1 //===-- Sink.cpp - Code Sinking -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks, when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/Sink.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Scalar.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "sink" 31 32 STATISTIC(NumSunk, "Number of instructions sunk"); 33 STATISTIC(NumSinkIter, "Number of sinking iterations"); 34 35 /// AllUsesDominatedByBlock - Return true if all uses of the specified value 36 /// occur in blocks dominated by the specified block. 37 static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB, 38 DominatorTree &DT) { 39 // Ignoring debug uses is necessary so debug info doesn't affect the code. 40 // This may leave a referencing dbg_value in the original block, before 41 // the definition of the vreg. Dwarf generator handles this although the 42 // user might not get the right info at runtime. 43 for (Use &U : Inst->uses()) { 44 // Determine the block of the use. 45 Instruction *UseInst = cast<Instruction>(U.getUser()); 46 BasicBlock *UseBlock = UseInst->getParent(); 47 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 48 // PHI nodes use the operand in the predecessor block, not the block with 49 // the PHI. 50 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 51 UseBlock = PN->getIncomingBlock(Num); 52 } 53 // Check that it dominates. 54 if (!DT.dominates(BB, UseBlock)) 55 return false; 56 } 57 return true; 58 } 59 60 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA, 61 SmallPtrSetImpl<Instruction *> &Stores) { 62 63 if (Inst->mayWriteToMemory()) { 64 Stores.insert(Inst); 65 return false; 66 } 67 68 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 69 MemoryLocation Loc = MemoryLocation::get(L); 70 for (Instruction *S : Stores) 71 if (AA.getModRefInfo(S, Loc) & MRI_Mod) 72 return false; 73 } 74 75 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst) || Inst->isEHPad() || 76 Inst->mayThrow()) 77 return false; 78 79 // Convergent operations cannot be made control-dependent on additional 80 // values. 81 if (auto CS = CallSite(Inst)) { 82 if (CS.hasFnAttr(Attribute::Convergent)) 83 return false; 84 } 85 86 return true; 87 } 88 89 /// IsAcceptableTarget - Return true if it is possible to sink the instruction 90 /// in the specified basic block. 91 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo, 92 DominatorTree &DT, LoopInfo &LI) { 93 assert(Inst && "Instruction to be sunk is null"); 94 assert(SuccToSinkTo && "Candidate sink target is null"); 95 96 // It is not possible to sink an instruction into its own block. This can 97 // happen with loops. 98 if (Inst->getParent() == SuccToSinkTo) 99 return false; 100 101 // It's never legal to sink an instruction into a block which terminates in an 102 // EH-pad. 103 if (SuccToSinkTo->getTerminator()->isExceptional()) 104 return false; 105 106 // If the block has multiple predecessors, this would introduce computation 107 // on different code paths. We could split the critical edge, but for now we 108 // just punt. 109 // FIXME: Split critical edges if not backedges. 110 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 111 // We cannot sink a load across a critical edge - there may be stores in 112 // other code paths. 113 if (!isSafeToSpeculativelyExecute(Inst)) 114 return false; 115 116 // We don't want to sink across a critical edge if we don't dominate the 117 // successor. We could be introducing calculations to new code paths. 118 if (!DT.dominates(Inst->getParent(), SuccToSinkTo)) 119 return false; 120 121 // Don't sink instructions into a loop. 122 Loop *succ = LI.getLoopFor(SuccToSinkTo); 123 Loop *cur = LI.getLoopFor(Inst->getParent()); 124 if (succ != nullptr && succ != cur) 125 return false; 126 } 127 128 // Finally, check that all the uses of the instruction are actually 129 // dominated by the candidate 130 return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT); 131 } 132 133 /// SinkInstruction - Determine whether it is safe to sink the specified machine 134 /// instruction out of its current block into a successor. 135 static bool SinkInstruction(Instruction *Inst, 136 SmallPtrSetImpl<Instruction *> &Stores, 137 DominatorTree &DT, LoopInfo &LI, AAResults &AA) { 138 139 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 140 // entry block are dynamically sized stack objects. 141 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 142 if (AI->isStaticAlloca()) 143 return false; 144 145 // Check if it's safe to move the instruction. 146 if (!isSafeToMove(Inst, AA, Stores)) 147 return false; 148 149 // FIXME: This should include support for sinking instructions within the 150 // block they are currently in to shorten the live ranges. We often get 151 // instructions sunk into the top of a large block, but it would be better to 152 // also sink them down before their first use in the block. This xform has to 153 // be careful not to *increase* register pressure though, e.g. sinking 154 // "x = y + z" down if it kills y and z would increase the live ranges of y 155 // and z and only shrink the live range of x. 156 157 // SuccToSinkTo - This is the successor to sink this instruction to, once we 158 // decide. 