xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision ebac59999f926339f08936c050890c3364b5f130)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/GuardUtils.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/GenericDomTree.h"
54 #include "llvm/Support/InstructionCost.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <iterator>
65 #include <numeric>
66 #include <utility>
67 
68 #define DEBUG_TYPE "simple-loop-unswitch"
69 
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 
73 STATISTIC(NumBranches, "Number of branches unswitched");
74 STATISTIC(NumSwitches, "Number of switches unswitched");
75 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
76 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
77 STATISTIC(
78     NumCostMultiplierSkipped,
79     "Number of unswitch candidates that had their cost multiplier skipped");
80 
81 static cl::opt<bool> EnableNonTrivialUnswitch(
82     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
83     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
84              "following the configuration passed into the pass."));
85 
86 static cl::opt<int>
87     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
88                       cl::desc("The cost threshold for unswitching a loop."));
89 
90 static cl::opt<bool> EnableUnswitchCostMultiplier(
91     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
92     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
93              "explosion in nontrivial unswitch."));
94 static cl::opt<int> UnswitchSiblingsToplevelDiv(
95     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
96     cl::desc("Toplevel siblings divisor for cost multiplier."));
97 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
98     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
99     cl::desc("Number of unswitch candidates that are ignored when calculating "
100              "cost multiplier."));
101 static cl::opt<bool> UnswitchGuards(
102     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
103     cl::desc("If enabled, simple loop unswitching will also consider "
104              "llvm.experimental.guard intrinsics as unswitch candidates."));
105 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
106     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
107     cl::init(false), cl::Hidden,
108     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
109              "null checks to save time analyzing if we can keep it."));
110 static cl::opt<unsigned>
111     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
112                   cl::desc("Max number of memory uses to explore during "
113                            "partial unswitching analysis"),
114                   cl::init(100), cl::Hidden);
115 static cl::opt<bool> FreezeLoopUnswitchCond(
116     "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
117     cl::desc("If enabled, the freeze instruction will be added to condition "
118              "of loop unswitch to prevent miscompilation."));
119 
120 namespace {
121 struct NonTrivialUnswitchCandidate {
122   Instruction *TI = nullptr;
123   TinyPtrVector<Value *> Invariants;
124   Optional<InstructionCost> Cost;
125   NonTrivialUnswitchCandidate(Instruction *TI, ArrayRef<Value *> Invariants,
126                               Optional<InstructionCost> Cost = None)
127       : TI(TI), Invariants(Invariants), Cost(Cost) {};
128 };
129 } // end anonymous namespace.
130 
131 // Helper to skip (select x, true, false), which matches both a logical AND and
132 // OR and can confuse code that tries to determine if \p Cond is either a
133 // logical AND or OR but not both.
134 static Value *skipTrivialSelect(Value *Cond) {
135   Value *CondNext;
136   while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
137     Cond = CondNext;
138   return Cond;
139 }
140 
141 /// Collect all of the loop invariant input values transitively used by the
142 /// homogeneous instruction graph from a given root.
143 ///
144 /// This essentially walks from a root recursively through loop variant operands
145 /// which have perform the same logical operation (AND or OR) and finds all
146 /// inputs which are loop invariant. For some operations these can be
147 /// re-associated and unswitched out of the loop entirely.
148 static TinyPtrVector<Value *>
149 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
150                                          const LoopInfo &LI) {
151   assert(!L.isLoopInvariant(&Root) &&
152          "Only need to walk the graph if root itself is not invariant.");
153   TinyPtrVector<Value *> Invariants;
154 
155   bool IsRootAnd = match(&Root, m_LogicalAnd());
156   bool IsRootOr  = match(&Root, m_LogicalOr());
157 
158   // Build a worklist and recurse through operators collecting invariants.
159   SmallVector<Instruction *, 4> Worklist;
160   SmallPtrSet<Instruction *, 8> Visited;
161   Worklist.push_back(&Root);
162   Visited.insert(&Root);
163   do {
164     Instruction &I = *Worklist.pop_back_val();
165     for (Value *OpV : I.operand_values()) {
166       // Skip constants as unswitching isn't interesting for them.
167       if (isa<Constant>(OpV))
168         continue;
169 
170       // Add it to our result if loop invariant.
171       if (L.isLoopInvariant(OpV)) {
172         Invariants.push_back(OpV);
173         continue;
174       }
175 
176       // If not an instruction with the same opcode, nothing we can do.
177       Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
178 
179       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
180                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
181         // Visit this operand.
182         if (Visited.insert(OpI).second)
183           Worklist.push_back(OpI);
184       }
185     }
186   } while (!Worklist.empty());
187 
188   return Invariants;
189 }
190 
191 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
192                                      Constant &Replacement) {
193   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
194 
195   // Replace uses of LIC in the loop with the given constant.
196   // We use make_early_inc_range as set invalidates the iterator.
197   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
198     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
199 
200     // Replace this use within the loop body.
201     if (UserI && L.contains(UserI))
202       U.set(&Replacement);
203   }
204 }
205 
206 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
207 /// incoming values along this edge.
208 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
209                                          const BasicBlock &ExitingBB,
210                                          const BasicBlock &ExitBB) {
211   for (const Instruction &I : ExitBB) {
212     auto *PN = dyn_cast<PHINode>(&I);
213     if (!PN)
214       // No more PHIs to check.
215       return true;
216 
217     // If the incoming value for this edge isn't loop invariant the unswitch
218     // won't be trivial.
219     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
220       return false;
221   }
222   llvm_unreachable("Basic blocks should never be empty!");
223 }
224 
225 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
226 /// end of \p BB and conditionally branch on the copied condition. We only
227 /// branch on a single value.
228 static void buildPartialUnswitchConditionalBranch(
229     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
230     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
231     const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
232   IRBuilder<> IRB(&BB);
233 
234   SmallVector<Value *> FrozenInvariants;
235   for (Value *Inv : Invariants) {
236     if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
237       Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
238     FrozenInvariants.push_back(Inv);
239   }
240 
241   Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
242                           : IRB.CreateAnd(FrozenInvariants);
243   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
244                    Direction ? &NormalSucc : &UnswitchedSucc);
245 }
246 
247 /// Copy a set of loop invariant values, and conditionally branch on them.
248 static void buildPartialInvariantUnswitchConditionalBranch(
249     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
250     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
251     MemorySSAUpdater *MSSAU) {
252   ValueToValueMapTy VMap;
253   for (auto *Val : reverse(ToDuplicate)) {
254     Instruction *Inst = cast<Instruction>(Val);
255     Instruction *NewInst = Inst->clone();
256     BB.getInstList().insert(BB.end(), NewInst);
257     RemapInstruction(NewInst, VMap,
258                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
259     VMap[Val] = NewInst;
260 
261     if (!MSSAU)
262       continue;
263 
264     MemorySSA *MSSA = MSSAU->getMemorySSA();
265     if (auto *MemUse =
266             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
267       auto *DefiningAccess = MemUse->getDefiningAccess();
268       // Get the first defining access before the loop.
269       while (L.contains(DefiningAccess->getBlock())) {
270         // If the defining access is a MemoryPhi, get the incoming
271         // value for the pre-header as defining access.
272         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
273           DefiningAccess =
274               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
275         else
276           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
277       }
278       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
279                                     NewInst->getParent(),
280                                     MemorySSA::BeforeTerminator);
281     }
282   }
283 
284   IRBuilder<> IRB(&BB);
285   Value *Cond = VMap[ToDuplicate[0]];
286   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
287                    Direction ? &NormalSucc : &UnswitchedSucc);
288 }
289 
290 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
291 ///
292 /// Requires that the loop exit and unswitched basic block are the same, and
293 /// that the exiting block was a unique predecessor of that block. Rewrites the
294 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
295 /// PHI nodes from the old preheader that now contains the unswitched
296 /// terminator.
297 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
298                                                   BasicBlock &OldExitingBB,
299                                                   BasicBlock &OldPH) {
300   for (PHINode &PN : UnswitchedBB.phis()) {
301     // When the loop exit is directly unswitched we just need to update the
302     // incoming basic block. We loop to handle weird cases with repeated
303     // incoming blocks, but expect to typically only have one operand here.
304     for (auto i : seq<int>(0, PN.getNumOperands())) {
305       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
306              "Found incoming block different from unique predecessor!");
307       PN.setIncomingBlock(i, &OldPH);
308     }
309   }
310 }
311 
312 /// Rewrite the PHI nodes in the loop exit basic block and the split off
313 /// unswitched block.
314 ///
315 /// Because the exit block remains an exit from the loop, this rewrites the
316 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
317 /// nodes into the unswitched basic block to select between the value in the
318 /// old preheader and the loop exit.
319 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
320                                                       BasicBlock &UnswitchedBB,
321                                                       BasicBlock &OldExitingBB,
322                                                       BasicBlock &OldPH,
323                                                       bool FullUnswitch) {
324   assert(&ExitBB != &UnswitchedBB &&
325          "Must have different loop exit and unswitched blocks!");
326   Instruction *InsertPt = &*UnswitchedBB.begin();
327   for (PHINode &PN : ExitBB.phis()) {
328     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
329                                   PN.getName() + ".split", InsertPt);
330 
331     // Walk backwards over the old PHI node's inputs to minimize the cost of
332     // removing each one. We have to do this weird loop manually so that we
333     // create the same number of new incoming edges in the new PHI as we expect
334     // each case-based edge to be included in the unswitched switch in some
335     // cases.
336     // FIXME: This is really, really gross. It would be much cleaner if LLVM
337     // allowed us to create a single entry for a predecessor block without
338     // having separate entries for each "edge" even though these edges are
339     // required to produce identical results.
340     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
341       if (PN.getIncomingBlock(i) != &OldExitingBB)
342         continue;
343 
344       Value *Incoming = PN.getIncomingValue(i);
345       if (FullUnswitch)
346         // No more edge from the old exiting block to the exit block.
347         PN.removeIncomingValue(i);
348 
349       NewPN->addIncoming(Incoming, &OldPH);
350     }
351 
352     // Now replace the old PHI with the new one and wire the old one in as an
353     // input to the new one.
354     PN.replaceAllUsesWith(NewPN);
355     NewPN->addIncoming(&PN, &ExitBB);
356   }
357 }
358 
359 /// Hoist the current loop up to the innermost loop containing a remaining exit.
360 ///
361 /// Because we've removed an exit from the loop, we may have changed the set of
362 /// loops reachable and need to move the current loop up the loop nest or even
363 /// to an entirely separate nest.
364 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
365                                  DominatorTree &DT, LoopInfo &LI,
366                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
367   // If the loop is already at the top level, we can't hoist it anywhere.
368   Loop *OldParentL = L.getParentLoop();
369   if (!OldParentL)
370     return;
371 
372   SmallVector<BasicBlock *, 4> Exits;
373   L.getExitBlocks(Exits);
374   Loop *NewParentL = nullptr;
375   for (auto *ExitBB : Exits)
376     if (Loop *ExitL = LI.getLoopFor(ExitBB))
377       if (!NewParentL || NewParentL->contains(ExitL))
378         NewParentL = ExitL;
379 
380   if (NewParentL == OldParentL)
381     return;
382 
383   // The new parent loop (if different) should always contain the old one.
384   if (NewParentL)
385     assert(NewParentL->contains(OldParentL) &&
386            "Can only hoist this loop up the nest!");
387 
388   // The preheader will need to move with the body of this loop. However,
389   // because it isn't in this loop we also need to update the primary loop map.
390   assert(OldParentL == LI.getLoopFor(&Preheader) &&
391          "Parent loop of this loop should contain this loop's preheader!");
392   LI.changeLoopFor(&Preheader, NewParentL);
393 
394   // Remove this loop from its old parent.
395   OldParentL->removeChildLoop(&L);
396 
397   // Add the loop either to the new parent or as a top-level loop.
398   if (NewParentL)
399     NewParentL->addChildLoop(&L);
400   else
401     LI.addTopLevelLoop(&L);
402 
403   // Remove this loops blocks from the old parent and every other loop up the
404   // nest until reaching the new parent. Also update all of these
405   // no-longer-containing loops to reflect the nesting change.
406   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
407        OldContainingL = OldContainingL->getParentLoop()) {
408     llvm::erase_if(OldContainingL->getBlocksVector(),
409                    [&](const BasicBlock *BB) {
410                      return BB == &Preheader || L.contains(BB);
411                    });
412 
413     OldContainingL->getBlocksSet().erase(&Preheader);
414     for (BasicBlock *BB : L.blocks())
415       OldContainingL->getBlocksSet().erase(BB);
416 
417     // Because we just hoisted a loop out of this one, we have essentially
418     // created new exit paths from it. That means we need to form LCSSA PHI
419     // nodes for values used in the no-longer-nested loop.
420     formLCSSA(*OldContainingL, DT, &LI, SE);
421 
422     // We shouldn't need to form dedicated exits because the exit introduced
423     // here is the (just split by unswitching) preheader. However, after trivial
424     // unswitching it is possible to get new non-dedicated exits out of parent
425     // loop so let's conservatively form dedicated exit blocks and figure out
426     // if we can optimize later.
427     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
428                             /*PreserveLCSSA*/ true);
429   }
430 }
431 
432 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
433 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
434 // as exiting block.
