1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/LoopAnalysisManager.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/MustExecute.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/GenericDomTree.h" 52 #include "llvm/Support/InstructionCost.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar/LoopPassManager.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/Cloning.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 #include "llvm/Transforms/Utils/ValueMapper.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <iterator> 63 #include <numeric> 64 #include <utility> 65 66 #define DEBUG_TYPE "simple-loop-unswitch" 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 STATISTIC(NumBranches, "Number of branches unswitched"); 72 STATISTIC(NumSwitches, "Number of switches unswitched"); 73 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 74 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 75 STATISTIC( 76 NumCostMultiplierSkipped, 77 "Number of unswitch candidates that had their cost multiplier skipped"); 78 79 static cl::opt<bool> EnableNonTrivialUnswitch( 80 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 81 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 82 "following the configuration passed into the pass.")); 83 84 static cl::opt<int> 85 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 86 cl::ZeroOrMore, 87 cl::desc("The cost threshold for unswitching a loop.")); 88 89 static cl::opt<bool> EnableUnswitchCostMultiplier( 90 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 91 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 92 "explosion in nontrivial unswitch.")); 93 static cl::opt<int> UnswitchSiblingsToplevelDiv( 94 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 95 cl::desc("Toplevel siblings divisor for cost multiplier.")); 96 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 97 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 98 cl::desc("Number of unswitch candidates that are ignored when calculating " 99 "cost multiplier.")); 100 static cl::opt<bool> UnswitchGuards( 101 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 102 cl::desc("If enabled, simple loop unswitching will also consider " 103 "llvm.experimental.guard intrinsics as unswitch candidates.")); 104 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 105 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 106 cl::init(false), cl::Hidden, 107 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 108 "null checks to save time analyzing if we can keep it.")); 109 static cl::opt<unsigned> 110 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 111 cl::desc("Max number of memory uses to explore during " 112 "partial unswitching analysis"), 113 cl::init(100), cl::Hidden); 114 static cl::opt<bool> FreezeLoopUnswitchCond( 115 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, 116 cl::desc("If enabled, the freeze instruction will be added to condition " 117 "of loop unswitch to prevent miscompilation.")); 118 119 // Helper to skip (select x, true, false), which matches both a logical AND and 120 // OR and can confuse code that tries to determine if \p Cond is either a 121 // logical AND or OR but not both. 122 static Value *skipTrivialSelect(Value *Cond) { 123 Value *CondNext; 124 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 125 Cond = CondNext; 126 return Cond; 127 } 128 129 /// Collect all of the loop invariant input values transitively used by the 130 /// homogeneous instruction graph from a given root. 131 /// 132 /// This essentially walks from a root recursively through loop variant operands 133 /// which have perform the same logical operation (AND or OR) and finds all 134 /// inputs which are loop invariant. For some operations these can be 135 /// re-associated and unswitched out of the loop entirely. 136 static TinyPtrVector<Value *> 137 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 138 LoopInfo &LI) { 139 assert(!L.isLoopInvariant(&Root) && 140 "Only need to walk the graph if root itself is not invariant."); 141 TinyPtrVector<Value *> Invariants; 142 143 bool IsRootAnd = match(&Root, m_LogicalAnd()); 144 bool IsRootOr = match(&Root, m_LogicalOr()); 145 146 // Build a worklist and recurse through operators collecting invariants. 147 SmallVector<Instruction *, 4> Worklist; 148 SmallPtrSet<Instruction *, 8> Visited; 149 Worklist.push_back(&Root); 150 Visited.insert(&Root); 151 do { 152 Instruction &I = *Worklist.pop_back_val(); 153 for (Value *OpV : I.operand_values()) { 154 // Skip constants as unswitching isn't interesting for them. 155 if (isa<Constant>(OpV)) 156 continue; 157 158 // Add it to our result if loop invariant. 159 if (L.isLoopInvariant(OpV)) { 160 Invariants.push_back(OpV); 161 continue; 162 } 163 164 // If not an instruction with the same opcode, nothing we can do. 165 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); 166 167 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 168 (IsRootOr && match(OpI, m_LogicalOr())))) { 169 // Visit this operand. 170 if (Visited.insert(OpI).second) 171 Worklist.push_back(OpI); 172 } 173 } 174 } while (!Worklist.empty()); 175 176 return Invariants; 177 } 178 179 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 180 Constant &Replacement) { 181 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 182 183 // Replace uses of LIC in the loop with the given constant. 184 // We use make_early_inc_range as set invalidates the iterator. 185 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 186 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 187 188 // Replace this use within the loop body. 189 if (UserI && L.contains(UserI)) 190 U.set(&Replacement); 191 } 192 } 193 194 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 195 /// incoming values along this edge. 196 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 197 BasicBlock &ExitBB) { 198 for (Instruction &I : ExitBB) { 199 auto *PN = dyn_cast<PHINode>(&I); 200 if (!PN) 201 // No more PHIs to check. 202 return true; 203 204 // If the incoming value for this edge isn't loop invariant the unswitch 205 // won't be trivial. 206 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 207 return false; 208 } 209 llvm_unreachable("Basic blocks should never be empty!"); 210 } 211 212 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 213 /// end of \p BB and conditionally branch on the copied condition. We only 214 /// branch on a single value. 215 static void buildPartialUnswitchConditionalBranch( 216 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 217 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, 218 Instruction *I, AssumptionCache *AC, DominatorTree &DT) { 219 IRBuilder<> IRB(&BB); 220 221 SmallVector<Value *> FrozenInvariants; 222 for (Value *Inv : Invariants) { 223 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) 224 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); 225 FrozenInvariants.push_back(Inv); 226 } 227 228 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) 229 : IRB.CreateAnd(FrozenInvariants); 230 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 231 Direction ? &NormalSucc : &UnswitchedSucc); 232 } 233 234 /// Copy a set of loop invariant values, and conditionally branch on them. 235 static void buildPartialInvariantUnswitchConditionalBranch( 236 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 237 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 238 MemorySSAUpdater *MSSAU) { 239 ValueToValueMapTy VMap; 240 for (auto *Val : reverse(ToDuplicate)) { 241 Instruction *Inst = cast<Instruction>(Val); 242 Instruction *NewInst = Inst->clone(); 243 BB.getInstList().insert(BB.end(), NewInst); 244 RemapInstruction(NewInst, VMap, 245 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 246 VMap[Val] = NewInst; 247 248 if (!MSSAU) 249 continue; 250 251 MemorySSA *MSSA = MSSAU->getMemorySSA(); 252 if (auto *MemUse = 253 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 254 auto *DefiningAccess = MemUse->getDefiningAccess(); 255 // Get the first defining access before the loop. 256 while (L.contains(DefiningAccess->getBlock())) { 257 // If the defining access is a MemoryPhi, get the incoming 258 // value for the pre-header as defining access. 259 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 260 DefiningAccess = 261 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 262 else 263 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 264 } 265 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 266 NewInst->getParent(), 267 MemorySSA::BeforeTerminator); 268 } 269 } 270 271 IRBuilder<> IRB(&BB); 272 Value *Cond = VMap[ToDuplicate[0]]; 273 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 274 Direction ? &NormalSucc : &UnswitchedSucc); 275 } 276 277 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 278 /// 279 /// Requires that the loop exit and unswitched basic block are the same, and 280 /// that the exiting block was a unique predecessor of that block. Rewrites the 281 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 282 /// PHI nodes from the old preheader that now contains the unswitched 283 /// terminator. 284 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 285 BasicBlock &OldExitingBB, 286 BasicBlock &OldPH) { 287 for (PHINode &PN : UnswitchedBB.phis()) { 288 // When the loop exit is directly unswitched we just need to update the 289 // incoming basic block. We loop to handle weird cases with repeated 290 // incoming blocks, but expect to typically only have one operand here. 291 for (auto i : seq<int>(0, PN.getNumOperands())) { 292 assert(PN.getIncomingBlock(i) == &OldExitingBB && 293 "Found incoming block different from unique predecessor!"); 294 PN.setIncomingBlock(i, &OldPH); 295 } 296 } 297 } 298 299 /// Rewrite the PHI nodes in the loop exit basic block and the split off 300 /// unswitched block. 301 /// 302 /// Because the exit block remains an exit from the loop, this rewrites the 303 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 304 /// nodes into the unswitched basic block to select between the value in the 305 /// old preheader and the loop exit. 306 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 307 BasicBlock &UnswitchedBB, 308 BasicBlock &OldExitingBB, 309 BasicBlock &OldPH, 310 bool FullUnswitch) { 311 assert(&ExitBB != &UnswitchedBB && 312 "Must have different loop exit and unswitched blocks!"); 313 Instruction *InsertPt = &*UnswitchedBB.begin(); 314 for (PHINode &PN : ExitBB.phis()) { 315 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 316 PN.getName() + ".split", InsertPt); 317 318 // Walk backwards over the old PHI node's inputs to minimize the cost of 319 // removing each one. We have to do this weird loop manually so that we 320 // create the same number of new incoming edges in the new PHI as we expect 321 // each case-based edge to be included in the unswitched switch in some 322 // cases. 323 // FIXME: This is really, really gross. It would be much cleaner if LLVM 324 // allowed us to create a single entry for a predecessor block without 325 // having separate entries for each "edge" even though these edges are 326 // required to produce identical results. 327 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 328 if (PN.getIncomingBlock(i) != &OldExitingBB) 329 continue; 330 331 Value *Incoming = PN.getIncomingValue(i); 332 if (FullUnswitch) 333 // No more edge from the old exiting block to the exit block. 334 PN.removeIncomingValue(i); 335 336 NewPN->addIncoming(Incoming, &OldPH); 337 } 338 339 // Now replace the old PHI with the new one and wire the old one in as an 340 // input to the new one. 341 PN.replaceAllUsesWith(NewPN); 342 NewPN->addIncoming(&PN, &ExitBB); 343 } 344 } 345 346 /// Hoist the current loop up to the innermost loop containing a remaining exit. 347 /// 348 /// Because we've removed an exit from the loop, we may have changed the set of 349 /// loops reachable and need to move the current loop up the loop nest or even 350 /// to an entirely separate nest. 351 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 352 DominatorTree &DT, LoopInfo &LI, 353 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 354 // If the loop is already at the top level, we can't hoist it anywhere. 355 Loop *OldParentL = L.getParentLoop(); 356 if (!OldParentL) 357 return; 358 359 SmallVector<BasicBlock *, 4> Exits; 360 L.getExitBlocks(Exits); 361 Loop *NewParentL = nullptr; 362 for (auto *ExitBB : Exits) 363 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 364 if (!NewParentL || NewParentL->contains(ExitL)) 365 NewParentL = ExitL; 366 367 if (NewParentL == OldParentL) 368 return; 369 370 // The new parent loop (if different) should always contain the old one. 371 if (NewParentL) 372 assert(NewParentL->contains(OldParentL) && 373 "Can only hoist this loop up the nest!"); 374 375 // The preheader will need to move with the body of this loop. However, 376 // because it isn't in this loop we also need to update the primary loop map. 377 assert(OldParentL == LI.getLoopFor(&Preheader) && 378 "Parent loop of this loop should contain this loop's preheader!"); 379 LI.changeLoopFor(&Preheader, NewParentL); 380 381 // Remove this loop from its old parent. 382 OldParentL->removeChildLoop(&L); 383 384 // Add the loop either to the new parent or as a top-level loop. 385 if (NewParentL) 386 NewParentL->addChildLoop(&L); 387 else 388 LI.addTopLevelLoop(&L); 389 390 // Remove this loops blocks from the old parent and every other loop up the 391 // nest until reaching the new parent. Also update all of these 392 // no-longer-containing loops to reflect the nesting change. 393 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 394 OldContainingL = OldContainingL->getParentLoop()) { 395 llvm::erase_if(OldContainingL->getBlocksVector(), 396 [&](const BasicBlock *BB) { 397 return BB == &Preheader || L.contains(BB); 398 }); 399 400 OldContainingL->getBlocksSet().erase(&Preheader); 401 for (BasicBlock *BB : L.blocks()) 402 OldContainingL->getBlocksSet().erase(BB); 403 404 // Because we just hoisted a loop out of this one, we have essentially 405 // created new exit paths from it. That means we need to form LCSSA PHI 406 // nodes for values used in the no-longer-nested loop. 407 formLCSSA(*OldContainingL, DT, &LI, SE); 408 409 // We shouldn't need to form dedicated exits because the exit introduced 410 // here is the (just split by unswitching) preheader. However, after trivial 411 // unswitching it is possible to get new non-dedicated exits out of parent 412 // loop so let's conservatively form dedicated exit blocks and figure out 413 // if we can optimize later. 414 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 415 /*PreserveLCSSA*/ true); 416 } 417 } 418 419 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 420 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 421 // as exiting block. 422 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 423 Loop *TopMost = LI.getLoopFor(ExitBB); 424 Loop *Current = TopMost; 425 while (Current) { 426 if (Current->isLoopExiting(ExitBB)) 427 TopMost = Current; 428 Current = Current->getParentLoop(); 429 } 430 return TopMost; 431 } 432 433 /// Unswitch a trivial branch if the condition is loop invariant. 434 /// 435 /// This routine should only be called when loop code leading to the branch has 436 /// been validated as trivial (no side effects). This routine checks if the 437 /// condition is invariant and one of the successors is a loop exit. This 438 /// allows us to unswitch without duplicating the loop, making it trivial. 439 /// 440 /// If this routine fails to unswitch the branch it returns false. 441 /// 442 /// If the branch can be unswitched, this routine splits the preheader and 443 /// hoists the branch above that split. Preserves loop simplified form 444 /// (splitting the exit block as necessary). It simplifies the branch within 445 /// the loop to an unconditional branch but doesn't remove it entirely. Further 446 /// cleanup can be done with some simplifycfg like pass. 447 /// 448 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 449 /// invalidated by this. 450 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 451 LoopInfo &LI, ScalarEvolution *SE, 452 MemorySSAUpdater *MSSAU) { 453 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 454 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 455 456 // The loop invariant values that we want to unswitch. 457 TinyPtrVector<Value *> Invariants; 458 459 // When true, we're fully unswitching the branch rather than just unswitching 460 // some input conditions to the branch. 