159 BasicBlock *SuccToSinkTo = nullptr; 160 161 // Instructions can only be sunk if all their uses are in blocks 162 // dominated by one of the successors. 163 // Look at all the postdominators and see if we can sink it in one. 164 DomTreeNode *DTN = DT.getNode(Inst->getParent()); 165 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 166 I != E && SuccToSinkTo == nullptr; ++I) { 167 BasicBlock *Candidate = (*I)->getBlock(); 168 if ((*I)->getIDom()->getBlock() == Inst->getParent() && 169 IsAcceptableTarget(Inst, Candidate, DT, LI)) 170 SuccToSinkTo = Candidate; 171 } 172 173 // If no suitable postdominator was found, look at all the successors and 174 // decide which one we should sink to, if any. 175 for (succ_iterator I = succ_begin(Inst->getParent()), 176 E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) { 177 if (IsAcceptableTarget(Inst, *I, DT, LI)) 178 SuccToSinkTo = *I; 179 } 180 181 // If we couldn't find a block to sink to, ignore this instruction. 182 if (!SuccToSinkTo) 183 return false; 184 185 DEBUG(dbgs() << "Sink" << *Inst << " ("; 186 Inst->getParent()->printAsOperand(dbgs(), false); 187 dbgs() << " -> "; 188 SuccToSinkTo->printAsOperand(dbgs(), false); 189 dbgs() << ")\n"); 190 191 // Move the instruction. 192 Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt()); 193 return true; 194 } 195 196 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI, 197 AAResults &AA) { 198 // Can't sink anything out of a block that has less than two successors. 199 if (BB.getTerminator()->getNumSuccessors() <= 1) return false; 200 201 // Don't bother sinking code out of unreachable blocks. In addition to being 202 // unprofitable, it can also lead to infinite looping, because in an 203 // unreachable loop there may be nowhere to stop. 204 if (!DT.isReachableFromEntry(&BB)) return false; 205 206 bool MadeChange = false; 207 208 // Walk the basic block bottom-up. Remember if we saw a store. 209 BasicBlock::iterator I = BB.end(); 210 --I; 211 bool ProcessedBegin = false; 212 SmallPtrSet<Instruction *, 8> Stores; 213 do { 214 Instruction *Inst = &*I; // The instruction to sink. 215 216 // Predecrement I (if it's not begin) so that it isn't invalidated by 217 // sinking. 218 ProcessedBegin = I == BB.begin(); 219 if (!ProcessedBegin) 220 --I; 221 222 if (isa<DbgInfoIntrinsic>(Inst)) 223 continue; 224 225 if (SinkInstruction(Inst, Stores, DT, LI, AA)) { 226 ++NumSunk; 227 MadeChange = true; 228 } 229 230 // If we just processed the first instruction in the block, we're done. 231 } while (!ProcessedBegin); 232 233 return MadeChange; 234 } 235 236 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT, 237 LoopInfo &LI, AAResults &AA) { 238 bool MadeChange, EverMadeChange = false; 239 240 do { 241 MadeChange = false; 242 DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 243 // Process all basic blocks. 244 for (BasicBlock &I : F) 245 MadeChange |= ProcessBlock(I, DT, LI, AA); 246 EverMadeChange |= MadeChange; 247 NumSinkIter++; 248 } while (MadeChange); 249 250 return EverMadeChange; 251 } 252 253 PreservedAnalyses SinkingPass::run(Function &F, AnalysisManager<Function> &AM) { 254 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 255 auto &LI = AM.getResult<LoopAnalysis>(F); 256 auto &AA = AM.getResult<AAManager>(F); 257 258 if (!iterativelySinkInstructions(F, DT, LI, AA)) 259 return PreservedAnalyses::all(); 260 261 auto PA = PreservedAnalyses(); 262 PA.preserve<DominatorTreeAnalysis>(); 263 PA.preserve<LoopAnalysis>(); 264 return PA; 265 } 266 267 namespace { 268 class SinkingLegacyPass : public FunctionPass { 269 public: 270 static char ID; // Pass identification 271 SinkingLegacyPass() : FunctionPass(ID) { 272 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry()); 273 } 274 275 bool runOnFunction(Function &F) override { 276 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 277 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 278 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 279 280 return iterativelySinkInstructions(F, DT, LI, AA); 281 } 282 283 void getAnalysisUsage(AnalysisUsage &AU) const override { 284 AU.setPreservesCFG(); 285 FunctionPass::getAnalysisUsage(AU); 286 AU.addRequired<AAResultsWrapperPass>(); 287 AU.addRequired<DominatorTreeWrapperPass>(); 288 AU.addRequired<LoopInfoWrapperPass>(); 289 AU.addPreserved<DominatorTreeWrapperPass>(); 290 AU.addPreserved<LoopInfoWrapperPass>(); 291 } 292 }; 293 } // end anonymous namespace 294 295 char SinkingLegacyPass::ID = 0; 296 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false) 297 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 299 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 300 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false) 301 302 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); } 303