435 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
436                                          const LoopInfo &LI) {
437   const Loop *TopMost = LI.getLoopFor(ExitBB);
438   const Loop *Current = TopMost;
439   while (Current) {
440     if (Current->isLoopExiting(ExitBB))
441       TopMost = Current;
442     Current = Current->getParentLoop();
443   }
444   return TopMost;
445 }
446 
447 /// Unswitch a trivial branch if the condition is loop invariant.
448 ///
449 /// This routine should only be called when loop code leading to the branch has
450 /// been validated as trivial (no side effects). This routine checks if the
451 /// condition is invariant and one of the successors is a loop exit. This
452 /// allows us to unswitch without duplicating the loop, making it trivial.
453 ///
454 /// If this routine fails to unswitch the branch it returns false.
455 ///
456 /// If the branch can be unswitched, this routine splits the preheader and
457 /// hoists the branch above that split. Preserves loop simplified form
458 /// (splitting the exit block as necessary). It simplifies the branch within
459 /// the loop to an unconditional branch but doesn't remove it entirely. Further
460 /// cleanup can be done with some simplifycfg like pass.
461 ///
462 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
463 /// invalidated by this.
464 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
465                                   LoopInfo &LI, ScalarEvolution *SE,
466                                   MemorySSAUpdater *MSSAU) {
467   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
468   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
469 
470   // The loop invariant values that we want to unswitch.
471   TinyPtrVector<Value *> Invariants;
472 
473   // When true, we're fully unswitching the branch rather than just unswitching
474   // some input conditions to the branch.
475   bool FullUnswitch = false;
476 
477   Value *Cond = skipTrivialSelect(BI.getCondition());
478   if (L.isLoopInvariant(Cond)) {
479     Invariants.push_back(Cond);
480     FullUnswitch = true;
481   } else {
482     if (auto *CondInst = dyn_cast<Instruction>(Cond))
483       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
484     if (Invariants.empty()) {
485       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
486       return false;
487     }
488   }
489 
490   // Check that one of the branch's successors exits, and which one.
491   bool ExitDirection = true;
492   int LoopExitSuccIdx = 0;
493   auto *LoopExitBB = BI.getSuccessor(0);
494   if (L.contains(LoopExitBB)) {
495     ExitDirection = false;
496     LoopExitSuccIdx = 1;
497     LoopExitBB = BI.getSuccessor(1);
498     if (L.contains(LoopExitBB)) {
499       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
500       return false;
501     }
502   }
503   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
504   auto *ParentBB = BI.getParent();
505   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
506     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
507     return false;
508   }
509 
510   // When unswitching only part of the branch's condition, we need the exit
511   // block to be reached directly from the partially unswitched input. This can
512   // be done when the exit block is along the true edge and the branch condition
513   // is a graph of `or` operations, or the exit block is along the false edge
514   // and the condition is a graph of `and` operations.
515   if (!FullUnswitch) {
516     if (ExitDirection ? !match(Cond, m_LogicalOr())
517                       : !match(Cond, m_LogicalAnd())) {
518       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
519                            "non-full unswitch!\n");
520       return false;
521     }
522   }
523 
524   LLVM_DEBUG({
525     dbgs() << "    unswitching trivial invariant conditions for: " << BI
526            << "\n";
527     for (Value *Invariant : Invariants) {
528       dbgs() << "      " << *Invariant << " == true";
529       if (Invariant != Invariants.back())
530         dbgs() << " ||";
531       dbgs() << "\n";
532     }
533   });
534 
535   // If we have scalar evolutions, we need to invalidate them including this
536   // loop, the loop containing the exit block and the topmost parent loop
537   // exiting via LoopExitBB.
538   if (SE) {
539     if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
540       SE->forgetLoop(ExitL);
541     else
542       // Forget the entire nest as this exits the entire nest.
543       SE->forgetTopmostLoop(&L);
544     SE->forgetBlockAndLoopDispositions();
545   }
546 
547   if (MSSAU && VerifyMemorySSA)
548     MSSAU->getMemorySSA()->verifyMemorySSA();
549 
550   // Split the preheader, so that we know that there is a safe place to insert
551   // the conditional branch. We will change the preheader to have a conditional
552   // branch on LoopCond.
553   BasicBlock *OldPH = L.getLoopPreheader();
554   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
555 
556   // Now that we have a place to insert the conditional branch, create a place
557   // to branch to: this is the exit block out of the loop that we are
558   // unswitching. We need to split this if there are other loop predecessors.
559   // Because the loop is in simplified form, *any* other predecessor is enough.
560   BasicBlock *UnswitchedBB;
561   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
562     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
563            "A branch's parent isn't a predecessor!");
564     UnswitchedBB = LoopExitBB;
565   } else {
566     UnswitchedBB =
567         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
568   }
569 
570   if (MSSAU && VerifyMemorySSA)
571     MSSAU->getMemorySSA()->verifyMemorySSA();
572 
573   // Actually move the invariant uses into the unswitched position. If possible,
574   // we do this by moving the instructions, but when doing partial unswitching
575   // we do it by building a new merge of the values in the unswitched position.
576   OldPH->getTerminator()->eraseFromParent();
577   if (FullUnswitch) {
578     // If fully unswitching, we can use the existing branch instruction.
579     // Splice it into the old PH to gate reaching the new preheader and re-point
580     // its successors.
581     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
582                                 BI);
583     BI.setCondition(Cond);
584     if (MSSAU) {
585       // Temporarily clone the terminator, to make MSSA update cheaper by
586       // separating "insert edge" updates from "remove edge" ones.
587       ParentBB->getInstList().push_back(BI.clone());
588     } else {
589       // Create a new unconditional branch that will continue the loop as a new
590       // terminator.
591       BranchInst::Create(ContinueBB, ParentBB);
592     }
593     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
594     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
595   } else {
596     // Only unswitching a subset of inputs to the condition, so we will need to
597     // build a new branch that merges the invariant inputs.
598     if (ExitDirection)
599       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
600              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
601              "condition!");
602     else
603       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
604              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
605              " condition!");
606     buildPartialUnswitchConditionalBranch(
607         *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
608         FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
609   }
610 
611   // Update the dominator tree with the added edge.
612   DT.insertEdge(OldPH, UnswitchedBB);
613 
614   // After the dominator tree was updated with the added edge, update MemorySSA
615   // if available.
616   if (MSSAU) {
617     SmallVector<CFGUpdate, 1> Updates;
618     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
619     MSSAU->applyInsertUpdates(Updates, DT);
620   }
621 
622   // Finish updating dominator tree and memory ssa for full unswitch.
623   if (FullUnswitch) {
624     if (MSSAU) {
625       // Remove the cloned branch instruction.
626       ParentBB->getTerminator()->eraseFromParent();
627       // Create unconditional branch now.
628       BranchInst::Create(ContinueBB, ParentBB);
629       MSSAU->removeEdge(ParentBB, LoopExitBB);
630     }
631     DT.deleteEdge(ParentBB, LoopExitBB);
632   }
633 
634   if (MSSAU && VerifyMemorySSA)
635     MSSAU->getMemorySSA()->verifyMemorySSA();
636 
637   // Rewrite the relevant PHI nodes.
638   if (UnswitchedBB == LoopExitBB)
639     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
640   else
641     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
642                                               *ParentBB, *OldPH, FullUnswitch);
643 
644   // The constant we can replace all of our invariants with inside the loop
645   // body. If any of the invariants have a value other than this the loop won't
646   // be entered.
647   ConstantInt *Replacement = ExitDirection
648                                  ? ConstantInt::getFalse(BI.getContext())
649                                  : ConstantInt::getTrue(BI.getContext());
650 
651   // Since this is an i1 condition we can also trivially replace uses of it
652   // within the loop with a constant.
653   for (Value *Invariant : Invariants)
654     replaceLoopInvariantUses(L, Invariant, *Replacement);
655 
656   // If this was full unswitching, we may have changed the nesting relationship
657   // for this loop so hoist it to its correct parent if needed.
658   if (FullUnswitch)
659     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
660 
661   if (MSSAU && VerifyMemorySSA)
662     MSSAU->getMemorySSA()->verifyMemorySSA();
663 
664   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
665   ++NumTrivial;
666   ++NumBranches;
667   return true;
668 }
669 
670 /// Unswitch a trivial switch if the condition is loop invariant.
671 ///
672 /// This routine should only be called when loop code leading to the switch has
673 /// been validated as trivial (no side effects). This routine checks if the
674 /// condition is invariant and that at least one of the successors is a loop
675 /// exit. This allows us to unswitch without duplicating the loop, making it
676 /// trivial.
677 ///
678 /// If this routine fails to unswitch the switch it returns false.
679 ///
680 /// If the switch can be unswitched, this routine splits the preheader and
681 /// copies the switch above that split. If the default case is one of the
682 /// exiting cases, it copies the non-exiting cases and points them at the new
683 /// preheader. If the default case is not exiting, it copies the exiting cases
684 /// and points the default at the preheader. It preserves loop simplified form
685 /// (splitting the exit blocks as necessary). It simplifies the switch within
686 /// the loop by removing now-dead cases. If the default case is one of those
687 /// unswitched, it replaces its destination with a new basic block containing
688 /// only unreachable. Such basic blocks, while technically loop exits, are not
689 /// considered for unswitching so this is a stable transform and the same
690 /// switch will not be revisited. If after unswitching there is only a single
691 /// in-loop successor, the switch is further simplified to an unconditional
692 /// branch. Still more cleanup can be done with some simplifycfg like pass.
693 ///
694 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
695 /// invalidated by this.
696 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
697                                   LoopInfo &LI, ScalarEvolution *SE,
698                                   MemorySSAUpdater *MSSAU) {
699   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
700   Value *LoopCond = SI.getCondition();
701 
702   // If this isn't switching on an invariant condition, we can't unswitch it.
703   if (!L.isLoopInvariant(LoopCond))
704     return false;
705 
706   auto *ParentBB = SI.getParent();
707 
708   // The same check must be used both for the default and the exit cases. We
709   // should never leave edges from the switch instruction to a basic block that
710   // we are unswitching, hence the condition used to determine the default case
711   // needs to also be used to populate ExitCaseIndices, which is then used to
712   // remove cases from the switch.
713   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
714     // BBToCheck is not an exit block if it is inside loop L.
715     if (L.contains(&BBToCheck))
716       return false;
717     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
718     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
719       return false;
720     // We do not unswitch a block that only has an unreachable statement, as
721     // it's possible this is a previously unswitched block. Only unswitch if
722     // either the terminator is not unreachable, or, if it is, it's not the only
723     // instruction in the block.
724     auto *TI = BBToCheck.getTerminator();
725     bool isUnreachable = isa<UnreachableInst>(TI);
726     return !isUnreachable ||
727            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
728   };
729 
730   SmallVector<int, 4> ExitCaseIndices;
731   for (auto Case : SI.cases())
732     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
733       ExitCaseIndices.push_back(Case.getCaseIndex());
734   BasicBlock *DefaultExitBB = nullptr;
735   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
736       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
737   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
738     DefaultExitBB = SI.getDefaultDest();
739   } else if (ExitCaseIndices.empty())
740     return false;
741 
742   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
743 
744   if (MSSAU && VerifyMemorySSA)
745     MSSAU->getMemorySSA()->verifyMemorySSA();
746 
747   // We may need to invalidate SCEVs for the outermost loop reached by any of
748   // the exits.
749   Loop *OuterL = &L;
750 
751   if (DefaultExitBB) {
752     // Clear out the default destination temporarily to allow accurate
753     // predecessor lists to be examined below.
754     SI.setDefaultDest(nullptr);
755     // Check the loop containing this exit.
756     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
757     if (!ExitL || ExitL->contains(OuterL))
758       OuterL = ExitL;
759   }
760 
761   // Store the exit cases into a separate data structure and remove them from
762   // the switch.
763   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
764                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
765               4> ExitCases;
766   ExitCases.reserve(ExitCaseIndices.size());
767   SwitchInstProfUpdateWrapper SIW(SI);
768   // We walk the case indices backwards so that we remove the last case first
769   // and don't disrupt the earlier indices.
770   for (unsigned Index : reverse(ExitCaseIndices)) {
771     auto CaseI = SI.case_begin() + Index;
772     // Compute the outer loop from this exit.
773     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
774     if (!ExitL || ExitL->contains(OuterL))
775       OuterL = ExitL;
776     // Save the value of this case.
777     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
778     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
779     // Delete the unswitched cases.
780     SIW.removeCase(CaseI);
781   }
782 
783   if (SE) {
784     if (OuterL)
785       SE->forgetLoop(OuterL);
786     else
787       SE->forgetTopmostLoop(&L);
788   }
789 
790   // Check if after this all of the remaining cases point at the same
791   // successor.
792   BasicBlock *CommonSuccBB = nullptr;
793   if (SI.getNumCases() > 0 &&
794       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
795         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
796       }))
797     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
798   if (!DefaultExitBB) {
799     // If we're not unswitching the default, we need it to match any cases to
800     // have a common successor or if we have no cases it is the common
801     // successor.
802     if (SI.getNumCases() == 0)
803       CommonSuccBB = SI.getDefaultDest();
804     else if (SI.getDefaultDest() != CommonSuccBB)
805       CommonSuccBB = nullptr;
806   }
807 
808   // Split the preheader, so that we know that there is a safe place to insert
809   // the switch.