461 bool FullUnswitch = false; 462 463 Value *Cond = skipTrivialSelect(BI.getCondition()); 464 if (L.isLoopInvariant(Cond)) { 465 Invariants.push_back(Cond); 466 FullUnswitch = true; 467 } else { 468 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 469 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 470 if (Invariants.empty()) { 471 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 472 return false; 473 } 474 } 475 476 // Check that one of the branch's successors exits, and which one. 477 bool ExitDirection = true; 478 int LoopExitSuccIdx = 0; 479 auto *LoopExitBB = BI.getSuccessor(0); 480 if (L.contains(LoopExitBB)) { 481 ExitDirection = false; 482 LoopExitSuccIdx = 1; 483 LoopExitBB = BI.getSuccessor(1); 484 if (L.contains(LoopExitBB)) { 485 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 486 return false; 487 } 488 } 489 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 490 auto *ParentBB = BI.getParent(); 491 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 492 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 493 return false; 494 } 495 496 // When unswitching only part of the branch's condition, we need the exit 497 // block to be reached directly from the partially unswitched input. This can 498 // be done when the exit block is along the true edge and the branch condition 499 // is a graph of `or` operations, or the exit block is along the false edge 500 // and the condition is a graph of `and` operations. 501 if (!FullUnswitch) { 502 if (ExitDirection ? !match(Cond, m_LogicalOr()) 503 : !match(Cond, m_LogicalAnd())) { 504 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 505 "non-full unswitch!\n"); 506 return false; 507 } 508 } 509 510 LLVM_DEBUG({ 511 dbgs() << " unswitching trivial invariant conditions for: " << BI 512 << "\n"; 513 for (Value *Invariant : Invariants) { 514 dbgs() << " " << *Invariant << " == true"; 515 if (Invariant != Invariants.back()) 516 dbgs() << " ||"; 517 dbgs() << "\n"; 518 } 519 }); 520 521 // If we have scalar evolutions, we need to invalidate them including this 522 // loop, the loop containing the exit block and the topmost parent loop 523 // exiting via LoopExitBB. 524 if (SE) { 525 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 526 SE->forgetLoop(ExitL); 527 else 528 // Forget the entire nest as this exits the entire nest. 529 SE->forgetTopmostLoop(&L); 530 } 531 532 if (MSSAU && VerifyMemorySSA) 533 MSSAU->getMemorySSA()->verifyMemorySSA(); 534 535 // Split the preheader, so that we know that there is a safe place to insert 536 // the conditional branch. We will change the preheader to have a conditional 537 // branch on LoopCond. 538 BasicBlock *OldPH = L.getLoopPreheader(); 539 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 540 541 // Now that we have a place to insert the conditional branch, create a place 542 // to branch to: this is the exit block out of the loop that we are 543 // unswitching. We need to split this if there are other loop predecessors. 544 // Because the loop is in simplified form, *any* other predecessor is enough. 545 BasicBlock *UnswitchedBB; 546 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 547 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 548 "A branch's parent isn't a predecessor!"); 549 UnswitchedBB = LoopExitBB; 550 } else { 551 UnswitchedBB = 552 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 553 } 554 555 if (MSSAU && VerifyMemorySSA) 556 MSSAU->getMemorySSA()->verifyMemorySSA(); 557 558 // Actually move the invariant uses into the unswitched position. If possible, 559 // we do this by moving the instructions, but when doing partial unswitching 560 // we do it by building a new merge of the values in the unswitched position. 561 OldPH->getTerminator()->eraseFromParent(); 562 if (FullUnswitch) { 563 // If fully unswitching, we can use the existing branch instruction. 564 // Splice it into the old PH to gate reaching the new preheader and re-point 565 // its successors. 566 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 567 BI); 568 BI.setCondition(Cond); 569 if (MSSAU) { 570 // Temporarily clone the terminator, to make MSSA update cheaper by 571 // separating "insert edge" updates from "remove edge" ones. 572 ParentBB->getInstList().push_back(BI.clone()); 573 } else { 574 // Create a new unconditional branch that will continue the loop as a new 575 // terminator. 576 BranchInst::Create(ContinueBB, ParentBB); 577 } 578 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 579 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 580 } else { 581 // Only unswitching a subset of inputs to the condition, so we will need to 582 // build a new branch that merges the invariant inputs. 583 if (ExitDirection) 584 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && 585 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 586 "condition!"); 587 else 588 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && 589 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 590 " condition!"); 591 buildPartialUnswitchConditionalBranch( 592 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, 593 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); 594 } 595 596 // Update the dominator tree with the added edge. 597 DT.insertEdge(OldPH, UnswitchedBB); 598 599 // After the dominator tree was updated with the added edge, update MemorySSA 600 // if available. 601 if (MSSAU) { 602 SmallVector<CFGUpdate, 1> Updates; 603 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 604 MSSAU->applyInsertUpdates(Updates, DT); 605 } 606 607 // Finish updating dominator tree and memory ssa for full unswitch. 608 if (FullUnswitch) { 609 if (MSSAU) { 610 // Remove the cloned branch instruction. 611 ParentBB->getTerminator()->eraseFromParent(); 612 // Create unconditional branch now. 613 BranchInst::Create(ContinueBB, ParentBB); 614 MSSAU->removeEdge(ParentBB, LoopExitBB); 615 } 616 DT.deleteEdge(ParentBB, LoopExitBB); 617 } 618 619 if (MSSAU && VerifyMemorySSA) 620 MSSAU->getMemorySSA()->verifyMemorySSA(); 621 622 // Rewrite the relevant PHI nodes. 623 if (UnswitchedBB == LoopExitBB) 624 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 625 else 626 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 627 *ParentBB, *OldPH, FullUnswitch); 628 629 // The constant we can replace all of our invariants with inside the loop 630 // body. If any of the invariants have a value other than this the loop won't 631 // be entered. 632 ConstantInt *Replacement = ExitDirection 633 ? ConstantInt::getFalse(BI.getContext()) 634 : ConstantInt::getTrue(BI.getContext()); 635 636 // Since this is an i1 condition we can also trivially replace uses of it 637 // within the loop with a constant. 638 for (Value *Invariant : Invariants) 639 replaceLoopInvariantUses(L, Invariant, *Replacement); 640 641 // If this was full unswitching, we may have changed the nesting relationship 642 // for this loop so hoist it to its correct parent if needed. 643 if (FullUnswitch) 644 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 645 646 if (MSSAU && VerifyMemorySSA) 647 MSSAU->getMemorySSA()->verifyMemorySSA(); 648 649 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 650 ++NumTrivial; 651 ++NumBranches; 652 return true; 653 } 654 655 /// Unswitch a trivial switch if the condition is loop invariant. 656 /// 657 /// This routine should only be called when loop code leading to the switch has 658 /// been validated as trivial (no side effects). This routine checks if the 659 /// condition is invariant and that at least one of the successors is a loop 660 /// exit. This allows us to unswitch without duplicating the loop, making it 661 /// trivial. 662 /// 663 /// If this routine fails to unswitch the switch it returns false. 664 /// 665 /// If the switch can be unswitched, this routine splits the preheader and 666 /// copies the switch above that split. If the default case is one of the 667 /// exiting cases, it copies the non-exiting cases and points them at the new 668 /// preheader. If the default case is not exiting, it copies the exiting cases 669 /// and points the default at the preheader. It preserves loop simplified form 670 /// (splitting the exit blocks as necessary). It simplifies the switch within 671 /// the loop by removing now-dead cases. If the default case is one of those 672 /// unswitched, it replaces its destination with a new basic block containing 673 /// only unreachable. Such basic blocks, while technically loop exits, are not 674 /// considered for unswitching so this is a stable transform and the same 675 /// switch will not be revisited. If after unswitching there is only a single 676 /// in-loop successor, the switch is further simplified to an unconditional 677 /// branch. Still more cleanup can be done with some simplifycfg like pass. 678 /// 679 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 680 /// invalidated by this. 681 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 682 LoopInfo &LI, ScalarEvolution *SE, 683 MemorySSAUpdater *MSSAU) { 684 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 685 Value *LoopCond = SI.getCondition(); 686 687 // If this isn't switching on an invariant condition, we can't unswitch it. 688 if (!L.isLoopInvariant(LoopCond)) 689 return false; 690 691 auto *ParentBB = SI.getParent(); 692 693 // The same check must be used both for the default and the exit cases. We 694 // should never leave edges from the switch instruction to a basic block that 695 // we are unswitching, hence the condition used to determine the default case 696 // needs to also be used to populate ExitCaseIndices, which is then used to 697 // remove cases from the switch. 698 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 699 // BBToCheck is not an exit block if it is inside loop L. 700 if (L.contains(&BBToCheck)) 701 return false; 702 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 703 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 704 return false; 705 // We do not unswitch a block that only has an unreachable statement, as 706 // it's possible this is a previously unswitched block. Only unswitch if 707 // either the terminator is not unreachable, or, if it is, it's not the only 708 // instruction in the block. 709 auto *TI = BBToCheck.getTerminator(); 710 bool isUnreachable = isa<UnreachableInst>(TI); 711 return !isUnreachable || 712 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 713 }; 714 715 SmallVector<int, 4> ExitCaseIndices; 716 for (auto Case : SI.cases()) 717 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 718 ExitCaseIndices.push_back(Case.getCaseIndex()); 719 BasicBlock *DefaultExitBB = nullptr; 720 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 721 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 722 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 723 DefaultExitBB = SI.getDefaultDest(); 724 } else if (ExitCaseIndices.empty()) 725 return false; 726 727 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 728 729 if (MSSAU && VerifyMemorySSA) 730 MSSAU->getMemorySSA()->verifyMemorySSA(); 731 732 // We may need to invalidate SCEVs for the outermost loop reached by any of 733 // the exits. 734 Loop *OuterL = &L; 735 736 if (DefaultExitBB) { 737 // Clear out the default destination temporarily to allow accurate 738 // predecessor lists to be examined below. 739 SI.setDefaultDest(nullptr); 740 // Check the loop containing this exit. 741 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 742 if (!ExitL || ExitL->contains(OuterL)) 743 OuterL = ExitL; 744 } 745 746 // Store the exit cases into a separate data structure and remove them from 747 // the switch. 748 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 749 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 750 4> ExitCases; 751 ExitCases.reserve(ExitCaseIndices.size()); 752 SwitchInstProfUpdateWrapper SIW(SI); 753 // We walk the case indices backwards so that we remove the last case first 754 // and don't disrupt the earlier indices. 755 for (unsigned Index : reverse(ExitCaseIndices)) { 756 auto CaseI = SI.case_begin() + Index; 757 // Compute the outer loop from this exit. 758 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 759 if (!ExitL || ExitL->contains(OuterL)) 760 OuterL = ExitL; 761 // Save the value of this case. 762 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 763 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 764 // Delete the unswitched cases. 765 SIW.removeCase(CaseI); 766 } 767 768 if (SE) { 769 if (OuterL) 770 SE->forgetLoop(OuterL); 771 else 772 SE->forgetTopmostLoop(&L); 773 } 774 775 // Check if after this all of the remaining cases point at the same 776 // successor. 777 BasicBlock *CommonSuccBB = nullptr; 778 if (SI.getNumCases() > 0 && 779 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 780 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 781 })) 782 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 783 if (!DefaultExitBB) { 784 // If we're not unswitching the default, we need it to match any cases to 785 // have a common successor or if we have no cases it is the common 786 // successor. 787 if (SI.getNumCases() == 0) 788 CommonSuccBB = SI.getDefaultDest(); 789 else if (SI.getDefaultDest() != CommonSuccBB) 790 CommonSuccBB = nullptr; 791 } 792 793 // Split the preheader, so that we know that there is a safe place to insert 794 // the switch. 795 BasicBlock *OldPH = L.getLoopPreheader(); 796 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 797 OldPH->getTerminator()->eraseFromParent(); 798 799 // Now add the unswitched switch. 800 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 801 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 802 803 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 804 // First, we split any exit blocks with remaining in-loop predecessors. Then 805 // we update the PHIs in one of two ways depending on if there was a split. 806 // We walk in reverse so that we split in the same order as the cases 807 // appeared. This is purely for convenience of reading the resulting IR, but 808 // it doesn't cost anything really. 809 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 810 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 811 // Handle the default exit if necessary. 812 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 813 // ranges aren't quite powerful enough yet. 814 if (DefaultExitBB) { 815 if (pred_empty(DefaultExitBB)) { 816 UnswitchedExitBBs.insert(DefaultExitBB); 817 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 818 } else { 819 auto *SplitBB = 820 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 821 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 822 *ParentBB, *OldPH, 823 /*FullUnswitch*/ true); 824 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 825 } 826 } 827 // Note that we must use a reference in the for loop so that we update the 828 // container. 829 for (auto &ExitCase : reverse(ExitCases)) { 830 // Grab a reference to the exit block in the pair so that we can update it. 831 BasicBlock *ExitBB = std::get<1>(ExitCase); 832 833 // If this case is the last edge into the exit block, we can simply reuse it 834 // as it will no longer be a loop exit. No mapping necessary. 835 if (pred_empty(ExitBB)) { 836 // Only rewrite once. 837 if (UnswitchedExitBBs.insert(ExitBB).second) 838 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 839 continue; 840 } 841 842 // Otherwise we need to split the exit block so that we retain an exit 843 // block from the loop and a target for the unswitched condition. 844 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 845 if (!SplitExitBB) { 846 // If this is the first time we see this, do the split and remember it. 847 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 848 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 849 *ParentBB, *OldPH, 850 /*FullUnswitch*/ true); 851 } 852 // Update the case pair to point to the split block. 853 std::get<1>(ExitCase) = SplitExitBB; 854 } 855 856 // Now add the unswitched cases. We do this in reverse order as we built them 857 // in reverse order. 858 for (auto &ExitCase : reverse(ExitCases)) { 859 ConstantInt *CaseVal = std::get<0>(ExitCase); 860 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 861 862 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 863 } 864 865 // If the default was unswitched, re-point it and add explicit cases for 866 // entering the loop. 867 if (DefaultExitBB) { 868 NewSIW->setDefaultDest(DefaultExitBB); 869 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 870 871 // We removed all the exit cases, so we just copy the cases to the 872 // unswitched switch. 