1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements dead code elimination and basic block merging, along 11 // with a collection of other peephole control flow optimizations. For example: 12 // 13 // * Removes basic blocks with no predecessors. 14 // * Merges a basic block into its predecessor if there is only one and the 15 // predecessor only has one successor. 16 // * Eliminates PHI nodes for basic blocks with a single predecessor. 17 // * Eliminates a basic block that only contains an unconditional branch. 18 // * Changes invoke instructions to nounwind functions to be calls. 19 // * Change things like "if (x) if (y)" into "if (x&y)". 20 // * etc.. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #define DEBUG_TYPE "simplifycfg" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Constants.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Module.h" 30 #include "llvm/Attributes.h" 31 #include "llvm/Support/CFG.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/Statistic.h" 37 using namespace llvm; 38 39 STATISTIC(NumSimpl, "Number of blocks simplified"); 40 41 namespace { 42 struct CFGSimplifyPass : public FunctionPass { 43 static char ID; // Pass identification, replacement for typeid 44 CFGSimplifyPass() : FunctionPass(&ID) {} 45 46 virtual bool runOnFunction(Function &F); 47 }; 48 } 49 50 char CFGSimplifyPass::ID = 0; 51 static RegisterPass<CFGSimplifyPass> X("simplifycfg", "Simplify the CFG"); 52 53 // Public interface to the CFGSimplification pass 54 FunctionPass *llvm::createCFGSimplificationPass() { 55 return new CFGSimplifyPass(); 56 } 57 58 /// ChangeToUnreachable - Insert an unreachable instruction before the specified 59 /// instruction, making it and the rest of the code in the block dead. 60 static void ChangeToUnreachable(Instruction *I) { 61 BasicBlock *BB = I->getParent(); 62 // Loop over all of the successors, removing BB's entry from any PHI 63 // nodes. 64 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 65 (*SI)->removePredecessor(BB); 66 67 new UnreachableInst(I->getContext(), I); 68 69 // All instructions after this are dead. 70 BasicBlock::iterator BBI = I, BBE = BB->end(); 71 while (BBI != BBE) { 72 if (!BBI->use_empty()) 73 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 74 BB->getInstList().erase(BBI++); 75 } 76 } 77 78 /// ChangeToCall - Convert the specified invoke into a normal call. 79 static void ChangeToCall(InvokeInst *II) { 80 BasicBlock *BB = II->getParent(); 81 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end()); 82 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args.begin(), 83 Args.end(), "", II); 84 NewCall->takeName(II); 85 NewCall->setCallingConv(II->getCallingConv()); 86 NewCall->setAttributes(II->getAttributes()); 87 II->replaceAllUsesWith(NewCall); 88 89 // Follow the call by a branch to the normal destination. 90 BranchInst::Create(II->getNormalDest(), II); 91 92 // Update PHI nodes in the unwind destination 93 II->getUnwindDest()->removePredecessor(BB); 94 BB->getInstList().erase(II); 95 } 96 97 static bool MarkAliveBlocks(BasicBlock *BB, 98 SmallPtrSet<BasicBlock*, 128> &Reachable) { 99 100 SmallVector<BasicBlock*, 128> Worklist; 101 Worklist.push_back(BB); 102 bool Changed = false; 103 do { 104 BB = Worklist.pop_back_val(); 105 106 if (!Reachable.insert(BB)) 107 continue; 108 109 // Do a quick scan of the basic block, turning any obviously unreachable 110 // instructions into LLVM unreachable insts. The instruction combining pass 111 // canonicalizes unreachable insts into stores to null or undef. 112 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 113 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 114 if (CI->doesNotReturn()) { 115 // If we found a call to a no-return function, insert an unreachable 116 // instruction after it. Make sure there isn't *already* one there 117 // though. 118 ++BBI; 119 if (!isa<UnreachableInst>(BBI)) { 120 ChangeToUnreachable(BBI); 121 Changed = true; 122 } 123 break; 124 } 125 } 126 127 // Store to undef and store to null are undefined and used to signal that 128 // they should be changed to unreachable by passes that can't modify the 129 // CFG. 130 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 131 Value *Ptr = SI->getOperand(1); 132 133 if (isa<UndefValue>(Ptr) || 134 (isa<ConstantPointerNull>(Ptr) && 135 SI->getPointerAddressSpace() == 0)) { 136 ChangeToUnreachable(SI); 137 Changed = true; 138 break; 139 } 140 } 141 } 142 143 // Turn invokes that call 'nounwind' functions into ordinary calls. 144 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 145 if (II->doesNotThrow()) { 146 ChangeToCall(II); 147 Changed = true; 148 } 149 150 Changed |= ConstantFoldTerminator(BB); 151 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 152 Worklist.push_back(*SI); 153 } while (!Worklist.empty()); 154 return Changed; 155 } 156 157 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even 158 /// if they are in a dead cycle. Return true if a change was made, false 159 /// otherwise. 