xref: /llvm-project/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp (revision e48b4ee98c42422f959f3e904c5e25e5d80cbb4d)
1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations.  For example:
12 //
13 //   * Removes basic blocks with no predecessors.
14 //   * Merges a basic block into its predecessor if there is only one and the
15 //     predecessor only has one successor.
16 //   * Eliminates PHI nodes for basic blocks with a single predecessor.
17 //   * Eliminates a basic block that only contains an unconditional branch.
18 //   * Changes invoke instructions to nounwind functions to be calls.
19 //   * Change things like "if (x) if (y)" into "if (x&y)".
20 //   * etc..
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Transforms/Scalar.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "simplifycfg"
46 
47 static cl::opt<unsigned>
48 UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1),
49    cl::desc("Control the number of bonus instructions (default = 1)"));
50 
51 STATISTIC(NumSimpl, "Number of blocks simplified");
52 
53 /// If we have more than one empty (other than phi node) return blocks,
54 /// merge them together to promote recursive block merging.
55 static bool mergeEmptyReturnBlocks(Function &F) {
56   bool Changed = false;
57 
58   BasicBlock *RetBlock = nullptr;
59 
60   // Scan all the blocks in the function, looking for empty return blocks.
61   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
62     BasicBlock &BB = *BBI++;
63 
64     // Only look at return blocks.
65     ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
66     if (!Ret) continue;
67 
68     // Only look at the block if it is empty or the only other thing in it is a
69     // single PHI node that is the operand to the return.
70     if (Ret != &BB.front()) {
71       // Check for something else in the block.
72       BasicBlock::iterator I(Ret);
73       --I;
74       // Skip over debug info.
75       while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
76         --I;
77       if (!isa<DbgInfoIntrinsic>(I) &&
78           (!isa<PHINode>(I) || I != BB.begin() || Ret->getNumOperands() == 0 ||
79            Ret->getOperand(0) != &*I))
80         continue;
81     }
82 
83     // If this is the first returning block, remember it and keep going.
84     if (!RetBlock) {
85       RetBlock = &BB;
86       continue;
87     }
88 
89     // Otherwise, we found a duplicate return block.  Merge the two.
90     Changed = true;
91 
92     // Case when there is no input to the return or when the returned values
93     // agree is trivial.  Note that they can't agree if there are phis in the
94     // blocks.
95     if (Ret->getNumOperands() == 0 ||
96         Ret->getOperand(0) ==
97           cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
98       BB.replaceAllUsesWith(RetBlock);
99       BB.eraseFromParent();
100       continue;
101     }
102 
103     // If the canonical return block has no PHI node, create one now.
104     PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
105     if (!RetBlockPHI) {
106       Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
107       pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
108       RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
109                                     std::distance(PB, PE), "merge",
110                                     &RetBlock->front());
111 
112       for (pred_iterator PI = PB; PI != PE; ++PI)
113         RetBlockPHI->addIncoming(InVal, *PI);
114       RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
115     }
116 
117     // Turn BB into a block that just unconditionally branches to the return
118     // block.  This handles the case when the two return blocks have a common
119     // predecessor but that return different things.
120     RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
121     BB.getTerminator()->eraseFromParent();
122     BranchInst::Create(RetBlock, &BB);
123   }
124 
125   return Changed;
126 }
127 
128 /// Call SimplifyCFG on all the blocks in the function,
129 /// iterating until no more changes are made.
130 static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
131                                    AssumptionCache *AC,
132                                    unsigned BonusInstThreshold) {
133   bool Changed = false;
134   bool LocalChange = true;
135 
136   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 32> Edges;
137   FindFunctionBackedges(F, Edges);
138   SmallPtrSet<BasicBlock *, 16> LoopHeaders;
139   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
140     LoopHeaders.insert(const_cast<BasicBlock *>(Edges[i].second));
141 
142   while (LocalChange) {
143     LocalChange = false;
144 
145     // Loop over all of the basic blocks and remove them if they are unneeded.
146     for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
147       if (SimplifyCFG(&*BBIt++, TTI, BonusInstThreshold, AC, &LoopHeaders)) {
148         LocalChange = true;
149         ++NumSimpl;
150       }
151     }
152     Changed |= LocalChange;
153   }
154   return Changed;
155 }
156 
157 static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
158                                 AssumptionCache *AC, int BonusInstThreshold) {
159   bool EverChanged = removeUnreachableBlocks(F);
160   EverChanged |= mergeEmptyReturnBlocks(F);
161   EverChanged |= iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
162 
163   // If neither pass changed anything, we're done.
164   if (!EverChanged) return false;
165 
166   // iterativelySimplifyCFG can (rarely) make some loops dead.  If this happens,
167   // removeUnreachableBlocks is needed to nuke them, which means we should
168   // iterate between the two optimizations.  We structure the code like this to
169   // avoid rerunning iterativelySimplifyCFG if the second pass of
170   // removeUnreachableBlocks doesn't do anything.
171   if (!removeUnreachableBlocks(F))
172     return true;
173 
174   do {
175     EverChanged = iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
176     EverChanged |= removeUnreachableBlocks(F);
177   } while (EverChanged);
178 
179   return true;
180 }
181 
182 SimplifyCFGPass::SimplifyCFGPass()
183     : BonusInstThreshold(UserBonusInstThreshold) {}
184 
185 SimplifyCFGPass::SimplifyCFGPass(int BonusInstThreshold)
186     : BonusInstThreshold(BonusInstThreshold) {}
187 
188 PreservedAnalyses SimplifyCFGPass::run(Function &F,
189                                        AnalysisManager<Function> &AM) {
190   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
191   auto &AC = AM.getResult<AssumptionAnalysis>(F);
192 
193   if (simplifyFunctionCFG(F, TTI, &AC, BonusInstThreshold))
194     return PreservedAnalyses::none();
195 
196   return PreservedAnalyses::all();
197 }
198 
199 CFGSimplifyPass::CFGSimplifyPass(int T,
200             std::function<bool(const Function &)> Ftor)
201     : FunctionPass(ID), PredicateFtor(Ftor) {
202   BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : unsigned(T);
203   initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
204 }
205 
206 bool CFGSimplifyPass::runOnFunction(Function &F) {
207   if (PredicateFtor && !PredicateFtor(F))
208     return false;
209 
210   if (skipFunction(F))
211     return false;
212 
213   AssumptionCache *AC =
214       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
215   const TargetTransformInfo &TTI =
216       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
217   return simplifyFunctionCFG(F, TTI, AC, BonusInstThreshold);
218 }
219 
220 void CFGSimplifyPass::getAnalysisUsage(AnalysisUsage &AU) const {
221   AU.addRequired<AssumptionCacheTracker>();
222   AU.addRequired<TargetTransformInfoWrapperPass>();
223   AU.addPreserved<GlobalsAAWrapperPass>();
224 }
225 
226 char CFGSimplifyPass::ID = 0;
227 INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
228                       false)
229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
230 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
231 INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
232                     false)
233 
234 // Public interface to the CFGSimplification pass
235 FunctionPass *
236 llvm::createCFGSimplificationPass(int Threshold,
237                                   std::function<bool(const Function &)> Ftor) {
238   return new CFGSimplifyPass(Threshold, Ftor);
239 }
240