xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision ef7a847be2db0325fe8bbad7febac9e42c96d232)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GuardUtils.h"
24 #include "llvm/Analysis/LoopAnalysisManager.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/ProfDataUtils.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/GenericDomTree.h"
54 #include "llvm/Support/InstructionCost.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <iterator>
65 #include <numeric>
66 #include <optional>
67 #include <utility>
68 
69 #define DEBUG_TYPE "simple-loop-unswitch"
70 
71 using namespace llvm;
72 using namespace llvm::PatternMatch;
73 
74 STATISTIC(NumBranches, "Number of branches unswitched");
75 STATISTIC(NumSwitches, "Number of switches unswitched");
76 STATISTIC(NumSelects, "Number of selects turned into branches for unswitching");
77 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
78 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
79 STATISTIC(
80     NumCostMultiplierSkipped,
81     "Number of unswitch candidates that had their cost multiplier skipped");
82 STATISTIC(NumInvariantConditionsInjected,
83           "Number of invariant conditions injected and unswitched");
84 
85 static cl::opt<bool> EnableNonTrivialUnswitch(
86     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
87     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
88              "following the configuration passed into the pass."));
89 
90 static cl::opt<int>
91     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
92                       cl::desc("The cost threshold for unswitching a loop."));
93 
94 static cl::opt<bool> EnableUnswitchCostMultiplier(
95     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
96     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
97              "explosion in nontrivial unswitch."));
98 static cl::opt<int> UnswitchSiblingsToplevelDiv(
99     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
100     cl::desc("Toplevel siblings divisor for cost multiplier."));
101 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
102     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
103     cl::desc("Number of unswitch candidates that are ignored when calculating "
104              "cost multiplier."));
105 static cl::opt<bool> UnswitchGuards(
106     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
107     cl::desc("If enabled, simple loop unswitching will also consider "
108              "llvm.experimental.guard intrinsics as unswitch candidates."));
109 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
110     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
111     cl::init(false), cl::Hidden,
112     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
113              "null checks to save time analyzing if we can keep it."));
114 static cl::opt<unsigned>
115     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
116                   cl::desc("Max number of memory uses to explore during "
117                            "partial unswitching analysis"),
118                   cl::init(100), cl::Hidden);
119 static cl::opt<bool> FreezeLoopUnswitchCond(
120     "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
121     cl::desc("If enabled, the freeze instruction will be added to condition "
122              "of loop unswitch to prevent miscompilation."));
123 
124 static cl::opt<bool> InjectInvariantConditions(
125     "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden,
126     cl::desc("Whether we should inject new invariants and unswitch them to "
127              "eliminate some existing (non-invariant) conditions."),
128     cl::init(true));
129 
130 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold(
131     "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
132     cl::Hidden, cl::desc("Only try to inject loop invariant conditions and "
133                          "unswitch on them to eliminate branches that are "
134                          "not-taken 1/<this option> times or less."),
135     cl::init(16));
136 
137 AnalysisKey ShouldRunExtraSimpleLoopUnswitch::Key;
138 namespace {
139 struct CompareDesc {
140   BranchInst *Term;
141   Value *Invariant;
142   BasicBlock *InLoopSucc;
143 
144   CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc)
145       : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
146 };
147 
148 struct InjectedInvariant {
149   ICmpInst::Predicate Pred;
150   Value *LHS;
151   Value *RHS;
152   BasicBlock *InLoopSucc;
153 
154   InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
155                     BasicBlock *InLoopSucc)
156       : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
157 };
158 
159 struct NonTrivialUnswitchCandidate {
160   Instruction *TI = nullptr;
161   TinyPtrVector<Value *> Invariants;
162   std::optional<InstructionCost> Cost;
163   std::optional<InjectedInvariant> PendingInjection;
164   NonTrivialUnswitchCandidate(
165       Instruction *TI, ArrayRef<Value *> Invariants,
166       std::optional<InstructionCost> Cost = std::nullopt,
167       std::optional<InjectedInvariant> PendingInjection = std::nullopt)
168       : TI(TI), Invariants(Invariants), Cost(Cost),
169         PendingInjection(PendingInjection) {};
170 
171   bool hasPendingInjection() const { return PendingInjection.has_value(); }
172 };
173 } // end anonymous namespace.
174 
175 // Helper to skip (select x, true, false), which matches both a logical AND and
176 // OR and can confuse code that tries to determine if \p Cond is either a
177 // logical AND or OR but not both.
178 static Value *skipTrivialSelect(Value *Cond) {
179   Value *CondNext;
180   while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
181     Cond = CondNext;
182   return Cond;
183 }
184 
185 /// Collect all of the loop invariant input values transitively used by the
186 /// homogeneous instruction graph from a given root.
187 ///
188 /// This essentially walks from a root recursively through loop variant operands
189 /// which have perform the same logical operation (AND or OR) and finds all
190 /// inputs which are loop invariant. For some operations these can be
191 /// re-associated and unswitched out of the loop entirely.
192 static TinyPtrVector<Value *>
193 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
194                                          const LoopInfo &LI) {
195   assert(!L.isLoopInvariant(&Root) &&
196          "Only need to walk the graph if root itself is not invariant.");
197   TinyPtrVector<Value *> Invariants;
198 
199   bool IsRootAnd = match(&Root, m_LogicalAnd());
200   bool IsRootOr  = match(&Root, m_LogicalOr());
201 
202   // Build a worklist and recurse through operators collecting invariants.
203   SmallVector<Instruction *, 4> Worklist;
204   SmallPtrSet<Instruction *, 8> Visited;
205   Worklist.push_back(&Root);
206   Visited.insert(&Root);
207   do {
208     Instruction &I = *Worklist.pop_back_val();
209     for (Value *OpV : I.operand_values()) {
210       // Skip constants as unswitching isn't interesting for them.
211       if (isa<Constant>(OpV))
212         continue;
213 
214       // Add it to our result if loop invariant.
215       if (L.isLoopInvariant(OpV)) {
216         Invariants.push_back(OpV);
217         continue;
218       }
219 
220       // If not an instruction with the same opcode, nothing we can do.
221       Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
222 
223       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
224                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
225         // Visit this operand.
226         if (Visited.insert(OpI).second)
227           Worklist.push_back(OpI);
228       }
229     }
230   } while (!Worklist.empty());
231 
232   return Invariants;
233 }
234 
235 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
236                                      Constant &Replacement) {
237   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
238 
239   // Replace uses of LIC in the loop with the given constant.
240   // We use make_early_inc_range as set invalidates the iterator.
241   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
242     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
243 
244     // Replace this use within the loop body.
245     if (UserI && L.contains(UserI))
246       U.set(&Replacement);
247   }
248 }
249 
250 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
251 /// incoming values along this edge.
252 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
253                                          const BasicBlock &ExitingBB,
254                                          const BasicBlock &ExitBB) {
255   for (const Instruction &I : ExitBB) {
256     auto *PN = dyn_cast<PHINode>(&I);
257     if (!PN)
258       // No more PHIs to check.
259       return true;
260 
261     // If the incoming value for this edge isn't loop invariant the unswitch
262     // won't be trivial.
263     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
264       return false;
265   }
266   llvm_unreachable("Basic blocks should never be empty!");
267 }
268 
269 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
270 /// end of \p BB and conditionally branch on the copied condition. We only
271 /// branch on a single value.
272 static void buildPartialUnswitchConditionalBranch(
273     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
274     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
275     const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
276   IRBuilder<> IRB(&BB);
277 
278   SmallVector<Value *> FrozenInvariants;
279   for (Value *Inv : Invariants) {
280     if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
281       Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
282     FrozenInvariants.push_back(Inv);
283   }
284 
285   Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
286                           : IRB.CreateAnd(FrozenInvariants);
287   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
288                    Direction ? &NormalSucc : &UnswitchedSucc);
289 }
290 
291 /// Copy a set of loop invariant values, and conditionally branch on them.
292 static void buildPartialInvariantUnswitchConditionalBranch(
293     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
294     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
295     MemorySSAUpdater *MSSAU) {
296   ValueToValueMapTy VMap;
297   for (auto *Val : reverse(ToDuplicate)) {
298     Instruction *Inst = cast<Instruction>(Val);
299     Instruction *NewInst = Inst->clone();
300     NewInst->insertInto(&BB, BB.end());
301     RemapInstruction(NewInst, VMap,
302                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
303     VMap[Val] = NewInst;
304 
305     if (!MSSAU)
306       continue;
307 
308     MemorySSA *MSSA = MSSAU->getMemorySSA();
309     if (auto *MemUse =
310             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
311       auto *DefiningAccess = MemUse->getDefiningAccess();
312       // Get the first defining access before the loop.
313       while (L.contains(DefiningAccess->getBlock())) {
314         // If the defining access is a MemoryPhi, get the incoming
315         // value for the pre-header as defining access.
316         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
317           DefiningAccess =
318               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
319         else
320           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
321       }
322       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
323                                     NewInst->getParent(),
324                                     MemorySSA::BeforeTerminator);
325     }
326   }
327 
328   IRBuilder<> IRB(&BB);
329   Value *Cond = VMap[ToDuplicate[0]];
330   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
331                    Direction ? &NormalSucc : &UnswitchedSucc);
332 }
333 
334 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
335 ///
336 /// Requires that the loop exit and unswitched basic block are the same, and
337 /// that the exiting block was a unique predecessor of that block. Rewrites the
338 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
339 /// PHI nodes from the old preheader that now contains the unswitched
340 /// terminator.
341 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
342                                                   BasicBlock &OldExitingBB,
343                                                   BasicBlock &OldPH) {
344   for (PHINode &PN : UnswitchedBB.phis()) {
345     // When the loop exit is directly unswitched we just need to update the
346     // incoming basic block. We loop to handle weird cases with repeated
347     // incoming blocks, but expect to typically only have one operand here.
348     for (auto i : seq<int>(0, PN.getNumOperands())) {
349       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
350              "Found incoming block different from unique predecessor!");
351       PN.setIncomingBlock(i, &OldPH);
352     }
353   }
354 }
355 
356 /// Rewrite the PHI nodes in the loop exit basic block and the split off
357 /// unswitched block.
358 ///
359 /// Because the exit block remains an exit from the loop, this rewrites the
360 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
361 /// nodes into the unswitched basic block to select between the value in the
362 /// old preheader and the loop exit.
363 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
364                                                       BasicBlock &UnswitchedBB,
365                                                       BasicBlock &OldExitingBB,
366                                                       BasicBlock &OldPH,
367                                                       bool FullUnswitch) {
368   assert(&ExitBB != &UnswitchedBB &&
369          "Must have different loop exit and unswitched blocks!");
370   BasicBlock::iterator InsertPt = UnswitchedBB.begin();
371   for (PHINode &PN : ExitBB.phis()) {
372     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
373                                   PN.getName() + ".split");
374     NewPN->insertBefore(InsertPt);
375 
376     // Walk backwards over the old PHI node's inputs to minimize the cost of
377     // removing each one. We have to do this weird loop manually so that we
378     // create the same number of new incoming edges in the new PHI as we expect
379     // each case-based edge to be included in the unswitched switch in some
380     // cases.
381     // FIXME: This is really, really gross. It would be much cleaner if LLVM
382     // allowed us to create a single entry for a predecessor block without
383     // having separate entries for each "edge" even though these edges are
384     // required to produce identical results.
385     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
386       if (PN.getIncomingBlock(i) != &OldExitingBB)
387         continue;
388 
389       Value *Incoming = PN.getIncomingValue(i);
390       if (FullUnswitch)
391         // No more edge from the old exiting block to the exit block.
392         PN.removeIncomingValue(i);
393 
394       NewPN->addIncoming(Incoming, &OldPH);
395     }
396 
397     // Now replace the old PHI with the new one and wire the old one in as an
398     // input to the new one.
399     PN.replaceAllUsesWith(NewPN);
400     NewPN->addIncoming(&PN, &ExitBB);
401   }
402 }
403 
404 /// Hoist the current loop up to the innermost loop containing a remaining exit.
405 ///
406 /// Because we've removed an exit from the loop, we may have changed the set of
407 /// loops reachable and need to move the current loop up the loop nest or even
408 /// to an entirely separate nest.
409 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
410                                  DominatorTree &DT, LoopInfo &LI,
411                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
412   // If the loop is already at the top level, we can't hoist it anywhere.
413   Loop *OldParentL = L.getParentLoop();
414   if (!OldParentL)
415     return;
416 
417   SmallVector<BasicBlock *, 4> Exits;
418   L.getExitBlocks(Exits);
419   Loop *NewParentL = nullptr;
420   for (auto *ExitBB : Exits)
421     if (Loop *ExitL = LI.getLoopFor(ExitBB))
422       if (!NewParentL || NewParentL->contains(ExitL))
423         NewParentL = ExitL;
424 
425   if (NewParentL == OldParentL)
426     return;
427 
428   // The new parent loop (if different) should always contain the old one.
429   if (NewParentL)
430     assert(NewParentL->contains(OldParentL) &&
431            "Can only hoist this loop up the nest!");
432 
433   // The preheader will need to move with the body of this loop. However,
434   // because it isn't in this loop we also need to update the primary loop map.
435   assert(OldParentL == LI.getLoopFor(&Preheader) &&
436          "Parent loop of this loop should contain this loop's preheader!");
437   LI.changeLoopFor(&Preheader, NewParentL);
438 
439   // Remove this loop from its old parent.
440   OldParentL->removeChildLoop(&L);
441 
442   // Add the loop either to the new parent or as a top-level loop.
443   if (NewParentL)
444     NewParentL->addChildLoop(&L);
445   else
446     LI.addTopLevelLoop(&L);
447 
448   // Remove this loops blocks from the old parent and every other loop up the
449   // nest until reaching the new parent. Also update all of these
450   // no-longer-containing loops to reflect the nesting change.
451   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
452        OldContainingL = OldContainingL->getParentLoop()) {
453     llvm::erase_if(OldContainingL->getBlocksVector(),
454                    [&](const BasicBlock *BB) {
455                      return BB == &Preheader || L.contains(BB);
456                    });
457 
458     OldContainingL->getBlocksSet().erase(&Preheader);
459     for (BasicBlock *BB : L.blocks())
460       OldContainingL->getBlocksSet().erase(BB);
461 
462     // Because we just hoisted a loop out of this one, we have essentially
463     // created new exit paths from it. That means we need to form LCSSA PHI
464     // nodes for values used in the no-longer-nested loop.
465     formLCSSA(*OldContainingL, DT, &LI, SE);
466 
467     // We shouldn't need to form dedicated exits because the exit introduced
468     // here is the (just split by unswitching) preheader. However, after trivial
469     // unswitching it is possible to get new non-dedicated exits out of parent
470     // loop so let's conservatively form dedicated exit blocks and figure out
471     // if we can optimize later.
472     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
473                             /*PreserveLCSSA*/ true);
474   }
475 }
476 
477 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
478 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
479 // as exiting block.
480 static Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
481                                    const LoopInfo &LI) {
482   Loop *TopMost = LI.getLoopFor(ExitBB);
483   Loop *Current = TopMost;
484   while (Current) {
485     if (Current->isLoopExiting(ExitBB))
486       TopMost = Current;
487     Current = Current->getParentLoop();
488   }
489   return TopMost;
490 }
491 
492 /// Unswitch a trivial branch if the condition is loop invariant.
493 ///
494 /// This routine should only be called when loop code leading to the branch has
495 /// been validated as trivial (no side effects). This routine checks if the
496 /// condition is invariant and one of the successors is a loop exit. This
497 /// allows us to unswitch without duplicating the loop, making it trivial.
498 ///
499 /// If this routine fails to unswitch the branch it returns false.
500 ///
501 /// If the branch can be unswitched, this routine splits the preheader and
502 /// hoists the branch above that split. Preserves loop simplified form
503 /// (splitting the exit block as necessary). It simplifies the branch within
504 /// the loop to an unconditional branch but doesn't remove it entirely. Further
505 /// cleanup can be done with some simplifycfg like pass.
506 ///
507 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
508 /// invalidated by this.
509 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
510                                   LoopInfo &LI, ScalarEvolution *SE,
511                                   MemorySSAUpdater *MSSAU) {
512   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
513   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
514 
515   // The loop invariant values that we want to unswitch.
516   TinyPtrVector<Value *> Invariants;
517 
518   // When true, we're fully unswitching the branch rather than just unswitching
519   // some input conditions to the branch.
520   bool FullUnswitch = false;
521 
522   Value *Cond = skipTrivialSelect(BI.getCondition());
523   if (L.isLoopInvariant(Cond)) {
524     Invariants.push_back(Cond);
525     FullUnswitch = true;
526   } else {
527     if (auto *CondInst = dyn_cast<Instruction>(Cond))
528       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
529     if (Invariants.empty()) {
530       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
531       return false;
532     }
533   }
534 
535   // Check that one of the branch's successors exits, and which one.