160 static bool RemoveUnreachableBlocksFromFn(Function &F) { 161 SmallPtrSet<BasicBlock*, 128> Reachable; 162 bool Changed = MarkAliveBlocks(F.begin(), Reachable); 163 164 // If there are unreachable blocks in the CFG... 165 if (Reachable.size() == F.size()) 166 return Changed; 167 168 assert(Reachable.size() < F.size()); 169 NumSimpl += F.size()-Reachable.size(); 170 171 // Loop over all of the basic blocks that are not reachable, dropping all of 172 // their internal references... 173 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 174 if (Reachable.count(BB)) 175 continue; 176 177 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 178 if (Reachable.count(*SI)) 179 (*SI)->removePredecessor(BB); 180 BB->dropAllReferences(); 181 } 182 183 for (Function::iterator I = ++F.begin(); I != F.end();) 184 if (!Reachable.count(I)) 185 I = F.getBasicBlockList().erase(I); 186 else 187 ++I; 188 189 return true; 190 } 191 192 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi 193 /// node) return blocks, merge them together to promote recursive block merging. 194 static bool MergeEmptyReturnBlocks(Function &F) { 195 bool Changed = false; 196 197 BasicBlock *RetBlock = 0; 198 199 // Scan all the blocks in the function, looking for empty return blocks. 200 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) { 201 BasicBlock &BB = *BBI++; 202 203 // Only look at return blocks. 204 ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()); 205 if (Ret == 0) continue; 206 207 // Only look at the block if it is empty or the only other thing in it is a 208 // single PHI node that is the operand to the return. 209 if (Ret != &BB.front()) { 210 // Check for something else in the block. 211 BasicBlock::iterator I = Ret; 212 --I; 213 if (!isa<PHINode>(I) || I != BB.begin() || 214 Ret->getNumOperands() == 0 || 215 Ret->getOperand(0) != I) 216 continue; 217 } 218 219 // If this is the first returning block, remember it and keep going. 220 if (RetBlock == 0) { 221 RetBlock = &BB; 222 continue; 223 } 224 225 // Otherwise, we found a duplicate return block. Merge the two. 226 Changed = true; 227 228 // Case when there is no input to the return or when the returned values 229 // agree is trivial. Note that they can't agree if there are phis in the 230 // blocks. 231 if (Ret->getNumOperands() == 0 || 232 Ret->getOperand(0) == 233 cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) { 234 BB.replaceAllUsesWith(RetBlock); 235 BB.eraseFromParent(); 236 continue; 237 } 238 239 // If the canonical return block has no PHI node, create one now. 240 PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin()); 241 if (RetBlockPHI == 0) { 242 Value *InVal = cast<ReturnInst>(RetBlock->begin())->getOperand(0); 243 RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), "merge", 244 &RetBlock->front()); 245 246 for (pred_iterator PI = pred_begin(RetBlock), E = pred_end(RetBlock); 247 PI != E; ++PI) 248 RetBlockPHI->addIncoming(InVal, *PI); 249 RetBlock->getTerminator()->setOperand(0, RetBlockPHI); 250 } 251 252 // Turn BB into a block that just unconditionally branches to the return 253 // block. This handles the case when the two return blocks have a common 254 // predecessor but that return different things. 255 RetBlockPHI->addIncoming(Ret->getOperand(0), &BB); 256 BB.getTerminator()->eraseFromParent(); 257 BranchInst::Create(RetBlock, &BB); 258 } 259 260 return Changed; 261 } 262 263 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function, 264 /// iterating until no more changes are made. 265 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) { 266 bool Changed = false; 267 bool LocalChange = true; 268 while (LocalChange) { 269 LocalChange = false; 270 271 // Loop over all of the basic blocks (except the first one) and remove them 272 // if they are unneeded... 273 // 274 for (Function::iterator BBIt = ++F.begin(); BBIt != F.end(); ) { 275 if (SimplifyCFG(BBIt++, TD)) { 276 LocalChange = true; 277 ++NumSimpl; 278 } 279 } 280 Changed |= LocalChange; 281 } 282 return Changed; 283 } 284 285 // It is possible that we may require multiple passes over the code to fully 286 // simplify the CFG. 287 // 288 bool CFGSimplifyPass::runOnFunction(Function &F) { 289 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 290 bool EverChanged = RemoveUnreachableBlocksFromFn(F); 291 EverChanged |= MergeEmptyReturnBlocks(F); 292 EverChanged |= IterativeSimplifyCFG(F, TD); 293 294 // If neither pass changed anything, we're done. 295 if (!EverChanged) return false; 296 297 // IterativeSimplifyCFG can (rarely) make some loops dead. If this happens, 298 // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should 299 // iterate between the two optimizations. We structure the code like this to 300 // avoid reruning IterativeSimplifyCFG if the second pass of 301 // RemoveUnreachableBlocksFromFn doesn't do anything. 302 if (!RemoveUnreachableBlocksFromFn(F)) 303 return true; 304 305 do { 306 EverChanged = IterativeSimplifyCFG(F, TD); 307 EverChanged |= RemoveUnreachableBlocksFromFn(F); 308 } while (EverChanged); 309 310 return true; 311 } 312