810   BasicBlock *OldPH = L.getLoopPreheader();
811   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
812   OldPH->getTerminator()->eraseFromParent();
813 
814   // Now add the unswitched switch.
815   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
816   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
817 
818   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
819   // First, we split any exit blocks with remaining in-loop predecessors. Then
820   // we update the PHIs in one of two ways depending on if there was a split.
821   // We walk in reverse so that we split in the same order as the cases
822   // appeared. This is purely for convenience of reading the resulting IR, but
823   // it doesn't cost anything really.
824   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
825   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
826   // Handle the default exit if necessary.
827   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
828   // ranges aren't quite powerful enough yet.
829   if (DefaultExitBB) {
830     if (pred_empty(DefaultExitBB)) {
831       UnswitchedExitBBs.insert(DefaultExitBB);
832       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
833     } else {
834       auto *SplitBB =
835           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
836       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
837                                                 *ParentBB, *OldPH,
838                                                 /*FullUnswitch*/ true);
839       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
840     }
841   }
842   // Note that we must use a reference in the for loop so that we update the
843   // container.
844   for (auto &ExitCase : reverse(ExitCases)) {
845     // Grab a reference to the exit block in the pair so that we can update it.
846     BasicBlock *ExitBB = std::get<1>(ExitCase);
847 
848     // If this case is the last edge into the exit block, we can simply reuse it
849     // as it will no longer be a loop exit. No mapping necessary.
850     if (pred_empty(ExitBB)) {
851       // Only rewrite once.
852       if (UnswitchedExitBBs.insert(ExitBB).second)
853         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
854       continue;
855     }
856 
857     // Otherwise we need to split the exit block so that we retain an exit
858     // block from the loop and a target for the unswitched condition.
859     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
860     if (!SplitExitBB) {
861       // If this is the first time we see this, do the split and remember it.
862       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
863       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
864                                                 *ParentBB, *OldPH,
865                                                 /*FullUnswitch*/ true);
866     }
867     // Update the case pair to point to the split block.
868     std::get<1>(ExitCase) = SplitExitBB;
869   }
870 
871   // Now add the unswitched cases. We do this in reverse order as we built them
872   // in reverse order.
873   for (auto &ExitCase : reverse(ExitCases)) {
874     ConstantInt *CaseVal = std::get<0>(ExitCase);
875     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
876 
877     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
878   }
879 
880   // If the default was unswitched, re-point it and add explicit cases for
881   // entering the loop.
882   if (DefaultExitBB) {
883     NewSIW->setDefaultDest(DefaultExitBB);
884     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
885 
886     // We removed all the exit cases, so we just copy the cases to the
887     // unswitched switch.
888     for (const auto &Case : SI.cases())
889       NewSIW.addCase(Case.getCaseValue(), NewPH,
890                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
891   } else if (DefaultCaseWeight) {
892     // We have to set branch weight of the default case.
893     uint64_t SW = *DefaultCaseWeight;
894     for (const auto &Case : SI.cases()) {
895       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
896       assert(W &&
897              "case weight must be defined as default case weight is defined");
898       SW += *W;
899     }
900     NewSIW.setSuccessorWeight(0, SW);
901   }
902 
903   // If we ended up with a common successor for every path through the switch
904   // after unswitching, rewrite it to an unconditional branch to make it easy
905   // to recognize. Otherwise we potentially have to recognize the default case
906   // pointing at unreachable and other complexity.
907   if (CommonSuccBB) {
908     BasicBlock *BB = SI.getParent();
909     // We may have had multiple edges to this common successor block, so remove
910     // them as predecessors. We skip the first one, either the default or the
911     // actual first case.
912     bool SkippedFirst = DefaultExitBB == nullptr;
913     for (auto Case : SI.cases()) {
914       assert(Case.getCaseSuccessor() == CommonSuccBB &&
915              "Non-common successor!");
916       (void)Case;
917       if (!SkippedFirst) {
918         SkippedFirst = true;
919         continue;
920       }
921       CommonSuccBB->removePredecessor(BB,
922                                       /*KeepOneInputPHIs*/ true);
923     }
924     // Now nuke the switch and replace it with a direct branch.
925     SIW.eraseFromParent();
926     BranchInst::Create(CommonSuccBB, BB);
927   } else if (DefaultExitBB) {
928     assert(SI.getNumCases() > 0 &&
929            "If we had no cases we'd have a common successor!");
930     // Move the last case to the default successor. This is valid as if the
931     // default got unswitched it cannot be reached. This has the advantage of
932     // being simple and keeping the number of edges from this switch to
933     // successors the same, and avoiding any PHI update complexity.
934     auto LastCaseI = std::prev(SI.case_end());
935 
936     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
937     SIW.setSuccessorWeight(
938         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
939     SIW.removeCase(LastCaseI);
940   }
941 
942   // Walk the unswitched exit blocks and the unswitched split blocks and update
943   // the dominator tree based on the CFG edits. While we are walking unordered
944   // containers here, the API for applyUpdates takes an unordered list of
945   // updates and requires them to not contain duplicates.
946   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
947   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
948     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
949     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
950   }
951   for (auto SplitUnswitchedPair : SplitExitBBMap) {
952     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
953     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
954   }
955 
956   if (MSSAU) {
957     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
958     if (VerifyMemorySSA)
959       MSSAU->getMemorySSA()->verifyMemorySSA();
960   } else {
961     DT.applyUpdates(DTUpdates);
962   }
963 
964   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
965 
966   // We may have changed the nesting relationship for this loop so hoist it to
967   // its correct parent if needed.
968   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
969 
970   if (MSSAU && VerifyMemorySSA)
971     MSSAU->getMemorySSA()->verifyMemorySSA();
972 
973   ++NumTrivial;
974   ++NumSwitches;
975   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
976   return true;
977 }
978 
979 /// This routine scans the loop to find a branch or switch which occurs before
980 /// any side effects occur. These can potentially be unswitched without
981 /// duplicating the loop. If a branch or switch is successfully unswitched the
982 /// scanning continues to see if subsequent branches or switches have become
983 /// trivial. Once all trivial candidates have been unswitched, this routine
984 /// returns.
985 ///
986 /// The return value indicates whether anything was unswitched (and therefore
987 /// changed).
988 ///
989 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
990 /// invalidated by this.
991 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
992                                          LoopInfo &LI, ScalarEvolution *SE,
993                                          MemorySSAUpdater *MSSAU) {
994   bool Changed = false;
995 
996   // If loop header has only one reachable successor we should keep looking for
997   // trivial condition candidates in the successor as well. An alternative is
998   // to constant fold conditions and merge successors into loop header (then we
999   // only need to check header's terminator). The reason for not doing this in
1000   // LoopUnswitch pass is that it could potentially break LoopPassManager's
1001   // invariants. Folding dead branches could either eliminate the current loop
1002   // or make other loops unreachable. LCSSA form might also not be preserved
1003   // after deleting branches. The following code keeps traversing loop header's
1004   // successors until it finds the trivial condition candidate (condition that
1005   // is not a constant). Since unswitching generates branches with constant
1006   // conditions, this scenario could be very common in practice.
1007   BasicBlock *CurrentBB = L.getHeader();
1008   SmallPtrSet<BasicBlock *, 8> Visited;
1009   Visited.insert(CurrentBB);
1010   do {
1011     // Check if there are any side-effecting instructions (e.g. stores, calls,
1012     // volatile loads) in the part of the loop that the code *would* execute
1013     // without unswitching.
1014     if (MSSAU) // Possible early exit with MSSA
1015       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1016         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1017           return Changed;
1018     if (llvm::any_of(*CurrentBB,
1019                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
1020       return Changed;
1021 
1022     Instruction *CurrentTerm = CurrentBB->getTerminator();
1023 
1024     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1025       // Don't bother trying to unswitch past a switch with a constant
1026       // condition. This should be removed prior to running this pass by
1027       // simplifycfg.
1028       if (isa<Constant>(SI->getCondition()))
1029         return Changed;
1030 
1031       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1032         // Couldn't unswitch this one so we're done.
1033         return Changed;
1034 
1035       // Mark that we managed to unswitch something.
1036       Changed = true;
1037 
1038       // If unswitching turned the terminator into an unconditional branch then
1039       // we can continue. The unswitching logic specifically works to fold any
1040       // cases it can into an unconditional branch to make it easier to
1041       // recognize here.
1042       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1043       if (!BI || BI->isConditional())
1044         return Changed;
1045 
1046       CurrentBB = BI->getSuccessor(0);
1047       continue;
1048     }
1049 
1050     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1051     if (!BI)
1052       // We do not understand other terminator instructions.
1053       return Changed;
1054 
1055     // Don't bother trying to unswitch past an unconditional branch or a branch
1056     // with a constant value. These should be removed by simplifycfg prior to
1057     // running this pass.
1058     if (!BI->isConditional() ||
1059         isa<Constant>(skipTrivialSelect(BI->getCondition())))
1060       return Changed;
1061 
1062     // Found a trivial condition candidate: non-foldable conditional branch. If
1063     // we fail to unswitch this, we can't do anything else that is trivial.
1064     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1065       return Changed;
1066 
1067     // Mark that we managed to unswitch something.
1068     Changed = true;
1069 
1070     // If we only unswitched some of the conditions feeding the branch, we won't
1071     // have collapsed it to a single successor.
1072     BI = cast<BranchInst>(CurrentBB->getTerminator());
1073     if (BI->isConditional())
1074       return Changed;
1075 
1076     // Follow the newly unconditional branch into its successor.
1077     CurrentBB = BI->getSuccessor(0);
1078 
1079     // When continuing, if we exit the loop or reach a previous visited block,
1080     // then we can not reach any trivial condition candidates (unfoldable
1081     // branch instructions or switch instructions) and no unswitch can happen.
1082   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1083 
1084   return Changed;
1085 }
1086 
1087 /// Build the cloned blocks for an unswitched copy of the given loop.
1088 ///
1089 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1090 /// after the split block (`SplitBB`) that will be used to select between the
1091 /// cloned and original loop.
1092 ///
1093 /// This routine handles cloning all of the necessary loop blocks and exit
1094 /// blocks including rewriting their instructions and the relevant PHI nodes.
1095 /// Any loop blocks or exit blocks which are dominated by a different successor
1096 /// than the one for this clone of the loop blocks can be trivially skipped. We
1097 /// use the `DominatingSucc` map to determine whether a block satisfies that
1098 /// property with a simple map lookup.
1099 ///
1100 /// It also correctly creates the unconditional branch in the cloned
1101 /// unswitched parent block to only point at the unswitched successor.
1102 ///
1103 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1104 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1105 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1106 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1107 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1108 /// instead the caller must recompute an accurate DT. It *does* correctly
1109 /// update the `AssumptionCache` provided in `AC`.
1110 static BasicBlock *buildClonedLoopBlocks(
1111     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1112     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1113     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1114     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1115     ValueToValueMapTy &VMap,
1116     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1117     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1118   SmallVector<BasicBlock *, 4> NewBlocks;
1119   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1120 
1121   // We will need to clone a bunch of blocks, wrap up the clone operation in
1122   // a helper.
1123   auto CloneBlock = [&](BasicBlock *OldBB) {
1124     // Clone the basic block and insert it before the new preheader.
1125     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1126     NewBB->moveBefore(LoopPH);
1127 
1128     // Record this block and the mapping.
1129     NewBlocks.push_back(NewBB);
1130     VMap[OldBB] = NewBB;
1131 
1132     return NewBB;
1133   };
1134 
1135   // We skip cloning blocks when they have a dominating succ that is not the
1136   // succ we are cloning for.
1137   auto SkipBlock = [&](BasicBlock *BB) {
1138     auto It = DominatingSucc.find(BB);
1139     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1140   };
1141 
1142   // First, clone the preheader.
1143   auto *ClonedPH = CloneBlock(LoopPH);
1144 
1145   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1146   for (auto *LoopBB : L.blocks())
1147     if (!SkipBlock(LoopBB))
1148       CloneBlock(LoopBB);
1149 
1150   // Split all the loop exit edges so that when we clone the exit blocks, if
1151   // any of the exit blocks are *also* a preheader for some other loop, we
1152   // don't create multiple predecessors entering the loop header.
1153   for (auto *ExitBB : ExitBlocks) {
1154     if (SkipBlock(ExitBB))
1155       continue;
1156 
1157     // When we are going to clone an exit, we don't need to clone all the
1158     // instructions in the exit block and we want to ensure we have an easy
1159     // place to merge the CFG, so split the exit first. This is always safe to
1160     // do because there cannot be any non-loop predecessors of a loop exit in
1161     // loop simplified form.
1162     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1163 
1164     // Rearrange the names to make it easier to write test cases by having the
1165     // exit block carry the suffix rather than the merge block carrying the
1166     // suffix.
1167     MergeBB->takeName(ExitBB);
1168     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1169 
1170     // Now clone the original exit block.
1171     auto *ClonedExitBB = CloneBlock(ExitBB);
1172     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1173            "Exit block should have been split to have one successor!");
1174     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1175            "Cloned exit block has the wrong successor!");
1176 
1177     // Remap any cloned instructions and create a merge phi node for them.
