xref: /llvm-project/llvm/lib/Transforms/Scalar/SimplifyCFGPass.cpp (revision 4c33d5213b91b367a8392c19b4a110f62243a91d)
1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations.  For example:
12 //
13 //   * Removes basic blocks with no predecessors.
14 //   * Merges a basic block into its predecessor if there is only one and the
15 //     predecessor only has one successor.
16 //   * Eliminates PHI nodes for basic blocks with a single predecessor.
17 //   * Eliminates a basic block that only contains an unconditional branch.
18 //   * Changes invoke instructions to nounwind functions to be calls.
19 //   * Change things like "if (x) if (y)" into "if (x&y)".
20 //   * etc..
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <utility>
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "simplifycfg"
47 
48 static cl::opt<unsigned>
49 UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1),
50    cl::desc("Control the number of bonus instructions (default = 1)"));
51 
52 STATISTIC(NumSimpl, "Number of blocks simplified");
53 
54 /// If we have more than one empty (other than phi node) return blocks,
55 /// merge them together to promote recursive block merging.
56 static bool mergeEmptyReturnBlocks(Function &F) {
57   bool Changed = false;
58 
59   BasicBlock *RetBlock = nullptr;
60 
61   // Scan all the blocks in the function, looking for empty return blocks.
62   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
63     BasicBlock &BB = *BBI++;
64 
65     // Only look at return blocks.
66     ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
67     if (!Ret) continue;
68 
69     // Only look at the block if it is empty or the only other thing in it is a
70     // single PHI node that is the operand to the return.
71     if (Ret != &BB.front()) {
72       // Check for something else in the block.
73       BasicBlock::iterator I(Ret);
74       --I;
75       // Skip over debug info.
76       while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
77         --I;
78       if (!isa<DbgInfoIntrinsic>(I) &&
79           (!isa<PHINode>(I) || I != BB.begin() || Ret->getNumOperands() == 0 ||
80            Ret->getOperand(0) != &*I))
81         continue;
82     }
83 
84     // If this is the first returning block, remember it and keep going.
85     if (!RetBlock) {
86       RetBlock = &BB;
87       continue;
88     }
89 
90     // Otherwise, we found a duplicate return block.  Merge the two.
91     Changed = true;
92 
93     // Case when there is no input to the return or when the returned values
94     // agree is trivial.  Note that they can't agree if there are phis in the
95     // blocks.
96     if (Ret->getNumOperands() == 0 ||
97         Ret->getOperand(0) ==
98           cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
99       BB.replaceAllUsesWith(RetBlock);
100       BB.eraseFromParent();
101       continue;
102     }
103 
104     // If the canonical return block has no PHI node, create one now.
105     PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
106     if (!RetBlockPHI) {
107       Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
108       pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
109       RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
110                                     std::distance(PB, PE), "merge",
111                                     &RetBlock->front());
112 
113       for (pred_iterator PI = PB; PI != PE; ++PI)
114         RetBlockPHI->addIncoming(InVal, *PI);
115       RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
116     }
117 
118     // Turn BB into a block that just unconditionally branches to the return
119     // block.  This handles the case when the two return blocks have a common
120     // predecessor but that return different things.
121     RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
122     BB.getTerminator()->eraseFromParent();
123     BranchInst::Create(RetBlock, &BB);
124   }
125 
126   return Changed;
127 }
128 
129 /// Call SimplifyCFG on all the blocks in the function,
130 /// iterating until no more changes are made.
131 static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
132                                    const SimplifyCFGOptions &Options) {
133   bool Changed = false;
134   bool LocalChange = true;
135 
136   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 32> Edges;
137   FindFunctionBackedges(F, Edges);
138   SmallPtrSet<BasicBlock *, 16> LoopHeaders;
139   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
140     LoopHeaders.insert(const_cast<BasicBlock *>(Edges[i].second));
141 
142   while (LocalChange) {
143     LocalChange = false;
144 
145     // Loop over all of the basic blocks and remove them if they are unneeded.
146     for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
147       if (simplifyCFG(&*BBIt++, TTI, Options, &LoopHeaders)) {
148         LocalChange = true;
149         ++NumSimpl;
150       }
151     }
152     Changed |= LocalChange;
153   }
154   return Changed;
155 }
156 
157 static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
158                                 const SimplifyCFGOptions &Options) {
159   bool EverChanged = removeUnreachableBlocks(F);
160   EverChanged |= mergeEmptyReturnBlocks(F);
161   EverChanged |= iterativelySimplifyCFG(F, TTI, Options);
162 
163   // If neither pass changed anything, we're done.