536   bool ExitDirection = true;
537   int LoopExitSuccIdx = 0;
538   auto *LoopExitBB = BI.getSuccessor(0);
539   if (L.contains(LoopExitBB)) {
540     ExitDirection = false;
541     LoopExitSuccIdx = 1;
542     LoopExitBB = BI.getSuccessor(1);
543     if (L.contains(LoopExitBB)) {
544       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
545       return false;
546     }
547   }
548   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
549   auto *ParentBB = BI.getParent();
550   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
551     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
552     return false;
553   }
554 
555   // When unswitching only part of the branch's condition, we need the exit
556   // block to be reached directly from the partially unswitched input. This can
557   // be done when the exit block is along the true edge and the branch condition
558   // is a graph of `or` operations, or the exit block is along the false edge
559   // and the condition is a graph of `and` operations.
560   if (!FullUnswitch) {
561     if (ExitDirection ? !match(Cond, m_LogicalOr())
562                       : !match(Cond, m_LogicalAnd())) {
563       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
564                            "non-full unswitch!\n");
565       return false;
566     }
567   }
568 
569   LLVM_DEBUG({
570     dbgs() << "    unswitching trivial invariant conditions for: " << BI
571            << "\n";
572     for (Value *Invariant : Invariants) {
573       dbgs() << "      " << *Invariant << " == true";
574       if (Invariant != Invariants.back())
575         dbgs() << " ||";
576       dbgs() << "\n";
577     }
578   });
579 
580   // If we have scalar evolutions, we need to invalidate them including this
581   // loop, the loop containing the exit block and the topmost parent loop
582   // exiting via LoopExitBB.
583   if (SE) {
584     if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
585       SE->forgetLoop(ExitL);
586     else
587       // Forget the entire nest as this exits the entire nest.
588       SE->forgetTopmostLoop(&L);
589     SE->forgetBlockAndLoopDispositions();
590   }
591 
592   if (MSSAU && VerifyMemorySSA)
593     MSSAU->getMemorySSA()->verifyMemorySSA();
594 
595   // Split the preheader, so that we know that there is a safe place to insert
596   // the conditional branch. We will change the preheader to have a conditional
597   // branch on LoopCond.
598   BasicBlock *OldPH = L.getLoopPreheader();
599   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
600 
601   // Now that we have a place to insert the conditional branch, create a place
602   // to branch to: this is the exit block out of the loop that we are
603   // unswitching. We need to split this if there are other loop predecessors.
604   // Because the loop is in simplified form, *any* other predecessor is enough.
605   BasicBlock *UnswitchedBB;
606   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
607     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
608            "A branch's parent isn't a predecessor!");
609     UnswitchedBB = LoopExitBB;
610   } else {
611     UnswitchedBB =
612         SplitBlock(LoopExitBB, LoopExitBB->begin(), &DT, &LI, MSSAU, "", false);
613   }
614 
615   if (MSSAU && VerifyMemorySSA)
616     MSSAU->getMemorySSA()->verifyMemorySSA();
617 
618   // Actually move the invariant uses into the unswitched position. If possible,
619   // we do this by moving the instructions, but when doing partial unswitching
620   // we do it by building a new merge of the values in the unswitched position.
621   OldPH->getTerminator()->eraseFromParent();
622   if (FullUnswitch) {
623     // If fully unswitching, we can use the existing branch instruction.
624     // Splice it into the old PH to gate reaching the new preheader and re-point
625     // its successors.
626     BI.moveBefore(*OldPH, OldPH->end());
627     BI.setCondition(Cond);
628     if (MSSAU) {
629       // Temporarily clone the terminator, to make MSSA update cheaper by
630       // separating "insert edge" updates from "remove edge" ones.
631       BI.clone()->insertInto(ParentBB, ParentBB->end());
632     } else {
633       // Create a new unconditional branch that will continue the loop as a new
634       // terminator.
635       Instruction *NewBI = BranchInst::Create(ContinueBB, ParentBB);
636       NewBI->setDebugLoc(BI.getDebugLoc());
637     }
638     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
639     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
640   } else {
641     // Only unswitching a subset of inputs to the condition, so we will need to
642     // build a new branch that merges the invariant inputs.
643     if (ExitDirection)
644       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
645              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
646              "condition!");
647     else
648       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
649              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
650              " condition!");
651     buildPartialUnswitchConditionalBranch(
652         *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
653         FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
654   }
655 
656   // Update the dominator tree with the added edge.
657   DT.insertEdge(OldPH, UnswitchedBB);
658 
659   // After the dominator tree was updated with the added edge, update MemorySSA
660   // if available.
661   if (MSSAU) {
662     SmallVector<CFGUpdate, 1> Updates;
663     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
664     MSSAU->applyInsertUpdates(Updates, DT);
665   }
666 
667   // Finish updating dominator tree and memory ssa for full unswitch.
668   if (FullUnswitch) {
669     if (MSSAU) {
670       Instruction *Term = ParentBB->getTerminator();
671       // Remove the cloned branch instruction and create unconditional branch
672       // now.
673       Instruction *NewBI = BranchInst::Create(ContinueBB, ParentBB);
674       NewBI->setDebugLoc(Term->getDebugLoc());
675       Term->eraseFromParent();
676       MSSAU->removeEdge(ParentBB, LoopExitBB);
677     }
678     DT.deleteEdge(ParentBB, LoopExitBB);
679   }
680 
681   if (MSSAU && VerifyMemorySSA)
682     MSSAU->getMemorySSA()->verifyMemorySSA();
683 
684   // Rewrite the relevant PHI nodes.
685   if (UnswitchedBB == LoopExitBB)
686     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
687   else
688     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
689                                               *ParentBB, *OldPH, FullUnswitch);
690 
691   // The constant we can replace all of our invariants with inside the loop
692   // body. If any of the invariants have a value other than this the loop won't
693   // be entered.
694   ConstantInt *Replacement = ExitDirection
695                                  ? ConstantInt::getFalse(BI.getContext())
696                                  : ConstantInt::getTrue(BI.getContext());
697 
698   // Since this is an i1 condition we can also trivially replace uses of it
699   // within the loop with a constant.
700   for (Value *Invariant : Invariants)
701     replaceLoopInvariantUses(L, Invariant, *Replacement);
702 
703   // If this was full unswitching, we may have changed the nesting relationship
704   // for this loop so hoist it to its correct parent if needed.
705   if (FullUnswitch)
706     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
707 
708   if (MSSAU && VerifyMemorySSA)
709     MSSAU->getMemorySSA()->verifyMemorySSA();
710 
711   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
712   ++NumTrivial;
713   ++NumBranches;
714   return true;
715 }
716 
717 /// Unswitch a trivial switch if the condition is loop invariant.
718 ///
719 /// This routine should only be called when loop code leading to the switch has
720 /// been validated as trivial (no side effects). This routine checks if the
721 /// condition is invariant and that at least one of the successors is a loop
722 /// exit. This allows us to unswitch without duplicating the loop, making it
723 /// trivial.
724 ///
725 /// If this routine fails to unswitch the switch it returns false.
726 ///
727 /// If the switch can be unswitched, this routine splits the preheader and
728 /// copies the switch above that split. If the default case is one of the
729 /// exiting cases, it copies the non-exiting cases and points them at the new
730 /// preheader. If the default case is not exiting, it copies the exiting cases
731 /// and points the default at the preheader. It preserves loop simplified form
732 /// (splitting the exit blocks as necessary). It simplifies the switch within
733 /// the loop by removing now-dead cases. If the default case is one of those
734 /// unswitched, it replaces its destination with a new basic block containing
735 /// only unreachable. Such basic blocks, while technically loop exits, are not
736 /// considered for unswitching so this is a stable transform and the same
737 /// switch will not be revisited. If after unswitching there is only a single
738 /// in-loop successor, the switch is further simplified to an unconditional
739 /// branch. Still more cleanup can be done with some simplifycfg like pass.
740 ///
741 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
742 /// invalidated by this.
743 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
744                                   LoopInfo &LI, ScalarEvolution *SE,
745                                   MemorySSAUpdater *MSSAU) {
746   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
747   Value *LoopCond = SI.getCondition();
748 
749   // If this isn't switching on an invariant condition, we can't unswitch it.
750   if (!L.isLoopInvariant(LoopCond))
751     return false;
752 
753   auto *ParentBB = SI.getParent();
754 
755   // The same check must be used both for the default and the exit cases. We
756   // should never leave edges from the switch instruction to a basic block that
757   // we are unswitching, hence the condition used to determine the default case
758   // needs to also be used to populate ExitCaseIndices, which is then used to
759   // remove cases from the switch.
760   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
761     // BBToCheck is not an exit block if it is inside loop L.
762     if (L.contains(&BBToCheck))
763       return false;
764     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
765     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
766       return false;
767     // We do not unswitch a block that only has an unreachable statement, as
768     // it's possible this is a previously unswitched block. Only unswitch if
769     // either the terminator is not unreachable, or, if it is, it's not the only
770     // instruction in the block.
771     auto *TI = BBToCheck.getTerminator();
772     bool isUnreachable = isa<UnreachableInst>(TI);
773     return !isUnreachable || BBToCheck.getFirstNonPHIOrDbg() != TI;
774   };
775 
776   SmallVector<int, 4> ExitCaseIndices;
777   for (auto Case : SI.cases())
778     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
779       ExitCaseIndices.push_back(Case.getCaseIndex());
780   BasicBlock *DefaultExitBB = nullptr;
781   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
782       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
783   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
784     DefaultExitBB = SI.getDefaultDest();
785   } else if (ExitCaseIndices.empty())
786     return false;
787 
788   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
789 
790   if (MSSAU && VerifyMemorySSA)
791     MSSAU->getMemorySSA()->verifyMemorySSA();
792 
793   // We may need to invalidate SCEVs for the outermost loop reached by any of
794   // the exits.
795   Loop *OuterL = &L;
796 
797   if (DefaultExitBB) {
798     // Check the loop containing this exit.
799     Loop *ExitL = getTopMostExitingLoop(DefaultExitBB, LI);
800     if (!ExitL || ExitL->contains(OuterL))
801       OuterL = ExitL;
802   }
803   for (unsigned Index : ExitCaseIndices) {
804     auto CaseI = SI.case_begin() + Index;
805     // Compute the outer loop from this exit.
806     Loop *ExitL = getTopMostExitingLoop(CaseI->getCaseSuccessor(), LI);
807     if (!ExitL || ExitL->contains(OuterL))
808       OuterL = ExitL;
809   }
810 
811   if (SE) {
812     if (OuterL)
813       SE->forgetLoop(OuterL);
814     else
815       SE->forgetTopmostLoop(&L);
816   }
817 
818   if (DefaultExitBB) {
819     // Clear out the default destination temporarily to allow accurate
820     // predecessor lists to be examined below.
821     SI.setDefaultDest(nullptr);
822   }
823 
824   // Store the exit cases into a separate data structure and remove them from
825   // the switch.
826   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
827                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
828               4> ExitCases;
829   ExitCases.reserve(ExitCaseIndices.size());
830   SwitchInstProfUpdateWrapper SIW(SI);
831   // We walk the case indices backwards so that we remove the last case first
832   // and don't disrupt the earlier indices.
833   for (unsigned Index : reverse(ExitCaseIndices)) {
834     auto CaseI = SI.case_begin() + Index;
835     // Save the value of this case.
836     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
837     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
838     // Delete the unswitched cases.
839     SIW.removeCase(CaseI);
840   }
841 
842   // Check if after this all of the remaining cases point at the same
843   // successor.
844   BasicBlock *CommonSuccBB = nullptr;
845   if (SI.getNumCases() > 0 &&
846       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
847         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
848       }))
849     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
850   if (!DefaultExitBB) {
851     // If we're not unswitching the default, we need it to match any cases to
852     // have a common successor or if we have no cases it is the common
853     // successor.
854     if (SI.getNumCases() == 0)
855       CommonSuccBB = SI.getDefaultDest();
856     else if (SI.getDefaultDest() != CommonSuccBB)
857       CommonSuccBB = nullptr;
858   }
859 
860   // Split the preheader, so that we know that there is a safe place to insert
861   // the switch.
862   BasicBlock *OldPH = L.getLoopPreheader();
863   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
864   OldPH->getTerminator()->eraseFromParent();
865 
866   // Now add the unswitched switch. This new switch instruction inherits the
867   // debug location of the old switch, because it semantically replace the old
868   // one.
869   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
870   NewSI->setDebugLoc(SIW->getDebugLoc());
871   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
872 
873   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
874   // First, we split any exit blocks with remaining in-loop predecessors. Then
875   // we update the PHIs in one of two ways depending on if there was a split.
876   // We walk in reverse so that we split in the same order as the cases
877   // appeared. This is purely for convenience of reading the resulting IR, but
878   // it doesn't cost anything really.
879   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
880   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
881   // Handle the default exit if necessary.
882   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
883   // ranges aren't quite powerful enough yet.
884   if (DefaultExitBB) {
885     if (pred_empty(DefaultExitBB)) {
886       UnswitchedExitBBs.insert(DefaultExitBB);
887       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
888     } else {
889       auto *SplitBB =
890           SplitBlock(DefaultExitBB, DefaultExitBB->begin(), &DT, &LI, MSSAU);
891       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
892                                                 *ParentBB, *OldPH,
893                                                 /*FullUnswitch*/ true);
894       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
895     }
896   }
897   // Note that we must use a reference in the for loop so that we update the
898   // container.
899   for (auto &ExitCase : reverse(ExitCases)) {
900     // Grab a reference to the exit block in the pair so that we can update it.
901     BasicBlock *ExitBB = std::get<1>(ExitCase);
902 
903     // If this case is the last edge into the exit block, we can simply reuse it
904     // as it will no longer be a loop exit. No mapping necessary.
905     if (pred_empty(ExitBB)) {
906       // Only rewrite once.
907       if (UnswitchedExitBBs.insert(ExitBB).second)
908         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
909       continue;
910     }
911 
912     // Otherwise we need to split the exit block so that we retain an exit
913     // block from the loop and a target for the unswitched condition.
914     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
915     if (!SplitExitBB) {
916       // If this is the first time we see this, do the split and remember it.
917       SplitExitBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
918       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
919                                                 *ParentBB, *OldPH,
920                                                 /*FullUnswitch*/ true);
921     }
922     // Update the case pair to point to the split block.
923     std::get<1>(ExitCase) = SplitExitBB;
924   }
925 
926   // Now add the unswitched cases. We do this in reverse order as we built them
927   // in reverse order.
928   for (auto &ExitCase : reverse(ExitCases)) {
929     ConstantInt *CaseVal = std::get<0>(ExitCase);
930     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
931 
932     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
933   }
934 
935   // If the default was unswitched, re-point it and add explicit cases for
936   // entering the loop.
937   if (DefaultExitBB) {
938     NewSIW->setDefaultDest(DefaultExitBB);
939     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
940 
941     // We removed all the exit cases, so we just copy the cases to the
942     // unswitched switch.
943     for (const auto &Case : SI.cases())
944       NewSIW.addCase(Case.getCaseValue(), NewPH,
945                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
946   } else if (DefaultCaseWeight) {
947     // We have to set branch weight of the default case.
948     uint64_t SW = *DefaultCaseWeight;
949     for (const auto &Case : SI.cases()) {
950       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
951       assert(W &&
952              "case weight must be defined as default case weight is defined");
953       SW += *W;
954     }
955     NewSIW.setSuccessorWeight(0, SW);
956   }
957 
958   // If we ended up with a common successor for every path through the switch
959   // after unswitching, rewrite it to an unconditional branch to make it easy
960   // to recognize. Otherwise we potentially have to recognize the default case
961   // pointing at unreachable and other complexity.
962   if (CommonSuccBB) {
963     BasicBlock *BB = SI.getParent();
964     // We may have had multiple edges to this common successor block, so remove
965     // them as predecessors. We skip the first one, either the default or the
966     // actual first case.
967     bool SkippedFirst = DefaultExitBB == nullptr;
968     for (auto Case : SI.cases()) {
969       assert(Case.getCaseSuccessor() == CommonSuccBB &&
970              "Non-common successor!");
971       (void)Case;
972       if (!SkippedFirst) {
973         SkippedFirst = true;
974         continue;
975       }
976       CommonSuccBB->removePredecessor(BB,
977                                       /*KeepOneInputPHIs*/ true);
978     }
979     // Now nuke the switch and replace it with a direct branch.
980     Instruction *NewBI = BranchInst::Create(CommonSuccBB, BB);
981     NewBI->setDebugLoc(SIW->getDebugLoc());
982     SIW.eraseFromParent();
983   } else if (DefaultExitBB) {
984     assert(SI.getNumCases() > 0 &&
985            "If we had no cases we'd have a common successor!");
986     // Move the last case to the default successor. This is valid as if the
987     // default got unswitched it cannot be reached. This has the advantage of
988     // being simple and keeping the number of edges from this switch to
989     // successors the same, and avoiding any PHI update complexity.
990     auto LastCaseI = std::prev(SI.case_end());
991 
992     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
993     SIW.setSuccessorWeight(
994         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
995     SIW.removeCase(LastCaseI);
996   }
997 
998   // Walk the unswitched exit blocks and the unswitched split blocks and update
999   // the dominator tree based on the CFG edits. While we are walking unordered
1000   // containers here, the API for applyUpdates takes an unordered list of
1001   // updates and requires them to not contain duplicates.