873 for (const auto &Case : SI.cases()) 874 NewSIW.addCase(Case.getCaseValue(), NewPH, 875 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 876 } else if (DefaultCaseWeight) { 877 // We have to set branch weight of the default case. 878 uint64_t SW = *DefaultCaseWeight; 879 for (const auto &Case : SI.cases()) { 880 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 881 assert(W && 882 "case weight must be defined as default case weight is defined"); 883 SW += *W; 884 } 885 NewSIW.setSuccessorWeight(0, SW); 886 } 887 888 // If we ended up with a common successor for every path through the switch 889 // after unswitching, rewrite it to an unconditional branch to make it easy 890 // to recognize. Otherwise we potentially have to recognize the default case 891 // pointing at unreachable and other complexity. 892 if (CommonSuccBB) { 893 BasicBlock *BB = SI.getParent(); 894 // We may have had multiple edges to this common successor block, so remove 895 // them as predecessors. We skip the first one, either the default or the 896 // actual first case. 897 bool SkippedFirst = DefaultExitBB == nullptr; 898 for (auto Case : SI.cases()) { 899 assert(Case.getCaseSuccessor() == CommonSuccBB && 900 "Non-common successor!"); 901 (void)Case; 902 if (!SkippedFirst) { 903 SkippedFirst = true; 904 continue; 905 } 906 CommonSuccBB->removePredecessor(BB, 907 /*KeepOneInputPHIs*/ true); 908 } 909 // Now nuke the switch and replace it with a direct branch. 910 SIW.eraseFromParent(); 911 BranchInst::Create(CommonSuccBB, BB); 912 } else if (DefaultExitBB) { 913 assert(SI.getNumCases() > 0 && 914 "If we had no cases we'd have a common successor!"); 915 // Move the last case to the default successor. This is valid as if the 916 // default got unswitched it cannot be reached. This has the advantage of 917 // being simple and keeping the number of edges from this switch to 918 // successors the same, and avoiding any PHI update complexity. 919 auto LastCaseI = std::prev(SI.case_end()); 920 921 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 922 SIW.setSuccessorWeight( 923 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 924 SIW.removeCase(LastCaseI); 925 } 926 927 // Walk the unswitched exit blocks and the unswitched split blocks and update 928 // the dominator tree based on the CFG edits. While we are walking unordered 929 // containers here, the API for applyUpdates takes an unordered list of 930 // updates and requires them to not contain duplicates. 931 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 932 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 933 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 934 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 935 } 936 for (auto SplitUnswitchedPair : SplitExitBBMap) { 937 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 938 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 939 } 940 941 if (MSSAU) { 942 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 943 if (VerifyMemorySSA) 944 MSSAU->getMemorySSA()->verifyMemorySSA(); 945 } else { 946 DT.applyUpdates(DTUpdates); 947 } 948 949 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 950 951 // We may have changed the nesting relationship for this loop so hoist it to 952 // its correct parent if needed. 953 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 954 955 if (MSSAU && VerifyMemorySSA) 956 MSSAU->getMemorySSA()->verifyMemorySSA(); 957 958 ++NumTrivial; 959 ++NumSwitches; 960 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 961 return true; 962 } 963 964 /// This routine scans the loop to find a branch or switch which occurs before 965 /// any side effects occur. These can potentially be unswitched without 966 /// duplicating the loop. If a branch or switch is successfully unswitched the 967 /// scanning continues to see if subsequent branches or switches have become 968 /// trivial. Once all trivial candidates have been unswitched, this routine 969 /// returns. 970 /// 971 /// The return value indicates whether anything was unswitched (and therefore 972 /// changed). 973 /// 974 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 975 /// invalidated by this. 976 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 977 LoopInfo &LI, ScalarEvolution *SE, 978 MemorySSAUpdater *MSSAU) { 979 bool Changed = false; 980 981 // If loop header has only one reachable successor we should keep looking for 982 // trivial condition candidates in the successor as well. An alternative is 983 // to constant fold conditions and merge successors into loop header (then we 984 // only need to check header's terminator). The reason for not doing this in 985 // LoopUnswitch pass is that it could potentially break LoopPassManager's 986 // invariants. Folding dead branches could either eliminate the current loop 987 // or make other loops unreachable. LCSSA form might also not be preserved 988 // after deleting branches. The following code keeps traversing loop header's 989 // successors until it finds the trivial condition candidate (condition that 990 // is not a constant). Since unswitching generates branches with constant 991 // conditions, this scenario could be very common in practice. 992 BasicBlock *CurrentBB = L.getHeader(); 993 SmallPtrSet<BasicBlock *, 8> Visited; 994 Visited.insert(CurrentBB); 995 do { 996 // Check if there are any side-effecting instructions (e.g. stores, calls, 997 // volatile loads) in the part of the loop that the code *would* execute 998 // without unswitching. 999 if (MSSAU) // Possible early exit with MSSA 1000 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 1001 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 1002 return Changed; 1003 if (llvm::any_of(*CurrentBB, 1004 [](Instruction &I) { return I.mayHaveSideEffects(); })) 1005 return Changed; 1006 1007 Instruction *CurrentTerm = CurrentBB->getTerminator(); 1008 1009 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1010 // Don't bother trying to unswitch past a switch with a constant 1011 // condition. This should be removed prior to running this pass by 1012 // simplifycfg. 1013 if (isa<Constant>(SI->getCondition())) 1014 return Changed; 1015 1016 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 1017 // Couldn't unswitch this one so we're done. 1018 return Changed; 1019 1020 // Mark that we managed to unswitch something. 1021 Changed = true; 1022 1023 // If unswitching turned the terminator into an unconditional branch then 1024 // we can continue. The unswitching logic specifically works to fold any 1025 // cases it can into an unconditional branch to make it easier to 1026 // recognize here. 1027 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1028 if (!BI || BI->isConditional()) 1029 return Changed; 1030 1031 CurrentBB = BI->getSuccessor(0); 1032 continue; 1033 } 1034 1035 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1036 if (!BI) 1037 // We do not understand other terminator instructions. 1038 return Changed; 1039 1040 // Don't bother trying to unswitch past an unconditional branch or a branch 1041 // with a constant value. These should be removed by simplifycfg prior to 1042 // running this pass. 1043 if (!BI->isConditional() || 1044 isa<Constant>(skipTrivialSelect(BI->getCondition()))) 1045 return Changed; 1046 1047 // Found a trivial condition candidate: non-foldable conditional branch. If 1048 // we fail to unswitch this, we can't do anything else that is trivial. 1049 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1050 return Changed; 1051 1052 // Mark that we managed to unswitch something. 1053 Changed = true; 1054 1055 // If we only unswitched some of the conditions feeding the branch, we won't 1056 // have collapsed it to a single successor. 1057 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1058 if (BI->isConditional()) 1059 return Changed; 1060 1061 // Follow the newly unconditional branch into its successor. 1062 CurrentBB = BI->getSuccessor(0); 1063 1064 // When continuing, if we exit the loop or reach a previous visited block, 1065 // then we can not reach any trivial condition candidates (unfoldable 1066 // branch instructions or switch instructions) and no unswitch can happen. 1067 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1068 1069 return Changed; 1070 } 1071 1072 /// Build the cloned blocks for an unswitched copy of the given loop. 1073 /// 1074 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1075 /// after the split block (`SplitBB`) that will be used to select between the 1076 /// cloned and original loop. 1077 /// 1078 /// This routine handles cloning all of the necessary loop blocks and exit 1079 /// blocks including rewriting their instructions and the relevant PHI nodes. 1080 /// Any loop blocks or exit blocks which are dominated by a different successor 1081 /// than the one for this clone of the loop blocks can be trivially skipped. We 1082 /// use the `DominatingSucc` map to determine whether a block satisfies that 1083 /// property with a simple map lookup. 1084 /// 1085 /// It also correctly creates the unconditional branch in the cloned 1086 /// unswitched parent block to only point at the unswitched successor. 1087 /// 1088 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1089 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1090 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1091 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1092 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1093 /// instead the caller must recompute an accurate DT. It *does* correctly 1094 /// update the `AssumptionCache` provided in `AC`. 1095 static BasicBlock *buildClonedLoopBlocks( 1096 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1097 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1098 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1099 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1100 ValueToValueMapTy &VMap, 1101 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1102 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1103 SmallVector<BasicBlock *, 4> NewBlocks; 1104 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1105 1106 // We will need to clone a bunch of blocks, wrap up the clone operation in 1107 // a helper. 1108 auto CloneBlock = [&](BasicBlock *OldBB) { 1109 // Clone the basic block and insert it before the new preheader. 1110 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1111 NewBB->moveBefore(LoopPH); 1112 1113 // Record this block and the mapping. 1114 NewBlocks.push_back(NewBB); 1115 VMap[OldBB] = NewBB; 1116 1117 return NewBB; 1118 }; 1119 1120 // We skip cloning blocks when they have a dominating succ that is not the 1121 // succ we are cloning for. 1122 auto SkipBlock = [&](BasicBlock *BB) { 1123 auto It = DominatingSucc.find(BB); 1124 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1125 }; 1126 1127 // First, clone the preheader. 1128 auto *ClonedPH = CloneBlock(LoopPH); 1129 1130 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1131 for (auto *LoopBB : L.blocks()) 1132 if (!SkipBlock(LoopBB)) 1133 CloneBlock(LoopBB); 1134 1135 // Split all the loop exit edges so that when we clone the exit blocks, if 1136 // any of the exit blocks are *also* a preheader for some other loop, we 1137 // don't create multiple predecessors entering the loop header. 1138 for (auto *ExitBB : ExitBlocks) { 1139 if (SkipBlock(ExitBB)) 1140 continue; 1141 1142 // When we are going to clone an exit, we don't need to clone all the 1143 // instructions in the exit block and we want to ensure we have an easy 1144 // place to merge the CFG, so split the exit first. This is always safe to 1145 // do because there cannot be any non-loop predecessors of a loop exit in 1146 // loop simplified form. 1147 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1148 1149 // Rearrange the names to make it easier to write test cases by having the 1150 // exit block carry the suffix rather than the merge block carrying the 1151 // suffix. 1152 MergeBB->takeName(ExitBB); 1153 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1154 1155 // Now clone the original exit block. 1156 auto *ClonedExitBB = CloneBlock(ExitBB); 1157 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1158 "Exit block should have been split to have one successor!"); 1159 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1160 "Cloned exit block has the wrong successor!"); 1161 1162 // Remap any cloned instructions and create a merge phi node for them. 1163 for (auto ZippedInsts : llvm::zip_first( 1164 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1165 llvm::make_range(ClonedExitBB->begin(), 1166 std::prev(ClonedExitBB->end())))) { 1167 Instruction &I = std::get<0>(ZippedInsts); 1168 Instruction &ClonedI = std::get<1>(ZippedInsts); 1169 1170 // The only instructions in the exit block should be PHI nodes and 1171 // potentially a landing pad. 1172 assert( 1173 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1174 "Bad instruction in exit block!"); 1175 // We should have a value map between the instruction and its clone. 1176 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1177 1178 auto *MergePN = 1179 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1180 &*MergeBB->getFirstInsertionPt()); 1181 I.replaceAllUsesWith(MergePN); 1182 MergePN->addIncoming(&I, ExitBB); 1183 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1184 } 1185 } 1186 1187 // Rewrite the instructions in the cloned blocks to refer to the instructions 1188 // in the cloned blocks. We have to do this as a second pass so that we have 1189 // everything available. Also, we have inserted new instructions which may 1190 // include assume intrinsics, so we update the assumption cache while 1191 // processing this. 1192 for (auto *ClonedBB : NewBlocks) 1193 for (Instruction &I : *ClonedBB) { 1194 RemapInstruction(&I, VMap, 1195 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1196 if (auto *II = dyn_cast<AssumeInst>(&I)) 1197 AC.registerAssumption(II); 1198 } 1199 1200 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1201 // have spurious incoming values. 1202 for (auto *LoopBB : L.blocks()) 1203 if (SkipBlock(LoopBB)) 1204 for (auto *SuccBB : successors(LoopBB)) 1205 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1206 for (PHINode &PN : ClonedSuccBB->phis()) 1207 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1208 1209 // Remove the cloned parent as a predecessor of any successor we ended up 1210 // cloning other than the unswitched one. 1211 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1212 for (auto *SuccBB : successors(ParentBB)) { 1213 if (SuccBB == UnswitchedSuccBB) 1214 continue; 1215 1216 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1217 if (!ClonedSuccBB) 1218 continue; 1219 1220 ClonedSuccBB->removePredecessor(ClonedParentBB, 1221 /*KeepOneInputPHIs*/ true); 1222 } 1223 1224 // Replace the cloned branch with an unconditional branch to the cloned 1225 // unswitched successor. 1226 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1227 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1228 // Trivial Simplification. If Terminator is a conditional branch and 1229 // condition becomes dead - erase it. 1230 Value *ClonedConditionToErase = nullptr; 1231 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1232 ClonedConditionToErase = BI->getCondition(); 1233 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1234 ClonedConditionToErase = SI->getCondition(); 1235 1236 ClonedTerminator->eraseFromParent(); 1237 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1238 1239 if (ClonedConditionToErase) 1240 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1241 MSSAU); 1242 1243 // If there are duplicate entries in the PHI nodes because of multiple edges 1244 // to the unswitched successor, we need to nuke all but one as we replaced it 1245 // with a direct branch. 1246 for (PHINode &PN : ClonedSuccBB->phis()) { 1247 bool Found = false; 1248 // Loop over the incoming operands backwards so we can easily delete as we 1249 // go without invalidating the index. 1250 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1251 if (PN.getIncomingBlock(i) != ClonedParentBB) 1252 continue; 1253 if (!Found) { 1254 Found = true; 1255 continue; 1256 } 1257 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1258 } 1259 } 1260 1261 // Record the domtree updates for the new blocks. 