1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks, when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "sink" 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/CFG.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace llvm; 27 28 STATISTIC(NumSunk, "Number of instructions sunk"); 29 STATISTIC(NumSinkIter, "Number of sinking iterations"); 30 31 namespace { 32 class Sinking : public FunctionPass { 33 DominatorTree *DT; 34 LoopInfo *LI; 35 AliasAnalysis *AA; 36 37 public: 38 static char ID; // Pass identification 39 Sinking() : FunctionPass(ID) { 40 initializeSinkingPass(*PassRegistry::getPassRegistry()); 41 } 42 43 virtual bool runOnFunction(Function &F); 44 45 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 46 AU.setPreservesCFG(); 47 FunctionPass::getAnalysisUsage(AU); 48 AU.addRequired<AliasAnalysis>(); 49 AU.addRequired<DominatorTreeWrapperPass>(); 50 AU.addRequired<LoopInfo>(); 51 AU.addPreserved<DominatorTreeWrapperPass>(); 52 AU.addPreserved<LoopInfo>(); 53 } 54 private: 55 bool ProcessBlock(BasicBlock &BB); 56 bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); 57 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; 58 bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const; 59 }; 60 } // end anonymous namespace 61 62 char Sinking::ID = 0; 63 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) 64 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 65 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 66 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 67 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) 68 69 FunctionPass *llvm::createSinkingPass() { return new Sinking(); } 70 71 /// AllUsesDominatedByBlock - Return true if all uses of the specified value 72 /// occur in blocks dominated by the specified block. 73 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 74 BasicBlock *BB) const { 75 // Ignoring debug uses is necessary so debug info doesn't affect the code. 76 // This may leave a referencing dbg_value in the original block, before 77 // the definition of the vreg. Dwarf generator handles this although the 78 // user might not get the right info at runtime. 79 for (Value::use_iterator I = Inst->use_begin(), 80 E = Inst->use_end(); I != E; ++I) { 81 // Determine the block of the use. 82 Instruction *UseInst = cast<Instruction>(*I); 83 BasicBlock *UseBlock = UseInst->getParent(); 84 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 85 // PHI nodes use the operand in the predecessor block, not the block with 86 // the PHI. 87 unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo()); 88 UseBlock = PN->getIncomingBlock(Num); 89 } 90 // Check that it dominates. 91 if (!DT->dominates(BB, UseBlock)) 92 return false; 93 } 94 return true; 95 } 96 97 bool Sinking::runOnFunction(Function &F) { 98 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 99 LI = &getAnalysis<LoopInfo>(); 100 AA = &getAnalysis<AliasAnalysis>(); 101 102 bool MadeChange, EverMadeChange = false; 103 104 do { 105 MadeChange = false; 106 DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 107 // Process all basic blocks. 108 for (Function::iterator I = F.begin(), E = F.end(); 109 I != E; ++I) 110 MadeChange |= ProcessBlock(*I); 111 EverMadeChange |= MadeChange; 112 NumSinkIter++; 113 } while (MadeChange); 114 115 return EverMadeChange; 116 } 117 118 bool Sinking::ProcessBlock(BasicBlock &BB) { 119 // Can't sink anything out of a block that has less than two successors. 120 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; 121 122 // Don't bother sinking code out of unreachable blocks. In addition to being 123 // unprofitable, it can also lead to infinite looping, because in an 124 // unreachable loop there may be nowhere to stop. 125 if (!DT->isReachableFromEntry(&BB)) return false; 126 127 bool MadeChange = false; 128 129 // Walk the basic block bottom-up. Remember if we saw a store. 130 BasicBlock::iterator I = BB.end(); 131 --I; 132 bool ProcessedBegin = false; 133 SmallPtrSet<Instruction *, 8> Stores; 134 do { 135 Instruction *Inst = I; // The instruction to sink. 136 137 // Predecrement I (if it's not begin) so that it isn't invalidated by 138 // sinking. 