1002   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1003   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
1004     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
1005     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
1006   }
1007   for (auto SplitUnswitchedPair : SplitExitBBMap) {
1008     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
1009     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
1010   }
1011 
1012   if (MSSAU) {
1013     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
1014     if (VerifyMemorySSA)
1015       MSSAU->getMemorySSA()->verifyMemorySSA();
1016   } else {
1017     DT.applyUpdates(DTUpdates);
1018   }
1019 
1020   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1021 
1022   // We may have changed the nesting relationship for this loop so hoist it to
1023   // its correct parent if needed.
1024   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
1025 
1026   if (MSSAU && VerifyMemorySSA)
1027     MSSAU->getMemorySSA()->verifyMemorySSA();
1028 
1029   ++NumTrivial;
1030   ++NumSwitches;
1031   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
1032   return true;
1033 }
1034 
1035 /// This routine scans the loop to find a branch or switch which occurs before
1036 /// any side effects occur. These can potentially be unswitched without
1037 /// duplicating the loop. If a branch or switch is successfully unswitched the
1038 /// scanning continues to see if subsequent branches or switches have become
1039 /// trivial. Once all trivial candidates have been unswitched, this routine
1040 /// returns.
1041 ///
1042 /// The return value indicates whether anything was unswitched (and therefore
1043 /// changed).
1044 ///
1045 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
1046 /// invalidated by this.
1047 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
1048                                          LoopInfo &LI, ScalarEvolution *SE,
1049                                          MemorySSAUpdater *MSSAU) {
1050   bool Changed = false;
1051 
1052   // If loop header has only one reachable successor we should keep looking for
1053   // trivial condition candidates in the successor as well. An alternative is
1054   // to constant fold conditions and merge successors into loop header (then we
1055   // only need to check header's terminator). The reason for not doing this in
1056   // LoopUnswitch pass is that it could potentially break LoopPassManager's
1057   // invariants. Folding dead branches could either eliminate the current loop
1058   // or make other loops unreachable. LCSSA form might also not be preserved
1059   // after deleting branches. The following code keeps traversing loop header's
1060   // successors until it finds the trivial condition candidate (condition that
1061   // is not a constant). Since unswitching generates branches with constant
1062   // conditions, this scenario could be very common in practice.
1063   BasicBlock *CurrentBB = L.getHeader();
1064   SmallPtrSet<BasicBlock *, 8> Visited;
1065   Visited.insert(CurrentBB);
1066   do {
1067     // Check if there are any side-effecting instructions (e.g. stores, calls,
1068     // volatile loads) in the part of the loop that the code *would* execute
1069     // without unswitching.
1070     if (MSSAU) // Possible early exit with MSSA
1071       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1072         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1073           return Changed;
1074     if (llvm::any_of(*CurrentBB,
1075                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
1076       return Changed;
1077 
1078     Instruction *CurrentTerm = CurrentBB->getTerminator();
1079 
1080     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1081       // Don't bother trying to unswitch past a switch with a constant
1082       // condition. This should be removed prior to running this pass by
1083       // simplifycfg.
1084       if (isa<Constant>(SI->getCondition()))
1085         return Changed;
1086 
1087       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1088         // Couldn't unswitch this one so we're done.
1089         return Changed;
1090 
1091       // Mark that we managed to unswitch something.
1092       Changed = true;
1093 
1094       // If unswitching turned the terminator into an unconditional branch then
1095       // we can continue. The unswitching logic specifically works to fold any
1096       // cases it can into an unconditional branch to make it easier to
1097       // recognize here.
1098       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1099       if (!BI || BI->isConditional())
1100         return Changed;
1101 
1102       CurrentBB = BI->getSuccessor(0);
1103       continue;
1104     }
1105 
1106     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1107     if (!BI)
1108       // We do not understand other terminator instructions.
1109       return Changed;
1110 
1111     // Don't bother trying to unswitch past an unconditional branch or a branch
1112     // with a constant value. These should be removed by simplifycfg prior to
1113     // running this pass.
1114     if (!BI->isConditional() ||
1115         isa<Constant>(skipTrivialSelect(BI->getCondition())))
1116       return Changed;
1117 
1118     // Found a trivial condition candidate: non-foldable conditional branch. If
1119     // we fail to unswitch this, we can't do anything else that is trivial.
1120     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1121       return Changed;
1122 
1123     // Mark that we managed to unswitch something.
1124     Changed = true;
1125 
1126     // If we only unswitched some of the conditions feeding the branch, we won't
1127     // have collapsed it to a single successor.
1128     BI = cast<BranchInst>(CurrentBB->getTerminator());
1129     if (BI->isConditional())
1130       return Changed;
1131 
1132     // Follow the newly unconditional branch into its successor.
1133     CurrentBB = BI->getSuccessor(0);
1134 
1135     // When continuing, if we exit the loop or reach a previous visited block,
1136     // then we can not reach any trivial condition candidates (unfoldable
1137     // branch instructions or switch instructions) and no unswitch can happen.
1138   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1139 
1140   return Changed;
1141 }
1142 
1143 /// Build the cloned blocks for an unswitched copy of the given loop.
1144 ///
1145 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1146 /// after the split block (`SplitBB`) that will be used to select between the
1147 /// cloned and original loop.
1148 ///
1149 /// This routine handles cloning all of the necessary loop blocks and exit
1150 /// blocks including rewriting their instructions and the relevant PHI nodes.
1151 /// Any loop blocks or exit blocks which are dominated by a different successor
1152 /// than the one for this clone of the loop blocks can be trivially skipped. We
1153 /// use the `DominatingSucc` map to determine whether a block satisfies that
1154 /// property with a simple map lookup.
1155 ///
1156 /// It also correctly creates the unconditional branch in the cloned
1157 /// unswitched parent block to only point at the unswitched successor.
1158 ///
1159 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1160 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1161 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1162 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1163 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1164 /// instead the caller must recompute an accurate DT. It *does* correctly
1165 /// update the `AssumptionCache` provided in `AC`.
1166 static BasicBlock *buildClonedLoopBlocks(
1167     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1168     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1169     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1170     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1171     ValueToValueMapTy &VMap,
1172     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1173     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1174     ScalarEvolution *SE) {
1175   SmallVector<BasicBlock *, 4> NewBlocks;
1176   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1177 
1178   // We will need to clone a bunch of blocks, wrap up the clone operation in
1179   // a helper.
1180   auto CloneBlock = [&](BasicBlock *OldBB) {
1181     // Clone the basic block and insert it before the new preheader.
1182     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1183     NewBB->moveBefore(LoopPH);
1184 
1185     // Record this block and the mapping.
1186     NewBlocks.push_back(NewBB);
1187     VMap[OldBB] = NewBB;
1188 
1189     return NewBB;
1190   };
1191 
1192   // We skip cloning blocks when they have a dominating succ that is not the
1193   // succ we are cloning for.
1194   auto SkipBlock = [&](BasicBlock *BB) {
1195     auto It = DominatingSucc.find(BB);
1196     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1197   };
1198 
1199   // First, clone the preheader.
1200   auto *ClonedPH = CloneBlock(LoopPH);
1201 
1202   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1203   for (auto *LoopBB : L.blocks())
1204     if (!SkipBlock(LoopBB))
1205       CloneBlock(LoopBB);
1206 
1207   // Split all the loop exit edges so that when we clone the exit blocks, if
1208   // any of the exit blocks are *also* a preheader for some other loop, we
1209   // don't create multiple predecessors entering the loop header.
1210   for (auto *ExitBB : ExitBlocks) {
1211     if (SkipBlock(ExitBB))
1212       continue;
1213 
1214     // When we are going to clone an exit, we don't need to clone all the
1215     // instructions in the exit block and we want to ensure we have an easy
1216     // place to merge the CFG, so split the exit first. This is always safe to
1217     // do because there cannot be any non-loop predecessors of a loop exit in
1218     // loop simplified form.
1219     auto *MergeBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU);
1220 
1221     // Rearrange the names to make it easier to write test cases by having the
1222     // exit block carry the suffix rather than the merge block carrying the
1223     // suffix.
1224     MergeBB->takeName(ExitBB);
1225     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1226 
1227     // Now clone the original exit block.
1228     auto *ClonedExitBB = CloneBlock(ExitBB);
1229     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1230            "Exit block should have been split to have one successor!");
1231     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1232            "Cloned exit block has the wrong successor!");
1233 
1234     // Remap any cloned instructions and create a merge phi node for them.
1235     for (auto ZippedInsts : llvm::zip_first(
1236              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1237              llvm::make_range(ClonedExitBB->begin(),
1238                               std::prev(ClonedExitBB->end())))) {
1239       Instruction &I = std::get<0>(ZippedInsts);
1240       Instruction &ClonedI = std::get<1>(ZippedInsts);
1241 
1242       // The only instructions in the exit block should be PHI nodes and
1243       // potentially a landing pad.
1244       assert(
1245           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1246           "Bad instruction in exit block!");
1247       // We should have a value map between the instruction and its clone.
1248       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1249 
1250       // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1251       if (SE && isa<PHINode>(I))
1252         SE->forgetValue(&I);
1253 
1254       BasicBlock::iterator InsertPt = MergeBB->getFirstInsertionPt();
1255 
1256       auto *MergePN =
1257           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi");
1258       MergePN->insertBefore(InsertPt);
1259       MergePN->setDebugLoc(InsertPt->getDebugLoc());
1260       I.replaceAllUsesWith(MergePN);
1261       MergePN->addIncoming(&I, ExitBB);
1262       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1263     }
1264   }
1265 
1266   // Rewrite the instructions in the cloned blocks to refer to the instructions
1267   // in the cloned blocks. We have to do this as a second pass so that we have
1268   // everything available. Also, we have inserted new instructions which may
1269   // include assume intrinsics, so we update the assumption cache while
1270   // processing this.
1271   Module *M = ClonedPH->getParent()->getParent();
1272   for (auto *ClonedBB : NewBlocks)
1273     for (Instruction &I : *ClonedBB) {
1274       RemapDbgRecordRange(M, I.getDbgRecordRange(), VMap,
1275                           RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1276       RemapInstruction(&I, VMap,
1277                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1278       if (auto *II = dyn_cast<AssumeInst>(&I))
1279         AC.registerAssumption(II);
1280     }
1281 
1282   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1283   // have spurious incoming values.
1284   for (auto *LoopBB : L.blocks())
1285     if (SkipBlock(LoopBB))
1286       for (auto *SuccBB : successors(LoopBB))
1287         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1288           for (PHINode &PN : ClonedSuccBB->phis())
1289             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1290 
1291   // Remove the cloned parent as a predecessor of any successor we ended up
1292   // cloning other than the unswitched one.
1293   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1294   for (auto *SuccBB : successors(ParentBB)) {
1295     if (SuccBB == UnswitchedSuccBB)
1296       continue;
1297 
1298     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1299     if (!ClonedSuccBB)
1300       continue;
1301 
1302     ClonedSuccBB->removePredecessor(ClonedParentBB,
1303                                     /*KeepOneInputPHIs*/ true);
1304   }
1305 
1306   // Replace the cloned branch with an unconditional branch to the cloned
1307   // unswitched successor.
1308   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1309   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1310   // Trivial Simplification. If Terminator is a conditional branch and
1311   // condition becomes dead - erase it.
1312   Value *ClonedConditionToErase = nullptr;
1313   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1314     ClonedConditionToErase = BI->getCondition();
1315   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1316     ClonedConditionToErase = SI->getCondition();
1317 
1318   Instruction *BI = BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1319   BI->setDebugLoc(ClonedTerminator->getDebugLoc());
1320   ClonedTerminator->eraseFromParent();
1321 
1322   if (ClonedConditionToErase)
1323     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1324                                                MSSAU);
1325 
1326   // If there are duplicate entries in the PHI nodes because of multiple edges
1327   // to the unswitched successor, we need to nuke all but one as we replaced it
1328   // with a direct branch.
1329   for (PHINode &PN : ClonedSuccBB->phis()) {
1330     bool Found = false;
1331     // Loop over the incoming operands backwards so we can easily delete as we
1332     // go without invalidating the index.
1333     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1334       if (PN.getIncomingBlock(i) != ClonedParentBB)
1335         continue;
1336       if (!Found) {
1337         Found = true;
1338         continue;
1339       }
1340       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1341     }
1342   }
1343 
1344   // Record the domtree updates for the new blocks.
1345   SmallPtrSet<BasicBlock *, 4> SuccSet;
1346   for (auto *ClonedBB : NewBlocks) {
1347     for (auto *SuccBB : successors(ClonedBB))
1348       if (SuccSet.insert(SuccBB).second)
1349         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1350     SuccSet.clear();
1351   }
1352 
1353   return ClonedPH;
1354 }
1355 
1356 /// Recursively clone the specified loop and all of its children.
1357 ///
1358 /// The target parent loop for the clone should be provided, or can be null if
1359 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1360 /// with the provided value map. The entire original loop must be present in
1361 /// the value map. The cloned loop is returned.
1362 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1363                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1364   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1365     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1366     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1367     for (auto *BB : OrigL.blocks()) {
1368       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1369       ClonedL.addBlockEntry(ClonedBB);
1370       if (LI.getLoopFor(BB) == &OrigL)
1371         LI.changeLoopFor(ClonedBB, &ClonedL);
1372     }
1373   };
1374 
1375   // We specially handle the first loop because it may get cloned into
1376   // a different parent and because we most commonly are cloning leaf loops.
1377   Loop *ClonedRootL = LI.AllocateLoop();
1378   if (RootParentL)
1379     RootParentL->addChildLoop(ClonedRootL);
1380   else
1381     LI.addTopLevelLoop(ClonedRootL);
1382   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1383 
1384   if (OrigRootL.isInnermost())
1385     return ClonedRootL;
1386 
1387   // If we have a nest, we can quickly clone the entire loop nest using an
1388   // iterative approach because it is a tree. We keep the cloned parent in the
1389   // data structure to avoid repeatedly querying through a map to find it.
1390   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1391   // Build up the loops to clone in reverse order as we'll clone them from the
1392   // back.
1393   for (Loop *ChildL : llvm::reverse(OrigRootL))
1394     LoopsToClone.push_back({ClonedRootL, ChildL});
1395   do {
1396     Loop *ClonedParentL, *L;
1397     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1398     Loop *ClonedL = LI.AllocateLoop();
1399     ClonedParentL->addChildLoop(ClonedL);
1400     AddClonedBlocksToLoop(*L, *ClonedL);
1401     for (Loop *ChildL : llvm::reverse(*L))
1402       LoopsToClone.push_back({ClonedL, ChildL});
1403   } while (!LoopsToClone.empty());
1404 
1405   return ClonedRootL;
1406 }
1407 
1408 /// Build the cloned loops of an original loop from unswitching.
1409 ///
1410 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1411 /// operation. We need to re-verify that there even is a loop (as the backedge
1412 /// may not have been cloned), and even if there are remaining backedges the
1413 /// backedge set may be different. However, we know that each child loop is
1414 /// undisturbed, we only need to find where to place each child loop within
1415 /// either any parent loop or within a cloned version of the original loop.
1416 ///
1417 /// Because child loops may end up cloned outside of any cloned version of the
1418 /// original loop, multiple cloned sibling loops may be created. All of them
1419 /// are returned so that the newly introduced loop nest roots can be
1420 /// identified.
1421 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1422                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1423                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1424   Loop *ClonedL = nullptr;
1425 
1426   auto *OrigPH = OrigL.getLoopPreheader();
1427   auto *OrigHeader = OrigL.getHeader();
1428 
1429   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1430   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1431 
1432   // We need to know the loops of the cloned exit blocks to even compute the
1433   // accurate parent loop. If we only clone exits to some parent of the
1434   // original parent, we want to clone into that outer loop. We also keep track
1435   // of the loops that our cloned exit blocks participate in.
1436   Loop *ParentL = nullptr;
1437   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1438   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1439   ClonedExitsInLoops.reserve(ExitBlocks.size());
1440   for (auto *ExitBB : ExitBlocks)
1441     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1442       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1443         ExitLoopMap[ClonedExitBB] = ExitL;
1444         ClonedExitsInLoops.push_back(ClonedExitBB);
1445         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1446           ParentL = ExitL;
1447       }
1448   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1449           ParentL->contains(OrigL.getParentLoop())) &&
1450          "The computed parent loop should always contain (or be) the parent of "
1451          "the original loop.");
1452 
1453   // We build the set of blocks dominated by the cloned header from the set of
1454   // cloned blocks out of the original loop. While not all of these will
1455   // necessarily be in the cloned loop, it is enough to establish that they
1456   // aren't in unreachable cycles, etc.
1457   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1458   for (auto *BB : OrigL.blocks())
1459     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1460       ClonedLoopBlocks.insert(ClonedBB);
1461 
1462   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1463   // skipped cloning some region of this loop which can in turn skip some of
1464   // the backedges so we have to rebuild the blocks in the loop based on the
1465   // backedges that remain after cloning.