1178     for (auto ZippedInsts : llvm::zip_first(
1179              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1180              llvm::make_range(ClonedExitBB->begin(),
1181                               std::prev(ClonedExitBB->end())))) {
1182       Instruction &I = std::get<0>(ZippedInsts);
1183       Instruction &ClonedI = std::get<1>(ZippedInsts);
1184 
1185       // The only instructions in the exit block should be PHI nodes and
1186       // potentially a landing pad.
1187       assert(
1188           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1189           "Bad instruction in exit block!");
1190       // We should have a value map between the instruction and its clone.
1191       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1192 
1193       auto *MergePN =
1194           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1195                           &*MergeBB->getFirstInsertionPt());
1196       I.replaceAllUsesWith(MergePN);
1197       MergePN->addIncoming(&I, ExitBB);
1198       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1199     }
1200   }
1201 
1202   // Rewrite the instructions in the cloned blocks to refer to the instructions
1203   // in the cloned blocks. We have to do this as a second pass so that we have
1204   // everything available. Also, we have inserted new instructions which may
1205   // include assume intrinsics, so we update the assumption cache while
1206   // processing this.
1207   for (auto *ClonedBB : NewBlocks)
1208     for (Instruction &I : *ClonedBB) {
1209       RemapInstruction(&I, VMap,
1210                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1211       if (auto *II = dyn_cast<AssumeInst>(&I))
1212         AC.registerAssumption(II);
1213     }
1214 
1215   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1216   // have spurious incoming values.
1217   for (auto *LoopBB : L.blocks())
1218     if (SkipBlock(LoopBB))
1219       for (auto *SuccBB : successors(LoopBB))
1220         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1221           for (PHINode &PN : ClonedSuccBB->phis())
1222             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1223 
1224   // Remove the cloned parent as a predecessor of any successor we ended up
1225   // cloning other than the unswitched one.
1226   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1227   for (auto *SuccBB : successors(ParentBB)) {
1228     if (SuccBB == UnswitchedSuccBB)
1229       continue;
1230 
1231     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1232     if (!ClonedSuccBB)
1233       continue;
1234 
1235     ClonedSuccBB->removePredecessor(ClonedParentBB,
1236                                     /*KeepOneInputPHIs*/ true);
1237   }
1238 
1239   // Replace the cloned branch with an unconditional branch to the cloned
1240   // unswitched successor.
1241   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1242   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1243   // Trivial Simplification. If Terminator is a conditional branch and
1244   // condition becomes dead - erase it.
1245   Value *ClonedConditionToErase = nullptr;
1246   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1247     ClonedConditionToErase = BI->getCondition();
1248   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1249     ClonedConditionToErase = SI->getCondition();
1250 
1251   ClonedTerminator->eraseFromParent();
1252   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1253 
1254   if (ClonedConditionToErase)
1255     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1256                                                MSSAU);
1257 
1258   // If there are duplicate entries in the PHI nodes because of multiple edges
1259   // to the unswitched successor, we need to nuke all but one as we replaced it
1260   // with a direct branch.
1261   for (PHINode &PN : ClonedSuccBB->phis()) {
1262     bool Found = false;
1263     // Loop over the incoming operands backwards so we can easily delete as we
1264     // go without invalidating the index.
1265     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1266       if (PN.getIncomingBlock(i) != ClonedParentBB)
1267         continue;
1268       if (!Found) {
1269         Found = true;
1270         continue;
1271       }
1272       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1273     }
1274   }
1275 
1276   // Record the domtree updates for the new blocks.
1277   SmallPtrSet<BasicBlock *, 4> SuccSet;
1278   for (auto *ClonedBB : NewBlocks) {
1279     for (auto *SuccBB : successors(ClonedBB))
1280       if (SuccSet.insert(SuccBB).second)
1281         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1282     SuccSet.clear();
1283   }
1284 
1285   return ClonedPH;
1286 }
1287 
1288 /// Recursively clone the specified loop and all of its children.
1289 ///
1290 /// The target parent loop for the clone should be provided, or can be null if
1291 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1292 /// with the provided value map. The entire original loop must be present in
1293 /// the value map. The cloned loop is returned.
1294 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1295                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1296   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1297     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1298     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1299     for (auto *BB : OrigL.blocks()) {
1300       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1301       ClonedL.addBlockEntry(ClonedBB);
1302       if (LI.getLoopFor(BB) == &OrigL)
1303         LI.changeLoopFor(ClonedBB, &ClonedL);
1304     }
1305   };
1306 
1307   // We specially handle the first loop because it may get cloned into
1308   // a different parent and because we most commonly are cloning leaf loops.
1309   Loop *ClonedRootL = LI.AllocateLoop();
1310   if (RootParentL)
1311     RootParentL->addChildLoop(ClonedRootL);
1312   else
1313     LI.addTopLevelLoop(ClonedRootL);
1314   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1315 
1316   if (OrigRootL.isInnermost())
1317     return ClonedRootL;
1318 
1319   // If we have a nest, we can quickly clone the entire loop nest using an
1320   // iterative approach because it is a tree. We keep the cloned parent in the
1321   // data structure to avoid repeatedly querying through a map to find it.
1322   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1323   // Build up the loops to clone in reverse order as we'll clone them from the
1324   // back.
1325   for (Loop *ChildL : llvm::reverse(OrigRootL))
1326     LoopsToClone.push_back({ClonedRootL, ChildL});
1327   do {
1328     Loop *ClonedParentL, *L;
1329     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1330     Loop *ClonedL = LI.AllocateLoop();
1331     ClonedParentL->addChildLoop(ClonedL);
1332     AddClonedBlocksToLoop(*L, *ClonedL);
1333     for (Loop *ChildL : llvm::reverse(*L))
1334       LoopsToClone.push_back({ClonedL, ChildL});
1335   } while (!LoopsToClone.empty());
1336 
1337   return ClonedRootL;
1338 }
1339 
1340 /// Build the cloned loops of an original loop from unswitching.
1341 ///
1342 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1343 /// operation. We need to re-verify that there even is a loop (as the backedge
1344 /// may not have been cloned), and even if there are remaining backedges the
1345 /// backedge set may be different. However, we know that each child loop is
1346 /// undisturbed, we only need to find where to place each child loop within
1347 /// either any parent loop or within a cloned version of the original loop.
1348 ///
1349 /// Because child loops may end up cloned outside of any cloned version of the
1350 /// original loop, multiple cloned sibling loops may be created. All of them
1351 /// are returned so that the newly introduced loop nest roots can be
1352 /// identified.
1353 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1354                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1355                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1356   Loop *ClonedL = nullptr;
1357 
1358   auto *OrigPH = OrigL.getLoopPreheader();
1359   auto *OrigHeader = OrigL.getHeader();
1360 
1361   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1362   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1363 
1364   // We need to know the loops of the cloned exit blocks to even compute the
1365   // accurate parent loop. If we only clone exits to some parent of the
1366   // original parent, we want to clone into that outer loop. We also keep track
1367   // of the loops that our cloned exit blocks participate in.
1368   Loop *ParentL = nullptr;
1369   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1370   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1371   ClonedExitsInLoops.reserve(ExitBlocks.size());
1372   for (auto *ExitBB : ExitBlocks)
1373     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1374       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1375         ExitLoopMap[ClonedExitBB] = ExitL;
1376         ClonedExitsInLoops.push_back(ClonedExitBB);
1377         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1378           ParentL = ExitL;
1379       }
1380   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1381           ParentL->contains(OrigL.getParentLoop())) &&
1382          "The computed parent loop should always contain (or be) the parent of "
1383          "the original loop.");
1384 
1385   // We build the set of blocks dominated by the cloned header from the set of
1386   // cloned blocks out of the original loop. While not all of these will
1387   // necessarily be in the cloned loop, it is enough to establish that they
1388   // aren't in unreachable cycles, etc.
1389   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1390   for (auto *BB : OrigL.blocks())
1391     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1392       ClonedLoopBlocks.insert(ClonedBB);
1393 
1394   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1395   // skipped cloning some region of this loop which can in turn skip some of
1396   // the backedges so we have to rebuild the blocks in the loop based on the
1397   // backedges that remain after cloning.
1398   SmallVector<BasicBlock *, 16> Worklist;
1399   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1400   for (auto *Pred : predecessors(ClonedHeader)) {
1401     // The only possible non-loop header predecessor is the preheader because
1402     // we know we cloned the loop in simplified form.
1403     if (Pred == ClonedPH)
1404       continue;
1405 
1406     // Because the loop was in simplified form, the only non-loop predecessor
1407     // should be the preheader.
1408     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1409                                            "header other than the preheader "
1410                                            "that is not part of the loop!");
1411 
1412     // Insert this block into the loop set and on the first visit (and if it
1413     // isn't the header we're currently walking) put it into the worklist to
1414     // recurse through.
1415     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1416       Worklist.push_back(Pred);
1417   }
1418 
1419   // If we had any backedges then there *is* a cloned loop. Put the header into
1420   // the loop set and then walk the worklist backwards to find all the blocks
1421   // that remain within the loop after cloning.
1422   if (!BlocksInClonedLoop.empty()) {
1423     BlocksInClonedLoop.insert(ClonedHeader);
1424 
1425     while (!Worklist.empty()) {
1426       BasicBlock *BB = Worklist.pop_back_val();
1427       assert(BlocksInClonedLoop.count(BB) &&
1428              "Didn't put block into the loop set!");
1429 
1430       // Insert any predecessors that are in the possible set into the cloned
1431       // set, and if the insert is successful, add them to the worklist. Note
1432       // that we filter on the blocks that are definitely reachable via the
1433       // backedge to the loop header so we may prune out dead code within the
1434       // cloned loop.
1435       for (auto *Pred : predecessors(BB))
1436         if (ClonedLoopBlocks.count(Pred) &&
1437             BlocksInClonedLoop.insert(Pred).second)
1438           Worklist.push_back(Pred);
1439     }
1440 
1441     ClonedL = LI.AllocateLoop();
1442     if (ParentL) {
1443       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1444       ParentL->addChildLoop(ClonedL);
1445     } else {
1446       LI.addTopLevelLoop(ClonedL);
1447     }
1448     NonChildClonedLoops.push_back(ClonedL);
1449 
1450     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1451     // We don't want to just add the cloned loop blocks based on how we
1452     // discovered them. The original order of blocks was carefully built in
1453     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1454     // that logic, we just re-walk the original blocks (and those of the child
1455     // loops) and filter them as we add them into the cloned loop.
1456     for (auto *BB : OrigL.blocks()) {
1457       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1458       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1459         continue;
1460 
1461       // Directly add the blocks that are only in this loop.
1462       if (LI.getLoopFor(BB) == &OrigL) {
1463         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1464         continue;
1465       }
1466 
1467       // We want to manually add it to this loop and parents.
1468       // Registering it with LoopInfo will happen when we clone the top
1469       // loop for this block.
1470       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1471         PL->addBlockEntry(ClonedBB);
1472     }
1473 
1474     // Now add each child loop whose header remains within the cloned loop. All
1475     // of the blocks within the loop must satisfy the same constraints as the
1476     // header so once we pass the header checks we can just clone the entire
1477     // child loop nest.
1478     for (Loop *ChildL : OrigL) {
1479       auto *ClonedChildHeader =
1480           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1481       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1482         continue;
1483 
1484 #ifndef NDEBUG
1485       // We should never have a cloned child loop header but fail to have
1486       // all of the blocks for that child loop.
1487       for (auto *ChildLoopBB : ChildL->blocks())
1488         assert(BlocksInClonedLoop.count(
1489                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1490                "Child cloned loop has a header within the cloned outer "
1491                "loop but not all of its blocks!");
1492 #endif
1493 
1494       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1495     }
1496   }
1497 
1498   // Now that we've handled all the components of the original loop that were
1499   // cloned into a new loop, we still need to handle anything from the original
1500   // loop that wasn't in a cloned loop.
1501 
1502   // Figure out what blocks are left to place within any loop nest containing
1503   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1504   // them.
1505   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1506   if (BlocksInClonedLoop.empty())
1507     UnloopedBlockSet.insert(ClonedPH);
1508   for (auto *ClonedBB : ClonedLoopBlocks)
1509     if (!BlocksInClonedLoop.count(ClonedBB))
1510       UnloopedBlockSet.insert(ClonedBB);
1511 
1512   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1513   // backwards across these to process them inside out. The order shouldn't
1514   // matter as we're just trying to build up the map from inside-out; we use
1515   // the map in a more stably ordered way below.
1516   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1517   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1518     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1519            ExitLoopMap.lookup(RHS)->getLoopDepth();
1520   });
1521 
1522   // Populate the existing ExitLoopMap with everything reachable from each
1523   // exit, starting from the inner most exit.
1524   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1525     assert(Worklist.empty() && "Didn't clear worklist!");
1526 
1527     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1528     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1529 
1530     // Walk the CFG back until we hit the cloned PH adding everything reachable
1531     // and in the unlooped set to this exit block's loop.
1532     Worklist.push_back(ExitBB);
1533     do {
1534       BasicBlock *BB = Worklist.pop_back_val();
1535       // We can stop recursing at the cloned preheader (if we get there).
1536       if (BB == ClonedPH)
1537         continue;
1538 
1539       for (BasicBlock *PredBB : predecessors(BB)) {
1540         // If this pred has already been moved to our set or is part of some
1541         // (inner) loop, no update needed.