139 ProcessedBegin = I == BB.begin(); 140 if (!ProcessedBegin) 141 --I; 142 143 if (isa<DbgInfoIntrinsic>(Inst)) 144 continue; 145 146 if (SinkInstruction(Inst, Stores)) 147 ++NumSunk, MadeChange = true; 148 149 // If we just processed the first instruction in the block, we're done. 150 } while (!ProcessedBegin); 151 152 return MadeChange; 153 } 154 155 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, 156 SmallPtrSet<Instruction *, 8> &Stores) { 157 158 if (Inst->mayWriteToMemory()) { 159 Stores.insert(Inst); 160 return false; 161 } 162 163 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 164 AliasAnalysis::Location Loc = AA->getLocation(L); 165 for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), 166 E = Stores.end(); I != E; ++I) 167 if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod) 168 return false; 169 } 170 171 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) 172 return false; 173 174 return true; 175 } 176 177 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 178 /// in the specified basic block. 179 bool Sinking::IsAcceptableTarget(Instruction *Inst, 180 BasicBlock *SuccToSinkTo) const { 181 assert(Inst && "Instruction to be sunk is null"); 182 assert(SuccToSinkTo && "Candidate sink target is null"); 183 184 // It is not possible to sink an instruction into its own block. This can 185 // happen with loops. 186 if (Inst->getParent() == SuccToSinkTo) 187 return false; 188 189 // If the block has multiple predecessors, this would introduce computation 190 // on different code paths. We could split the critical edge, but for now we 191 // just punt. 192 // FIXME: Split critical edges if not backedges. 193 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 194 // We cannot sink a load across a critical edge - there may be stores in 195 // other code paths. 196 if (!isSafeToSpeculativelyExecute(Inst)) 197 return false; 198 199 // We don't want to sink across a critical edge if we don't dominate the 200 // successor. We could be introducing calculations to new code paths. 201 if (!DT->dominates(Inst->getParent(), SuccToSinkTo)) 202 return false; 203 204 // Don't sink instructions into a loop. 205 Loop *succ = LI->getLoopFor(SuccToSinkTo); 206 Loop *cur = LI->getLoopFor(Inst->getParent()); 207 if (succ != 0 && succ != cur) 208 return false; 209 } 210 211 // Finally, check that all the uses of the instruction are actually 212 // dominated by the candidate 213 return AllUsesDominatedByBlock(Inst, SuccToSinkTo); 214 } 215 216 /// SinkInstruction - Determine whether it is safe to sink the specified machine 217 /// instruction out of its current block into a successor. 218 bool Sinking::SinkInstruction(Instruction *Inst, 219 SmallPtrSet<Instruction *, 8> &Stores) { 220 // Check if it's safe to move the instruction. 221 if (!isSafeToMove(Inst, AA, Stores)) 222 return false; 223 224 // FIXME: This should include support for sinking instructions within the 225 // block they are currently in to shorten the live ranges. We often get 226 // instructions sunk into the top of a large block, but it would be better to 227 // also sink them down before their first use in the block. This xform has to 228 // be careful not to *increase* register pressure though, e.g. sinking 229 // "x = y + z" down if it kills y and z would increase the live ranges of y 230 // and z and only shrink the live range of x. 231 232 // SuccToSinkTo - This is the successor to sink this instruction to, once we 233 // decide. 234 BasicBlock *SuccToSinkTo = 0; 235 236 // Instructions can only be sunk if all their uses are in blocks 237 // dominated by one of the successors. 238 // Look at all the postdominators and see if we can sink it in one. 239 DomTreeNode *DTN = DT->getNode(Inst->getParent()); 240 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 241 I != E && SuccToSinkTo == 0; ++I) { 242 BasicBlock *Candidate = (*I)->getBlock(); 243 if ((*I)->getIDom()->getBlock() == Inst->getParent() && 244 IsAcceptableTarget(Inst, Candidate)) 245 SuccToSinkTo = Candidate; 246 } 247 248 // If no suitable postdominator was found, look at all the successors and 249 // decide which one we should sink to, if any. 250 for (succ_iterator I = succ_begin(Inst->getParent()), 251 E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) { 252 if (IsAcceptableTarget(Inst, *I)) 253 SuccToSinkTo = *I; 254 } 255 256 // If we couldn't find a block to sink to, ignore this instruction. 257 if (SuccToSinkTo == 0) 258 return false; 259 260 DEBUG(dbgs() << "Sink" << *Inst << " ("; 261 Inst->getParent()->printAsOperand(dbgs(), false); 262 dbgs() << " -> "; 263 SuccToSinkTo->printAsOperand(dbgs(), false); 264 dbgs() << ")\n"); 265 266 // Move the instruction. 267 Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt()); 268 return true; 269 } 270