1466   SmallVector<BasicBlock *, 16> Worklist;
1467   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1468   for (auto *Pred : predecessors(ClonedHeader)) {
1469     // The only possible non-loop header predecessor is the preheader because
1470     // we know we cloned the loop in simplified form.
1471     if (Pred == ClonedPH)
1472       continue;
1473 
1474     // Because the loop was in simplified form, the only non-loop predecessor
1475     // should be the preheader.
1476     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1477                                            "header other than the preheader "
1478                                            "that is not part of the loop!");
1479 
1480     // Insert this block into the loop set and on the first visit (and if it
1481     // isn't the header we're currently walking) put it into the worklist to
1482     // recurse through.
1483     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1484       Worklist.push_back(Pred);
1485   }
1486 
1487   // If we had any backedges then there *is* a cloned loop. Put the header into
1488   // the loop set and then walk the worklist backwards to find all the blocks
1489   // that remain within the loop after cloning.
1490   if (!BlocksInClonedLoop.empty()) {
1491     BlocksInClonedLoop.insert(ClonedHeader);
1492 
1493     while (!Worklist.empty()) {
1494       BasicBlock *BB = Worklist.pop_back_val();
1495       assert(BlocksInClonedLoop.count(BB) &&
1496              "Didn't put block into the loop set!");
1497 
1498       // Insert any predecessors that are in the possible set into the cloned
1499       // set, and if the insert is successful, add them to the worklist. Note
1500       // that we filter on the blocks that are definitely reachable via the
1501       // backedge to the loop header so we may prune out dead code within the
1502       // cloned loop.
1503       for (auto *Pred : predecessors(BB))
1504         if (ClonedLoopBlocks.count(Pred) &&
1505             BlocksInClonedLoop.insert(Pred).second)
1506           Worklist.push_back(Pred);
1507     }
1508 
1509     ClonedL = LI.AllocateLoop();
1510     if (ParentL) {
1511       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1512       ParentL->addChildLoop(ClonedL);
1513     } else {
1514       LI.addTopLevelLoop(ClonedL);
1515     }
1516     NonChildClonedLoops.push_back(ClonedL);
1517 
1518     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1519     // We don't want to just add the cloned loop blocks based on how we
1520     // discovered them. The original order of blocks was carefully built in
1521     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1522     // that logic, we just re-walk the original blocks (and those of the child
1523     // loops) and filter them as we add them into the cloned loop.
1524     for (auto *BB : OrigL.blocks()) {
1525       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1526       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1527         continue;
1528 
1529       // Directly add the blocks that are only in this loop.
1530       if (LI.getLoopFor(BB) == &OrigL) {
1531         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1532         continue;
1533       }
1534 
1535       // We want to manually add it to this loop and parents.
1536       // Registering it with LoopInfo will happen when we clone the top
1537       // loop for this block.
1538       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1539         PL->addBlockEntry(ClonedBB);
1540     }
1541 
1542     // Now add each child loop whose header remains within the cloned loop. All
1543     // of the blocks within the loop must satisfy the same constraints as the
1544     // header so once we pass the header checks we can just clone the entire
1545     // child loop nest.
1546     for (Loop *ChildL : OrigL) {
1547       auto *ClonedChildHeader =
1548           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1549       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1550         continue;
1551 
1552 #ifndef NDEBUG
1553       // We should never have a cloned child loop header but fail to have
1554       // all of the blocks for that child loop.
1555       for (auto *ChildLoopBB : ChildL->blocks())
1556         assert(BlocksInClonedLoop.count(
1557                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1558                "Child cloned loop has a header within the cloned outer "
1559                "loop but not all of its blocks!");
1560 #endif
1561 
1562       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1563     }
1564   }
1565 
1566   // Now that we've handled all the components of the original loop that were
1567   // cloned into a new loop, we still need to handle anything from the original
1568   // loop that wasn't in a cloned loop.
1569 
1570   // Figure out what blocks are left to place within any loop nest containing
1571   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1572   // them.
1573   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1574   if (BlocksInClonedLoop.empty())
1575     UnloopedBlockSet.insert(ClonedPH);
1576   for (auto *ClonedBB : ClonedLoopBlocks)
1577     if (!BlocksInClonedLoop.count(ClonedBB))
1578       UnloopedBlockSet.insert(ClonedBB);
1579 
1580   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1581   // backwards across these to process them inside out. The order shouldn't
1582   // matter as we're just trying to build up the map from inside-out; we use
1583   // the map in a more stably ordered way below.
1584   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1585   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1586     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1587            ExitLoopMap.lookup(RHS)->getLoopDepth();
1588   });
1589 
1590   // Populate the existing ExitLoopMap with everything reachable from each
1591   // exit, starting from the inner most exit.
1592   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1593     assert(Worklist.empty() && "Didn't clear worklist!");
1594 
1595     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1596     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1597 
1598     // Walk the CFG back until we hit the cloned PH adding everything reachable
1599     // and in the unlooped set to this exit block's loop.
1600     Worklist.push_back(ExitBB);
1601     do {
1602       BasicBlock *BB = Worklist.pop_back_val();
1603       // We can stop recursing at the cloned preheader (if we get there).
1604       if (BB == ClonedPH)
1605         continue;
1606 
1607       for (BasicBlock *PredBB : predecessors(BB)) {
1608         // If this pred has already been moved to our set or is part of some
1609         // (inner) loop, no update needed.
1610         if (!UnloopedBlockSet.erase(PredBB)) {
1611           assert(
1612               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1613               "Predecessor not mapped to a loop!");
1614           continue;
1615         }
1616 
1617         // We just insert into the loop set here. We'll add these blocks to the
1618         // exit loop after we build up the set in an order that doesn't rely on
1619         // predecessor order (which in turn relies on use list order).
1620         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1621         (void)Inserted;
1622         assert(Inserted && "Should only visit an unlooped block once!");
1623 
1624         // And recurse through to its predecessors.
1625         Worklist.push_back(PredBB);
1626       }
1627     } while (!Worklist.empty());
1628   }
1629 
1630   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1631   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1632   // in their original order adding them to the correct loop.
1633 
1634   // We need a stable insertion order. We use the order of the original loop
1635   // order and map into the correct parent loop.
1636   for (auto *BB : llvm::concat<BasicBlock *const>(
1637            ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1638     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1639       OuterL->addBasicBlockToLoop(BB, LI);
1640 
1641 #ifndef NDEBUG
1642   for (auto &BBAndL : ExitLoopMap) {
1643     auto *BB = BBAndL.first;
1644     auto *OuterL = BBAndL.second;
1645     assert(LI.getLoopFor(BB) == OuterL &&
1646            "Failed to put all blocks into outer loops!");
1647   }
1648 #endif
1649 
1650   // Now that all the blocks are placed into the correct containing loop in the
1651   // absence of child loops, find all the potentially cloned child loops and
1652   // clone them into whatever outer loop we placed their header into.
1653   for (Loop *ChildL : OrigL) {
1654     auto *ClonedChildHeader =
1655         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1656     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1657       continue;
1658 
1659 #ifndef NDEBUG
1660     for (auto *ChildLoopBB : ChildL->blocks())
1661       assert(VMap.count(ChildLoopBB) &&
1662              "Cloned a child loop header but not all of that loops blocks!");
1663 #endif
1664 
1665     NonChildClonedLoops.push_back(cloneLoopNest(
1666         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1667   }
1668 }
1669 
1670 static void
1671 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1672                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1673                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1674   // Find all the dead clones, and remove them from their successors.
1675   SmallVector<BasicBlock *, 16> DeadBlocks;
1676   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1677     for (const auto &VMap : VMaps)
1678       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1679         if (!DT.isReachableFromEntry(ClonedBB)) {
1680           for (BasicBlock *SuccBB : successors(ClonedBB))
1681             SuccBB->removePredecessor(ClonedBB);
1682           DeadBlocks.push_back(ClonedBB);
1683         }
1684 
1685   // Remove all MemorySSA in the dead blocks
1686   if (MSSAU) {
1687     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1688                                                  DeadBlocks.end());
1689     MSSAU->removeBlocks(DeadBlockSet);
1690   }
1691 
1692   // Drop any remaining references to break cycles.
1693   for (BasicBlock *BB : DeadBlocks)
1694     BB->dropAllReferences();
1695   // Erase them from the IR.
1696   for (BasicBlock *BB : DeadBlocks)
1697     BB->eraseFromParent();
1698 }
1699 
1700 static void deleteDeadBlocksFromLoop(Loop &L,
1701                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1702                                      DominatorTree &DT, LoopInfo &LI,
1703                                      MemorySSAUpdater *MSSAU,
1704                                      ScalarEvolution *SE,
1705                                      LPMUpdater &LoopUpdater) {
1706   // Find all the dead blocks tied to this loop, and remove them from their
1707   // successors.
1708   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1709 
1710   // Start with loop/exit blocks and get a transitive closure of reachable dead
1711   // blocks.
1712   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1713                                                 ExitBlocks.end());
1714   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1715   while (!DeathCandidates.empty()) {
1716     auto *BB = DeathCandidates.pop_back_val();
1717     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1718       for (BasicBlock *SuccBB : successors(BB)) {
1719         SuccBB->removePredecessor(BB);
1720         DeathCandidates.push_back(SuccBB);
1721       }
1722       DeadBlockSet.insert(BB);
1723     }
1724   }
1725 
1726   // Remove all MemorySSA in the dead blocks
1727   if (MSSAU)
1728     MSSAU->removeBlocks(DeadBlockSet);
1729 
1730   // Filter out the dead blocks from the exit blocks list so that it can be
1731   // used in the caller.
1732   llvm::erase_if(ExitBlocks,
1733                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1734 
1735   // Walk from this loop up through its parents removing all of the dead blocks.
1736   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1737     for (auto *BB : DeadBlockSet)
1738       ParentL->getBlocksSet().erase(BB);
1739     llvm::erase_if(ParentL->getBlocksVector(),
1740                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1741   }
1742 
1743   // Now delete the dead child loops. This raw delete will clear them
1744   // recursively.
1745   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1746     if (!DeadBlockSet.count(ChildL->getHeader()))
1747       return false;
1748 
1749     assert(llvm::all_of(ChildL->blocks(),
1750                         [&](BasicBlock *ChildBB) {
1751                           return DeadBlockSet.count(ChildBB);
1752                         }) &&
1753            "If the child loop header is dead all blocks in the child loop must "
1754            "be dead as well!");
1755     LoopUpdater.markLoopAsDeleted(*ChildL, ChildL->getName());
1756     if (SE)
1757       SE->forgetBlockAndLoopDispositions();
1758     LI.destroy(ChildL);
1759     return true;
1760   });
1761 
1762   // Remove the loop mappings for the dead blocks and drop all the references
1763   // from these blocks to others to handle cyclic references as we start
1764   // deleting the blocks themselves.
1765   for (auto *BB : DeadBlockSet) {
1766     // Check that the dominator tree has already been updated.
1767     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1768     LI.changeLoopFor(BB, nullptr);
1769     // Drop all uses of the instructions to make sure we won't have dangling
1770     // uses in other blocks.
1771     for (auto &I : *BB)
1772       if (!I.use_empty())
1773         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1774     BB->dropAllReferences();
1775   }
1776 
1777   // Actually delete the blocks now that they've been fully unhooked from the
1778   // IR.
1779   for (auto *BB : DeadBlockSet)
1780     BB->eraseFromParent();
1781 }
1782 
1783 /// Recompute the set of blocks in a loop after unswitching.
1784 ///
1785 /// This walks from the original headers predecessors to rebuild the loop. We
1786 /// take advantage of the fact that new blocks can't have been added, and so we
1787 /// filter by the original loop's blocks. This also handles potentially
1788 /// unreachable code that we don't want to explore but might be found examining
1789 /// the predecessors of the header.
1790 ///
1791 /// If the original loop is no longer a loop, this will return an empty set. If
1792 /// it remains a loop, all the blocks within it will be added to the set
1793 /// (including those blocks in inner loops).
1794 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1795                                                                  LoopInfo &LI) {
1796   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1797 
1798   auto *PH = L.getLoopPreheader();
1799   auto *Header = L.getHeader();
1800 
1801   // A worklist to use while walking backwards from the header.
1802   SmallVector<BasicBlock *, 16> Worklist;
1803 
1804   // First walk the predecessors of the header to find the backedges. This will
1805   // form the basis of our walk.
1806   for (auto *Pred : predecessors(Header)) {
1807     // Skip the preheader.
1808     if (Pred == PH)
1809       continue;
1810 
1811     // Because the loop was in simplified form, the only non-loop predecessor
1812     // is the preheader.
1813     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1814                                "than the preheader that is not part of the "
1815                                "loop!");
1816 
1817     // Insert this block into the loop set and on the first visit and, if it
1818     // isn't the header we're currently walking, put it into the worklist to
1819     // recurse through.
1820     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1821       Worklist.push_back(Pred);
1822   }
1823 
1824   // If no backedges were found, we're done.
1825   if (LoopBlockSet.empty())
1826     return LoopBlockSet;
1827 
1828   // We found backedges, recurse through them to identify the loop blocks.
1829   while (!Worklist.empty()) {
1830     BasicBlock *BB = Worklist.pop_back_val();
1831     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1832 
1833     // No need to walk past the header.
1834     if (BB == Header)
1835       continue;
1836 
1837     // Because we know the inner loop structure remains valid we can use the
1838     // loop structure to jump immediately across the entire nested loop.
1839     // Further, because it is in loop simplified form, we can directly jump
1840     // to its preheader afterward.
1841     if (Loop *InnerL = LI.getLoopFor(BB))
1842       if (InnerL != &L) {
1843         assert(L.contains(InnerL) &&
1844                "Should not reach a loop *outside* this loop!");
1845         // The preheader is the only possible predecessor of the loop so
1846         // insert it into the set and check whether it was already handled.
1847         auto *InnerPH = InnerL->getLoopPreheader();
1848         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1849                                       "but not contain the inner loop "
1850                                       "preheader!");
1851         if (!LoopBlockSet.insert(InnerPH).second)
1852           // The only way to reach the preheader is through the loop body
1853           // itself so if it has been visited the loop is already handled.
1854           continue;
1855 
1856         // Insert all of the blocks (other than those already present) into
1857         // the loop set. We expect at least the block that led us to find the
1858         // inner loop to be in the block set, but we may also have other loop
1859         // blocks if they were already enqueued as predecessors of some other
1860         // outer loop block.
1861         for (auto *InnerBB : InnerL->blocks()) {
1862           if (InnerBB == BB) {
1863             assert(LoopBlockSet.count(InnerBB) &&
1864                    "Block should already be in the set!");
1865             continue;
1866           }
1867 
1868           LoopBlockSet.insert(InnerBB);
1869         }
1870 
1871         // Add the preheader to the worklist so we will continue past the
1872         // loop body.
1873         Worklist.push_back(InnerPH);
1874         continue;
1875       }
1876 
1877     // Insert any predecessors that were in the original loop into the new
1878     // set, and if the insert is successful, add them to the worklist.
1879     for (auto *Pred : predecessors(BB))
1880       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1881         Worklist.push_back(Pred);
1882   }
1883 
1884   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1885 
1886   // We've found all the blocks participating in the loop, return our completed
1887   // set.
1888   return LoopBlockSet;
1889 }
1890 
1891 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1892 ///
1893 /// The removal may have removed some child loops entirely but cannot have
1894 /// disturbed any remaining child loops. However, they may need to be hoisted
1895 /// to the parent loop (or to be top-level loops). The original loop may be
1896 /// completely removed.
1897 ///
1898 /// The sibling loops resulting from this update are returned. If the original
1899 /// loop remains a valid loop, it will be the first entry in this list with all
1900 /// of the newly sibling loops following it.
1901 ///
1902 /// Returns true if the loop remains a loop after unswitching, and false if it
1903 /// is no longer a loop after unswitching (and should not continue to be
1904 /// referenced).
1905 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1906                                      LoopInfo &LI,
1907                                      SmallVectorImpl<Loop *> &HoistedLoops,
1908                                      ScalarEvolution *SE) {
1909   auto *PH = L.getLoopPreheader();
1910 
1911   // Compute the actual parent loop from the exit blocks. Because we may have
1912   // pruned some exits the loop may be different from the original parent.
1913   Loop *ParentL = nullptr;
1914   SmallVector<Loop *, 4> ExitLoops;
1915   SmallVector<BasicBlock *, 4> ExitsInLoops;
1916   ExitsInLoops.reserve(ExitBlocks.size());
1917   for (auto *ExitBB : ExitBlocks)
1918     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1919       ExitLoops.push_back(ExitL);
1920       ExitsInLoops.push_back(ExitBB);
1921       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1922         ParentL = ExitL;
1923     }
1924 
1925   // Recompute the blocks participating in this loop. This may be empty if it
1926   // is no longer a loop.
1927   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1928 
1929   // If we still have a loop, we need to re-set the loop's parent as the exit
1930   // block set changing may have moved it within the loop nest. Note that this
1931   // can only happen when this loop has a parent as it can only hoist the loop
1932   // *up* the nest.
