1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks, when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "sink" 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/IntrinsicInst.h" 18 #include "llvm/Analysis/Dominators.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Assembly/Writer.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Support/CFG.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace llvm; 27 28 STATISTIC(NumSunk, "Number of instructions sunk"); 29 30 namespace { 31 class Sinking : public FunctionPass { 32 DominatorTree *DT; 33 LoopInfo *LI; 34 AliasAnalysis *AA; 35 36 public: 37 static char ID; // Pass identification 38 Sinking() : FunctionPass(&ID) {} 39 40 virtual bool runOnFunction(Function &F); 41 42 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 43 AU.setPreservesCFG(); 44 FunctionPass::getAnalysisUsage(AU); 45 AU.addRequired<AliasAnalysis>(); 46 AU.addRequired<DominatorTree>(); 47 AU.addRequired<LoopInfo>(); 48 AU.addPreserved<DominatorTree>(); 49 AU.addPreserved<LoopInfo>(); 50 } 51 private: 52 bool ProcessBlock(BasicBlock &BB); 53 bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); 54 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; 55 }; 56 } // end anonymous namespace 57 58 char Sinking::ID = 0; 59 static RegisterPass<Sinking> 60 X("sink", "Code sinking"); 61 62 FunctionPass *llvm::createSinkingPass() { return new Sinking(); } 63 64 /// AllUsesDominatedByBlock - Return true if all uses of the specified value 65 /// occur in blocks dominated by the specified block. 66 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 67 BasicBlock *BB) const { 68 // Ignoring debug uses is necessary so debug info doesn't affect the code. 69 // This may leave a referencing dbg_value in the original block, before 70 // the definition of the vreg. Dwarf generator handles this although the 71 // user might not get the right info at runtime. 72 for (Value::use_iterator I = Inst->use_begin(), 73 E = Inst->use_end(); I != E; ++I) { 74 // Determine the block of the use. 75 Instruction *UseInst = cast<Instruction>(*I); 76 BasicBlock *UseBlock = UseInst->getParent(); 77 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 78 // PHI nodes use the operand in the predecessor block, not the block with 79 // the PHI. 80 unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo()); 81 UseBlock = PN->getIncomingBlock(Num); 82 } 83 // Check that it dominates. 84 if (!DT->dominates(BB, UseBlock)) 85 return false; 86 } 87 return true; 88 } 89 90 bool Sinking::runOnFunction(Function &F) { 91 DT = &getAnalysis<DominatorTree>(); 92 LI = &getAnalysis<LoopInfo>(); 93 AA = &getAnalysis<AliasAnalysis>(); 94 95 bool EverMadeChange = false; 96 97 while (1) { 98 bool MadeChange = false; 99 100 // Process all basic blocks. 101 for (Function::iterator I = F.begin(), E = F.end(); 102 I != E; ++I) 103 MadeChange |= ProcessBlock(*I); 104 105 // If this iteration over the code changed anything, keep iterating. 106 if (!MadeChange) break; 107 EverMadeChange = true; 108 } 109 return EverMadeChange; 110 } 111 112 bool Sinking::ProcessBlock(BasicBlock &BB) { 113 // Can't sink anything out of a block that has less than two successors. 114 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; 115 116 // Don't bother sinking code out of unreachable blocks. In addition to being 117 // unprofitable, it can also lead to infinite looping, because in an unreachable 118 // loop there may be nowhere to stop. 119 if (!DT->isReachableFromEntry(&BB)) return false; 120 121 bool MadeChange = false; 122 123 // Walk the basic block bottom-up. Remember if we saw a store. 124 BasicBlock::iterator I = BB.end(); 125 --I; 126 bool ProcessedBegin = false; 127 SmallPtrSet<Instruction *, 8> Stores; 128 do { 129 Instruction *Inst = I; // The instruction to sink. 130 131 // Predecrement I (if it's not begin) so that it isn't invalidated by 132 // sinking. 