1262 SmallPtrSet<BasicBlock *, 4> SuccSet; 1263 for (auto *ClonedBB : NewBlocks) { 1264 for (auto *SuccBB : successors(ClonedBB)) 1265 if (SuccSet.insert(SuccBB).second) 1266 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1267 SuccSet.clear(); 1268 } 1269 1270 return ClonedPH; 1271 } 1272 1273 /// Recursively clone the specified loop and all of its children. 1274 /// 1275 /// The target parent loop for the clone should be provided, or can be null if 1276 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1277 /// with the provided value map. The entire original loop must be present in 1278 /// the value map. The cloned loop is returned. 1279 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1280 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1281 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1282 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1283 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1284 for (auto *BB : OrigL.blocks()) { 1285 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1286 ClonedL.addBlockEntry(ClonedBB); 1287 if (LI.getLoopFor(BB) == &OrigL) 1288 LI.changeLoopFor(ClonedBB, &ClonedL); 1289 } 1290 }; 1291 1292 // We specially handle the first loop because it may get cloned into 1293 // a different parent and because we most commonly are cloning leaf loops. 1294 Loop *ClonedRootL = LI.AllocateLoop(); 1295 if (RootParentL) 1296 RootParentL->addChildLoop(ClonedRootL); 1297 else 1298 LI.addTopLevelLoop(ClonedRootL); 1299 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1300 1301 if (OrigRootL.isInnermost()) 1302 return ClonedRootL; 1303 1304 // If we have a nest, we can quickly clone the entire loop nest using an 1305 // iterative approach because it is a tree. We keep the cloned parent in the 1306 // data structure to avoid repeatedly querying through a map to find it. 1307 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1308 // Build up the loops to clone in reverse order as we'll clone them from the 1309 // back. 1310 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1311 LoopsToClone.push_back({ClonedRootL, ChildL}); 1312 do { 1313 Loop *ClonedParentL, *L; 1314 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1315 Loop *ClonedL = LI.AllocateLoop(); 1316 ClonedParentL->addChildLoop(ClonedL); 1317 AddClonedBlocksToLoop(*L, *ClonedL); 1318 for (Loop *ChildL : llvm::reverse(*L)) 1319 LoopsToClone.push_back({ClonedL, ChildL}); 1320 } while (!LoopsToClone.empty()); 1321 1322 return ClonedRootL; 1323 } 1324 1325 /// Build the cloned loops of an original loop from unswitching. 1326 /// 1327 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1328 /// operation. We need to re-verify that there even is a loop (as the backedge 1329 /// may not have been cloned), and even if there are remaining backedges the 1330 /// backedge set may be different. However, we know that each child loop is 1331 /// undisturbed, we only need to find where to place each child loop within 1332 /// either any parent loop or within a cloned version of the original loop. 1333 /// 1334 /// Because child loops may end up cloned outside of any cloned version of the 1335 /// original loop, multiple cloned sibling loops may be created. All of them 1336 /// are returned so that the newly introduced loop nest roots can be 1337 /// identified. 1338 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1339 const ValueToValueMapTy &VMap, LoopInfo &LI, 1340 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1341 Loop *ClonedL = nullptr; 1342 1343 auto *OrigPH = OrigL.getLoopPreheader(); 1344 auto *OrigHeader = OrigL.getHeader(); 1345 1346 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1347 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1348 1349 // We need to know the loops of the cloned exit blocks to even compute the 1350 // accurate parent loop. If we only clone exits to some parent of the 1351 // original parent, we want to clone into that outer loop. We also keep track 1352 // of the loops that our cloned exit blocks participate in. 1353 Loop *ParentL = nullptr; 1354 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1355 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1356 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1357 for (auto *ExitBB : ExitBlocks) 1358 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1359 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1360 ExitLoopMap[ClonedExitBB] = ExitL; 1361 ClonedExitsInLoops.push_back(ClonedExitBB); 1362 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1363 ParentL = ExitL; 1364 } 1365 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1366 ParentL->contains(OrigL.getParentLoop())) && 1367 "The computed parent loop should always contain (or be) the parent of " 1368 "the original loop."); 1369 1370 // We build the set of blocks dominated by the cloned header from the set of 1371 // cloned blocks out of the original loop. While not all of these will 1372 // necessarily be in the cloned loop, it is enough to establish that they 1373 // aren't in unreachable cycles, etc. 1374 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1375 for (auto *BB : OrigL.blocks()) 1376 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1377 ClonedLoopBlocks.insert(ClonedBB); 1378 1379 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1380 // skipped cloning some region of this loop which can in turn skip some of 1381 // the backedges so we have to rebuild the blocks in the loop based on the 1382 // backedges that remain after cloning. 1383 SmallVector<BasicBlock *, 16> Worklist; 1384 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1385 for (auto *Pred : predecessors(ClonedHeader)) { 1386 // The only possible non-loop header predecessor is the preheader because 1387 // we know we cloned the loop in simplified form. 1388 if (Pred == ClonedPH) 1389 continue; 1390 1391 // Because the loop was in simplified form, the only non-loop predecessor 1392 // should be the preheader. 1393 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1394 "header other than the preheader " 1395 "that is not part of the loop!"); 1396 1397 // Insert this block into the loop set and on the first visit (and if it 1398 // isn't the header we're currently walking) put it into the worklist to 1399 // recurse through. 1400 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1401 Worklist.push_back(Pred); 1402 } 1403 1404 // If we had any backedges then there *is* a cloned loop. Put the header into 1405 // the loop set and then walk the worklist backwards to find all the blocks 1406 // that remain within the loop after cloning. 1407 if (!BlocksInClonedLoop.empty()) { 1408 BlocksInClonedLoop.insert(ClonedHeader); 1409 1410 while (!Worklist.empty()) { 1411 BasicBlock *BB = Worklist.pop_back_val(); 1412 assert(BlocksInClonedLoop.count(BB) && 1413 "Didn't put block into the loop set!"); 1414 1415 // Insert any predecessors that are in the possible set into the cloned 1416 // set, and if the insert is successful, add them to the worklist. Note 1417 // that we filter on the blocks that are definitely reachable via the 1418 // backedge to the loop header so we may prune out dead code within the 1419 // cloned loop. 1420 for (auto *Pred : predecessors(BB)) 1421 if (ClonedLoopBlocks.count(Pred) && 1422 BlocksInClonedLoop.insert(Pred).second) 1423 Worklist.push_back(Pred); 1424 } 1425 1426 ClonedL = LI.AllocateLoop(); 1427 if (ParentL) { 1428 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1429 ParentL->addChildLoop(ClonedL); 1430 } else { 1431 LI.addTopLevelLoop(ClonedL); 1432 } 1433 NonChildClonedLoops.push_back(ClonedL); 1434 1435 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1436 // We don't want to just add the cloned loop blocks based on how we 1437 // discovered them. The original order of blocks was carefully built in 1438 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1439 // that logic, we just re-walk the original blocks (and those of the child 1440 // loops) and filter them as we add them into the cloned loop. 1441 for (auto *BB : OrigL.blocks()) { 1442 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1443 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1444 continue; 1445 1446 // Directly add the blocks that are only in this loop. 1447 if (LI.getLoopFor(BB) == &OrigL) { 1448 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1449 continue; 1450 } 1451 1452 // We want to manually add it to this loop and parents. 1453 // Registering it with LoopInfo will happen when we clone the top 1454 // loop for this block. 1455 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1456 PL->addBlockEntry(ClonedBB); 1457 } 1458 1459 // Now add each child loop whose header remains within the cloned loop. All 1460 // of the blocks within the loop must satisfy the same constraints as the 1461 // header so once we pass the header checks we can just clone the entire 1462 // child loop nest. 1463 for (Loop *ChildL : OrigL) { 1464 auto *ClonedChildHeader = 1465 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1466 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1467 continue; 1468 1469 #ifndef NDEBUG 1470 // We should never have a cloned child loop header but fail to have 1471 // all of the blocks for that child loop. 1472 for (auto *ChildLoopBB : ChildL->blocks()) 1473 assert(BlocksInClonedLoop.count( 1474 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1475 "Child cloned loop has a header within the cloned outer " 1476 "loop but not all of its blocks!"); 1477 #endif 1478 1479 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1480 } 1481 } 1482 1483 // Now that we've handled all the components of the original loop that were 1484 // cloned into a new loop, we still need to handle anything from the original 1485 // loop that wasn't in a cloned loop. 1486 1487 // Figure out what blocks are left to place within any loop nest containing 1488 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1489 // them. 1490 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1491 if (BlocksInClonedLoop.empty()) 1492 UnloopedBlockSet.insert(ClonedPH); 1493 for (auto *ClonedBB : ClonedLoopBlocks) 1494 if (!BlocksInClonedLoop.count(ClonedBB)) 1495 UnloopedBlockSet.insert(ClonedBB); 1496 1497 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1498 // backwards across these to process them inside out. The order shouldn't 1499 // matter as we're just trying to build up the map from inside-out; we use 1500 // the map in a more stably ordered way below. 1501 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1502 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1503 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1504 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1505 }); 1506 1507 // Populate the existing ExitLoopMap with everything reachable from each 1508 // exit, starting from the inner most exit. 1509 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1510 assert(Worklist.empty() && "Didn't clear worklist!"); 1511 1512 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1513 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1514 1515 // Walk the CFG back until we hit the cloned PH adding everything reachable 1516 // and in the unlooped set to this exit block's loop. 1517 Worklist.push_back(ExitBB); 1518 do { 1519 BasicBlock *BB = Worklist.pop_back_val(); 1520 // We can stop recursing at the cloned preheader (if we get there). 1521 if (BB == ClonedPH) 1522 continue; 1523 1524 for (BasicBlock *PredBB : predecessors(BB)) { 1525 // If this pred has already been moved to our set or is part of some 1526 // (inner) loop, no update needed. 1527 if (!UnloopedBlockSet.erase(PredBB)) { 1528 assert( 1529 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1530 "Predecessor not mapped to a loop!"); 1531 continue; 1532 } 1533 1534 // We just insert into the loop set here. We'll add these blocks to the 1535 // exit loop after we build up the set in an order that doesn't rely on 1536 // predecessor order (which in turn relies on use list order). 1537 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1538 (void)Inserted; 1539 assert(Inserted && "Should only visit an unlooped block once!"); 1540 1541 // And recurse through to its predecessors. 1542 Worklist.push_back(PredBB); 1543 } 1544 } while (!Worklist.empty()); 1545 } 1546 1547 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1548 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1549 // in their original order adding them to the correct loop. 1550 1551 // We need a stable insertion order. We use the order of the original loop 1552 // order and map into the correct parent loop. 1553 for (auto *BB : llvm::concat<BasicBlock *const>( 1554 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1555 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1556 OuterL->addBasicBlockToLoop(BB, LI); 1557 1558 #ifndef NDEBUG 1559 for (auto &BBAndL : ExitLoopMap) { 1560 auto *BB = BBAndL.first; 1561 auto *OuterL = BBAndL.second; 1562 assert(LI.getLoopFor(BB) == OuterL && 1563 "Failed to put all blocks into outer loops!"); 1564 } 1565 #endif 1566 1567 // Now that all the blocks are placed into the correct containing loop in the 1568 // absence of child loops, find all the potentially cloned child loops and 1569 // clone them into whatever outer loop we placed their header into. 1570 for (Loop *ChildL : OrigL) { 1571 auto *ClonedChildHeader = 1572 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1573 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1574 continue; 1575 1576 #ifndef NDEBUG 1577 for (auto *ChildLoopBB : ChildL->blocks()) 1578 assert(VMap.count(ChildLoopBB) && 1579 "Cloned a child loop header but not all of that loops blocks!"); 1580 #endif 1581 1582 NonChildClonedLoops.push_back(cloneLoopNest( 1583 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1584 } 1585 } 1586 1587 static void 1588 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1589 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1590 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1591 // Find all the dead clones, and remove them from their successors. 1592 SmallVector<BasicBlock *, 16> DeadBlocks; 1593 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1594 for (auto &VMap : VMaps) 1595 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1596 if (!DT.isReachableFromEntry(ClonedBB)) { 1597 for (BasicBlock *SuccBB : successors(ClonedBB)) 1598 SuccBB->removePredecessor(ClonedBB); 1599 DeadBlocks.push_back(ClonedBB); 1600 } 1601 1602 // Remove all MemorySSA in the dead blocks 1603 if (MSSAU) { 1604 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1605 DeadBlocks.end()); 1606 MSSAU->removeBlocks(DeadBlockSet); 1607 } 1608 1609 // Drop any remaining references to break cycles. 1610 for (BasicBlock *BB : DeadBlocks) 1611 BB->dropAllReferences(); 1612 // Erase them from the IR. 1613 for (BasicBlock *BB : DeadBlocks) 1614 BB->eraseFromParent(); 1615 } 1616 1617 static void 1618 deleteDeadBlocksFromLoop(Loop &L, 1619 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1620 DominatorTree &DT, LoopInfo &LI, 1621 MemorySSAUpdater *MSSAU, 1622 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1623 // Find all the dead blocks tied to this loop, and remove them from their 1624 // successors. 1625 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1626 1627 // Start with loop/exit blocks and get a transitive closure of reachable dead 1628 // blocks. 1629 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1630 ExitBlocks.end()); 1631 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1632 while (!DeathCandidates.empty()) { 1633 auto *BB = DeathCandidates.pop_back_val(); 1634 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1635 for (BasicBlock *SuccBB : successors(BB)) { 1636 SuccBB->removePredecessor(BB); 1637 DeathCandidates.push_back(SuccBB); 1638 } 1639 DeadBlockSet.insert(BB); 1640 } 1641 } 1642 1643 // Remove all MemorySSA in the dead blocks 1644 if (MSSAU) 1645 MSSAU->removeBlocks(DeadBlockSet); 1646 1647 // Filter out the dead blocks from the exit blocks list so that it can be 1648 // used in the caller. 1649 llvm::erase_if(ExitBlocks, 1650 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1651 1652 // Walk from this loop up through its parents removing all of the dead blocks. 1653 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1654 for (auto *BB : DeadBlockSet) 1655 ParentL->getBlocksSet().erase(BB); 1656 llvm::erase_if(ParentL->getBlocksVector(), 1657 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1658 } 1659 1660 // Now delete the dead child loops. This raw delete will clear them 1661 // recursively. 