1542         if (!UnloopedBlockSet.erase(PredBB)) {
1543           assert(
1544               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1545               "Predecessor not mapped to a loop!");
1546           continue;
1547         }
1548 
1549         // We just insert into the loop set here. We'll add these blocks to the
1550         // exit loop after we build up the set in an order that doesn't rely on
1551         // predecessor order (which in turn relies on use list order).
1552         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1553         (void)Inserted;
1554         assert(Inserted && "Should only visit an unlooped block once!");
1555 
1556         // And recurse through to its predecessors.
1557         Worklist.push_back(PredBB);
1558       }
1559     } while (!Worklist.empty());
1560   }
1561 
1562   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1563   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1564   // in their original order adding them to the correct loop.
1565 
1566   // We need a stable insertion order. We use the order of the original loop
1567   // order and map into the correct parent loop.
1568   for (auto *BB : llvm::concat<BasicBlock *const>(
1569            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1570     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1571       OuterL->addBasicBlockToLoop(BB, LI);
1572 
1573 #ifndef NDEBUG
1574   for (auto &BBAndL : ExitLoopMap) {
1575     auto *BB = BBAndL.first;
1576     auto *OuterL = BBAndL.second;
1577     assert(LI.getLoopFor(BB) == OuterL &&
1578            "Failed to put all blocks into outer loops!");
1579   }
1580 #endif
1581 
1582   // Now that all the blocks are placed into the correct containing loop in the
1583   // absence of child loops, find all the potentially cloned child loops and
1584   // clone them into whatever outer loop we placed their header into.
1585   for (Loop *ChildL : OrigL) {
1586     auto *ClonedChildHeader =
1587         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1588     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1589       continue;
1590 
1591 #ifndef NDEBUG
1592     for (auto *ChildLoopBB : ChildL->blocks())
1593       assert(VMap.count(ChildLoopBB) &&
1594              "Cloned a child loop header but not all of that loops blocks!");
1595 #endif
1596 
1597     NonChildClonedLoops.push_back(cloneLoopNest(
1598         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1599   }
1600 }
1601 
1602 static void
1603 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1604                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1605                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1606   // Find all the dead clones, and remove them from their successors.
1607   SmallVector<BasicBlock *, 16> DeadBlocks;
1608   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1609     for (const auto &VMap : VMaps)
1610       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1611         if (!DT.isReachableFromEntry(ClonedBB)) {
1612           for (BasicBlock *SuccBB : successors(ClonedBB))
1613             SuccBB->removePredecessor(ClonedBB);
1614           DeadBlocks.push_back(ClonedBB);
1615         }
1616 
1617   // Remove all MemorySSA in the dead blocks
1618   if (MSSAU) {
1619     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1620                                                  DeadBlocks.end());
1621     MSSAU->removeBlocks(DeadBlockSet);
1622   }
1623 
1624   // Drop any remaining references to break cycles.
1625   for (BasicBlock *BB : DeadBlocks)
1626     BB->dropAllReferences();
1627   // Erase them from the IR.
1628   for (BasicBlock *BB : DeadBlocks)
1629     BB->eraseFromParent();
1630 }
1631 
1632 static void
1633 deleteDeadBlocksFromLoop(Loop &L,
1634                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1635                          DominatorTree &DT, LoopInfo &LI,
1636                          MemorySSAUpdater *MSSAU,
1637                          ScalarEvolution *SE,
1638                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1639   // Find all the dead blocks tied to this loop, and remove them from their
1640   // successors.
1641   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1642 
1643   // Start with loop/exit blocks and get a transitive closure of reachable dead
1644   // blocks.
1645   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1646                                                 ExitBlocks.end());
1647   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1648   while (!DeathCandidates.empty()) {
1649     auto *BB = DeathCandidates.pop_back_val();
1650     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1651       for (BasicBlock *SuccBB : successors(BB)) {
1652         SuccBB->removePredecessor(BB);
1653         DeathCandidates.push_back(SuccBB);
1654       }
1655       DeadBlockSet.insert(BB);
1656     }
1657   }
1658 
1659   // Remove all MemorySSA in the dead blocks
1660   if (MSSAU)
1661     MSSAU->removeBlocks(DeadBlockSet);
1662 
1663   // Filter out the dead blocks from the exit blocks list so that it can be
1664   // used in the caller.
1665   llvm::erase_if(ExitBlocks,
1666                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1667 
1668   // Walk from this loop up through its parents removing all of the dead blocks.
1669   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1670     for (auto *BB : DeadBlockSet)
1671       ParentL->getBlocksSet().erase(BB);
1672     llvm::erase_if(ParentL->getBlocksVector(),
1673                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1674   }
1675 
1676   // Now delete the dead child loops. This raw delete will clear them
1677   // recursively.
1678   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1679     if (!DeadBlockSet.count(ChildL->getHeader()))
1680       return false;
1681 
1682     assert(llvm::all_of(ChildL->blocks(),
1683                         [&](BasicBlock *ChildBB) {
1684                           return DeadBlockSet.count(ChildBB);
1685                         }) &&
1686            "If the child loop header is dead all blocks in the child loop must "
1687            "be dead as well!");
1688     DestroyLoopCB(*ChildL, ChildL->getName());
1689     if (SE)
1690       SE->forgetBlockAndLoopDispositions();
1691     LI.destroy(ChildL);
1692     return true;
1693   });
1694 
1695   // Remove the loop mappings for the dead blocks and drop all the references
1696   // from these blocks to others to handle cyclic references as we start
1697   // deleting the blocks themselves.
1698   for (auto *BB : DeadBlockSet) {
1699     // Check that the dominator tree has already been updated.
1700     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1701     LI.changeLoopFor(BB, nullptr);
1702     // Drop all uses of the instructions to make sure we won't have dangling
1703     // uses in other blocks.
1704     for (auto &I : *BB)
1705       if (!I.use_empty())
1706         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1707     BB->dropAllReferences();
1708   }
1709 
1710   // Actually delete the blocks now that they've been fully unhooked from the
1711   // IR.
1712   for (auto *BB : DeadBlockSet)
1713     BB->eraseFromParent();
1714 }
1715 
1716 /// Recompute the set of blocks in a loop after unswitching.
1717 ///
1718 /// This walks from the original headers predecessors to rebuild the loop. We
1719 /// take advantage of the fact that new blocks can't have been added, and so we
1720 /// filter by the original loop's blocks. This also handles potentially
1721 /// unreachable code that we don't want to explore but might be found examining
1722 /// the predecessors of the header.
1723 ///
1724 /// If the original loop is no longer a loop, this will return an empty set. If
1725 /// it remains a loop, all the blocks within it will be added to the set
1726 /// (including those blocks in inner loops).
1727 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1728                                                                  LoopInfo &LI) {
1729   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1730 
1731   auto *PH = L.getLoopPreheader();
1732   auto *Header = L.getHeader();
1733 
1734   // A worklist to use while walking backwards from the header.
1735   SmallVector<BasicBlock *, 16> Worklist;
1736 
1737   // First walk the predecessors of the header to find the backedges. This will
1738   // form the basis of our walk.
1739   for (auto *Pred : predecessors(Header)) {
1740     // Skip the preheader.
1741     if (Pred == PH)
1742       continue;
1743 
1744     // Because the loop was in simplified form, the only non-loop predecessor
1745     // is the preheader.
1746     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1747                                "than the preheader that is not part of the "
1748                                "loop!");
1749 
1750     // Insert this block into the loop set and on the first visit and, if it
1751     // isn't the header we're currently walking, put it into the worklist to
1752     // recurse through.
1753     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1754       Worklist.push_back(Pred);
1755   }
1756 
1757   // If no backedges were found, we're done.
1758   if (LoopBlockSet.empty())
1759     return LoopBlockSet;
1760 
1761   // We found backedges, recurse through them to identify the loop blocks.
1762   while (!Worklist.empty()) {
1763     BasicBlock *BB = Worklist.pop_back_val();
1764     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1765 
1766     // No need to walk past the header.
1767     if (BB == Header)
1768       continue;
1769 
1770     // Because we know the inner loop structure remains valid we can use the
1771     // loop structure to jump immediately across the entire nested loop.
1772     // Further, because it is in loop simplified form, we can directly jump
1773     // to its preheader afterward.
1774     if (Loop *InnerL = LI.getLoopFor(BB))
1775       if (InnerL != &L) {
1776         assert(L.contains(InnerL) &&
1777                "Should not reach a loop *outside* this loop!");
1778         // The preheader is the only possible predecessor of the loop so
1779         // insert it into the set and check whether it was already handled.
1780         auto *InnerPH = InnerL->getLoopPreheader();
1781         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1782                                       "but not contain the inner loop "
1783                                       "preheader!");
1784         if (!LoopBlockSet.insert(InnerPH).second)
1785           // The only way to reach the preheader is through the loop body
1786           // itself so if it has been visited the loop is already handled.
1787           continue;
1788 
1789         // Insert all of the blocks (other than those already present) into
1790         // the loop set. We expect at least the block that led us to find the
1791         // inner loop to be in the block set, but we may also have other loop
1792         // blocks if they were already enqueued as predecessors of some other
1793         // outer loop block.
1794         for (auto *InnerBB : InnerL->blocks()) {
1795           if (InnerBB == BB) {
1796             assert(LoopBlockSet.count(InnerBB) &&
1797                    "Block should already be in the set!");
1798             continue;
1799           }
1800 
1801           LoopBlockSet.insert(InnerBB);
1802         }
1803 
1804         // Add the preheader to the worklist so we will continue past the
1805         // loop body.
1806         Worklist.push_back(InnerPH);
1807         continue;
1808       }
1809 
1810     // Insert any predecessors that were in the original loop into the new
1811     // set, and if the insert is successful, add them to the worklist.
1812     for (auto *Pred : predecessors(BB))
1813       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1814         Worklist.push_back(Pred);
1815   }
1816 
1817   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1818 
1819   // We've found all the blocks participating in the loop, return our completed
1820   // set.
1821   return LoopBlockSet;
1822 }
1823 
1824 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1825 ///
1826 /// The removal may have removed some child loops entirely but cannot have
1827 /// disturbed any remaining child loops. However, they may need to be hoisted
1828 /// to the parent loop (or to be top-level loops). The original loop may be
1829 /// completely removed.
1830 ///
1831 /// The sibling loops resulting from this update are returned. If the original
1832 /// loop remains a valid loop, it will be the first entry in this list with all
1833 /// of the newly sibling loops following it.
1834 ///
1835 /// Returns true if the loop remains a loop after unswitching, and false if it
1836 /// is no longer a loop after unswitching (and should not continue to be
1837 /// referenced).
1838 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1839                                      LoopInfo &LI,
1840                                      SmallVectorImpl<Loop *> &HoistedLoops,
1841                                      ScalarEvolution *SE) {
1842   auto *PH = L.getLoopPreheader();
1843 
1844   // Compute the actual parent loop from the exit blocks. Because we may have
1845   // pruned some exits the loop may be different from the original parent.
1846   Loop *ParentL = nullptr;
1847   SmallVector<Loop *, 4> ExitLoops;
1848   SmallVector<BasicBlock *, 4> ExitsInLoops;
1849   ExitsInLoops.reserve(ExitBlocks.size());
1850   for (auto *ExitBB : ExitBlocks)
1851     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1852       ExitLoops.push_back(ExitL);
1853       ExitsInLoops.push_back(ExitBB);
1854       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1855         ParentL = ExitL;
1856     }
1857 
1858   // Recompute the blocks participating in this loop. This may be empty if it
1859   // is no longer a loop.
1860   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1861 
1862   // If we still have a loop, we need to re-set the loop's parent as the exit
1863   // block set changing may have moved it within the loop nest. Note that this
1864   // can only happen when this loop has a parent as it can only hoist the loop
1865   // *up* the nest.
1866   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1867     // Remove this loop's (original) blocks from all of the intervening loops.
1868     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1869          IL = IL->getParentLoop()) {
1870       IL->getBlocksSet().erase(PH);
1871       for (auto *BB : L.blocks())
1872         IL->getBlocksSet().erase(BB);
1873       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1874         return BB == PH || L.contains(BB);
1875       });
1876     }
1877 
1878     LI.changeLoopFor(PH, ParentL);
1879     L.getParentLoop()->removeChildLoop(&L);
1880     if (ParentL)
1881       ParentL->addChildLoop(&L);
1882     else
1883       LI.addTopLevelLoop(&L);
1884   }
1885 
1886   // Now we update all the blocks which are no longer within the loop.
1887   auto &Blocks = L.getBlocksVector();
1888   auto BlocksSplitI =
1889       LoopBlockSet.empty()
1890           ? Blocks.begin()
1891           : std::stable_partition(
1892                 Blocks.begin(), Blocks.end(),
1893                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1894 
1895   // Before we erase the list of unlooped blocks, build a set of them.
1896   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1897   if (LoopBlockSet.empty())
1898     UnloopedBlocks.insert(PH);
1899 
1900   // Now erase these blocks from the loop.
1901   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1902     L.getBlocksSet().erase(BB);
1903   Blocks.erase(BlocksSplitI, Blocks.end());
1904 
1905   // Sort the exits in ascending loop depth, we'll work backwards across these
1906   // to process them inside out.
1907   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1908     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1909   });
1910 
1911   // We'll build up a set for each exit loop.