1933   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1934     // Remove this loop's (original) blocks from all of the intervening loops.
1935     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1936          IL = IL->getParentLoop()) {
1937       IL->getBlocksSet().erase(PH);
1938       for (auto *BB : L.blocks())
1939         IL->getBlocksSet().erase(BB);
1940       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1941         return BB == PH || L.contains(BB);
1942       });
1943     }
1944 
1945     LI.changeLoopFor(PH, ParentL);
1946     L.getParentLoop()->removeChildLoop(&L);
1947     if (ParentL)
1948       ParentL->addChildLoop(&L);
1949     else
1950       LI.addTopLevelLoop(&L);
1951   }
1952 
1953   // Now we update all the blocks which are no longer within the loop.
1954   auto &Blocks = L.getBlocksVector();
1955   auto BlocksSplitI =
1956       LoopBlockSet.empty()
1957           ? Blocks.begin()
1958           : std::stable_partition(
1959                 Blocks.begin(), Blocks.end(),
1960                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1961 
1962   // Before we erase the list of unlooped blocks, build a set of them.
1963   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1964   if (LoopBlockSet.empty())
1965     UnloopedBlocks.insert(PH);
1966 
1967   // Now erase these blocks from the loop.
1968   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1969     L.getBlocksSet().erase(BB);
1970   Blocks.erase(BlocksSplitI, Blocks.end());
1971 
1972   // Sort the exits in ascending loop depth, we'll work backwards across these
1973   // to process them inside out.
1974   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1975     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1976   });
1977 
1978   // We'll build up a set for each exit loop.
1979   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1980   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1981 
1982   auto RemoveUnloopedBlocksFromLoop =
1983       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1984         for (auto *BB : UnloopedBlocks)
1985           L.getBlocksSet().erase(BB);
1986         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1987           return UnloopedBlocks.count(BB);
1988         });
1989       };
1990 
1991   SmallVector<BasicBlock *, 16> Worklist;
1992   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1993     assert(Worklist.empty() && "Didn't clear worklist!");
1994     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1995 
1996     // Grab the next exit block, in decreasing loop depth order.
1997     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1998     Loop &ExitL = *LI.getLoopFor(ExitBB);
1999     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
2000 
2001     // Erase all of the unlooped blocks from the loops between the previous
2002     // exit loop and this exit loop. This works because the ExitInLoops list is
2003     // sorted in increasing order of loop depth and thus we visit loops in
2004     // decreasing order of loop depth.
2005     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
2006       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2007 
2008     // Walk the CFG back until we hit the cloned PH adding everything reachable
2009     // and in the unlooped set to this exit block's loop.
2010     Worklist.push_back(ExitBB);
2011     do {
2012       BasicBlock *BB = Worklist.pop_back_val();
2013       // We can stop recursing at the cloned preheader (if we get there).
2014       if (BB == PH)
2015         continue;
2016 
2017       for (BasicBlock *PredBB : predecessors(BB)) {
2018         // If this pred has already been moved to our set or is part of some
2019         // (inner) loop, no update needed.
2020         if (!UnloopedBlocks.erase(PredBB)) {
2021           assert((NewExitLoopBlocks.count(PredBB) ||
2022                   ExitL.contains(LI.getLoopFor(PredBB))) &&
2023                  "Predecessor not in a nested loop (or already visited)!");
2024           continue;
2025         }
2026 
2027         // We just insert into the loop set here. We'll add these blocks to the
2028         // exit loop after we build up the set in a deterministic order rather
2029         // than the predecessor-influenced visit order.
2030         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
2031         (void)Inserted;
2032         assert(Inserted && "Should only visit an unlooped block once!");
2033 
2034         // And recurse through to its predecessors.
2035         Worklist.push_back(PredBB);
2036       }
2037     } while (!Worklist.empty());
2038 
2039     // If blocks in this exit loop were directly part of the original loop (as
2040     // opposed to a child loop) update the map to point to this exit loop. This
2041     // just updates a map and so the fact that the order is unstable is fine.
2042     for (auto *BB : NewExitLoopBlocks)
2043       if (Loop *BBL = LI.getLoopFor(BB))
2044         if (BBL == &L || !L.contains(BBL))
2045           LI.changeLoopFor(BB, &ExitL);
2046 
2047     // We will remove the remaining unlooped blocks from this loop in the next
2048     // iteration or below.
2049     NewExitLoopBlocks.clear();
2050   }
2051 
2052   // Any remaining unlooped blocks are no longer part of any loop unless they
2053   // are part of some child loop.
2054   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
2055     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2056   for (auto *BB : UnloopedBlocks)
2057     if (Loop *BBL = LI.getLoopFor(BB))
2058       if (BBL == &L || !L.contains(BBL))
2059         LI.changeLoopFor(BB, nullptr);
2060 
2061   // Sink all the child loops whose headers are no longer in the loop set to
2062   // the parent (or to be top level loops). We reach into the loop and directly
2063   // update its subloop vector to make this batch update efficient.
2064   auto &SubLoops = L.getSubLoopsVector();
2065   auto SubLoopsSplitI =
2066       LoopBlockSet.empty()
2067           ? SubLoops.begin()
2068           : std::stable_partition(
2069                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2070                   return LoopBlockSet.count(SubL->getHeader());
2071                 });
2072   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2073     HoistedLoops.push_back(HoistedL);
2074     HoistedL->setParentLoop(nullptr);
2075 
2076     // To compute the new parent of this hoisted loop we look at where we
2077     // placed the preheader above. We can't lookup the header itself because we
2078     // retained the mapping from the header to the hoisted loop. But the
2079     // preheader and header should have the exact same new parent computed
2080     // based on the set of exit blocks from the original loop as the preheader
2081     // is a predecessor of the header and so reached in the reverse walk. And
2082     // because the loops were all in simplified form the preheader of the
2083     // hoisted loop can't be part of some *other* loop.
2084     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2085       NewParentL->addChildLoop(HoistedL);
2086     else
2087       LI.addTopLevelLoop(HoistedL);
2088   }
2089   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2090 
2091   // Actually delete the loop if nothing remained within it.
2092   if (Blocks.empty()) {
2093     assert(SubLoops.empty() &&
2094            "Failed to remove all subloops from the original loop!");
2095     if (Loop *ParentL = L.getParentLoop())
2096       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2097     else
2098       LI.removeLoop(llvm::find(LI, &L));
2099     // markLoopAsDeleted for L should be triggered by the caller (it is
2100     // typically done within postUnswitch).
2101     if (SE)
2102       SE->forgetBlockAndLoopDispositions();
2103     LI.destroy(&L);
2104     return false;
2105   }
2106 
2107   return true;
2108 }
2109 
2110 /// Helper to visit a dominator subtree, invoking a callable on each node.
2111 ///
2112 /// Returning false at any point will stop walking past that node of the tree.
2113 template <typename CallableT>
2114 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2115   SmallVector<DomTreeNode *, 4> DomWorklist;
2116   DomWorklist.push_back(DT[BB]);
2117 #ifndef NDEBUG
2118   SmallPtrSet<DomTreeNode *, 4> Visited;
2119   Visited.insert(DT[BB]);
2120 #endif
2121   do {
2122     DomTreeNode *N = DomWorklist.pop_back_val();
2123 
2124     // Visit this node.
2125     if (!Callable(N->getBlock()))
2126       continue;
2127 
2128     // Accumulate the child nodes.
2129     for (DomTreeNode *ChildN : *N) {
2130       assert(Visited.insert(ChildN).second &&
2131              "Cannot visit a node twice when walking a tree!");
2132       DomWorklist.push_back(ChildN);
2133     }
2134   } while (!DomWorklist.empty());
2135 }
2136 
2137 void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName,
2138                   bool CurrentLoopValid, bool PartiallyInvariant,
2139                   bool InjectedCondition, ArrayRef<Loop *> NewLoops) {
2140   // If we did a non-trivial unswitch, we have added new (cloned) loops.
2141   if (!NewLoops.empty())
2142     U.addSiblingLoops(NewLoops);
2143 
2144   // If the current loop remains valid, we should revisit it to catch any
2145   // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2146   if (CurrentLoopValid) {
2147     if (PartiallyInvariant) {
2148       // Mark the new loop as partially unswitched, to avoid unswitching on
2149       // the same condition again.
2150       auto &Context = L.getHeader()->getContext();
2151       MDNode *DisableUnswitchMD = MDNode::get(
2152           Context,
2153           MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
2154       MDNode *NewLoopID = makePostTransformationMetadata(
2155           Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
2156           {DisableUnswitchMD});
2157       L.setLoopID(NewLoopID);
2158     } else if (InjectedCondition) {
2159       // Do the same for injection of invariant conditions.
2160       auto &Context = L.getHeader()->getContext();
2161       MDNode *DisableUnswitchMD = MDNode::get(
2162           Context,
2163           MDString::get(Context, "llvm.loop.unswitch.injection.disable"));
2164       MDNode *NewLoopID = makePostTransformationMetadata(
2165           Context, L.getLoopID(), {"llvm.loop.unswitch.injection"},
2166           {DisableUnswitchMD});
2167       L.setLoopID(NewLoopID);
2168     } else
2169       U.revisitCurrentLoop();
2170   } else
2171     U.markLoopAsDeleted(L, LoopName);
2172 }
2173 
2174 static void unswitchNontrivialInvariants(
2175     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2176     IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2177     AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2178     LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition) {
2179   auto *ParentBB = TI.getParent();
2180   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2181   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2182 
2183   // Save the current loop name in a variable so that we can report it even
2184   // after it has been deleted.
2185   std::string LoopName(L.getName());
2186 
2187   // We can only unswitch switches, conditional branches with an invariant
2188   // condition, or combining invariant conditions with an instruction or
2189   // partially invariant instructions.
2190   assert((SI || (BI && BI->isConditional())) &&
2191          "Can only unswitch switches and conditional branch!");
2192   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2193   bool FullUnswitch =
2194       SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2195              !PartiallyInvariant);
2196   if (FullUnswitch)
2197     assert(Invariants.size() == 1 &&
2198            "Cannot have other invariants with full unswitching!");
2199   else
2200     assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2201            "Partial unswitching requires an instruction as the condition!");
2202 
2203   if (MSSAU && VerifyMemorySSA)
2204     MSSAU->getMemorySSA()->verifyMemorySSA();
2205 
2206   // Constant and BBs tracking the cloned and continuing successor. When we are
2207   // unswitching the entire condition, this can just be trivially chosen to
2208   // unswitch towards `true`. However, when we are unswitching a set of
2209   // invariants combined with `and` or `or` or partially invariant instructions,
2210   // the combining operation determines the best direction to unswitch: we want
2211   // to unswitch the direction that will collapse the branch.
2212   bool Direction = true;
2213   int ClonedSucc = 0;
2214   if (!FullUnswitch) {
2215     Value *Cond = skipTrivialSelect(BI->getCondition());
2216     (void)Cond;
2217     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2218             PartiallyInvariant) &&
2219            "Only `or`, `and`, an `select`, partially invariant instructions "
2220            "can combine invariants being unswitched.");
2221     if (!match(Cond, m_LogicalOr())) {
2222       if (match(Cond, m_LogicalAnd()) ||
2223           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2224         Direction = false;
2225         ClonedSucc = 1;
2226       }
2227     }
2228   }
2229 
2230   BasicBlock *RetainedSuccBB =
2231       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2232   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2233   if (BI)
2234     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2235   else
2236     for (auto Case : SI->cases())
2237       if (Case.getCaseSuccessor() != RetainedSuccBB)
2238         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2239 
2240   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2241          "Should not unswitch the same successor we are retaining!");
2242 
2243   // The branch should be in this exact loop. Any inner loop's invariant branch
2244   // should be handled by unswitching that inner loop. The caller of this
2245   // routine should filter out any candidates that remain (but were skipped for
2246   // whatever reason).
2247   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2248 
2249   // Compute the parent loop now before we start hacking on things.
2250   Loop *ParentL = L.getParentLoop();
2251   // Get blocks in RPO order for MSSA update, before changing the CFG.
2252   LoopBlocksRPO LBRPO(&L);
2253   if (MSSAU)
2254     LBRPO.perform(&LI);
2255 
2256   // Compute the outer-most loop containing one of our exit blocks. This is the
2257   // furthest up our loopnest which can be mutated, which we will use below to
2258   // update things.
2259   Loop *OuterExitL = &L;
2260   SmallVector<BasicBlock *, 4> ExitBlocks;
2261   L.getUniqueExitBlocks(ExitBlocks);
2262   for (auto *ExitBB : ExitBlocks) {
2263     // ExitBB can be an exit block for several levels in the loop nest. Make
2264     // sure we find the top most.
2265     Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI);
2266     if (!NewOuterExitL) {
2267       // We exited the entire nest with this block, so we're done.
2268       OuterExitL = nullptr;
2269       break;
2270     }
2271     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2272       OuterExitL = NewOuterExitL;
2273   }
2274 
2275   // At this point, we're definitely going to unswitch something so invalidate
2276   // any cached information in ScalarEvolution for the outer most loop
2277   // containing an exit block and all nested loops.
2278   if (SE) {
2279     if (OuterExitL)
2280       SE->forgetLoop(OuterExitL);
2281     else
2282       SE->forgetTopmostLoop(&L);
2283     SE->forgetBlockAndLoopDispositions();
2284   }
2285 
2286   // If the edge from this terminator to a successor dominates that successor,
2287   // store a map from each block in its dominator subtree to it. This lets us
2288   // tell when cloning for a particular successor if a block is dominated by
2289   // some *other* successor with a single data structure. We use this to
2290   // significantly reduce cloning.
2291   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2292   for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
2293                                                       UnswitchedSuccBBs))
2294     if (SuccBB->getUniquePredecessor() ||
2295         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2296           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2297         }))
2298       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2299         DominatingSucc[BB] = SuccBB;
2300         return true;
2301       });
2302 
2303   // Split the preheader, so that we know that there is a safe place to insert
2304   // the conditional branch. We will change the preheader to have a conditional
2305   // branch on LoopCond. The original preheader will become the split point
2306   // between the unswitched versions, and we will have a new preheader for the
2307   // original loop.
2308   BasicBlock *SplitBB = L.getLoopPreheader();
2309   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2310 
2311   // Keep track of the dominator tree updates needed.
2312   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2313 
2314   // Clone the loop for each unswitched successor.
2315   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2316   VMaps.reserve(UnswitchedSuccBBs.size());
2317   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2318   for (auto *SuccBB : UnswitchedSuccBBs) {
2319     VMaps.emplace_back(new ValueToValueMapTy());
2320     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2321         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2322         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2323   }
2324 
2325   // Drop metadata if we may break its semantics by moving this instr into the
2326   // split block.
2327   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2328     if (DropNonTrivialImplicitNullChecks)
2329       // Do not spend time trying to understand if we can keep it, just drop it
2330       // to save compile time.
2331       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2332     else {
2333       // It is only legal to preserve make.implicit metadata if we are
2334       // guaranteed no reach implicit null check after following this branch.
2335       ICFLoopSafetyInfo SafetyInfo;
2336       SafetyInfo.computeLoopSafetyInfo(&L);
2337       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2338         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2339     }
2340   }
2341 
2342   // The stitching of the branched code back together depends on whether we're
2343   // doing full unswitching or not with the exception that we always want to
2344   // nuke the initial terminator placed in the split block.
2345   SplitBB->getTerminator()->eraseFromParent();
2346   if (FullUnswitch) {
2347     // Keep a clone of the terminator for MSSA updates.
2348     Instruction *NewTI = TI.clone();
2349     NewTI->insertInto(ParentBB, ParentBB->end());
2350 
2351     // Splice the terminator from the original loop and rewrite its
2352     // successors.
2353     TI.moveBefore(*SplitBB, SplitBB->end());
2354     TI.dropLocation();
2355 
2356     // First wire up the moved terminator to the preheaders.
2357     if (BI) {
2358       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2359       BI->setSuccessor(ClonedSucc, ClonedPH);
2360       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2361       Value *Cond = skipTrivialSelect(BI->getCondition());
2362       if (InsertFreeze) {
2363         // We don't give any debug location to the new freeze, because the
2364         // BI (`dyn_cast<BranchInst>(TI)`) is an in-loop instruction hoisted
2365         // out of the loop.
2366         Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI->getIterator());
2367       }
2368       BI->setCondition(Cond);
2369       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2370     } else {
2371       assert(SI && "Must either be a branch or switch!");
2372 
2373       // Walk the cases and directly update their successors.
2374       assert(SI->getDefaultDest() == RetainedSuccBB &&
2375              "Not retaining default successor!");
2376       SI->setDefaultDest(LoopPH);
2377       for (const auto &Case : SI->cases())
2378         if (Case.getCaseSuccessor() == RetainedSuccBB)
2379           Case.setSuccessor(LoopPH);
2380         else
2381           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2382 
2383       if (InsertFreeze)
2384         SI->setCondition(new FreezeInst(SI->getCondition(),
2385                                         SI->getCondition()->getName() + ".fr",
2386                                         SI->getIterator()));
2387 
2388       // We need to use the set to populate domtree updates as even when there
2389       // are multiple cases pointing at the same successor we only want to
2390       // remove and insert one edge in the domtree.