1662 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1663 if (!DeadBlockSet.count(ChildL->getHeader())) 1664 return false; 1665 1666 assert(llvm::all_of(ChildL->blocks(), 1667 [&](BasicBlock *ChildBB) { 1668 return DeadBlockSet.count(ChildBB); 1669 }) && 1670 "If the child loop header is dead all blocks in the child loop must " 1671 "be dead as well!"); 1672 DestroyLoopCB(*ChildL, ChildL->getName()); 1673 LI.destroy(ChildL); 1674 return true; 1675 }); 1676 1677 // Remove the loop mappings for the dead blocks and drop all the references 1678 // from these blocks to others to handle cyclic references as we start 1679 // deleting the blocks themselves. 1680 for (auto *BB : DeadBlockSet) { 1681 // Check that the dominator tree has already been updated. 1682 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1683 LI.changeLoopFor(BB, nullptr); 1684 // Drop all uses of the instructions to make sure we won't have dangling 1685 // uses in other blocks. 1686 for (auto &I : *BB) 1687 if (!I.use_empty()) 1688 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1689 BB->dropAllReferences(); 1690 } 1691 1692 // Actually delete the blocks now that they've been fully unhooked from the 1693 // IR. 1694 for (auto *BB : DeadBlockSet) 1695 BB->eraseFromParent(); 1696 } 1697 1698 /// Recompute the set of blocks in a loop after unswitching. 1699 /// 1700 /// This walks from the original headers predecessors to rebuild the loop. We 1701 /// take advantage of the fact that new blocks can't have been added, and so we 1702 /// filter by the original loop's blocks. This also handles potentially 1703 /// unreachable code that we don't want to explore but might be found examining 1704 /// the predecessors of the header. 1705 /// 1706 /// If the original loop is no longer a loop, this will return an empty set. If 1707 /// it remains a loop, all the blocks within it will be added to the set 1708 /// (including those blocks in inner loops). 1709 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1710 LoopInfo &LI) { 1711 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1712 1713 auto *PH = L.getLoopPreheader(); 1714 auto *Header = L.getHeader(); 1715 1716 // A worklist to use while walking backwards from the header. 1717 SmallVector<BasicBlock *, 16> Worklist; 1718 1719 // First walk the predecessors of the header to find the backedges. This will 1720 // form the basis of our walk. 1721 for (auto *Pred : predecessors(Header)) { 1722 // Skip the preheader. 1723 if (Pred == PH) 1724 continue; 1725 1726 // Because the loop was in simplified form, the only non-loop predecessor 1727 // is the preheader. 1728 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1729 "than the preheader that is not part of the " 1730 "loop!"); 1731 1732 // Insert this block into the loop set and on the first visit and, if it 1733 // isn't the header we're currently walking, put it into the worklist to 1734 // recurse through. 1735 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1736 Worklist.push_back(Pred); 1737 } 1738 1739 // If no backedges were found, we're done. 1740 if (LoopBlockSet.empty()) 1741 return LoopBlockSet; 1742 1743 // We found backedges, recurse through them to identify the loop blocks. 1744 while (!Worklist.empty()) { 1745 BasicBlock *BB = Worklist.pop_back_val(); 1746 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1747 1748 // No need to walk past the header. 1749 if (BB == Header) 1750 continue; 1751 1752 // Because we know the inner loop structure remains valid we can use the 1753 // loop structure to jump immediately across the entire nested loop. 1754 // Further, because it is in loop simplified form, we can directly jump 1755 // to its preheader afterward. 1756 if (Loop *InnerL = LI.getLoopFor(BB)) 1757 if (InnerL != &L) { 1758 assert(L.contains(InnerL) && 1759 "Should not reach a loop *outside* this loop!"); 1760 // The preheader is the only possible predecessor of the loop so 1761 // insert it into the set and check whether it was already handled. 1762 auto *InnerPH = InnerL->getLoopPreheader(); 1763 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1764 "but not contain the inner loop " 1765 "preheader!"); 1766 if (!LoopBlockSet.insert(InnerPH).second) 1767 // The only way to reach the preheader is through the loop body 1768 // itself so if it has been visited the loop is already handled. 1769 continue; 1770 1771 // Insert all of the blocks (other than those already present) into 1772 // the loop set. We expect at least the block that led us to find the 1773 // inner loop to be in the block set, but we may also have other loop 1774 // blocks if they were already enqueued as predecessors of some other 1775 // outer loop block. 1776 for (auto *InnerBB : InnerL->blocks()) { 1777 if (InnerBB == BB) { 1778 assert(LoopBlockSet.count(InnerBB) && 1779 "Block should already be in the set!"); 1780 continue; 1781 } 1782 1783 LoopBlockSet.insert(InnerBB); 1784 } 1785 1786 // Add the preheader to the worklist so we will continue past the 1787 // loop body. 1788 Worklist.push_back(InnerPH); 1789 continue; 1790 } 1791 1792 // Insert any predecessors that were in the original loop into the new 1793 // set, and if the insert is successful, add them to the worklist. 1794 for (auto *Pred : predecessors(BB)) 1795 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1796 Worklist.push_back(Pred); 1797 } 1798 1799 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1800 1801 // We've found all the blocks participating in the loop, return our completed 1802 // set. 1803 return LoopBlockSet; 1804 } 1805 1806 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1807 /// 1808 /// The removal may have removed some child loops entirely but cannot have 1809 /// disturbed any remaining child loops. However, they may need to be hoisted 1810 /// to the parent loop (or to be top-level loops). The original loop may be 1811 /// completely removed. 1812 /// 1813 /// The sibling loops resulting from this update are returned. If the original 1814 /// loop remains a valid loop, it will be the first entry in this list with all 1815 /// of the newly sibling loops following it. 1816 /// 1817 /// Returns true if the loop remains a loop after unswitching, and false if it 1818 /// is no longer a loop after unswitching (and should not continue to be 1819 /// referenced). 1820 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1821 LoopInfo &LI, 1822 SmallVectorImpl<Loop *> &HoistedLoops) { 1823 auto *PH = L.getLoopPreheader(); 1824 1825 // Compute the actual parent loop from the exit blocks. Because we may have 1826 // pruned some exits the loop may be different from the original parent. 1827 Loop *ParentL = nullptr; 1828 SmallVector<Loop *, 4> ExitLoops; 1829 SmallVector<BasicBlock *, 4> ExitsInLoops; 1830 ExitsInLoops.reserve(ExitBlocks.size()); 1831 for (auto *ExitBB : ExitBlocks) 1832 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1833 ExitLoops.push_back(ExitL); 1834 ExitsInLoops.push_back(ExitBB); 1835 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1836 ParentL = ExitL; 1837 } 1838 1839 // Recompute the blocks participating in this loop. This may be empty if it 1840 // is no longer a loop. 1841 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1842 1843 // If we still have a loop, we need to re-set the loop's parent as the exit 1844 // block set changing may have moved it within the loop nest. Note that this 1845 // can only happen when this loop has a parent as it can only hoist the loop 1846 // *up* the nest. 1847 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1848 // Remove this loop's (original) blocks from all of the intervening loops. 1849 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1850 IL = IL->getParentLoop()) { 1851 IL->getBlocksSet().erase(PH); 1852 for (auto *BB : L.blocks()) 1853 IL->getBlocksSet().erase(BB); 1854 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1855 return BB == PH || L.contains(BB); 1856 }); 1857 } 1858 1859 LI.changeLoopFor(PH, ParentL); 1860 L.getParentLoop()->removeChildLoop(&L); 1861 if (ParentL) 1862 ParentL->addChildLoop(&L); 1863 else 1864 LI.addTopLevelLoop(&L); 1865 } 1866 1867 // Now we update all the blocks which are no longer within the loop. 1868 auto &Blocks = L.getBlocksVector(); 1869 auto BlocksSplitI = 1870 LoopBlockSet.empty() 1871 ? Blocks.begin() 1872 : std::stable_partition( 1873 Blocks.begin(), Blocks.end(), 1874 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1875 1876 // Before we erase the list of unlooped blocks, build a set of them. 1877 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1878 if (LoopBlockSet.empty()) 1879 UnloopedBlocks.insert(PH); 1880 1881 // Now erase these blocks from the loop. 1882 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1883 L.getBlocksSet().erase(BB); 1884 Blocks.erase(BlocksSplitI, Blocks.end()); 1885 1886 // Sort the exits in ascending loop depth, we'll work backwards across these 1887 // to process them inside out. 1888 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1889 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1890 }); 1891 1892 // We'll build up a set for each exit loop. 1893 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1894 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1895 1896 auto RemoveUnloopedBlocksFromLoop = 1897 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1898 for (auto *BB : UnloopedBlocks) 1899 L.getBlocksSet().erase(BB); 1900 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1901 return UnloopedBlocks.count(BB); 1902 }); 1903 }; 1904 1905 SmallVector<BasicBlock *, 16> Worklist; 1906 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1907 assert(Worklist.empty() && "Didn't clear worklist!"); 1908 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1909 1910 // Grab the next exit block, in decreasing loop depth order. 1911 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1912 Loop &ExitL = *LI.getLoopFor(ExitBB); 1913 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1914 1915 // Erase all of the unlooped blocks from the loops between the previous 1916 // exit loop and this exit loop. This works because the ExitInLoops list is 1917 // sorted in increasing order of loop depth and thus we visit loops in 1918 // decreasing order of loop depth. 1919 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1920 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1921 1922 // Walk the CFG back until we hit the cloned PH adding everything reachable 1923 // and in the unlooped set to this exit block's loop. 1924 Worklist.push_back(ExitBB); 1925 do { 1926 BasicBlock *BB = Worklist.pop_back_val(); 1927 // We can stop recursing at the cloned preheader (if we get there). 1928 if (BB == PH) 1929 continue; 1930 1931 for (BasicBlock *PredBB : predecessors(BB)) { 1932 // If this pred has already been moved to our set or is part of some 1933 // (inner) loop, no update needed. 1934 if (!UnloopedBlocks.erase(PredBB)) { 1935 assert((NewExitLoopBlocks.count(PredBB) || 1936 ExitL.contains(LI.getLoopFor(PredBB))) && 1937 "Predecessor not in a nested loop (or already visited)!"); 1938 continue; 1939 } 1940 1941 // We just insert into the loop set here. We'll add these blocks to the 1942 // exit loop after we build up the set in a deterministic order rather 1943 // than the predecessor-influenced visit order. 1944 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1945 (void)Inserted; 1946 assert(Inserted && "Should only visit an unlooped block once!"); 1947 1948 // And recurse through to its predecessors. 1949 Worklist.push_back(PredBB); 1950 } 1951 } while (!Worklist.empty()); 1952 1953 // If blocks in this exit loop were directly part of the original loop (as 1954 // opposed to a child loop) update the map to point to this exit loop. This 1955 // just updates a map and so the fact that the order is unstable is fine. 1956 for (auto *BB : NewExitLoopBlocks) 1957 if (Loop *BBL = LI.getLoopFor(BB)) 1958 if (BBL == &L || !L.contains(BBL)) 1959 LI.changeLoopFor(BB, &ExitL); 1960 1961 // We will remove the remaining unlooped blocks from this loop in the next 1962 // iteration or below. 1963 NewExitLoopBlocks.clear(); 1964 } 1965 1966 // Any remaining unlooped blocks are no longer part of any loop unless they 1967 // are part of some child loop. 1968 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1969 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1970 for (auto *BB : UnloopedBlocks) 1971 if (Loop *BBL = LI.getLoopFor(BB)) 1972 if (BBL == &L || !L.contains(BBL)) 1973 LI.changeLoopFor(BB, nullptr); 1974 1975 // Sink all the child loops whose headers are no longer in the loop set to 1976 // the parent (or to be top level loops). We reach into the loop and directly 1977 // update its subloop vector to make this batch update efficient. 1978 auto &SubLoops = L.getSubLoopsVector(); 1979 auto SubLoopsSplitI = 1980 LoopBlockSet.empty() 1981 ? SubLoops.begin() 1982 : std::stable_partition( 1983 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1984 return LoopBlockSet.count(SubL->getHeader()); 1985 }); 1986 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1987 HoistedLoops.push_back(HoistedL); 1988 HoistedL->setParentLoop(nullptr); 1989 1990 // To compute the new parent of this hoisted loop we look at where we 1991 // placed the preheader above. We can't lookup the header itself because we 1992 // retained the mapping from the header to the hoisted loop. But the 1993 // preheader and header should have the exact same new parent computed 1994 // based on the set of exit blocks from the original loop as the preheader 1995 // is a predecessor of the header and so reached in the reverse walk. And 1996 // because the loops were all in simplified form the preheader of the 1997 // hoisted loop can't be part of some *other* loop. 1998 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1999 NewParentL->addChildLoop(HoistedL); 2000 else 2001 LI.addTopLevelLoop(HoistedL); 2002 } 2003 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 2004 2005 // Actually delete the loop if nothing remained within it. 2006 if (Blocks.empty()) { 2007 assert(SubLoops.empty() && 2008 "Failed to remove all subloops from the original loop!"); 2009 if (Loop *ParentL = L.getParentLoop()) 2010 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 2011 else 2012 LI.removeLoop(llvm::find(LI, &L)); 2013 // markLoopAsDeleted for L should be triggered by the caller (it is typically 2014 // done by using the UnswitchCB callback). 2015 LI.destroy(&L); 2016 return false; 2017 } 2018 2019 return true; 2020 } 2021 2022 /// Helper to visit a dominator subtree, invoking a callable on each node. 2023 /// 2024 /// Returning false at any point will stop walking past that node of the tree. 2025 template <typename CallableT> 2026 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2027 SmallVector<DomTreeNode *, 4> DomWorklist; 2028 DomWorklist.push_back(DT[BB]); 2029 #ifndef NDEBUG 2030 SmallPtrSet<DomTreeNode *, 4> Visited; 2031 Visited.insert(DT[BB]); 2032 #endif 2033 do { 2034 DomTreeNode *N = DomWorklist.pop_back_val(); 2035 2036 // Visit this node. 2037 if (!Callable(N->getBlock())) 2038 continue; 2039 2040 // Accumulate the child nodes. 2041 for (DomTreeNode *ChildN : *N) { 2042 assert(Visited.insert(ChildN).second && 2043 "Cannot visit a node twice when walking a tree!"); 2044 DomWorklist.push_back(ChildN); 2045 } 2046 } while (!DomWorklist.empty()); 2047 } 2048 2049 static void unswitchNontrivialInvariants( 2050 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2051 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo, 2052 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2053 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2054 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2055 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2056 auto *ParentBB = TI.getParent(); 2057 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2058 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2059 2060 // We can only unswitch switches, conditional branches with an invariant 2061 // condition, or combining invariant conditions with an instruction or 2062 // partially invariant instructions. 