133 ProcessedBegin = I == BB.begin(); 134 if (!ProcessedBegin) 135 --I; 136 137 if (isa<DbgInfoIntrinsic>(Inst)) 138 continue; 139 140 if (SinkInstruction(Inst, Stores)) 141 ++NumSunk, MadeChange = true; 142 143 // If we just processed the first instruction in the block, we're done. 144 } while (!ProcessedBegin); 145 146 return MadeChange; 147 } 148 149 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, 150 SmallPtrSet<Instruction *, 8> &Stores) { 151 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 152 if (L->isVolatile()) return false; 153 154 Value *Ptr = L->getPointerOperand(); 155 unsigned Size = AA->getTypeStoreSize(L->getType()); 156 for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), 157 E = Stores.end(); I != E; ++I) 158 if (AA->getModRefInfo(*I, Ptr, Size) & AliasAnalysis::Mod) 159 return false; 160 } 161 162 if (Inst->mayWriteToMemory()) { 163 Stores.insert(Inst); 164 return false; 165 } 166 167 return Inst->isSafeToSpeculativelyExecute(); 168 } 169 170 /// SinkInstruction - Determine whether it is safe to sink the specified machine 171 /// instruction out of its current block into a successor. 172 bool Sinking::SinkInstruction(Instruction *Inst, 173 SmallPtrSet<Instruction *, 8> &Stores) { 174 // Check if it's safe to move the instruction. 175 if (!isSafeToMove(Inst, AA, Stores)) 176 return false; 177 178 // FIXME: This should include support for sinking instructions within the 179 // block they are currently in to shorten the live ranges. We often get 180 // instructions sunk into the top of a large block, but it would be better to 181 // also sink them down before their first use in the block. This xform has to 182 // be careful not to *increase* register pressure though, e.g. sinking 183 // "x = y + z" down if it kills y and z would increase the live ranges of y 184 // and z and only shrink the live range of x. 185 186 // Loop over all the operands of the specified instruction. If there is 187 // anything we can't handle, bail out. 188 BasicBlock *ParentBlock = Inst->getParent(); 189 190 // SuccToSinkTo - This is the successor to sink this instruction to, once we 191 // decide. 192 BasicBlock *SuccToSinkTo = 0; 193 194 // FIXME: This picks a successor to sink into based on having one 195 // successor that dominates all the uses. However, there are cases where 196 // sinking can happen but where the sink point isn't a successor. For 197 // example: 198 // x = computation 199 // if () {} else {} 200 // use x 201 // the instruction could be sunk over the whole diamond for the 202 // if/then/else (or loop, etc), allowing it to be sunk into other blocks 203 // after that. 204 205 // Instructions can only be sunk if all their uses are in blocks 206 // dominated by one of the successors. 207 // Look at all the successors and decide which one 208 // we should sink to. 209 for (succ_iterator SI = succ_begin(ParentBlock), 210 E = succ_end(ParentBlock); SI != E; ++SI) { 211 if (AllUsesDominatedByBlock(Inst, *SI)) { 212 SuccToSinkTo = *SI; 213 break; 214 } 215 } 216 217 // If we couldn't find a block to sink to, ignore this instruction. 218 if (SuccToSinkTo == 0) 219 return false; 220 221 // It is not possible to sink an instruction into its own block. This can 222 // happen with loops. 223 if (Inst->getParent() == SuccToSinkTo) 224 return false; 225 226 DEBUG(dbgs() << "Sink instr " << *Inst); 227 DEBUG(dbgs() << "to block "; 228 WriteAsOperand(dbgs(), SuccToSinkTo, false)); 229 230 // If the block has multiple predecessors, this would introduce computation on 231 // a path that it doesn't already exist. We could split the critical edge, 232 // but for now we just punt. 233 // FIXME: Split critical edges if not backedges. 234 if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) { 235 // We cannot sink a load across a critical edge - there may be stores in 236 // other code paths. 237 if (!Inst->isSafeToSpeculativelyExecute()) { 238 DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); 239 return false; 240 } 241 242 // We don't want to sink across a critical edge if we don't dominate the 243 // successor. We could be introducing calculations to new code paths. 244 if (!DT->dominates(ParentBlock, SuccToSinkTo)) { 245 DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); 246 return false; 247 } 248 249 // Don't sink instructions into a loop. 250 if (LI->isLoopHeader(SuccToSinkTo)) { 251 DEBUG(dbgs() << " *** PUNTING: Loop header found\n"); 252 return false; 253 } 254 255 // Otherwise we are OK with sinking along a critical edge. 256 DEBUG(dbgs() << "Sinking along critical edge.\n"); 257 } 258 259 // Determine where to insert into. Skip phi nodes. 260 BasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 261 while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos)) 262 ++InsertPos; 263 264 // Move the instruction. 265 Inst->moveBefore(InsertPos); 266 return true; 267 } 268