2391       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2392         DTUpdates.push_back(
2393             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2394     }
2395 
2396     if (MSSAU) {
2397       DT.applyUpdates(DTUpdates);
2398       DTUpdates.clear();
2399 
2400       // Remove all but one edge to the retained block and all unswitched
2401       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2402       // when we know we only keep a single edge for each case.
2403       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2404       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2405         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2406 
2407       for (auto &VMap : VMaps)
2408         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2409                                    /*IgnoreIncomingWithNoClones=*/true);
2410       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2411 
2412       // Remove all edges to unswitched blocks.
2413       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2414         MSSAU->removeEdge(ParentBB, SuccBB);
2415     }
2416 
2417     // Now unhook the successor relationship as we'll be replacing
2418     // the terminator with a direct branch. This is much simpler for branches
2419     // than switches so we handle those first.
2420     if (BI) {
2421       // Remove the parent as a predecessor of the unswitched successor.
2422       assert(UnswitchedSuccBBs.size() == 1 &&
2423              "Only one possible unswitched block for a branch!");
2424       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2425       UnswitchedSuccBB->removePredecessor(ParentBB,
2426                                           /*KeepOneInputPHIs*/ true);
2427       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2428     } else {
2429       // Note that we actually want to remove the parent block as a predecessor
2430       // of *every* case successor. The case successor is either unswitched,
2431       // completely eliminating an edge from the parent to that successor, or it
2432       // is a duplicate edge to the retained successor as the retained successor
2433       // is always the default successor and as we'll replace this with a direct
2434       // branch we no longer need the duplicate entries in the PHI nodes.
2435       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2436       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2437              "Not retaining default successor!");
2438       for (const auto &Case : NewSI->cases())
2439         Case.getCaseSuccessor()->removePredecessor(
2440             ParentBB,
2441             /*KeepOneInputPHIs*/ true);
2442 
2443       // We need to use the set to populate domtree updates as even when there
2444       // are multiple cases pointing at the same successor we only want to
2445       // remove and insert one edge in the domtree.
2446       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2447         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2448     }
2449 
2450     // Create a new unconditional branch to the continuing block (as opposed to
2451     // the one cloned).
2452     Instruction *NewBI = BranchInst::Create(RetainedSuccBB, ParentBB);
2453     NewBI->setDebugLoc(NewTI->getDebugLoc());
2454 
2455     // After MSSAU update, remove the cloned terminator instruction NewTI.
2456     NewTI->eraseFromParent();
2457   } else {
2458     assert(BI && "Only branches have partial unswitching.");
2459     assert(UnswitchedSuccBBs.size() == 1 &&
2460            "Only one possible unswitched block for a branch!");
2461     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2462     // When doing a partial unswitch, we have to do a bit more work to build up
2463     // the branch in the split block.
2464     if (PartiallyInvariant)
2465       buildPartialInvariantUnswitchConditionalBranch(
2466           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2467     else {
2468       buildPartialUnswitchConditionalBranch(
2469           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2470           FreezeLoopUnswitchCond, BI, &AC, DT);
2471     }
2472     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2473 
2474     if (MSSAU) {
2475       DT.applyUpdates(DTUpdates);
2476       DTUpdates.clear();
2477 
2478       // Perform MSSA cloning updates.
2479       for (auto &VMap : VMaps)
2480         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2481                                    /*IgnoreIncomingWithNoClones=*/true);
2482       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2483     }
2484   }
2485 
2486   // Apply the updates accumulated above to get an up-to-date dominator tree.
2487   DT.applyUpdates(DTUpdates);
2488 
2489   // Now that we have an accurate dominator tree, first delete the dead cloned
2490   // blocks so that we can accurately build any cloned loops. It is important to
2491   // not delete the blocks from the original loop yet because we still want to
2492   // reference the original loop to understand the cloned loop's structure.
2493   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2494 
2495   // Build the cloned loop structure itself. This may be substantially
2496   // different from the original structure due to the simplified CFG. This also
2497   // handles inserting all the cloned blocks into the correct loops.
2498   SmallVector<Loop *, 4> NonChildClonedLoops;
2499   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2500     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2501 
2502   // Now that our cloned loops have been built, we can update the original loop.
2503   // First we delete the dead blocks from it and then we rebuild the loop
2504   // structure taking these deletions into account.
2505   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE, LoopUpdater);
2506 
2507   if (MSSAU && VerifyMemorySSA)
2508     MSSAU->getMemorySSA()->verifyMemorySSA();
2509 
2510   SmallVector<Loop *, 4> HoistedLoops;
2511   bool IsStillLoop =
2512       rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2513 
2514   if (MSSAU && VerifyMemorySSA)
2515     MSSAU->getMemorySSA()->verifyMemorySSA();
2516 
2517   // This transformation has a high risk of corrupting the dominator tree, and
2518   // the below steps to rebuild loop structures will result in hard to debug
2519   // errors in that case so verify that the dominator tree is sane first.
2520   // FIXME: Remove this when the bugs stop showing up and rely on existing
2521   // verification steps.
2522   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2523 
2524   if (BI && !PartiallyInvariant) {
2525     // If we unswitched a branch which collapses the condition to a known
2526     // constant we want to replace all the uses of the invariants within both
2527     // the original and cloned blocks. We do this here so that we can use the
2528     // now updated dominator tree to identify which side the users are on.
2529     assert(UnswitchedSuccBBs.size() == 1 &&
2530            "Only one possible unswitched block for a branch!");
2531     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2532 
2533     // When considering multiple partially-unswitched invariants
2534     // we cant just go replace them with constants in both branches.
2535     //
2536     // For 'AND' we infer that true branch ("continue") means true
2537     // for each invariant operand.
2538     // For 'OR' we can infer that false branch ("continue") means false
2539     // for each invariant operand.
2540     // So it happens that for multiple-partial case we dont replace
2541     // in the unswitched branch.
2542     bool ReplaceUnswitched =
2543         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2544 
2545     ConstantInt *UnswitchedReplacement =
2546         Direction ? ConstantInt::getTrue(BI->getContext())
2547                   : ConstantInt::getFalse(BI->getContext());
2548     ConstantInt *ContinueReplacement =
2549         Direction ? ConstantInt::getFalse(BI->getContext())
2550                   : ConstantInt::getTrue(BI->getContext());
2551     for (Value *Invariant : Invariants) {
2552       assert(!isa<Constant>(Invariant) &&
2553              "Should not be replacing constant values!");
2554       // Use make_early_inc_range here as set invalidates the iterator.
2555       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2556         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2557         if (!UserI)
2558           continue;
2559 
2560         // Replace it with the 'continue' side if in the main loop body, and the
2561         // unswitched if in the cloned blocks.
2562         if (DT.dominates(LoopPH, UserI->getParent()))
2563           U.set(ContinueReplacement);
2564         else if (ReplaceUnswitched &&
2565                  DT.dominates(ClonedPH, UserI->getParent()))
2566           U.set(UnswitchedReplacement);
2567       }
2568     }
2569   }
2570 
2571   // We can change which blocks are exit blocks of all the cloned sibling
2572   // loops, the current loop, and any parent loops which shared exit blocks
2573   // with the current loop. As a consequence, we need to re-form LCSSA for
2574   // them. But we shouldn't need to re-form LCSSA for any child loops.
2575   // FIXME: This could be made more efficient by tracking which exit blocks are
2576   // new, and focusing on them, but that isn't likely to be necessary.
2577   //
2578   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2579   // loop nest and update every loop that could have had its exits changed. We
2580   // also need to cover any intervening loops. We add all of these loops to
2581   // a list and sort them by loop depth to achieve this without updating
2582   // unnecessary loops.
2583   auto UpdateLoop = [&](Loop &UpdateL) {
2584 #ifndef NDEBUG
2585     UpdateL.verifyLoop();
2586     for (Loop *ChildL : UpdateL) {
2587       ChildL->verifyLoop();
2588       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2589              "Perturbed a child loop's LCSSA form!");
2590     }
2591 #endif
2592     // First build LCSSA for this loop so that we can preserve it when
2593     // forming dedicated exits. We don't want to perturb some other loop's
2594     // LCSSA while doing that CFG edit.
2595     formLCSSA(UpdateL, DT, &LI, SE);
2596 
2597     // For loops reached by this loop's original exit blocks we may
2598     // introduced new, non-dedicated exits. At least try to re-form dedicated
2599     // exits for these loops. This may fail if they couldn't have dedicated
2600     // exits to start with.
2601     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2602   };
2603 
2604   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2605   // and we can do it in any order as they don't nest relative to each other.
2606   //
2607   // Also check if any of the loops we have updated have become top-level loops
2608   // as that will necessitate widening the outer loop scope.
2609   for (Loop *UpdatedL :
2610        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2611     UpdateLoop(*UpdatedL);
2612     if (UpdatedL->isOutermost())
2613       OuterExitL = nullptr;
2614   }
2615   if (IsStillLoop) {
2616     UpdateLoop(L);
2617     if (L.isOutermost())
2618       OuterExitL = nullptr;
2619   }
2620 
2621   // If the original loop had exit blocks, walk up through the outer most loop
2622   // of those exit blocks to update LCSSA and form updated dedicated exits.
2623   if (OuterExitL != &L)
2624     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2625          OuterL = OuterL->getParentLoop())
2626       UpdateLoop(*OuterL);
2627 
2628 #ifndef NDEBUG
2629   // Verify the entire loop structure to catch any incorrect updates before we
2630   // progress in the pass pipeline.
2631   LI.verify(DT);
2632 #endif
2633 
2634   // Now that we've unswitched something, make callbacks to report the changes.
2635   // For that we need to merge together the updated loops and the cloned loops
2636   // and check whether the original loop survived.
2637   SmallVector<Loop *, 4> SibLoops;
2638   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2639     if (UpdatedL->getParentLoop() == ParentL)
2640       SibLoops.push_back(UpdatedL);
2641   postUnswitch(L, LoopUpdater, LoopName, IsStillLoop, PartiallyInvariant,
2642                InjectedCondition, SibLoops);
2643 
2644   if (MSSAU && VerifyMemorySSA)
2645     MSSAU->getMemorySSA()->verifyMemorySSA();
2646 
2647   if (BI)
2648     ++NumBranches;
2649   else
2650     ++NumSwitches;
2651 }
2652 
2653 /// Recursively compute the cost of a dominator subtree based on the per-block
2654 /// cost map provided.
2655 ///
2656 /// The recursive computation is memozied into the provided DT-indexed cost map
2657 /// to allow querying it for most nodes in the domtree without it becoming
2658 /// quadratic.
2659 static InstructionCost computeDomSubtreeCost(
2660     DomTreeNode &N,
2661     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2662     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2663   // Don't accumulate cost (or recurse through) blocks not in our block cost
2664   // map and thus not part of the duplication cost being considered.
2665   auto BBCostIt = BBCostMap.find(N.getBlock());
2666   if (BBCostIt == BBCostMap.end())
2667     return 0;
2668 
2669   // Lookup this node to see if we already computed its cost.
2670   auto DTCostIt = DTCostMap.find(&N);
2671   if (DTCostIt != DTCostMap.end())
2672     return DTCostIt->second;
2673 
2674   // If not, we have to compute it. We can't use insert above and update
2675   // because computing the cost may insert more things into the map.
2676   InstructionCost Cost = std::accumulate(
2677       N.begin(), N.end(), BBCostIt->second,
2678       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2679         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2680       });
2681   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2682   (void)Inserted;
2683   assert(Inserted && "Should not insert a node while visiting children!");
2684   return Cost;
2685 }
2686 
2687 /// Turns a select instruction into implicit control flow branch,
2688 /// making the following replacement:
2689 ///
2690 /// head:
2691 ///   --code before select--
2692 ///   select %cond, %trueval, %falseval
2693 ///   --code after select--
2694 ///
2695 /// into
2696 ///
2697 /// head:
2698 ///   --code before select--
2699 ///   br i1 %cond, label %then, label %tail
2700 ///
2701 /// then:
2702 ///   br %tail
2703 ///
2704 /// tail:
2705 ///   phi [ %trueval, %then ], [ %falseval, %head]
2706 ///   unreachable
2707 ///
2708 /// It also makes all relevant DT and LI updates, so that all structures are in
2709 /// valid state after this transform.
2710 static BranchInst *turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT,
2711                                         LoopInfo &LI, MemorySSAUpdater *MSSAU,
2712                                         AssumptionCache *AC) {
2713   LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n");
2714   BasicBlock *HeadBB = SI->getParent();
2715 
2716   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2717   SplitBlockAndInsertIfThen(SI->getCondition(), SI, false,
2718                             SI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2719   auto *CondBr = cast<BranchInst>(HeadBB->getTerminator());
2720   BasicBlock *ThenBB = CondBr->getSuccessor(0),
2721              *TailBB = CondBr->getSuccessor(1);
2722   if (MSSAU)
2723     MSSAU->moveAllAfterSpliceBlocks(HeadBB, TailBB, SI);
2724 
2725   PHINode *Phi =
2726       PHINode::Create(SI->getType(), 2, "unswitched.select", SI->getIterator());
2727   Phi->addIncoming(SI->getTrueValue(), ThenBB);
2728   Phi->addIncoming(SI->getFalseValue(), HeadBB);
2729   Phi->setDebugLoc(SI->getDebugLoc());
2730   SI->replaceAllUsesWith(Phi);
2731   SI->eraseFromParent();
2732 
2733   if (MSSAU && VerifyMemorySSA)
2734     MSSAU->getMemorySSA()->verifyMemorySSA();
2735 
2736   ++NumSelects;
2737   return CondBr;
2738 }
2739 
2740 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2741 /// making the following replacement:
2742 ///
2743 ///   --code before guard--
2744 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2745 ///   --code after guard--
2746 ///
2747 /// into
2748 ///
2749 ///   --code before guard--
2750 ///   br i1 %cond, label %guarded, label %deopt
2751 ///
2752 /// guarded:
2753 ///   --code after guard--
2754 ///
2755 /// deopt:
2756 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2757 ///   unreachable
2758 ///
2759 /// It also makes all relevant DT and LI updates, so that all structures are in
2760 /// valid state after this transform.
2761 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2762                                        DominatorTree &DT, LoopInfo &LI,
2763                                        MemorySSAUpdater *MSSAU) {
2764   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2765   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2766   BasicBlock *CheckBB = GI->getParent();
2767 
2768   if (MSSAU && VerifyMemorySSA)
2769      MSSAU->getMemorySSA()->verifyMemorySSA();
2770 
2771   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2772   Instruction *DeoptBlockTerm =
2773       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true,
2774                                 GI->getMetadata(LLVMContext::MD_prof), &DTU, &LI);
2775   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2776   // SplitBlockAndInsertIfThen inserts control flow that branches to
2777   // DeoptBlockTerm if the condition is true.  We want the opposite.
2778   CheckBI->swapSuccessors();
2779 
2780   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2781   GuardedBlock->setName("guarded");
2782   CheckBI->getSuccessor(1)->setName("deopt");
2783   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2784 
2785   if (MSSAU)
2786     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2787 
2788   GI->moveBefore(DeoptBlockTerm);
2789   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2790 
2791   if (MSSAU) {
2792     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2793     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2794     if (VerifyMemorySSA)
2795       MSSAU->getMemorySSA()->verifyMemorySSA();
2796   }
2797 
2798   if (VerifyLoopInfo)
2799     LI.verify(DT);
2800   ++NumGuards;
2801   return CheckBI;
2802 }
2803 
2804 /// Cost multiplier is a way to limit potentially exponential behavior
2805 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2806 /// candidates available. Also accounting for the number of "sibling" loops with
2807 /// the idea to account for previous unswitches that already happened on this
2808 /// cluster of loops. There was an attempt to keep this formula simple,
2809 /// just enough to limit the worst case behavior. Even if it is not that simple
2810 /// now it is still not an attempt to provide a detailed heuristic size
2811 /// prediction.
2812 ///
2813 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2814 /// unswitch candidates, making adequate predictions instead of wild guesses.
2815 /// That requires knowing not just the number of "remaining" candidates but
2816 /// also costs of unswitching for each of these candidates.
2817 static int CalculateUnswitchCostMultiplier(
2818     const Instruction &TI, const Loop &L, const LoopInfo &LI,
2819     const DominatorTree &DT,
2820     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2821 
2822   // Guards and other exiting conditions do not contribute to exponential
2823   // explosion as soon as they dominate the latch (otherwise there might be
2824   // another path to the latch remaining that does not allow to eliminate the
2825   // loop copy on unswitch).