2063 assert((SI || (BI && BI->isConditional())) && 2064 "Can only unswitch switches and conditional branch!"); 2065 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2066 bool FullUnswitch = 2067 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && 2068 !PartiallyInvariant); 2069 if (FullUnswitch) 2070 assert(Invariants.size() == 1 && 2071 "Cannot have other invariants with full unswitching!"); 2072 else 2073 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && 2074 "Partial unswitching requires an instruction as the condition!"); 2075 2076 if (MSSAU && VerifyMemorySSA) 2077 MSSAU->getMemorySSA()->verifyMemorySSA(); 2078 2079 // Constant and BBs tracking the cloned and continuing successor. When we are 2080 // unswitching the entire condition, this can just be trivially chosen to 2081 // unswitch towards `true`. However, when we are unswitching a set of 2082 // invariants combined with `and` or `or` or partially invariant instructions, 2083 // the combining operation determines the best direction to unswitch: we want 2084 // to unswitch the direction that will collapse the branch. 2085 bool Direction = true; 2086 int ClonedSucc = 0; 2087 if (!FullUnswitch) { 2088 Value *Cond = skipTrivialSelect(BI->getCondition()); 2089 (void)Cond; 2090 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2091 PartiallyInvariant) && 2092 "Only `or`, `and`, an `select`, partially invariant instructions " 2093 "can combine invariants being unswitched."); 2094 if (!match(Cond, m_LogicalOr())) { 2095 if (match(Cond, m_LogicalAnd()) || 2096 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2097 Direction = false; 2098 ClonedSucc = 1; 2099 } 2100 } 2101 } 2102 2103 BasicBlock *RetainedSuccBB = 2104 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2105 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2106 if (BI) 2107 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2108 else 2109 for (auto Case : SI->cases()) 2110 if (Case.getCaseSuccessor() != RetainedSuccBB) 2111 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2112 2113 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2114 "Should not unswitch the same successor we are retaining!"); 2115 2116 // The branch should be in this exact loop. Any inner loop's invariant branch 2117 // should be handled by unswitching that inner loop. The caller of this 2118 // routine should filter out any candidates that remain (but were skipped for 2119 // whatever reason). 2120 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2121 2122 // Compute the parent loop now before we start hacking on things. 2123 Loop *ParentL = L.getParentLoop(); 2124 // Get blocks in RPO order for MSSA update, before changing the CFG. 2125 LoopBlocksRPO LBRPO(&L); 2126 if (MSSAU) 2127 LBRPO.perform(&LI); 2128 2129 // Compute the outer-most loop containing one of our exit blocks. This is the 2130 // furthest up our loopnest which can be mutated, which we will use below to 2131 // update things. 2132 Loop *OuterExitL = &L; 2133 for (auto *ExitBB : ExitBlocks) { 2134 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2135 if (!NewOuterExitL) { 2136 // We exited the entire nest with this block, so we're done. 2137 OuterExitL = nullptr; 2138 break; 2139 } 2140 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2141 OuterExitL = NewOuterExitL; 2142 } 2143 2144 // At this point, we're definitely going to unswitch something so invalidate 2145 // any cached information in ScalarEvolution for the outer most loop 2146 // containing an exit block and all nested loops. 2147 if (SE) { 2148 if (OuterExitL) 2149 SE->forgetLoop(OuterExitL); 2150 else 2151 SE->forgetTopmostLoop(&L); 2152 } 2153 2154 bool InsertFreeze = false; 2155 if (FreezeLoopUnswitchCond) { 2156 ICFLoopSafetyInfo SafetyInfo; 2157 SafetyInfo.computeLoopSafetyInfo(&L); 2158 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 2159 } 2160 2161 // If the edge from this terminator to a successor dominates that successor, 2162 // store a map from each block in its dominator subtree to it. This lets us 2163 // tell when cloning for a particular successor if a block is dominated by 2164 // some *other* successor with a single data structure. We use this to 2165 // significantly reduce cloning. 2166 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2167 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2168 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2169 if (SuccBB->getUniquePredecessor() || 2170 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2171 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2172 })) 2173 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2174 DominatingSucc[BB] = SuccBB; 2175 return true; 2176 }); 2177 2178 // Split the preheader, so that we know that there is a safe place to insert 2179 // the conditional branch. We will change the preheader to have a conditional 2180 // branch on LoopCond. The original preheader will become the split point 2181 // between the unswitched versions, and we will have a new preheader for the 2182 // original loop. 2183 BasicBlock *SplitBB = L.getLoopPreheader(); 2184 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2185 2186 // Keep track of the dominator tree updates needed. 2187 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2188 2189 // Clone the loop for each unswitched successor. 2190 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2191 VMaps.reserve(UnswitchedSuccBBs.size()); 2192 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2193 for (auto *SuccBB : UnswitchedSuccBBs) { 2194 VMaps.emplace_back(new ValueToValueMapTy()); 2195 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2196 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2197 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2198 } 2199 2200 // Drop metadata if we may break its semantics by moving this instr into the 2201 // split block. 2202 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2203 if (DropNonTrivialImplicitNullChecks) 2204 // Do not spend time trying to understand if we can keep it, just drop it 2205 // to save compile time. 2206 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2207 else { 2208 // It is only legal to preserve make.implicit metadata if we are 2209 // guaranteed no reach implicit null check after following this branch. 2210 ICFLoopSafetyInfo SafetyInfo; 2211 SafetyInfo.computeLoopSafetyInfo(&L); 2212 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2213 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2214 } 2215 } 2216 2217 // The stitching of the branched code back together depends on whether we're 2218 // doing full unswitching or not with the exception that we always want to 2219 // nuke the initial terminator placed in the split block. 2220 SplitBB->getTerminator()->eraseFromParent(); 2221 if (FullUnswitch) { 2222 // Splice the terminator from the original loop and rewrite its 2223 // successors. 2224 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2225 2226 // Keep a clone of the terminator for MSSA updates. 2227 Instruction *NewTI = TI.clone(); 2228 ParentBB->getInstList().push_back(NewTI); 2229 2230 // First wire up the moved terminator to the preheaders. 2231 if (BI) { 2232 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2233 BI->setSuccessor(ClonedSucc, ClonedPH); 2234 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2235 Value *Cond = skipTrivialSelect(BI->getCondition()); 2236 if (InsertFreeze) { 2237 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT)) 2238 Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI); 2239 } 2240 BI->setCondition(Cond); 2241 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2242 } else { 2243 assert(SI && "Must either be a branch or switch!"); 2244 2245 // Walk the cases and directly update their successors. 2246 assert(SI->getDefaultDest() == RetainedSuccBB && 2247 "Not retaining default successor!"); 2248 SI->setDefaultDest(LoopPH); 2249 for (auto &Case : SI->cases()) 2250 if (Case.getCaseSuccessor() == RetainedSuccBB) 2251 Case.setSuccessor(LoopPH); 2252 else 2253 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2254 2255 if (InsertFreeze) { 2256 auto Cond = SI->getCondition(); 2257 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT)) 2258 SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI)); 2259 } 2260 // We need to use the set to populate domtree updates as even when there 2261 // are multiple cases pointing at the same successor we only want to 2262 // remove and insert one edge in the domtree. 2263 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2264 DTUpdates.push_back( 2265 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2266 } 2267 2268 if (MSSAU) { 2269 DT.applyUpdates(DTUpdates); 2270 DTUpdates.clear(); 2271 2272 // Remove all but one edge to the retained block and all unswitched 2273 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2274 // when we know we only keep a single edge for each case. 2275 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2276 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2277 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2278 2279 for (auto &VMap : VMaps) 2280 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2281 /*IgnoreIncomingWithNoClones=*/true); 2282 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2283 2284 // Remove all edges to unswitched blocks. 2285 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2286 MSSAU->removeEdge(ParentBB, SuccBB); 2287 } 2288 2289 // Now unhook the successor relationship as we'll be replacing 2290 // the terminator with a direct branch. This is much simpler for branches 2291 // than switches so we handle those first. 2292 if (BI) { 2293 // Remove the parent as a predecessor of the unswitched successor. 2294 assert(UnswitchedSuccBBs.size() == 1 && 2295 "Only one possible unswitched block for a branch!"); 2296 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2297 UnswitchedSuccBB->removePredecessor(ParentBB, 2298 /*KeepOneInputPHIs*/ true); 2299 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2300 } else { 2301 // Note that we actually want to remove the parent block as a predecessor 2302 // of *every* case successor. The case successor is either unswitched, 2303 // completely eliminating an edge from the parent to that successor, or it 2304 // is a duplicate edge to the retained successor as the retained successor 2305 // is always the default successor and as we'll replace this with a direct 2306 // branch we no longer need the duplicate entries in the PHI nodes. 2307 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2308 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2309 "Not retaining default successor!"); 2310 for (auto &Case : NewSI->cases()) 2311 Case.getCaseSuccessor()->removePredecessor( 2312 ParentBB, 2313 /*KeepOneInputPHIs*/ true); 2314 2315 // We need to use the set to populate domtree updates as even when there 2316 // are multiple cases pointing at the same successor we only want to 2317 // remove and insert one edge in the domtree. 2318 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2319 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2320 } 2321 2322 // After MSSAU update, remove the cloned terminator instruction NewTI. 2323 ParentBB->getTerminator()->eraseFromParent(); 2324 2325 // Create a new unconditional branch to the continuing block (as opposed to 2326 // the one cloned). 2327 BranchInst::Create(RetainedSuccBB, ParentBB); 2328 } else { 2329 assert(BI && "Only branches have partial unswitching."); 2330 assert(UnswitchedSuccBBs.size() == 1 && 2331 "Only one possible unswitched block for a branch!"); 2332 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2333 // When doing a partial unswitch, we have to do a bit more work to build up 2334 // the branch in the split block. 2335 if (PartiallyInvariant) 2336 buildPartialInvariantUnswitchConditionalBranch( 2337 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2338 else { 2339 buildPartialUnswitchConditionalBranch( 2340 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 2341 FreezeLoopUnswitchCond, BI, &AC, DT); 2342 } 2343 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2344 2345 if (MSSAU) { 2346 DT.applyUpdates(DTUpdates); 2347 DTUpdates.clear(); 2348 2349 // Perform MSSA cloning updates. 2350 for (auto &VMap : VMaps) 2351 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2352 /*IgnoreIncomingWithNoClones=*/true); 2353 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2354 } 2355 } 2356 2357 // Apply the updates accumulated above to get an up-to-date dominator tree. 2358 DT.applyUpdates(DTUpdates); 2359 2360 // Now that we have an accurate dominator tree, first delete the dead cloned 2361 // blocks so that we can accurately build any cloned loops. It is important to 2362 // not delete the blocks from the original loop yet because we still want to 2363 // reference the original loop to understand the cloned loop's structure. 2364 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2365 2366 // Build the cloned loop structure itself. This may be substantially 2367 // different from the original structure due to the simplified CFG. This also 2368 // handles inserting all the cloned blocks into the correct loops. 2369 SmallVector<Loop *, 4> NonChildClonedLoops; 2370 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2371 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2372 2373 // Now that our cloned loops have been built, we can update the original loop. 2374 // First we delete the dead blocks from it and then we rebuild the loop 2375 // structure taking these deletions into account. 2376 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB); 2377 2378 if (MSSAU && VerifyMemorySSA) 2379 MSSAU->getMemorySSA()->verifyMemorySSA(); 2380 2381 SmallVector<Loop *, 4> HoistedLoops; 2382 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2383 2384 if (MSSAU && VerifyMemorySSA) 2385 MSSAU->getMemorySSA()->verifyMemorySSA(); 2386 2387 // This transformation has a high risk of corrupting the dominator tree, and 2388 // the below steps to rebuild loop structures will result in hard to debug 2389 // errors in that case so verify that the dominator tree is sane first. 2390 // FIXME: Remove this when the bugs stop showing up and rely on existing 2391 // verification steps. 2392 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2393 2394 if (BI && !PartiallyInvariant) { 2395 // If we unswitched a branch which collapses the condition to a known 2396 // constant we want to replace all the uses of the invariants within both 2397 // the original and cloned blocks. We do this here so that we can use the 2398 // now updated dominator tree to identify which side the users are on. 2399 assert(UnswitchedSuccBBs.size() == 1 && 2400 "Only one possible unswitched block for a branch!"); 2401 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2402 2403 // When considering multiple partially-unswitched invariants 2404 // we cant just go replace them with constants in both branches. 2405 // 2406 // For 'AND' we infer that true branch ("continue") means true 2407 // for each invariant operand. 2408 // For 'OR' we can infer that false branch ("continue") means false 2409 // for each invariant operand. 2410 // So it happens that for multiple-partial case we dont replace 2411 // in the unswitched branch. 2412 bool ReplaceUnswitched = 2413 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2414 2415 ConstantInt *UnswitchedReplacement = 2416 Direction ? ConstantInt::getTrue(BI->getContext()) 2417 : ConstantInt::getFalse(BI->getContext()); 2418 ConstantInt *ContinueReplacement = 2419 Direction ? ConstantInt::getFalse(BI->getContext()) 2420 : ConstantInt::getTrue(BI->getContext()); 2421 for (Value *Invariant : Invariants) { 2422 assert(!isa<Constant>(Invariant) && 2423 "Should not be replacing constant values!"); 2424 // Use make_early_inc_range here as set invalidates the iterator. 2425 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2426 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2427 if (!UserI) 2428 continue; 2429 2430 // Replace it with the 'continue' side if in the main loop body, and the 2431 // unswitched if in the cloned blocks. 2432 if (DT.dominates(LoopPH, UserI->getParent())) 2433 U.set(ContinueReplacement); 2434 else if (ReplaceUnswitched && 2435 DT.dominates(ClonedPH, UserI->getParent())) 2436 U.set(UnswitchedReplacement); 2437 } 2438 } 2439 } 2440 2441 // We can change which blocks are exit blocks of all the cloned sibling 2442 // loops, the current loop, and any parent loops which shared exit blocks 2443 // with the current loop. As a consequence, we need to re-form LCSSA for 2444 // them. But we shouldn't need to re-form LCSSA for any child loops. 