1912   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1913   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1914 
1915   auto RemoveUnloopedBlocksFromLoop =
1916       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1917         for (auto *BB : UnloopedBlocks)
1918           L.getBlocksSet().erase(BB);
1919         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1920           return UnloopedBlocks.count(BB);
1921         });
1922       };
1923 
1924   SmallVector<BasicBlock *, 16> Worklist;
1925   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1926     assert(Worklist.empty() && "Didn't clear worklist!");
1927     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1928 
1929     // Grab the next exit block, in decreasing loop depth order.
1930     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1931     Loop &ExitL = *LI.getLoopFor(ExitBB);
1932     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1933 
1934     // Erase all of the unlooped blocks from the loops between the previous
1935     // exit loop and this exit loop. This works because the ExitInLoops list is
1936     // sorted in increasing order of loop depth and thus we visit loops in
1937     // decreasing order of loop depth.
1938     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1939       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1940 
1941     // Walk the CFG back until we hit the cloned PH adding everything reachable
1942     // and in the unlooped set to this exit block's loop.
1943     Worklist.push_back(ExitBB);
1944     do {
1945       BasicBlock *BB = Worklist.pop_back_val();
1946       // We can stop recursing at the cloned preheader (if we get there).
1947       if (BB == PH)
1948         continue;
1949 
1950       for (BasicBlock *PredBB : predecessors(BB)) {
1951         // If this pred has already been moved to our set or is part of some
1952         // (inner) loop, no update needed.
1953         if (!UnloopedBlocks.erase(PredBB)) {
1954           assert((NewExitLoopBlocks.count(PredBB) ||
1955                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1956                  "Predecessor not in a nested loop (or already visited)!");
1957           continue;
1958         }
1959 
1960         // We just insert into the loop set here. We'll add these blocks to the
1961         // exit loop after we build up the set in a deterministic order rather
1962         // than the predecessor-influenced visit order.
1963         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1964         (void)Inserted;
1965         assert(Inserted && "Should only visit an unlooped block once!");
1966 
1967         // And recurse through to its predecessors.
1968         Worklist.push_back(PredBB);
1969       }
1970     } while (!Worklist.empty());
1971 
1972     // If blocks in this exit loop were directly part of the original loop (as
1973     // opposed to a child loop) update the map to point to this exit loop. This
1974     // just updates a map and so the fact that the order is unstable is fine.
1975     for (auto *BB : NewExitLoopBlocks)
1976       if (Loop *BBL = LI.getLoopFor(BB))
1977         if (BBL == &L || !L.contains(BBL))
1978           LI.changeLoopFor(BB, &ExitL);
1979 
1980     // We will remove the remaining unlooped blocks from this loop in the next
1981     // iteration or below.
1982     NewExitLoopBlocks.clear();
1983   }
1984 
1985   // Any remaining unlooped blocks are no longer part of any loop unless they
1986   // are part of some child loop.
1987   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1988     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1989   for (auto *BB : UnloopedBlocks)
1990     if (Loop *BBL = LI.getLoopFor(BB))
1991       if (BBL == &L || !L.contains(BBL))
1992         LI.changeLoopFor(BB, nullptr);
1993 
1994   // Sink all the child loops whose headers are no longer in the loop set to
1995   // the parent (or to be top level loops). We reach into the loop and directly
1996   // update its subloop vector to make this batch update efficient.
1997   auto &SubLoops = L.getSubLoopsVector();
1998   auto SubLoopsSplitI =
1999       LoopBlockSet.empty()
2000           ? SubLoops.begin()
2001           : std::stable_partition(
2002                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2003                   return LoopBlockSet.count(SubL->getHeader());
2004                 });
2005   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2006     HoistedLoops.push_back(HoistedL);
2007     HoistedL->setParentLoop(nullptr);
2008 
2009     // To compute the new parent of this hoisted loop we look at where we
2010     // placed the preheader above. We can't lookup the header itself because we
2011     // retained the mapping from the header to the hoisted loop. But the
2012     // preheader and header should have the exact same new parent computed
2013     // based on the set of exit blocks from the original loop as the preheader
2014     // is a predecessor of the header and so reached in the reverse walk. And
2015     // because the loops were all in simplified form the preheader of the
2016     // hoisted loop can't be part of some *other* loop.
2017     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2018       NewParentL->addChildLoop(HoistedL);
2019     else
2020       LI.addTopLevelLoop(HoistedL);
2021   }
2022   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2023 
2024   // Actually delete the loop if nothing remained within it.
2025   if (Blocks.empty()) {
2026     assert(SubLoops.empty() &&
2027            "Failed to remove all subloops from the original loop!");
2028     if (Loop *ParentL = L.getParentLoop())
2029       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2030     else
2031       LI.removeLoop(llvm::find(LI, &L));
2032     // markLoopAsDeleted for L should be triggered by the caller (it is typically
2033     // done by using the UnswitchCB callback).
2034     if (SE)
2035       SE->forgetBlockAndLoopDispositions();
2036     LI.destroy(&L);
2037     return false;
2038   }
2039 
2040   return true;
2041 }
2042 
2043 /// Helper to visit a dominator subtree, invoking a callable on each node.
2044 ///
2045 /// Returning false at any point will stop walking past that node of the tree.
2046 template <typename CallableT>
2047 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2048   SmallVector<DomTreeNode *, 4> DomWorklist;
2049   DomWorklist.push_back(DT[BB]);
2050 #ifndef NDEBUG
2051   SmallPtrSet<DomTreeNode *, 4> Visited;
2052   Visited.insert(DT[BB]);
2053 #endif
2054   do {
2055     DomTreeNode *N = DomWorklist.pop_back_val();
2056 
2057     // Visit this node.
2058     if (!Callable(N->getBlock()))
2059       continue;
2060 
2061     // Accumulate the child nodes.
2062     for (DomTreeNode *ChildN : *N) {
2063       assert(Visited.insert(ChildN).second &&
2064              "Cannot visit a node twice when walking a tree!");
2065       DomWorklist.push_back(ChildN);
2066     }
2067   } while (!DomWorklist.empty());
2068 }
2069 
2070 static void unswitchNontrivialInvariants(
2071     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2072     IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2073     AssumptionCache &AC,
2074     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2075     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2076     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2077   auto *ParentBB = TI.getParent();
2078   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2079   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2080 
2081   // We can only unswitch switches, conditional branches with an invariant
2082   // condition, or combining invariant conditions with an instruction or
2083   // partially invariant instructions.
2084   assert((SI || (BI && BI->isConditional())) &&
2085          "Can only unswitch switches and conditional branch!");
2086   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2087   bool FullUnswitch =
2088       SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2089              !PartiallyInvariant);
2090   if (FullUnswitch)
2091     assert(Invariants.size() == 1 &&
2092            "Cannot have other invariants with full unswitching!");
2093   else
2094     assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2095            "Partial unswitching requires an instruction as the condition!");
2096 
2097   if (MSSAU && VerifyMemorySSA)
2098     MSSAU->getMemorySSA()->verifyMemorySSA();
2099 
2100   // Constant and BBs tracking the cloned and continuing successor. When we are
2101   // unswitching the entire condition, this can just be trivially chosen to
2102   // unswitch towards `true`. However, when we are unswitching a set of
2103   // invariants combined with `and` or `or` or partially invariant instructions,
2104   // the combining operation determines the best direction to unswitch: we want
2105   // to unswitch the direction that will collapse the branch.
2106   bool Direction = true;
2107   int ClonedSucc = 0;
2108   if (!FullUnswitch) {
2109     Value *Cond = skipTrivialSelect(BI->getCondition());
2110     (void)Cond;
2111     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2112             PartiallyInvariant) &&
2113            "Only `or`, `and`, an `select`, partially invariant instructions "
2114            "can combine invariants being unswitched.");
2115     if (!match(Cond, m_LogicalOr())) {
2116       if (match(Cond, m_LogicalAnd()) ||
2117           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2118         Direction = false;
2119         ClonedSucc = 1;
2120       }
2121     }
2122   }
2123 
2124   BasicBlock *RetainedSuccBB =
2125       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2126   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2127   if (BI)
2128     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2129   else
2130     for (auto Case : SI->cases())
2131       if (Case.getCaseSuccessor() != RetainedSuccBB)
2132         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2133 
2134   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2135          "Should not unswitch the same successor we are retaining!");
2136 
2137   // The branch should be in this exact loop. Any inner loop's invariant branch
2138   // should be handled by unswitching that inner loop. The caller of this
2139   // routine should filter out any candidates that remain (but were skipped for
2140   // whatever reason).
2141   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2142 
2143   // Compute the parent loop now before we start hacking on things.
2144   Loop *ParentL = L.getParentLoop();
2145   // Get blocks in RPO order for MSSA update, before changing the CFG.
2146   LoopBlocksRPO LBRPO(&L);
2147   if (MSSAU)
2148     LBRPO.perform(&LI);
2149 
2150   // Compute the outer-most loop containing one of our exit blocks. This is the
2151   // furthest up our loopnest which can be mutated, which we will use below to
2152   // update things.
2153   Loop *OuterExitL = &L;
2154   SmallVector<BasicBlock *, 4> ExitBlocks;
2155   L.getUniqueExitBlocks(ExitBlocks);
2156   for (auto *ExitBB : ExitBlocks) {
2157     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2158     if (!NewOuterExitL) {
2159       // We exited the entire nest with this block, so we're done.
2160       OuterExitL = nullptr;
2161       break;
2162     }
2163     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2164       OuterExitL = NewOuterExitL;
2165   }
2166 
2167   // At this point, we're definitely going to unswitch something so invalidate
2168   // any cached information in ScalarEvolution for the outer most loop
2169   // containing an exit block and all nested loops.
2170   if (SE) {
2171     if (OuterExitL)
2172       SE->forgetLoop(OuterExitL);
2173     else
2174       SE->forgetTopmostLoop(&L);
2175     SE->forgetBlockAndLoopDispositions();
2176   }
2177 
2178   bool InsertFreeze = false;
2179   if (FreezeLoopUnswitchCond) {
2180     ICFLoopSafetyInfo SafetyInfo;
2181     SafetyInfo.computeLoopSafetyInfo(&L);
2182     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2183   }
2184 
2185   // If the edge from this terminator to a successor dominates that successor,
2186   // store a map from each block in its dominator subtree to it. This lets us
2187   // tell when cloning for a particular successor if a block is dominated by
2188   // some *other* successor with a single data structure. We use this to
2189   // significantly reduce cloning.
2190   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2191   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2192            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2193     if (SuccBB->getUniquePredecessor() ||
2194         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2195           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2196         }))
2197       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2198         DominatingSucc[BB] = SuccBB;
2199         return true;
2200       });
2201 
2202   // Split the preheader, so that we know that there is a safe place to insert
2203   // the conditional branch. We will change the preheader to have a conditional
2204   // branch on LoopCond. The original preheader will become the split point
2205   // between the unswitched versions, and we will have a new preheader for the
2206   // original loop.
2207   BasicBlock *SplitBB = L.getLoopPreheader();
2208   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2209 
2210   // Keep track of the dominator tree updates needed.
2211   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2212 
2213   // Clone the loop for each unswitched successor.
2214   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2215   VMaps.reserve(UnswitchedSuccBBs.size());
2216   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2217   for (auto *SuccBB : UnswitchedSuccBBs) {
2218     VMaps.emplace_back(new ValueToValueMapTy());
2219     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2220         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2221         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2222   }
2223 
2224   // Drop metadata if we may break its semantics by moving this instr into the
2225   // split block.
2226   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2227     if (DropNonTrivialImplicitNullChecks)
2228       // Do not spend time trying to understand if we can keep it, just drop it
2229       // to save compile time.
2230       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2231     else {
2232       // It is only legal to preserve make.implicit metadata if we are
2233       // guaranteed no reach implicit null check after following this branch.
2234       ICFLoopSafetyInfo SafetyInfo;
2235       SafetyInfo.computeLoopSafetyInfo(&L);
2236       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2237         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2238     }
2239   }
2240 
2241   // The stitching of the branched code back together depends on whether we're
2242   // doing full unswitching or not with the exception that we always want to
2243   // nuke the initial terminator placed in the split block.
2244   SplitBB->getTerminator()->eraseFromParent();
2245   if (FullUnswitch) {
2246     // Splice the terminator from the original loop and rewrite its
2247     // successors.
2248     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2249 
2250     // Keep a clone of the terminator for MSSA updates.
2251     Instruction *NewTI = TI.clone();
2252     ParentBB->getInstList().push_back(NewTI);
2253 
2254     // First wire up the moved terminator to the preheaders.
2255     if (BI) {
2256       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2257       BI->setSuccessor(ClonedSucc, ClonedPH);
2258       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2259       Value *Cond = skipTrivialSelect(BI->getCondition());
2260       if (InsertFreeze) {
2261         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2262           Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI);
2263       }
2264       BI->setCondition(Cond);
2265       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2266     } else {
2267       assert(SI && "Must either be a branch or switch!");
2268 
2269       // Walk the cases and directly update their successors.