2826   const BasicBlock *Latch = L.getLoopLatch();
2827   const BasicBlock *CondBlock = TI.getParent();
2828   if (DT.dominates(CondBlock, Latch) &&
2829       (isGuard(&TI) ||
2830        (TI.isTerminator() &&
2831         llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2832           return L.contains(SuccBB);
2833         }) <= 1))) {
2834     NumCostMultiplierSkipped++;
2835     return 1;
2836   }
2837 
2838   auto *ParentL = L.getParentLoop();
2839   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2840                                : std::distance(LI.begin(), LI.end()));
2841   // Count amount of clones that all the candidates might cause during
2842   // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its
2843   // cases.
2844   int UnswitchedClones = 0;
2845   for (const auto &Candidate : UnswitchCandidates) {
2846     const Instruction *CI = Candidate.TI;
2847     const BasicBlock *CondBlock = CI->getParent();
2848     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2849     if (isa<SelectInst>(CI)) {
2850       UnswitchedClones++;
2851       continue;
2852     }
2853     if (isGuard(CI)) {
2854       if (!SkipExitingSuccessors)
2855         UnswitchedClones++;
2856       continue;
2857     }
2858     int NonExitingSuccessors =
2859         llvm::count_if(successors(CondBlock),
2860                        [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2861           return !SkipExitingSuccessors || L.contains(SuccBB);
2862         });
2863     UnswitchedClones += Log2_32(NonExitingSuccessors);
2864   }
2865 
2866   // Ignore up to the "unscaled candidates" number of unswitch candidates
2867   // when calculating the power-of-two scaling of the cost. The main idea
2868   // with this control is to allow a small number of unswitches to happen
2869   // and rely more on siblings multiplier (see below) when the number
2870   // of candidates is small.
2871   unsigned ClonesPower =
2872       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2873 
2874   // Allowing top-level loops to spread a bit more than nested ones.
2875   int SiblingsMultiplier =
2876       std::max((ParentL ? SiblingsCount
2877                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2878                1);
2879   // Compute the cost multiplier in a way that won't overflow by saturating
2880   // at an upper bound.
2881   int CostMultiplier;
2882   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2883       SiblingsMultiplier > UnswitchThreshold)
2884     CostMultiplier = UnswitchThreshold;
2885   else
2886     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2887                               (int)UnswitchThreshold);
2888 
2889   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2890                     << " (siblings " << SiblingsMultiplier << " * clones "
2891                     << (1 << ClonesPower) << ")"
2892                     << " for unswitch candidate: " << TI << "\n");
2893   return CostMultiplier;
2894 }
2895 
2896 static bool collectUnswitchCandidates(
2897     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2898     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2899     const Loop &L, const LoopInfo &LI, AAResults &AA,
2900     const MemorySSAUpdater *MSSAU) {
2901   assert(UnswitchCandidates.empty() && "Should be!");
2902 
2903   auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) {
2904     Cond = skipTrivialSelect(Cond);
2905     if (isa<Constant>(Cond))
2906       return;
2907     if (L.isLoopInvariant(Cond)) {
2908       UnswitchCandidates.push_back({I, {Cond}});
2909       return;
2910     }
2911     if (match(Cond, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2912       TinyPtrVector<Value *> Invariants =
2913           collectHomogenousInstGraphLoopInvariants(
2914               L, *static_cast<Instruction *>(Cond), LI);
2915       if (!Invariants.empty())
2916         UnswitchCandidates.push_back({I, std::move(Invariants)});
2917     }
2918   };
2919 
2920   // Whether or not we should also collect guards in the loop.
2921   bool CollectGuards = false;
2922   if (UnswitchGuards) {
2923     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2924         Intrinsic::getName(Intrinsic::experimental_guard));
2925     if (GuardDecl && !GuardDecl->use_empty())
2926       CollectGuards = true;
2927   }
2928 
2929   for (auto *BB : L.blocks()) {
2930     if (LI.getLoopFor(BB) != &L)
2931       continue;
2932 
2933     for (auto &I : *BB) {
2934       if (auto *SI = dyn_cast<SelectInst>(&I)) {
2935         auto *Cond = SI->getCondition();
2936         // Do not unswitch vector selects and logical and/or selects
2937         if (Cond->getType()->isIntegerTy(1) && !SI->getType()->isIntegerTy(1))
2938           AddUnswitchCandidatesForInst(SI, Cond);
2939       } else if (CollectGuards && isGuard(&I)) {
2940         auto *Cond =
2941             skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2942         // TODO: Support AND, OR conditions and partial unswitching.
2943         if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2944           UnswitchCandidates.push_back({&I, {Cond}});
2945       }
2946     }
2947 
2948     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2949       // We can only consider fully loop-invariant switch conditions as we need
2950       // to completely eliminate the switch after unswitching.
2951       if (!isa<Constant>(SI->getCondition()) &&
2952           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2953         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2954       continue;
2955     }
2956 
2957     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2958     if (!BI || !BI->isConditional() ||
2959         BI->getSuccessor(0) == BI->getSuccessor(1))
2960       continue;
2961 
2962     AddUnswitchCandidatesForInst(BI, BI->getCondition());
2963   }
2964 
2965   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2966       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2967          return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2968        })) {
2969     MemorySSA *MSSA = MSSAU->getMemorySSA();
2970     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2971       LLVM_DEBUG(
2972           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2973                  << *Info->InstToDuplicate[0] << "\n");
2974       PartialIVInfo = *Info;
2975       PartialIVCondBranch = L.getHeader()->getTerminator();
2976       TinyPtrVector<Value *> ValsToDuplicate;
2977       llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2978       UnswitchCandidates.push_back(
2979           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2980     }
2981   }
2982   return !UnswitchCandidates.empty();
2983 }
2984 
2985 /// Tries to canonicalize condition described by:
2986 ///
2987 ///   br (LHS pred RHS), label IfTrue, label IfFalse
2988 ///
2989 /// into its equivalent where `Pred` is something that we support for injected
2990 /// invariants (so far it is limited to ult), LHS in canonicalized form is
2991 /// non-invariant and RHS is an invariant.
2992 static void canonicalizeForInvariantConditionInjection(
2993     ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue,
2994     BasicBlock *&IfFalse, const Loop &L) {
2995   if (!L.contains(IfTrue)) {
2996     Pred = ICmpInst::getInversePredicate(Pred);
2997     std::swap(IfTrue, IfFalse);
2998   }
2999 
3000   // Move loop-invariant argument to RHS position.
3001   if (L.isLoopInvariant(LHS)) {
3002     Pred = ICmpInst::getSwappedPredicate(Pred);
3003     std::swap(LHS, RHS);
3004   }
3005 
3006   if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) {
3007     // Turn "x >=s 0" into "x <u UMIN_INT"
3008     Pred = ICmpInst::ICMP_ULT;
3009     RHS = ConstantInt::get(
3010         RHS->getContext(),
3011         APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth()));
3012   }
3013 }
3014 
3015 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
3016 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
3017 /// injecting a loop-invariant condition.
3018 static bool shouldTryInjectInvariantCondition(
3019     const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS,
3020     const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) {
3021   if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
3022     return false;
3023   // TODO: Support other predicates.
3024   if (Pred != ICmpInst::ICMP_ULT)
3025     return false;
3026   // TODO: Support non-loop-exiting branches?
3027   if (!L.contains(IfTrue) || L.contains(IfFalse))
3028     return false;
3029   // FIXME: For some reason this causes problems with MSSA updates, need to
3030   // investigate why. So far, just don't unswitch latch.
3031   if (L.getHeader() == IfTrue)
3032     return false;
3033   return true;
3034 }
3035 
3036 /// Returns true, if metadata on \p BI allows us to optimize branching into \p
3037 /// TakenSucc via injection of invariant conditions. The branch should be not
3038 /// enough and not previously unswitched, the information about this comes from
3039 /// the metadata.
3040 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI,
3041                                      const BasicBlock *TakenSucc) {
3042   SmallVector<uint32_t> Weights;
3043   if (!extractBranchWeights(*BI, Weights))
3044     return false;
3045   unsigned T = InjectInvariantConditionHotnesThreshold;
3046   BranchProbability LikelyTaken(T - 1, T);
3047 
3048   assert(Weights.size() == 2 && "Unexpected profile data!");
3049   size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1;
3050   auto Num = Weights[Idx];
3051   auto Denom = Weights[0] + Weights[1];
3052   // Degenerate or overflowed metadata.
3053   if (Denom == 0 || Num > Denom)
3054     return false;
3055   BranchProbability ActualTaken(Num, Denom);
3056   if (LikelyTaken > ActualTaken)
3057     return false;
3058   return true;
3059 }
3060 
3061 /// Materialize pending invariant condition of the given candidate into IR. The
3062 /// injected loop-invariant condition implies the original loop-variant branch
3063 /// condition, so the materialization turns
3064 ///
3065 /// loop_block:
3066 ///   ...
3067 ///   br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3068 ///
3069 /// into
3070 ///
3071 /// preheader:
3072 ///   %invariant_cond = LHS pred RHS
3073 /// ...
3074 /// loop_block:
3075 ///   br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
3076 /// OriginalCheck:
3077 ///   br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3078 /// ...
3079 static NonTrivialUnswitchCandidate
3080 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L,
3081                                  DominatorTree &DT, LoopInfo &LI,
3082                                  AssumptionCache &AC, MemorySSAUpdater *MSSAU) {
3083   assert(Candidate.hasPendingInjection() && "Nothing to inject!");
3084   BasicBlock *Preheader = L.getLoopPreheader();
3085   assert(Preheader && "Loop is not in simplified form?");
3086   assert(LI.getLoopFor(Candidate.TI->getParent()) == &L &&
3087          "Unswitching branch of inner loop!");
3088 
3089   auto Pred = Candidate.PendingInjection->Pred;
3090   auto *LHS = Candidate.PendingInjection->LHS;
3091   auto *RHS = Candidate.PendingInjection->RHS;
3092   auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3093   auto *TI = cast<BranchInst>(Candidate.TI);
3094   auto *BB = Candidate.TI->getParent();
3095   auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1)
3096                                                           : TI->getSuccessor(0);
3097   // FIXME: Remove this once limitation on successors is lifted.
3098   assert(L.contains(InLoopSucc) && "Not supported yet!");
3099   assert(!L.contains(OutOfLoopSucc) && "Not supported yet!");
3100   auto &Ctx = BB->getContext();
3101 
3102   IRBuilder<> Builder(Preheader->getTerminator());
3103   assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!");
3104   if (LHS->getType() != RHS->getType()) {
3105     if (LHS->getType()->getIntegerBitWidth() <
3106         RHS->getType()->getIntegerBitWidth())
3107       LHS = Builder.CreateZExt(LHS, RHS->getType(), LHS->getName() + ".wide");
3108     else
3109       RHS = Builder.CreateZExt(RHS, LHS->getType(), RHS->getName() + ".wide");
3110   }
3111   // Do not use builder here: CreateICmp may simplify this into a constant and
3112   // unswitching will break. Better optimize it away later.
3113   auto *InjectedCond =
3114       ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond",
3115                        Preheader->getTerminator()->getIterator());
3116 
3117   BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check",
3118                                               BB->getParent(), InLoopSucc);
3119   Builder.SetInsertPoint(TI);
3120   auto *InvariantBr =
3121       Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock);
3122 
3123   Builder.SetInsertPoint(CheckBlock);
3124   Builder.CreateCondBr(TI->getCondition(), TI->getSuccessor(0),
3125                        TI->getSuccessor(1));
3126   TI->eraseFromParent();
3127 
3128   // Fixup phis.
3129   for (auto &I : *InLoopSucc) {
3130     auto *PN = dyn_cast<PHINode>(&I);
3131     if (!PN)
3132       break;
3133     auto *Inc = PN->getIncomingValueForBlock(BB);
3134     PN->addIncoming(Inc, CheckBlock);
3135   }
3136   OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock);
3137 
3138   SmallVector<DominatorTree::UpdateType, 4> DTUpdates = {
3139     { DominatorTree::Insert, BB, CheckBlock },
3140     { DominatorTree::Insert, CheckBlock, InLoopSucc },
3141     { DominatorTree::Insert, CheckBlock, OutOfLoopSucc },
3142     { DominatorTree::Delete, BB, OutOfLoopSucc }
3143   };
3144 
3145   DT.applyUpdates(DTUpdates);
3146   if (MSSAU)
3147     MSSAU->applyUpdates(DTUpdates, DT);
3148   L.addBasicBlockToLoop(CheckBlock, LI);
3149 
3150 #ifndef NDEBUG
3151   DT.verify();
3152   LI.verify(DT);
3153   if (MSSAU && VerifyMemorySSA)
3154     MSSAU->getMemorySSA()->verifyMemorySSA();
3155 #endif
3156 
3157   // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3158   // higher because we have just inserted a new block. Need to think how to
3159   // adjust the cost of injected candidates when it was first computed.
3160   LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3161                     << " and considering it for unswitching.");
3162   ++NumInvariantConditionsInjected;
3163   return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3164                                      Candidate.Cost);
3165 }
3166 
3167 /// Given chain of loop branch conditions looking like:
3168 ///   br (Variant < Invariant1)
3169 ///   br (Variant < Invariant2)
3170 ///   br (Variant < Invariant3)
3171 ///   ...
3172 /// collect set of invariant conditions on which we want to unswitch, which
3173 /// look like:
3174 ///   Invariant1 <= Invariant2
3175 ///   Invariant2 <= Invariant3
3176 ///   ...
3177 /// Though they might not immediately exist in the IR, we can still inject them.
3178 static bool insertCandidatesWithPendingInjections(
3179     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L,
3180     ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares,
3181     const DominatorTree &DT) {
3182 
3183   assert(ICmpInst::isRelational(Pred));
3184   assert(ICmpInst::isStrictPredicate(Pred));
3185   if (Compares.size() < 2)
3186     return false;
3187   ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred);
3188   for (auto Prev = Compares.begin(), Next = Compares.begin() + 1;
3189        Next != Compares.end(); ++Prev, ++Next) {
3190     Value *LHS = Next->Invariant;
3191     Value *RHS = Prev->Invariant;
3192     BasicBlock *InLoopSucc = Prev->InLoopSucc;
3193     InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc);
3194     NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3195                                           std::nullopt, std::move(ToInject));
3196     UnswitchCandidates.push_back(std::move(Candidate));
3197   }
3198   return true;
3199 }
3200 
3201 /// Collect unswitch candidates by invariant conditions that are not immediately
3202 /// present in the loop. However, they can be injected into the code if we
3203 /// decide it's profitable.
3204 /// An example of such conditions is following:
3205 ///
3206 ///   for (...) {
3207 ///     x = load ...
3208 ///     if (! x <u C1) break;
3209 ///     if (! x <u C2) break;
3210 ///     <do something>
3211 ///   }
3212 ///
3213 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3214 /// C2" automatically implies "x <u C2", so we can get rid of one of
3215 /// loop-variant checks in unswitched loop version.
3216 static bool collectUnswitchCandidatesWithInjections(
3217     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
3218     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L,
3219     const DominatorTree &DT, const LoopInfo &LI, AAResults &AA,
3220     const MemorySSAUpdater *MSSAU) {
3221   if (!InjectInvariantConditions)
3222     return false;
3223 
3224   if (!DT.isReachableFromEntry(L.getHeader()))
3225     return false;
3226   auto *Latch = L.getLoopLatch();
3227   // Need to have a single latch and a preheader.
3228   if (!Latch)
3229     return false;
3230   assert(L.getLoopPreheader() && "Must have a preheader!");
3231 
3232   DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT;
3233   // Traverse the conditions that dominate latch (and therefore dominate each
3234   // other).
3235   for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock());
3236        DTN = DTN->getIDom()) {
3237     ICmpInst::Predicate Pred;
3238     Value *LHS = nullptr, *RHS = nullptr;
3239     BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
3240     auto *BB = DTN->getBlock();
3241     // Ignore inner loops.
3242     if (LI.getLoopFor(BB) != &L)
3243       continue;
3244     auto *Term = BB->getTerminator();
3245     if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
3246                           m_BasicBlock(IfTrue), m_BasicBlock(IfFalse))))
3247       continue;
3248     if (!LHS->getType()->isIntegerTy())
3249       continue;
3250     canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse,
3251                                                L);
3252     if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L))
3253       continue;
3254     if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue))
3255       continue;
3256     // Strip ZEXT for unsigned predicate.
3257     // TODO: once signed predicates are supported, also strip SEXT.
3258     CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue);
3259     while (auto *Zext = dyn_cast<ZExtInst>(LHS))
3260       LHS = Zext->getOperand(0);
3261     CandidatesULT[LHS].push_back(Desc);
3262   }
3263 
3264   bool Found = false;
3265   for (auto &It : CandidatesULT)
3266     Found |= insertCandidatesWithPendingInjections(
3267         UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT);
3268   return Found;
3269 }
3270 
3271 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
3272   if (!L.isSafeToClone())
3273     return false;
3274   for (auto *BB : L.blocks())
3275     for (auto &I : *BB) {
3276       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
3277         return false;
3278       if (auto *CB = dyn_cast<CallBase>(&I)) {
3279         assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
3280         if (CB->isConvergent())
3281           return false;
3282       }
3283     }
3284 
3285   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3286   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3287   // irreducible control flow into reducible control flow and introduce new
3288   // loops "out of thin air". If we ever discover important use cases for doing
3289   // this, we can add support to loop unswitch, but it is a lot of complexity
3290   // for what seems little or no real world benefit.