2445 // FIXME: This could be made more efficient by tracking which exit blocks are 2446 // new, and focusing on them, but that isn't likely to be necessary. 2447 // 2448 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2449 // loop nest and update every loop that could have had its exits changed. We 2450 // also need to cover any intervening loops. We add all of these loops to 2451 // a list and sort them by loop depth to achieve this without updating 2452 // unnecessary loops. 2453 auto UpdateLoop = [&](Loop &UpdateL) { 2454 #ifndef NDEBUG 2455 UpdateL.verifyLoop(); 2456 for (Loop *ChildL : UpdateL) { 2457 ChildL->verifyLoop(); 2458 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2459 "Perturbed a child loop's LCSSA form!"); 2460 } 2461 #endif 2462 // First build LCSSA for this loop so that we can preserve it when 2463 // forming dedicated exits. We don't want to perturb some other loop's 2464 // LCSSA while doing that CFG edit. 2465 formLCSSA(UpdateL, DT, &LI, SE); 2466 2467 // For loops reached by this loop's original exit blocks we may 2468 // introduced new, non-dedicated exits. At least try to re-form dedicated 2469 // exits for these loops. This may fail if they couldn't have dedicated 2470 // exits to start with. 2471 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2472 }; 2473 2474 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2475 // and we can do it in any order as they don't nest relative to each other. 2476 // 2477 // Also check if any of the loops we have updated have become top-level loops 2478 // as that will necessitate widening the outer loop scope. 2479 for (Loop *UpdatedL : 2480 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2481 UpdateLoop(*UpdatedL); 2482 if (UpdatedL->isOutermost()) 2483 OuterExitL = nullptr; 2484 } 2485 if (IsStillLoop) { 2486 UpdateLoop(L); 2487 if (L.isOutermost()) 2488 OuterExitL = nullptr; 2489 } 2490 2491 // If the original loop had exit blocks, walk up through the outer most loop 2492 // of those exit blocks to update LCSSA and form updated dedicated exits. 2493 if (OuterExitL != &L) 2494 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2495 OuterL = OuterL->getParentLoop()) 2496 UpdateLoop(*OuterL); 2497 2498 #ifndef NDEBUG 2499 // Verify the entire loop structure to catch any incorrect updates before we 2500 // progress in the pass pipeline. 2501 LI.verify(DT); 2502 #endif 2503 2504 // Now that we've unswitched something, make callbacks to report the changes. 2505 // For that we need to merge together the updated loops and the cloned loops 2506 // and check whether the original loop survived. 2507 SmallVector<Loop *, 4> SibLoops; 2508 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2509 if (UpdatedL->getParentLoop() == ParentL) 2510 SibLoops.push_back(UpdatedL); 2511 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2512 2513 if (MSSAU && VerifyMemorySSA) 2514 MSSAU->getMemorySSA()->verifyMemorySSA(); 2515 2516 if (BI) 2517 ++NumBranches; 2518 else 2519 ++NumSwitches; 2520 } 2521 2522 /// Recursively compute the cost of a dominator subtree based on the per-block 2523 /// cost map provided. 2524 /// 2525 /// The recursive computation is memozied into the provided DT-indexed cost map 2526 /// to allow querying it for most nodes in the domtree without it becoming 2527 /// quadratic. 2528 static InstructionCost computeDomSubtreeCost( 2529 DomTreeNode &N, 2530 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2531 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2532 // Don't accumulate cost (or recurse through) blocks not in our block cost 2533 // map and thus not part of the duplication cost being considered. 2534 auto BBCostIt = BBCostMap.find(N.getBlock()); 2535 if (BBCostIt == BBCostMap.end()) 2536 return 0; 2537 2538 // Lookup this node to see if we already computed its cost. 2539 auto DTCostIt = DTCostMap.find(&N); 2540 if (DTCostIt != DTCostMap.end()) 2541 return DTCostIt->second; 2542 2543 // If not, we have to compute it. We can't use insert above and update 2544 // because computing the cost may insert more things into the map. 2545 InstructionCost Cost = std::accumulate( 2546 N.begin(), N.end(), BBCostIt->second, 2547 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2548 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2549 }); 2550 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2551 (void)Inserted; 2552 assert(Inserted && "Should not insert a node while visiting children!"); 2553 return Cost; 2554 } 2555 2556 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2557 /// making the following replacement: 2558 /// 2559 /// --code before guard-- 2560 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2561 /// --code after guard-- 2562 /// 2563 /// into 2564 /// 2565 /// --code before guard-- 2566 /// br i1 %cond, label %guarded, label %deopt 2567 /// 2568 /// guarded: 2569 /// --code after guard-- 2570 /// 2571 /// deopt: 2572 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2573 /// unreachable 2574 /// 2575 /// It also makes all relevant DT and LI updates, so that all structures are in 2576 /// valid state after this transform. 2577 static BranchInst * 2578 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2579 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2580 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2581 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2582 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2583 BasicBlock *CheckBB = GI->getParent(); 2584 2585 if (MSSAU && VerifyMemorySSA) 2586 MSSAU->getMemorySSA()->verifyMemorySSA(); 2587 2588 // Remove all CheckBB's successors from DomTree. A block can be seen among 2589 // successors more than once, but for DomTree it should be added only once. 2590 SmallPtrSet<BasicBlock *, 4> Successors; 2591 for (auto *Succ : successors(CheckBB)) 2592 if (Successors.insert(Succ).second) 2593 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2594 2595 Instruction *DeoptBlockTerm = 2596 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2597 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2598 // SplitBlockAndInsertIfThen inserts control flow that branches to 2599 // DeoptBlockTerm if the condition is true. We want the opposite. 2600 CheckBI->swapSuccessors(); 2601 2602 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2603 GuardedBlock->setName("guarded"); 2604 CheckBI->getSuccessor(1)->setName("deopt"); 2605 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2606 2607 // We now have a new exit block. 2608 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2609 2610 if (MSSAU) 2611 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2612 2613 GI->moveBefore(DeoptBlockTerm); 2614 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2615 2616 // Add new successors of CheckBB into DomTree. 2617 for (auto *Succ : successors(CheckBB)) 2618 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2619 2620 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2621 // successors. 2622 for (auto *Succ : Successors) 2623 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2624 2625 // Make proper changes to DT. 2626 DT.applyUpdates(DTUpdates); 2627 // Inform LI of a new loop block. 2628 L.addBasicBlockToLoop(GuardedBlock, LI); 2629 2630 if (MSSAU) { 2631 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2632 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2633 if (VerifyMemorySSA) 2634 MSSAU->getMemorySSA()->verifyMemorySSA(); 2635 } 2636 2637 ++NumGuards; 2638 return CheckBI; 2639 } 2640 2641 /// Cost multiplier is a way to limit potentially exponential behavior 2642 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2643 /// candidates available. Also accounting for the number of "sibling" loops with 2644 /// the idea to account for previous unswitches that already happened on this 2645 /// cluster of loops. There was an attempt to keep this formula simple, 2646 /// just enough to limit the worst case behavior. Even if it is not that simple 2647 /// now it is still not an attempt to provide a detailed heuristic size 2648 /// prediction. 2649 /// 2650 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2651 /// unswitch candidates, making adequate predictions instead of wild guesses. 2652 /// That requires knowing not just the number of "remaining" candidates but 2653 /// also costs of unswitching for each of these candidates. 2654 static int CalculateUnswitchCostMultiplier( 2655 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2656 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2657 UnswitchCandidates) { 2658 2659 // Guards and other exiting conditions do not contribute to exponential 2660 // explosion as soon as they dominate the latch (otherwise there might be 2661 // another path to the latch remaining that does not allow to eliminate the 2662 // loop copy on unswitch). 2663 BasicBlock *Latch = L.getLoopLatch(); 2664 BasicBlock *CondBlock = TI.getParent(); 2665 if (DT.dominates(CondBlock, Latch) && 2666 (isGuard(&TI) || 2667 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2668 return L.contains(SuccBB); 2669 }) <= 1)) { 2670 NumCostMultiplierSkipped++; 2671 return 1; 2672 } 2673 2674 auto *ParentL = L.getParentLoop(); 2675 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2676 : std::distance(LI.begin(), LI.end())); 2677 // Count amount of clones that all the candidates might cause during 2678 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2679 int UnswitchedClones = 0; 2680 for (auto Candidate : UnswitchCandidates) { 2681 Instruction *CI = Candidate.first; 2682 BasicBlock *CondBlock = CI->getParent(); 2683 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2684 if (isGuard(CI)) { 2685 if (!SkipExitingSuccessors) 2686 UnswitchedClones++; 2687 continue; 2688 } 2689 int NonExitingSuccessors = llvm::count_if( 2690 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2691 return !SkipExitingSuccessors || L.contains(SuccBB); 2692 }); 2693 UnswitchedClones += Log2_32(NonExitingSuccessors); 2694 } 2695 2696 // Ignore up to the "unscaled candidates" number of unswitch candidates 2697 // when calculating the power-of-two scaling of the cost. The main idea 2698 // with this control is to allow a small number of unswitches to happen 2699 // and rely more on siblings multiplier (see below) when the number 2700 // of candidates is small. 2701 unsigned ClonesPower = 2702 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2703 2704 // Allowing top-level loops to spread a bit more than nested ones. 2705 int SiblingsMultiplier = 2706 std::max((ParentL ? SiblingsCount 2707 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2708 1); 2709 // Compute the cost multiplier in a way that won't overflow by saturating 2710 // at an upper bound. 2711 int CostMultiplier; 2712 if (ClonesPower > Log2_32(UnswitchThreshold) || 2713 SiblingsMultiplier > UnswitchThreshold) 2714 CostMultiplier = UnswitchThreshold; 2715 else 2716 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2717 (int)UnswitchThreshold); 2718 2719 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2720 << " (siblings " << SiblingsMultiplier << " * clones " 2721 << (1 << ClonesPower) << ")" 2722 << " for unswitch candidate: " << TI << "\n"); 2723 return CostMultiplier; 2724 } 2725 2726 static bool unswitchBestCondition( 2727 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2728 AAResults &AA, TargetTransformInfo &TTI, 2729 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2730 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2731 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2732 // Collect all invariant conditions within this loop (as opposed to an inner 2733 // loop which would be handled when visiting that inner loop). 2734 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2735 UnswitchCandidates; 2736 2737 // Whether or not we should also collect guards in the loop. 2738 bool CollectGuards = false; 2739 if (UnswitchGuards) { 2740 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2741 Intrinsic::getName(Intrinsic::experimental_guard)); 2742 if (GuardDecl && !GuardDecl->use_empty()) 2743 CollectGuards = true; 2744 } 2745 2746 IVConditionInfo PartialIVInfo; 2747 for (auto *BB : L.blocks()) { 2748 if (LI.getLoopFor(BB) != &L) 2749 continue; 2750 2751 if (CollectGuards) 2752 for (auto &I : *BB) 2753 if (isGuard(&I)) { 2754 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2755 // TODO: Support AND, OR conditions and partial unswitching. 2756 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2757 UnswitchCandidates.push_back({&I, {Cond}}); 2758 } 2759 2760 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2761 // We can only consider fully loop-invariant switch conditions as we need 2762 // to completely eliminate the switch after unswitching. 2763 if (!isa<Constant>(SI->getCondition()) && 2764 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2765 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2766 continue; 2767 } 2768 2769 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2770 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2771 BI->getSuccessor(0) == BI->getSuccessor(1)) 2772 continue; 2773 2774 Value *Cond = skipTrivialSelect(BI->getCondition()); 2775 if (isa<Constant>(Cond)) 2776 continue; 2777 2778 if (L.isLoopInvariant(Cond)) { 2779 UnswitchCandidates.push_back({BI, {Cond}}); 2780 continue; 2781 } 2782 2783 Instruction &CondI = *cast<Instruction>(Cond); 2784 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2785 TinyPtrVector<Value *> Invariants = 2786 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2787 if (Invariants.empty()) 2788 continue; 2789 2790 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2791 continue; 2792 } 2793 } 2794 2795 Instruction *PartialIVCondBranch = nullptr; 2796 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2797 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2798 return TerminatorAndInvariants.first == L.getHeader()->getTerminator(); 2799 })) { 2800 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2801 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2802 LLVM_DEBUG( 2803 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2804 << *Info->InstToDuplicate[0] << "\n"); 2805 PartialIVInfo = *Info; 2806 PartialIVCondBranch = L.getHeader()->getTerminator(); 2807 TinyPtrVector<Value *> ValsToDuplicate; 2808 for (auto *Inst : Info->InstToDuplicate) 2809 ValsToDuplicate.push_back(Inst); 2810 UnswitchCandidates.push_back( 2811 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2812 } 2813 } 2814 2815 // If we didn't find any candidates, we're done. 2816 if (UnswitchCandidates.empty()) 2817 return false; 2818 2819 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2820 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2821 // irreducible control flow into reducible control flow and introduce new 2822 // loops "out of thin air". If we ever discover important use cases for doing 2823 // this, we can add support to loop unswitch, but it is a lot of complexity 2824 // for what seems little or no real world benefit. 2825 LoopBlocksRPO RPOT(&L); 2826 RPOT.perform(&LI); 2827 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2828 return false; 2829 2830 SmallVector<BasicBlock *, 4> ExitBlocks; 2831 L.getUniqueExitBlocks(ExitBlocks); 2832 2833 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 2834 // instruction as we don't know how to split those exit blocks. 2835 // FIXME: We should teach SplitBlock to handle this and remove this 2836 // restriction. 2837 for (auto *ExitBB : ExitBlocks) { 2838 auto *I = ExitBB->getFirstNonPHI(); 2839 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 2840 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 2841 "in exit block\n"); 2842 return false; 2843 } 2844 } 2845 2846 LLVM_DEBUG( 2847 dbgs() << "Considering " << UnswitchCandidates.size() 2848 << " non-trivial loop invariant conditions for unswitching.\n"); 2849 2850 // Given that unswitching these terminators will require duplicating parts of 2851 // the loop, so we need to be able to model that cost. Compute the ephemeral 2852 // values and set up a data structure to hold per-BB costs. We cache each 2853 // block's cost so that we don't recompute this when considering different 2854 // subsets of the loop for duplication during unswitching. 2855 SmallPtrSet<const Value *, 4> EphValues; 2856 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2857 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2858 2859 // Compute the cost of each block, as well as the total loop cost. Also, bail 2860 // out if we see instructions which are incompatible with loop unswitching 2861 // (convergent, noduplicate, or cross-basic-block tokens). 