164   if (!EverChanged) return false;
165 
166   // iterativelySimplifyCFG can (rarely) make some loops dead.  If this happens,
167   // removeUnreachableBlocks is needed to nuke them, which means we should
168   // iterate between the two optimizations.  We structure the code like this to
169   // avoid rerunning iterativelySimplifyCFG if the second pass of
170   // removeUnreachableBlocks doesn't do anything.
171   if (!removeUnreachableBlocks(F))
172     return true;
173 
174   do {
175     EverChanged = iterativelySimplifyCFG(F, TTI, Options);
176     EverChanged |= removeUnreachableBlocks(F);
177   } while (EverChanged);
178 
179   return true;
180 }
181 
182 SimplifyCFGPass::SimplifyCFGPass()
183     : Options(UserBonusInstThreshold, true, false) {}
184 
185 SimplifyCFGPass::SimplifyCFGPass(const SimplifyCFGOptions &PassOptions)
186     : Options(PassOptions) {}
187 
188 PreservedAnalyses SimplifyCFGPass::run(Function &F,
189                                        FunctionAnalysisManager &AM) {
190   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
191   Options.AC = &AM.getResult<AssumptionAnalysis>(F);
192   if (!simplifyFunctionCFG(F, TTI, Options))
193     return PreservedAnalyses::all();
194   PreservedAnalyses PA;
195   PA.preserve<GlobalsAA>();
196   return PA;
197 }
198 
199 namespace {
200 struct BaseCFGSimplifyPass : public FunctionPass {
201   std::function<bool(const Function &)> PredicateFtor;
202   int BonusInstThreshold;
203   bool ConvertSwitchToLookupTable;
204   bool KeepCanonicalLoops;
205 
206   BaseCFGSimplifyPass(int T, bool ConvertSwitch, bool KeepLoops,
207                       std::function<bool(const Function &)> Ftor, char &ID)
208       : FunctionPass(ID), PredicateFtor(std::move(Ftor)),
209         ConvertSwitchToLookupTable(ConvertSwitch),
210         KeepCanonicalLoops(KeepLoops) {
211     BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : T;
212   }
213   bool runOnFunction(Function &F) override {
214     if (skipFunction(F) || (PredicateFtor && !PredicateFtor(F)))
215       return false;
216 
217     AssumptionCache *AC =
218         &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
219     const TargetTransformInfo &TTI =
220         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
221     return simplifyFunctionCFG(F, TTI,
222                                {BonusInstThreshold, ConvertSwitchToLookupTable,
223                                 KeepCanonicalLoops, AC});
224   }
225 
226   void getAnalysisUsage(AnalysisUsage &AU) const override {
227     AU.addRequired<AssumptionCacheTracker>();
228     AU.addRequired<TargetTransformInfoWrapperPass>();
229     AU.addPreserved<GlobalsAAWrapperPass>();
230   }
231 };
232 
233 struct CFGSimplifyPass : public BaseCFGSimplifyPass {
234   static char ID; // Pass identification, replacement for typeid
235 
236   CFGSimplifyPass(int T = -1,
237                   std::function<bool(const Function &)> Ftor = nullptr)
238                   : BaseCFGSimplifyPass(T, false, true, Ftor, ID) {
239     initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
240   }
241 };
242 
243 struct LateCFGSimplifyPass : public BaseCFGSimplifyPass {
244   static char ID; // Pass identification, replacement for typeid
245 
246   LateCFGSimplifyPass(int T = -1,
247                       std::function<bool(const Function &)> Ftor = nullptr)
248                       : BaseCFGSimplifyPass(T, true, false, Ftor, ID) {
249     initializeLateCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
250   }
251 };
252 }
253 
254 char CFGSimplifyPass::ID = 0;
255 INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
256                       false)
257 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
259 INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
260                     false)
261 
262 char LateCFGSimplifyPass::ID = 0;
263 INITIALIZE_PASS_BEGIN(LateCFGSimplifyPass, "latesimplifycfg",
264                       "Simplify the CFG more aggressively", false, false)
265 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
266 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
267 INITIALIZE_PASS_END(LateCFGSimplifyPass, "latesimplifycfg",
268                     "Simplify the CFG more aggressively", false, false)
269 
270 // Public interface to the CFGSimplification pass
271 FunctionPass *
272 llvm::createCFGSimplificationPass(int Threshold,
273     std::function<bool(const Function &)> Ftor) {
274   return new CFGSimplifyPass(Threshold, std::move(Ftor));
275 }
276 
277 // Public interface to the LateCFGSimplification pass
278 FunctionPass *
279 llvm::createLateCFGSimplificationPass(int Threshold,
280                                   std::function<bool(const Function &)> Ftor) {
281   return new LateCFGSimplifyPass(Threshold, std::move(Ftor));
282 }
283