3291   LoopBlocksRPO RPOT(&L);
3292   RPOT.perform(&LI);
3293   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
3294     return false;
3295 
3296   SmallVector<BasicBlock *, 4> ExitBlocks;
3297   L.getUniqueExitBlocks(ExitBlocks);
3298   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3299   // instruction as we don't know how to split those exit blocks.
3300   // FIXME: We should teach SplitBlock to handle this and remove this
3301   // restriction.
3302   for (auto *ExitBB : ExitBlocks) {
3303     auto *I = ExitBB->getFirstNonPHI();
3304     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
3305       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3306                            "in exit block\n");
3307       return false;
3308     }
3309   }
3310 
3311   return true;
3312 }
3313 
3314 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
3315     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
3316     const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
3317     const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
3318   // Given that unswitching these terminators will require duplicating parts of
3319   // the loop, so we need to be able to model that cost. Compute the ephemeral
3320   // values and set up a data structure to hold per-BB costs. We cache each
3321   // block's cost so that we don't recompute this when considering different
3322   // subsets of the loop for duplication during unswitching.
3323   SmallPtrSet<const Value *, 4> EphValues;
3324   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
3325   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
3326 
3327   // Compute the cost of each block, as well as the total loop cost. Also, bail
3328   // out if we see instructions which are incompatible with loop unswitching
3329   // (convergent, noduplicate, or cross-basic-block tokens).
3330   // FIXME: We might be able to safely handle some of these in non-duplicated
3331   // regions.
3332   TargetTransformInfo::TargetCostKind CostKind =
3333       L.getHeader()->getParent()->hasMinSize()
3334       ? TargetTransformInfo::TCK_CodeSize
3335       : TargetTransformInfo::TCK_SizeAndLatency;
3336   InstructionCost LoopCost = 0;
3337   for (auto *BB : L.blocks()) {
3338     InstructionCost Cost = 0;
3339     for (auto &I : *BB) {
3340       if (EphValues.count(&I))
3341         continue;
3342       Cost += TTI.getInstructionCost(&I, CostKind);
3343     }
3344     assert(Cost >= 0 && "Must not have negative costs!");
3345     LoopCost += Cost;
3346     assert(LoopCost >= 0 && "Must not have negative loop costs!");
3347     BBCostMap[BB] = Cost;
3348   }
3349   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
3350 
3351   // Now we find the best candidate by searching for the one with the following
3352   // properties in order:
3353   //
3354   // 1) An unswitching cost below the threshold
3355   // 2) The smallest number of duplicated unswitch candidates (to avoid
3356   //    creating redundant subsequent unswitching)
3357   // 3) The smallest cost after unswitching.
3358   //
3359   // We prioritize reducing fanout of unswitch candidates provided the cost
3360   // remains below the threshold because this has a multiplicative effect.
3361   //
3362   // This requires memoizing each dominator subtree to avoid redundant work.
3363   //
3364   // FIXME: Need to actually do the number of candidates part above.
3365   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
3366   // Given a terminator which might be unswitched, computes the non-duplicated
3367   // cost for that terminator.
3368   auto ComputeUnswitchedCost = [&](Instruction &TI,
3369                                    bool FullUnswitch) -> InstructionCost {
3370     // Unswitching selects unswitches the entire loop.
3371     if (isa<SelectInst>(TI))
3372       return LoopCost;
3373 
3374     BasicBlock &BB = *TI.getParent();
3375     SmallPtrSet<BasicBlock *, 4> Visited;
3376 
3377     InstructionCost Cost = 0;
3378     for (BasicBlock *SuccBB : successors(&BB)) {
3379       // Don't count successors more than once.
3380       if (!Visited.insert(SuccBB).second)
3381         continue;
3382 
3383       // If this is a partial unswitch candidate, then it must be a conditional
3384       // branch with a condition of either `or`, `and`, their corresponding
3385       // select forms or partially invariant instructions. In that case, one of
3386       // the successors is necessarily duplicated, so don't even try to remove
3387       // its cost.
3388       if (!FullUnswitch) {
3389         auto &BI = cast<BranchInst>(TI);
3390         Value *Cond = skipTrivialSelect(BI.getCondition());
3391         if (match(Cond, m_LogicalAnd())) {
3392           if (SuccBB == BI.getSuccessor(1))
3393             continue;
3394         } else if (match(Cond, m_LogicalOr())) {
3395           if (SuccBB == BI.getSuccessor(0))
3396             continue;
3397         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
3398                     SuccBB == BI.getSuccessor(0)) ||
3399                    (!PartialIVInfo.KnownValue->isOneValue() &&
3400                     SuccBB == BI.getSuccessor(1)))
3401           continue;
3402       }
3403 
3404       // This successor's domtree will not need to be duplicated after
3405       // unswitching if the edge to the successor dominates it (and thus the
3406       // entire tree). This essentially means there is no other path into this
3407       // subtree and so it will end up live in only one clone of the loop.
3408       if (SuccBB->getUniquePredecessor() ||
3409           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
3410             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
3411           })) {
3412         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
3413         assert(Cost <= LoopCost &&
3414                "Non-duplicated cost should never exceed total loop cost!");
3415       }
3416     }
3417 
3418     // Now scale the cost by the number of unique successors minus one. We
3419     // subtract one because there is already at least one copy of the entire
3420     // loop. This is computing the new cost of unswitching a condition.
3421     // Note that guards always have 2 unique successors that are implicit and
3422     // will be materialized if we decide to unswitch it.
3423     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
3424     assert(SuccessorsCount > 1 &&
3425            "Cannot unswitch a condition without multiple distinct successors!");
3426     return (LoopCost - Cost) * (SuccessorsCount - 1);
3427   };
3428 
3429   std::optional<NonTrivialUnswitchCandidate> Best;
3430   for (auto &Candidate : UnswitchCandidates) {
3431     Instruction &TI = *Candidate.TI;
3432     ArrayRef<Value *> Invariants = Candidate.Invariants;
3433     BranchInst *BI = dyn_cast<BranchInst>(&TI);
3434     bool FullUnswitch =
3435         !BI || Candidate.hasPendingInjection() ||
3436         (Invariants.size() == 1 &&
3437          Invariants[0] == skipTrivialSelect(BI->getCondition()));
3438     InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3439     // Calculate cost multiplier which is a tool to limit potentially
3440     // exponential behavior of loop-unswitch.
3441     if (EnableUnswitchCostMultiplier) {
3442       int CostMultiplier =
3443           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3444       assert(
3445           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3446           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3447       CandidateCost *= CostMultiplier;
3448       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3449                         << " (multiplier: " << CostMultiplier << ")"
3450                         << " for unswitch candidate: " << TI << "\n");
3451     } else {
3452       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3453                         << " for unswitch candidate: " << TI << "\n");
3454     }
3455 
3456     if (!Best || CandidateCost < Best->Cost) {
3457       Best = Candidate;
3458       Best->Cost = CandidateCost;
3459     }
3460   }
3461   assert(Best && "Must be!");
3462   return *Best;
3463 }
3464 
3465 // Insert a freeze on an unswitched branch if all is true:
3466 // 1. freeze-loop-unswitch-cond option is true
3467 // 2. The branch may not execute in the loop pre-transformation. If a branch may
3468 // not execute and could cause UB, it would always cause UB if it is hoisted outside
3469 // of the loop. Insert a freeze to prevent this case.
3470 // 3. The branch condition may be poison or undef
3471 static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT,
3472                                AssumptionCache &AC) {
3473   assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI));
3474   if (!FreezeLoopUnswitchCond)
3475     return false;
3476 
3477   ICFLoopSafetyInfo SafetyInfo;
3478   SafetyInfo.computeLoopSafetyInfo(&L);
3479   if (SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
3480     return false;
3481 
3482   Value *Cond;
3483   if (BranchInst *BI = dyn_cast<BranchInst>(&TI))
3484     Cond = skipTrivialSelect(BI->getCondition());
3485   else
3486     Cond = skipTrivialSelect(cast<SwitchInst>(&TI)->getCondition());
3487   return !isGuaranteedNotToBeUndefOrPoison(
3488       Cond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
3489 }
3490 
3491 static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
3492                                   AssumptionCache &AC, AAResults &AA,
3493                                   TargetTransformInfo &TTI, ScalarEvolution *SE,
3494                                   MemorySSAUpdater *MSSAU,
3495                                   LPMUpdater &LoopUpdater) {
3496   // Collect all invariant conditions within this loop (as opposed to an inner
3497   // loop which would be handled when visiting that inner loop).
3498   SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3499   IVConditionInfo PartialIVInfo;
3500   Instruction *PartialIVCondBranch = nullptr;
3501   collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3502                             PartialIVCondBranch, L, LI, AA, MSSAU);
3503   if (!findOptionMDForLoop(&L, "llvm.loop.unswitch.injection.disable"))
3504     collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo,
3505                                             PartialIVCondBranch, L, DT, LI, AA,
3506                                             MSSAU);
3507   // If we didn't find any candidates, we're done.
3508   if (UnswitchCandidates.empty())
3509     return false;
3510 
3511   LLVM_DEBUG(
3512       dbgs() << "Considering " << UnswitchCandidates.size()
3513              << " non-trivial loop invariant conditions for unswitching.\n");
3514 
3515   NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3516       UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3517 
3518   assert(Best.TI && "Failed to find loop unswitch candidate");
3519   assert(Best.Cost && "Failed to compute cost");
3520 
3521   if (*Best.Cost >= UnswitchThreshold) {
3522     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3523                       << "\n");
3524     return false;
3525   }
3526 
3527   bool InjectedCondition = false;
3528   if (Best.hasPendingInjection()) {
3529     Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU);
3530     InjectedCondition = true;
3531   }
3532   assert(!Best.hasPendingInjection() &&
3533          "All injections should have been done by now!");
3534 
3535   if (Best.TI != PartialIVCondBranch)
3536     PartialIVInfo.InstToDuplicate.clear();
3537 
3538   bool InsertFreeze;
3539   if (auto *SI = dyn_cast<SelectInst>(Best.TI)) {
3540     // If the best candidate is a select, turn it into a branch. Select
3541     // instructions with a poison conditional do not propagate poison, but
3542     // branching on poison causes UB. Insert a freeze on the select
3543     // conditional to prevent UB after turning the select into a branch.
3544     InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
3545         SI->getCondition(), &AC, L.getLoopPreheader()->getTerminator(), &DT);
3546     Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, &AC);
3547   } else {
3548     // If the best candidate is a guard, turn it into a branch.
3549     if (isGuard(Best.TI))
3550       Best.TI =
3551           turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3552     InsertFreeze = shouldInsertFreeze(L, *Best.TI, DT, AC);
3553   }
3554 
3555   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = " << Best.Cost
3556                     << ") terminator: " << *Best.TI << "\n");
3557   unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3558                                LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze,
3559                                InjectedCondition);
3560   return true;
3561 }
3562 
3563 /// Unswitch control flow predicated on loop invariant conditions.
3564 ///
3565 /// This first hoists all branches or switches which are trivial (IE, do not
3566 /// require duplicating any part of the loop) out of the loop body. It then
3567 /// looks at other loop invariant control flows and tries to unswitch those as
3568 /// well by cloning the loop if the result is small enough.
3569 ///
3570 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3571 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3572 /// valid (i.e. its use is enabled).
3573 ///
3574 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3575 /// true, we will attempt to do non-trivial unswitching as well as trivial
3576 /// unswitching.
3577 ///
3578 /// The `postUnswitch` function will be run after unswitching is complete
3579 /// with information on whether or not the provided loop remains a loop and
3580 /// a list of new sibling loops created.
3581 ///
3582 /// If `SE` is non-null, we will update that analysis based on the unswitching
3583 /// done.
3584 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
3585                          AssumptionCache &AC, AAResults &AA,
3586                          TargetTransformInfo &TTI, bool Trivial,
3587                          bool NonTrivial, ScalarEvolution *SE,
3588                          MemorySSAUpdater *MSSAU, ProfileSummaryInfo *PSI,
3589                          BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater) {
3590   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3591          "Loops must be in LCSSA form before unswitching.");
3592 
3593   // Must be in loop simplified form: we need a preheader and dedicated exits.
3594   if (!L.isLoopSimplifyForm())
3595     return false;
3596 
3597   // Try trivial unswitch first before loop over other basic blocks in the loop.
3598   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3599     // If we unswitched successfully we will want to clean up the loop before
3600     // processing it further so just mark it as unswitched and return.
3601     postUnswitch(L, LoopUpdater, L.getName(),
3602                  /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false,
3603                  /*InjectedCondition*/ false, {});
3604     return true;
3605   }
3606 
3607   const Function *F = L.getHeader()->getParent();
3608 
3609   // Check whether we should continue with non-trivial conditions.
3610   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3611   //                           unswitching for testing and debugging.
3612   // NonTrivial: Parameter that enables non-trivial unswitching for this
3613   //             invocation of the transform. But this should be allowed only
3614   //             for targets without branch divergence.
3615   //
3616   // FIXME: If divergence analysis becomes available to a loop
3617   // transform, we should allow unswitching for non-trivial uniform
3618   // branches even on targets that have divergence.
3619   // https://bugs.llvm.org/show_bug.cgi?id=48819
3620   bool ContinueWithNonTrivial =
3621       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence(F));
3622   if (!ContinueWithNonTrivial)
3623     return false;
3624 
3625   // Skip non-trivial unswitching for optsize functions.
3626   if (F->hasOptSize())
3627     return false;
3628 
3629   // Returns true if Loop L's loop nest is cold, i.e. if the headers of L,
3630   // of the loops L is nested in, and of the loops nested in L are all cold.
3631   auto IsLoopNestCold = [&](const Loop *L) {
3632     // Check L and all of its parent loops.
3633     auto *Parent = L;
3634     while (Parent) {
3635       if (!PSI->isColdBlock(Parent->getHeader(), BFI))
3636         return false;
3637       Parent = Parent->getParentLoop();
3638     }
3639     // Next check all loops nested within L.
3640     SmallVector<const Loop *, 4> Worklist;
3641     Worklist.insert(Worklist.end(), L->getSubLoops().begin(),
3642                     L->getSubLoops().end());
3643     while (!Worklist.empty()) {
3644       auto *CurLoop = Worklist.pop_back_val();
3645       if (!PSI->isColdBlock(CurLoop->getHeader(), BFI))
3646         return false;
3647       Worklist.insert(Worklist.end(), CurLoop->getSubLoops().begin(),
3648                       CurLoop->getSubLoops().end());
3649     }
3650     return true;
3651   };
3652 
3653   // Skip cold loops in cold loop nests, as unswitching them brings little
3654   // benefit but increases the code size
3655   if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) {
3656     LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3657     return false;
3658   }
3659 
3660   // Perform legality checks.
3661   if (!isSafeForNoNTrivialUnswitching(L, LI))
3662     return false;
3663 
3664   // For non-trivial unswitching, because it often creates new loops, we rely on
3665   // the pass manager to iterate on the loops rather than trying to immediately
3666   // reach a fixed point. There is no substantial advantage to iterating
3667   // internally, and if any of the new loops are simplified enough to contain
3668   // trivial unswitching we want to prefer those.
3669 
3670   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3671   // a partial unswitch when possible below the threshold.
3672   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, SE, MSSAU, LoopUpdater))
3673     return true;
3674 
3675   // No other opportunities to unswitch.
3676   return false;
3677 }
3678 
3679 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3680                                               LoopStandardAnalysisResults &AR,
3681                                               LPMUpdater &U) {
3682   Function &F = *L.getHeader()->getParent();
3683   (void)F;
3684   ProfileSummaryInfo *PSI = nullptr;
3685   if (auto OuterProxy =
3686           AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3687               .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3688     PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3689   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3690                     << "\n");
3691 
3692   std::optional<MemorySSAUpdater> MSSAU;
3693   if (AR.MSSA) {
3694     MSSAU = MemorySSAUpdater(AR.MSSA);
3695     if (VerifyMemorySSA)
3696       AR.MSSA->verifyMemorySSA();
3697   }
3698   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3699                     &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, U))
3700     return PreservedAnalyses::all();
3701 
3702   if (AR.MSSA && VerifyMemorySSA)
3703     AR.MSSA->verifyMemorySSA();
3704 
3705   // Historically this pass has had issues with the dominator tree so verify it
3706   // in asserts builds.
3707   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3708 
3709   auto PA = getLoopPassPreservedAnalyses();
3710   if (AR.MSSA)
3711     PA.preserve<MemorySSAAnalysis>();
3712   return PA;
3713 }
3714 
3715 void SimpleLoopUnswitchPass::printPipeline(
3716     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3717   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3718       OS, MapClassName2PassName);
3719 
3720   OS << '<';
3721   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3722   OS << (Trivial ? "" : "no-") << "trivial";
3723   OS << '>';
3724 }
3725