2862 // FIXME: We might be able to safely handle some of these in non-duplicated 2863 // regions. 2864 TargetTransformInfo::TargetCostKind CostKind = 2865 L.getHeader()->getParent()->hasMinSize() 2866 ? TargetTransformInfo::TCK_CodeSize 2867 : TargetTransformInfo::TCK_SizeAndLatency; 2868 InstructionCost LoopCost = 0; 2869 for (auto *BB : L.blocks()) { 2870 InstructionCost Cost = 0; 2871 for (auto &I : *BB) { 2872 if (EphValues.count(&I)) 2873 continue; 2874 2875 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2876 return false; 2877 if (auto *CB = dyn_cast<CallBase>(&I)) 2878 if (CB->isConvergent() || CB->cannotDuplicate()) 2879 return false; 2880 2881 Cost += TTI.getUserCost(&I, CostKind); 2882 } 2883 assert(Cost >= 0 && "Must not have negative costs!"); 2884 LoopCost += Cost; 2885 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2886 BBCostMap[BB] = Cost; 2887 } 2888 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2889 2890 // Now we find the best candidate by searching for the one with the following 2891 // properties in order: 2892 // 2893 // 1) An unswitching cost below the threshold 2894 // 2) The smallest number of duplicated unswitch candidates (to avoid 2895 // creating redundant subsequent unswitching) 2896 // 3) The smallest cost after unswitching. 2897 // 2898 // We prioritize reducing fanout of unswitch candidates provided the cost 2899 // remains below the threshold because this has a multiplicative effect. 2900 // 2901 // This requires memoizing each dominator subtree to avoid redundant work. 2902 // 2903 // FIXME: Need to actually do the number of candidates part above. 2904 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2905 // Given a terminator which might be unswitched, computes the non-duplicated 2906 // cost for that terminator. 2907 auto ComputeUnswitchedCost = [&](Instruction &TI, 2908 bool FullUnswitch) -> InstructionCost { 2909 BasicBlock &BB = *TI.getParent(); 2910 SmallPtrSet<BasicBlock *, 4> Visited; 2911 2912 InstructionCost Cost = 0; 2913 for (BasicBlock *SuccBB : successors(&BB)) { 2914 // Don't count successors more than once. 2915 if (!Visited.insert(SuccBB).second) 2916 continue; 2917 2918 // If this is a partial unswitch candidate, then it must be a conditional 2919 // branch with a condition of either `or`, `and`, their corresponding 2920 // select forms or partially invariant instructions. In that case, one of 2921 // the successors is necessarily duplicated, so don't even try to remove 2922 // its cost. 2923 if (!FullUnswitch) { 2924 auto &BI = cast<BranchInst>(TI); 2925 Value *Cond = skipTrivialSelect(BI.getCondition()); 2926 if (match(Cond, m_LogicalAnd())) { 2927 if (SuccBB == BI.getSuccessor(1)) 2928 continue; 2929 } else if (match(Cond, m_LogicalOr())) { 2930 if (SuccBB == BI.getSuccessor(0)) 2931 continue; 2932 } else if ((PartialIVInfo.KnownValue->isOneValue() && 2933 SuccBB == BI.getSuccessor(0)) || 2934 (!PartialIVInfo.KnownValue->isOneValue() && 2935 SuccBB == BI.getSuccessor(1))) 2936 continue; 2937 } 2938 2939 // This successor's domtree will not need to be duplicated after 2940 // unswitching if the edge to the successor dominates it (and thus the 2941 // entire tree). This essentially means there is no other path into this 2942 // subtree and so it will end up live in only one clone of the loop. 2943 if (SuccBB->getUniquePredecessor() || 2944 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2945 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2946 })) { 2947 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2948 assert(Cost <= LoopCost && 2949 "Non-duplicated cost should never exceed total loop cost!"); 2950 } 2951 } 2952 2953 // Now scale the cost by the number of unique successors minus one. We 2954 // subtract one because there is already at least one copy of the entire 2955 // loop. This is computing the new cost of unswitching a condition. 2956 // Note that guards always have 2 unique successors that are implicit and 2957 // will be materialized if we decide to unswitch it. 2958 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2959 assert(SuccessorsCount > 1 && 2960 "Cannot unswitch a condition without multiple distinct successors!"); 2961 return (LoopCost - Cost) * (SuccessorsCount - 1); 2962 }; 2963 Instruction *BestUnswitchTI = nullptr; 2964 InstructionCost BestUnswitchCost = 0; 2965 ArrayRef<Value *> BestUnswitchInvariants; 2966 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2967 Instruction &TI = *TerminatorAndInvariants.first; 2968 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2969 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2970 InstructionCost CandidateCost = ComputeUnswitchedCost( 2971 TI, /*FullUnswitch*/ !BI || 2972 (Invariants.size() == 1 && 2973 Invariants[0] == skipTrivialSelect(BI->getCondition()))); 2974 // Calculate cost multiplier which is a tool to limit potentially 2975 // exponential behavior of loop-unswitch. 2976 if (EnableUnswitchCostMultiplier) { 2977 int CostMultiplier = 2978 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2979 assert( 2980 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2981 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2982 CandidateCost *= CostMultiplier; 2983 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2984 << " (multiplier: " << CostMultiplier << ")" 2985 << " for unswitch candidate: " << TI << "\n"); 2986 } else { 2987 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2988 << " for unswitch candidate: " << TI << "\n"); 2989 } 2990 2991 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2992 BestUnswitchTI = &TI; 2993 BestUnswitchCost = CandidateCost; 2994 BestUnswitchInvariants = Invariants; 2995 } 2996 } 2997 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2998 2999 if (BestUnswitchCost >= UnswitchThreshold) { 3000 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 3001 << BestUnswitchCost << "\n"); 3002 return false; 3003 } 3004 3005 if (BestUnswitchTI != PartialIVCondBranch) 3006 PartialIVInfo.InstToDuplicate.clear(); 3007 3008 // If the best candidate is a guard, turn it into a branch. 3009 if (isGuard(BestUnswitchTI)) 3010 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 3011 ExitBlocks, DT, LI, MSSAU); 3012 3013 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 3014 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 3015 << "\n"); 3016 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 3017 ExitBlocks, PartialIVInfo, DT, LI, AC, 3018 UnswitchCB, SE, MSSAU, DestroyLoopCB); 3019 return true; 3020 } 3021 3022 /// Unswitch control flow predicated on loop invariant conditions. 3023 /// 3024 /// This first hoists all branches or switches which are trivial (IE, do not 3025 /// require duplicating any part of the loop) out of the loop body. It then 3026 /// looks at other loop invariant control flows and tries to unswitch those as 3027 /// well by cloning the loop if the result is small enough. 3028 /// 3029 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3030 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3031 /// valid (i.e. its use is enabled). 3032 /// 3033 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 3034 /// true, we will attempt to do non-trivial unswitching as well as trivial 3035 /// unswitching. 3036 /// 3037 /// The `UnswitchCB` callback provided will be run after unswitching is 3038 /// complete, with the first parameter set to `true` if the provided loop 3039 /// remains a loop, and a list of new sibling loops created. 3040 /// 3041 /// If `SE` is non-null, we will update that analysis based on the unswitching 3042 /// done. 3043 static bool 3044 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3045 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3046 bool NonTrivial, 3047 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3048 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3049 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3050 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3051 "Loops must be in LCSSA form before unswitching."); 3052 3053 // Must be in loop simplified form: we need a preheader and dedicated exits. 3054 if (!L.isLoopSimplifyForm()) 3055 return false; 3056 3057 // Try trivial unswitch first before loop over other basic blocks in the loop. 3058 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3059 // If we unswitched successfully we will want to clean up the loop before 3060 // processing it further so just mark it as unswitched and return. 3061 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3062 return true; 3063 } 3064 3065 // Check whether we should continue with non-trivial conditions. 3066 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3067 // unswitching for testing and debugging. 3068 // NonTrivial: Parameter that enables non-trivial unswitching for this 3069 // invocation of the transform. But this should be allowed only 3070 // for targets without branch divergence. 3071 // 3072 // FIXME: If divergence analysis becomes available to a loop 3073 // transform, we should allow unswitching for non-trivial uniform 3074 // branches even on targets that have divergence. 3075 // https://bugs.llvm.org/show_bug.cgi?id=48819 3076 bool ContinueWithNonTrivial = 3077 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3078 if (!ContinueWithNonTrivial) 3079 return false; 3080 3081 // Skip non-trivial unswitching for optsize functions. 3082 if (L.getHeader()->getParent()->hasOptSize()) 3083 return false; 3084 3085 // Skip non-trivial unswitching for loops that cannot be cloned. 3086 if (!L.isSafeToClone()) 3087 return false; 3088 3089 // For non-trivial unswitching, because it often creates new loops, we rely on 3090 // the pass manager to iterate on the loops rather than trying to immediately 3091 // reach a fixed point. There is no substantial advantage to iterating 3092 // internally, and if any of the new loops are simplified enough to contain 3093 // trivial unswitching we want to prefer those. 3094 3095 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3096 // a partial unswitch when possible below the threshold. 3097 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3098 DestroyLoopCB)) 3099 return true; 3100 3101 // No other opportunities to unswitch. 3102 return false; 3103 } 3104 3105 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3106 LoopStandardAnalysisResults &AR, 3107 LPMUpdater &U) { 3108 Function &F = *L.getHeader()->getParent(); 3109 (void)F; 3110 3111 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3112 << "\n"); 3113 3114 // Save the current loop name in a variable so that we can report it even 3115 // after it has been deleted. 3116 std::string LoopName = std::string(L.getName()); 3117 3118 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3119 bool PartiallyInvariant, 3120 ArrayRef<Loop *> NewLoops) { 3121 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3122 if (!NewLoops.empty()) 3123 U.addSiblingLoops(NewLoops); 3124 3125 // If the current loop remains valid, we should revisit it to catch any 3126 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3127 if (CurrentLoopValid) { 3128 if (PartiallyInvariant) { 3129 // Mark the new loop as partially unswitched, to avoid unswitching on 3130 // the same condition again. 3131 auto &Context = L.getHeader()->getContext(); 3132 MDNode *DisableUnswitchMD = MDNode::get( 3133 Context, 3134 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3135 MDNode *NewLoopID = makePostTransformationMetadata( 3136 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3137 {DisableUnswitchMD}); 3138 L.setLoopID(NewLoopID); 3139 } else 3140 U.revisitCurrentLoop(); 3141 } else 3142 U.markLoopAsDeleted(L, LoopName); 3143 }; 3144 3145 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3146 U.markLoopAsDeleted(L, Name); 3147 }; 3148 3149 Optional<MemorySSAUpdater> MSSAU; 3150 if (AR.MSSA) { 3151 MSSAU = MemorySSAUpdater(AR.MSSA); 3152 if (VerifyMemorySSA) 3153 AR.MSSA->verifyMemorySSA(); 3154 } 3155 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3156 UnswitchCB, &AR.SE, 3157 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 3158 DestroyLoopCB)) 3159 return PreservedAnalyses::all(); 3160 3161 if (AR.MSSA && VerifyMemorySSA) 3162 AR.MSSA->verifyMemorySSA(); 3163 3164 // Historically this pass has had issues with the dominator tree so verify it 3165 // in asserts builds. 3166 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3167 3168 auto PA = getLoopPassPreservedAnalyses(); 3169 if (AR.MSSA) 3170 PA.preserve<MemorySSAAnalysis>(); 3171 return PA; 3172 } 3173 3174 void SimpleLoopUnswitchPass::printPipeline( 3175 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3176 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3177 OS, MapClassName2PassName); 3178 3179 OS << "<"; 3180 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3181 OS << (Trivial ? "" : "no-") << "trivial"; 3182 OS << ">"; 3183 } 3184 3185 namespace { 3186 3187 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3188 bool NonTrivial; 3189 3190 public: 3191 static char ID; // Pass ID, replacement for typeid 3192 3193 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3194 : LoopPass(ID), NonTrivial(NonTrivial) { 3195 initializeSimpleLoopUnswitchLegacyPassPass( 3196 *PassRegistry::getPassRegistry()); 3197 } 3198 3199 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3200 3201 void getAnalysisUsage(AnalysisUsage &AU) const override { 3202 AU.addRequired<AssumptionCacheTracker>(); 3203 AU.addRequired<TargetTransformInfoWrapperPass>(); 3204 AU.addRequired<MemorySSAWrapperPass>(); 3205 AU.addPreserved<MemorySSAWrapperPass>(); 3206 getLoopAnalysisUsage(AU); 3207 } 3208 }; 3209 3210 } // end anonymous namespace 3211 3212 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3213 if (skipLoop(L)) 3214 return false; 3215 3216 Function &F = *L->getHeader()->getParent(); 3217 3218 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3219 << "\n"); 3220 3221 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3222 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3223 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3224 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3225 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3226 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3227 MemorySSAUpdater MSSAU(MSSA); 3228 3229 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3230 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3231 3232 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3233 ArrayRef<Loop *> NewLoops) { 3234 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3235 for (auto *NewL : NewLoops) 3236 LPM.addLoop(*NewL); 3237 3238 // If the current loop remains valid, re-add it to the queue. This is 3239 // a little wasteful as we'll finish processing the current loop as well, 3240 // but it is the best we can do in the old PM. 3241 if (CurrentLoopValid) { 3242 // If the current loop has been unswitched using a partially invariant 3243 // condition, we should not re-add the current loop to avoid unswitching 3244 // on the same condition again. 3245 if (!PartiallyInvariant) 3246 LPM.addLoop(*L); 3247 } else 3248 LPM.markLoopAsDeleted(*L); 3249 }; 3250 3251 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3252 LPM.markLoopAsDeleted(L); 3253 }; 3254 3255 if (VerifyMemorySSA) 3256 MSSA->verifyMemorySSA(); 3257 3258 bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, 3259 UnswitchCB, SE, &MSSAU, DestroyLoopCB); 3260 3261 if (VerifyMemorySSA) 3262 MSSA->verifyMemorySSA(); 3263 3264 // Historically this pass has had issues with the dominator tree so verify it 3265 // in asserts builds. 3266 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3267 3268 return Changed; 3269 } 3270 3271 char SimpleLoopUnswitchLegacyPass::ID = 0; 3272 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3273 "Simple unswitch loops", false, false) 3274 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3276 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3277 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3278 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3279 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3280 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3281 "Simple unswitch loops", false, false) 3282 3283 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3284 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3285 } 3286