2270       assert(SI->getDefaultDest() == RetainedSuccBB &&
2271              "Not retaining default successor!");
2272       SI->setDefaultDest(LoopPH);
2273       for (const auto &Case : SI->cases())
2274         if (Case.getCaseSuccessor() == RetainedSuccBB)
2275           Case.setSuccessor(LoopPH);
2276         else
2277           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2278 
2279       if (InsertFreeze) {
2280         auto Cond = SI->getCondition();
2281         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2282           SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2283       }
2284       // We need to use the set to populate domtree updates as even when there
2285       // are multiple cases pointing at the same successor we only want to
2286       // remove and insert one edge in the domtree.
2287       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2288         DTUpdates.push_back(
2289             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2290     }
2291 
2292     if (MSSAU) {
2293       DT.applyUpdates(DTUpdates);
2294       DTUpdates.clear();
2295 
2296       // Remove all but one edge to the retained block and all unswitched
2297       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2298       // when we know we only keep a single edge for each case.
2299       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2300       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2301         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2302 
2303       for (auto &VMap : VMaps)
2304         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2305                                    /*IgnoreIncomingWithNoClones=*/true);
2306       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2307 
2308       // Remove all edges to unswitched blocks.
2309       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2310         MSSAU->removeEdge(ParentBB, SuccBB);
2311     }
2312 
2313     // Now unhook the successor relationship as we'll be replacing
2314     // the terminator with a direct branch. This is much simpler for branches
2315     // than switches so we handle those first.
2316     if (BI) {
2317       // Remove the parent as a predecessor of the unswitched successor.
2318       assert(UnswitchedSuccBBs.size() == 1 &&
2319              "Only one possible unswitched block for a branch!");
2320       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2321       UnswitchedSuccBB->removePredecessor(ParentBB,
2322                                           /*KeepOneInputPHIs*/ true);
2323       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2324     } else {
2325       // Note that we actually want to remove the parent block as a predecessor
2326       // of *every* case successor. The case successor is either unswitched,
2327       // completely eliminating an edge from the parent to that successor, or it
2328       // is a duplicate edge to the retained successor as the retained successor
2329       // is always the default successor and as we'll replace this with a direct
2330       // branch we no longer need the duplicate entries in the PHI nodes.
2331       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2332       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2333              "Not retaining default successor!");
2334       for (const auto &Case : NewSI->cases())
2335         Case.getCaseSuccessor()->removePredecessor(
2336             ParentBB,
2337             /*KeepOneInputPHIs*/ true);
2338 
2339       // We need to use the set to populate domtree updates as even when there
2340       // are multiple cases pointing at the same successor we only want to
2341       // remove and insert one edge in the domtree.
2342       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2343         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2344     }
2345 
2346     // After MSSAU update, remove the cloned terminator instruction NewTI.
2347     ParentBB->getTerminator()->eraseFromParent();
2348 
2349     // Create a new unconditional branch to the continuing block (as opposed to
2350     // the one cloned).
2351     BranchInst::Create(RetainedSuccBB, ParentBB);
2352   } else {
2353     assert(BI && "Only branches have partial unswitching.");
2354     assert(UnswitchedSuccBBs.size() == 1 &&
2355            "Only one possible unswitched block for a branch!");
2356     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2357     // When doing a partial unswitch, we have to do a bit more work to build up
2358     // the branch in the split block.
2359     if (PartiallyInvariant)
2360       buildPartialInvariantUnswitchConditionalBranch(
2361           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2362     else {
2363       buildPartialUnswitchConditionalBranch(
2364           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2365           FreezeLoopUnswitchCond, BI, &AC, DT);
2366     }
2367     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2368 
2369     if (MSSAU) {
2370       DT.applyUpdates(DTUpdates);
2371       DTUpdates.clear();
2372 
2373       // Perform MSSA cloning updates.
2374       for (auto &VMap : VMaps)
2375         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2376                                    /*IgnoreIncomingWithNoClones=*/true);
2377       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2378     }
2379   }
2380 
2381   // Apply the updates accumulated above to get an up-to-date dominator tree.
2382   DT.applyUpdates(DTUpdates);
2383 
2384   // Now that we have an accurate dominator tree, first delete the dead cloned
2385   // blocks so that we can accurately build any cloned loops. It is important to
2386   // not delete the blocks from the original loop yet because we still want to
2387   // reference the original loop to understand the cloned loop's structure.
2388   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2389 
2390   // Build the cloned loop structure itself. This may be substantially
2391   // different from the original structure due to the simplified CFG. This also
2392   // handles inserting all the cloned blocks into the correct loops.
2393   SmallVector<Loop *, 4> NonChildClonedLoops;
2394   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2395     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2396 
2397   // Now that our cloned loops have been built, we can update the original loop.
2398   // First we delete the dead blocks from it and then we rebuild the loop
2399   // structure taking these deletions into account.
2400   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB);
2401 
2402   if (MSSAU && VerifyMemorySSA)
2403     MSSAU->getMemorySSA()->verifyMemorySSA();
2404 
2405   SmallVector<Loop *, 4> HoistedLoops;
2406   bool IsStillLoop =
2407       rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2408 
2409   if (MSSAU && VerifyMemorySSA)
2410     MSSAU->getMemorySSA()->verifyMemorySSA();
2411 
2412   // This transformation has a high risk of corrupting the dominator tree, and
2413   // the below steps to rebuild loop structures will result in hard to debug
2414   // errors in that case so verify that the dominator tree is sane first.
2415   // FIXME: Remove this when the bugs stop showing up and rely on existing
2416   // verification steps.
2417   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2418 
2419   if (BI && !PartiallyInvariant) {
2420     // If we unswitched a branch which collapses the condition to a known
2421     // constant we want to replace all the uses of the invariants within both
2422     // the original and cloned blocks. We do this here so that we can use the
2423     // now updated dominator tree to identify which side the users are on.
2424     assert(UnswitchedSuccBBs.size() == 1 &&
2425            "Only one possible unswitched block for a branch!");
2426     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2427 
2428     // When considering multiple partially-unswitched invariants
2429     // we cant just go replace them with constants in both branches.
2430     //
2431     // For 'AND' we infer that true branch ("continue") means true
2432     // for each invariant operand.
2433     // For 'OR' we can infer that false branch ("continue") means false
2434     // for each invariant operand.
2435     // So it happens that for multiple-partial case we dont replace
2436     // in the unswitched branch.
2437     bool ReplaceUnswitched =
2438         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2439 
2440     ConstantInt *UnswitchedReplacement =
2441         Direction ? ConstantInt::getTrue(BI->getContext())
2442                   : ConstantInt::getFalse(BI->getContext());
2443     ConstantInt *ContinueReplacement =
2444         Direction ? ConstantInt::getFalse(BI->getContext())
2445                   : ConstantInt::getTrue(BI->getContext());
2446     for (Value *Invariant : Invariants) {
2447       assert(!isa<Constant>(Invariant) &&
2448              "Should not be replacing constant values!");
2449       // Use make_early_inc_range here as set invalidates the iterator.
2450       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2451         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2452         if (!UserI)
2453           continue;
2454 
2455         // Replace it with the 'continue' side if in the main loop body, and the
2456         // unswitched if in the cloned blocks.
2457         if (DT.dominates(LoopPH, UserI->getParent()))
2458           U.set(ContinueReplacement);
2459         else if (ReplaceUnswitched &&
2460                  DT.dominates(ClonedPH, UserI->getParent()))
2461           U.set(UnswitchedReplacement);
2462       }
2463     }
2464   }
2465 
2466   // We can change which blocks are exit blocks of all the cloned sibling
2467   // loops, the current loop, and any parent loops which shared exit blocks
2468   // with the current loop. As a consequence, we need to re-form LCSSA for
2469   // them. But we shouldn't need to re-form LCSSA for any child loops.
2470   // FIXME: This could be made more efficient by tracking which exit blocks are
2471   // new, and focusing on them, but that isn't likely to be necessary.
2472   //
2473   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2474   // loop nest and update every loop that could have had its exits changed. We
2475   // also need to cover any intervening loops. We add all of these loops to
2476   // a list and sort them by loop depth to achieve this without updating
2477   // unnecessary loops.
2478   auto UpdateLoop = [&](Loop &UpdateL) {
2479 #ifndef NDEBUG
2480     UpdateL.verifyLoop();
2481     for (Loop *ChildL : UpdateL) {
2482       ChildL->verifyLoop();
2483       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2484              "Perturbed a child loop's LCSSA form!");
2485     }
2486 #endif
2487     // First build LCSSA for this loop so that we can preserve it when
2488     // forming dedicated exits. We don't want to perturb some other loop's
2489     // LCSSA while doing that CFG edit.
2490     formLCSSA(UpdateL, DT, &LI, SE);
2491 
2492     // For loops reached by this loop's original exit blocks we may
2493     // introduced new, non-dedicated exits. At least try to re-form dedicated
2494     // exits for these loops. This may fail if they couldn't have dedicated
2495     // exits to start with.
2496     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2497   };
2498 
2499   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2500   // and we can do it in any order as they don't nest relative to each other.
2501   //
2502   // Also check if any of the loops we have updated have become top-level loops
2503   // as that will necessitate widening the outer loop scope.
2504   for (Loop *UpdatedL :
2505        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2506     UpdateLoop(*UpdatedL);
2507     if (UpdatedL->isOutermost())
2508       OuterExitL = nullptr;
2509   }
2510   if (IsStillLoop) {
2511     UpdateLoop(L);
2512     if (L.isOutermost())
2513       OuterExitL = nullptr;
2514   }
2515 
2516   // If the original loop had exit blocks, walk up through the outer most loop
2517   // of those exit blocks to update LCSSA and form updated dedicated exits.
2518   if (OuterExitL != &L)
2519     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2520          OuterL = OuterL->getParentLoop())
2521       UpdateLoop(*OuterL);
2522 
2523 #ifndef NDEBUG
2524   // Verify the entire loop structure to catch any incorrect updates before we
2525   // progress in the pass pipeline.
2526   LI.verify(DT);
2527 #endif
2528 
2529   // Now that we've unswitched something, make callbacks to report the changes.
2530   // For that we need to merge together the updated loops and the cloned loops
2531   // and check whether the original loop survived.
2532   SmallVector<Loop *, 4> SibLoops;
2533   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2534     if (UpdatedL->getParentLoop() == ParentL)
2535       SibLoops.push_back(UpdatedL);
2536   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2537 
2538   if (MSSAU && VerifyMemorySSA)
2539     MSSAU->getMemorySSA()->verifyMemorySSA();
2540 
2541   if (BI)
2542     ++NumBranches;
2543   else
2544     ++NumSwitches;
2545 }
2546 
2547 /// Recursively compute the cost of a dominator subtree based on the per-block
2548 /// cost map provided.
2549 ///
2550 /// The recursive computation is memozied into the provided DT-indexed cost map
2551 /// to allow querying it for most nodes in the domtree without it becoming
2552 /// quadratic.
2553 static InstructionCost computeDomSubtreeCost(
2554     DomTreeNode &N,
2555     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2556     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2557   // Don't accumulate cost (or recurse through) blocks not in our block cost
2558   // map and thus not part of the duplication cost being considered.
2559   auto BBCostIt = BBCostMap.find(N.getBlock());
2560   if (BBCostIt == BBCostMap.end())
2561     return 0;
2562 
2563   // Lookup this node to see if we already computed its cost.
2564   auto DTCostIt = DTCostMap.find(&N);
2565   if (DTCostIt != DTCostMap.end())
2566     return DTCostIt->second;
2567 
2568   // If not, we have to compute it. We can't use insert above and update
2569   // because computing the cost may insert more things into the map.
2570   InstructionCost Cost = std::accumulate(
2571       N.begin(), N.end(), BBCostIt->second,
2572       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2573         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2574       });
2575   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2576   (void)Inserted;
2577   assert(Inserted && "Should not insert a node while visiting children!");
2578   return Cost;
2579 }
2580 
2581 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2582 /// making the following replacement:
2583 ///
2584 ///   --code before guard--
2585 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2586 ///   --code after guard--
2587 ///
2588 /// into
2589 ///
2590 ///   --code before guard--
2591 ///   br i1 %cond, label %guarded, label %deopt
2592 ///
2593 /// guarded:
2594 ///   --code after guard--
2595 ///
2596 /// deopt:
2597 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2598 ///   unreachable
2599 ///
2600 /// It also makes all relevant DT and LI updates, so that all structures are in
2601 /// valid state after this transform.
2602 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2603                                        DominatorTree &DT, LoopInfo &LI,
2604                                        MemorySSAUpdater *MSSAU) {
2605   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2606   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2607   BasicBlock *CheckBB = GI->getParent();
2608 
2609   if (MSSAU && VerifyMemorySSA)
2610      MSSAU->getMemorySSA()->verifyMemorySSA();
2611 
2612   // Remove all CheckBB's successors from DomTree. A block can be seen among
2613   // successors more than once, but for DomTree it should be added only once.
2614   SmallPtrSet<BasicBlock *, 4> Successors;
2615   for (auto *Succ : successors(CheckBB))
2616     if (Successors.insert(Succ).second)
2617       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2618 
2619   Instruction *DeoptBlockTerm =
2620       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2621   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2622   // SplitBlockAndInsertIfThen inserts control flow that branches to
2623   // DeoptBlockTerm if the condition is true.  We want the opposite.
