would be better to
184   // also sink them down before their first use in the block.  This xform has to
185   // be careful not to *increase* register pressure though, e.g. sinking
186   // "x = y + z" down if it kills y and z would increase the live ranges of y
187   // and z and only shrink the live range of x.
188 
189   // Loop over all the operands of the specified instruction.  If there is
190   // anything we can't handle, bail out.
191   BasicBlock *ParentBlock = Inst->getParent();
192 
193   // SuccToSinkTo - This is the successor to sink this instruction to, once we
194   // decide.
195   BasicBlock *SuccToSinkTo = 0;
196 
197   // FIXME: This picks a successor to sink into based on having one
198   // successor that dominates all the uses.  However, there are cases where
199   // sinking can happen but where the sink point isn't a successor.  For
200   // example:
201   //   x = computation
202   //   if () {} else {}
203   //   use x
204   // the instruction could be sunk over the whole diamond for the
205   // if/then/else (or loop, etc), allowing it to be sunk into other blocks
206   // after that.
207 
208   // Instructions can only be sunk if all their uses are in blocks
209   // dominated by one of the successors.
210   // Look at all the successors and decide which one
211   // we should sink to.
212   for (succ_iterator SI = succ_begin(ParentBlock),
213        E = succ_end(ParentBlock); SI != E; ++SI) {
214     if (AllUsesDominatedByBlock(Inst, *SI)) {
215       SuccToSinkTo = *SI;
216       break;
217     }
218   }
219 
220   // If we couldn't find a block to sink to, ignore this instruction.
221   if (SuccToSinkTo == 0)
222     return false;
223 
224   // It is not possible to sink an instruction into its own block.  This can
225   // happen with loops.
226   if (Inst->getParent() == SuccToSinkTo)
227     return false;
228 
229   DEBUG(dbgs() << "Sink instr " << *Inst);
230   DEBUG(dbgs() << "to block ";
231         WriteAsOperand(dbgs(), SuccToSinkTo, false));
232 
233   // If the block has multiple predecessors, this would introduce computation on
234   // a path that it doesn't already exist.  We could split the critical edge,
235   // but for now we just punt.
236   // FIXME: Split critical edges if not backedges.
237   if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
238     // We cannot sink a load across a critical edge - there may be stores in
239     // other code paths.
240     if (!Inst->isSafeToSpeculativelyExecute()) {
241       DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
242       return false;
243     }
244 
245     // We don't want to sink across a critical edge if we don't dominate the
246     // successor. We could be introducing calculations to new code paths.
247     if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
248       DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
249       return false;
250     }
251 
252     // Don't sink instructions into a loop.
253     if (LI->isLoopHeader(SuccToSinkTo)) {
254       DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
255       return false;
256     }
257 
258     // Otherwise we are OK with sinking along a critical edge.
259     DEBUG(dbgs() << "Sinking along critical edge.\n");
260   }
261 
262   // Determine where to insert into.  Skip phi nodes.
263   BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
264   while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
265     ++InsertPos;
266 
267   // Move the instruction.
268   Inst->moveBefore(InsertPos);
269   return true;
270 }
271