2624   CheckBI->swapSuccessors();
2625 
2626   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2627   GuardedBlock->setName("guarded");
2628   CheckBI->getSuccessor(1)->setName("deopt");
2629   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2630 
2631   if (MSSAU)
2632     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2633 
2634   GI->moveBefore(DeoptBlockTerm);
2635   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2636 
2637   // Add new successors of CheckBB into DomTree.
2638   for (auto *Succ : successors(CheckBB))
2639     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2640 
2641   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2642   // successors.
2643   for (auto *Succ : Successors)
2644     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2645 
2646   // Make proper changes to DT.
2647   DT.applyUpdates(DTUpdates);
2648   // Inform LI of a new loop block.
2649   L.addBasicBlockToLoop(GuardedBlock, LI);
2650 
2651   if (MSSAU) {
2652     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2653     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2654     if (VerifyMemorySSA)
2655       MSSAU->getMemorySSA()->verifyMemorySSA();
2656   }
2657 
2658   ++NumGuards;
2659   return CheckBI;
2660 }
2661 
2662 /// Cost multiplier is a way to limit potentially exponential behavior
2663 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2664 /// candidates available. Also accounting for the number of "sibling" loops with
2665 /// the idea to account for previous unswitches that already happened on this
2666 /// cluster of loops. There was an attempt to keep this formula simple,
2667 /// just enough to limit the worst case behavior. Even if it is not that simple
2668 /// now it is still not an attempt to provide a detailed heuristic size
2669 /// prediction.
2670 ///
2671 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2672 /// unswitch candidates, making adequate predictions instead of wild guesses.
2673 /// That requires knowing not just the number of "remaining" candidates but
2674 /// also costs of unswitching for each of these candidates.
2675 static int CalculateUnswitchCostMultiplier(
2676     const Instruction &TI, const Loop &L, const LoopInfo &LI,
2677     const DominatorTree &DT,
2678     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2679 
2680   // Guards and other exiting conditions do not contribute to exponential
2681   // explosion as soon as they dominate the latch (otherwise there might be
2682   // another path to the latch remaining that does not allow to eliminate the
2683   // loop copy on unswitch).
2684   const BasicBlock *Latch = L.getLoopLatch();
2685   const BasicBlock *CondBlock = TI.getParent();
2686   if (DT.dominates(CondBlock, Latch) &&
2687       (isGuard(&TI) ||
2688        llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2689          return L.contains(SuccBB);
2690        }) <= 1)) {
2691     NumCostMultiplierSkipped++;
2692     return 1;
2693   }
2694 
2695   auto *ParentL = L.getParentLoop();
2696   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2697                                : std::distance(LI.begin(), LI.end()));
2698   // Count amount of clones that all the candidates might cause during
2699   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2700   int UnswitchedClones = 0;
2701   for (auto Candidate : UnswitchCandidates) {
2702     const Instruction *CI = Candidate.TI;
2703     const BasicBlock *CondBlock = CI->getParent();
2704     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2705     if (isGuard(CI)) {
2706       if (!SkipExitingSuccessors)
2707         UnswitchedClones++;
2708       continue;
2709     }
2710     int NonExitingSuccessors =
2711         llvm::count_if(successors(CondBlock),
2712                        [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2713           return !SkipExitingSuccessors || L.contains(SuccBB);
2714         });
2715     UnswitchedClones += Log2_32(NonExitingSuccessors);
2716   }
2717 
2718   // Ignore up to the "unscaled candidates" number of unswitch candidates
2719   // when calculating the power-of-two scaling of the cost. The main idea
2720   // with this control is to allow a small number of unswitches to happen
2721   // and rely more on siblings multiplier (see below) when the number
2722   // of candidates is small.
2723   unsigned ClonesPower =
2724       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2725 
2726   // Allowing top-level loops to spread a bit more than nested ones.
2727   int SiblingsMultiplier =
2728       std::max((ParentL ? SiblingsCount
2729                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2730                1);
2731   // Compute the cost multiplier in a way that won't overflow by saturating
2732   // at an upper bound.
2733   int CostMultiplier;
2734   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2735       SiblingsMultiplier > UnswitchThreshold)
2736     CostMultiplier = UnswitchThreshold;
2737   else
2738     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2739                               (int)UnswitchThreshold);
2740 
2741   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2742                     << " (siblings " << SiblingsMultiplier << " * clones "
2743                     << (1 << ClonesPower) << ")"
2744                     << " for unswitch candidate: " << TI << "\n");
2745   return CostMultiplier;
2746 }
2747 
2748 static bool collectUnswitchCandidates(
2749     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2750     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2751     const Loop &L, const LoopInfo &LI, AAResults &AA,
2752     const MemorySSAUpdater *MSSAU) {
2753   assert(UnswitchCandidates.empty() && "Should be!");
2754   // Whether or not we should also collect guards in the loop.
2755   bool CollectGuards = false;
2756   if (UnswitchGuards) {
2757     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2758         Intrinsic::getName(Intrinsic::experimental_guard));
2759     if (GuardDecl && !GuardDecl->use_empty())
2760       CollectGuards = true;
2761   }
2762 
2763   for (auto *BB : L.blocks()) {
2764     if (LI.getLoopFor(BB) != &L)
2765       continue;
2766 
2767     if (CollectGuards)
2768       for (auto &I : *BB)
2769         if (isGuard(&I)) {
2770           auto *Cond =
2771               skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2772           // TODO: Support AND, OR conditions and partial unswitching.
2773           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2774             UnswitchCandidates.push_back({&I, {Cond}});
2775         }
2776 
2777     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2778       // We can only consider fully loop-invariant switch conditions as we need
2779       // to completely eliminate the switch after unswitching.
2780       if (!isa<Constant>(SI->getCondition()) &&
2781           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2782         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2783       continue;
2784     }
2785 
2786     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2787     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2788         BI->getSuccessor(0) == BI->getSuccessor(1))
2789       continue;
2790 
2791     Value *Cond = skipTrivialSelect(BI->getCondition());
2792     if (isa<Constant>(Cond))
2793       continue;
2794 
2795     if (L.isLoopInvariant(Cond)) {
2796       UnswitchCandidates.push_back({BI, {Cond}});
2797       continue;
2798     }
2799 
2800     Instruction &CondI = *cast<Instruction>(Cond);
2801     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2802       TinyPtrVector<Value *> Invariants =
2803           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2804       if (Invariants.empty())
2805         continue;
2806 
2807       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2808       continue;
2809     }
2810   }
2811 
2812   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2813       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2814          return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2815        })) {
2816     MemorySSA *MSSA = MSSAU->getMemorySSA();
2817     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2818       LLVM_DEBUG(
2819           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2820                  << *Info->InstToDuplicate[0] << "\n");
2821       PartialIVInfo = *Info;
2822       PartialIVCondBranch = L.getHeader()->getTerminator();
2823       TinyPtrVector<Value *> ValsToDuplicate;
2824       llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2825       UnswitchCandidates.push_back(
2826           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2827     }
2828   }
2829   return !UnswitchCandidates.empty();
2830 }
2831 
2832 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
2833   if (!L.isSafeToClone())
2834     return false;
2835   for (auto *BB : L.blocks())
2836     for (auto &I : *BB) {
2837       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2838         return false;
2839       if (auto *CB = dyn_cast<CallBase>(&I)) {
2840         assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
2841         if (CB->isConvergent())
2842           return false;
2843       }
2844     }
2845 
2846   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2847   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2848   // irreducible control flow into reducible control flow and introduce new
2849   // loops "out of thin air". If we ever discover important use cases for doing
2850   // this, we can add support to loop unswitch, but it is a lot of complexity
2851   // for what seems little or no real world benefit.
2852   LoopBlocksRPO RPOT(&L);
2853   RPOT.perform(&LI);
2854   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2855     return false;
2856 
2857   SmallVector<BasicBlock *, 4> ExitBlocks;
2858   L.getUniqueExitBlocks(ExitBlocks);
2859   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2860   // instruction as we don't know how to split those exit blocks.
2861   // FIXME: We should teach SplitBlock to handle this and remove this
2862   // restriction.
2863   for (auto *ExitBB : ExitBlocks) {
2864     auto *I = ExitBB->getFirstNonPHI();
2865     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2866       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2867                            "in exit block\n");
2868       return false;
2869     }
2870   }
2871 
2872   return true;
2873 }
2874 
2875 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
2876     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
2877     const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
2878     const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
2879   // Given that unswitching these terminators will require duplicating parts of
2880   // the loop, so we need to be able to model that cost. Compute the ephemeral
2881   // values and set up a data structure to hold per-BB costs. We cache each
2882   // block's cost so that we don't recompute this when considering different
2883   // subsets of the loop for duplication during unswitching.
2884   SmallPtrSet<const Value *, 4> EphValues;
2885   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2886   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2887 
2888   // Compute the cost of each block, as well as the total loop cost. Also, bail
2889   // out if we see instructions which are incompatible with loop unswitching
2890   // (convergent, noduplicate, or cross-basic-block tokens).
2891   // FIXME: We might be able to safely handle some of these in non-duplicated
2892   // regions.
2893   TargetTransformInfo::TargetCostKind CostKind =
2894       L.getHeader()->getParent()->hasMinSize()
2895       ? TargetTransformInfo::TCK_CodeSize
2896       : TargetTransformInfo::TCK_SizeAndLatency;
2897   InstructionCost LoopCost = 0;
2898   for (auto *BB : L.blocks()) {
2899     InstructionCost Cost = 0;
2900     for (auto &I : *BB) {
2901       if (EphValues.count(&I))
2902         continue;
2903       Cost += TTI.getInstructionCost(&I, CostKind);
2904     }
2905     assert(Cost >= 0 && "Must not have negative costs!");
2906     LoopCost += Cost;
2907     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2908     BBCostMap[BB] = Cost;
2909   }
2910   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2911 
2912   // Now we find the best candidate by searching for the one with the following
2913   // properties in order:
2914   //
2915   // 1) An unswitching cost below the threshold
2916   // 2) The smallest number of duplicated unswitch candidates (to avoid
2917   //    creating redundant subsequent unswitching)
2918   // 3) The smallest cost after unswitching.
2919   //
2920   // We prioritize reducing fanout of unswitch candidates provided the cost
2921   // remains below the threshold because this has a multiplicative effect.
2922   //
2923   // This requires memoizing each dominator subtree to avoid redundant work.
2924   //
2925   // FIXME: Need to actually do the number of candidates part above.
2926   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2927   // Given a terminator which might be unswitched, computes the non-duplicated
2928   // cost for that terminator.
2929   auto ComputeUnswitchedCost = [&](Instruction &TI,
2930                                    bool FullUnswitch) -> InstructionCost {
2931     BasicBlock &BB = *TI.getParent();
2932     SmallPtrSet<BasicBlock *, 4> Visited;
2933 
2934     InstructionCost Cost = 0;
2935     for (BasicBlock *SuccBB : successors(&BB)) {
2936       // Don't count successors more than once.
2937       if (!Visited.insert(SuccBB).second)
2938         continue;
2939 
2940       // If this is a partial unswitch candidate, then it must be a conditional
2941       // branch with a condition of either `or`, `and`, their corresponding
2942       // select forms or partially invariant instructions. In that case, one of
2943       // the successors is necessarily duplicated, so don't even try to remove
2944       // its cost.
2945       if (!FullUnswitch) {
2946         auto &BI = cast<BranchInst>(TI);
2947         Value *Cond = skipTrivialSelect(BI.getCondition());
2948         if (match(Cond, m_LogicalAnd())) {
2949           if (SuccBB == BI.getSuccessor(1))
2950             continue;
2951         } else if (match(Cond, m_LogicalOr())) {
2952           if (SuccBB == BI.getSuccessor(0))
2953             continue;
2954         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2955                     SuccBB == BI.getSuccessor(0)) ||
2956                    (!PartialIVInfo.KnownValue->isOneValue() &&
2957                     SuccBB == BI.getSuccessor(1)))
2958           continue;
2959       }
2960 
2961       // This successor's domtree will not need to be duplicated after
2962       // unswitching if the edge to the successor dominates it (and thus the
2963       // entire tree). This essentially means there is no other path into this
2964       // subtree and so it will end up live in only one clone of the loop.
2965       if (SuccBB->getUniquePredecessor() ||
2966           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2967             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2968           })) {
2969         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2970         assert(Cost <= LoopCost &&
2971                "Non-duplicated cost should never exceed total loop cost!");
2972       }
2973     }
2974 
2975     // Now scale the cost by the number of unique successors minus one. We
2976     // subtract one because there is already at least one copy of the entire
2977     // loop. This is computing the new cost of unswitching a condition.
2978     // Note that guards always have 2 unique successors that are implicit and
2979     // will be materialized if we decide to unswitch it.
2980     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2981     assert(SuccessorsCount > 1 &&
2982            "Cannot unswitch a condition without multiple distinct successors!");
2983     return (LoopCost - Cost) * (SuccessorsCount - 1);
2984   };
2985 
2986   Optional<NonTrivialUnswitchCandidate> Best;
2987   for (auto &Candidate : UnswitchCandidates) {
2988     Instruction &TI = *Candidate.TI;
2989     ArrayRef<Value *> Invariants = Candidate.Invariants;
2990     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2991     InstructionCost CandidateCost = ComputeUnswitchedCost(
2992         TI, /*FullUnswitch*/ !BI ||
2993                 (Invariants.size() == 1 &&
2994                  Invariants[0] == skipTrivialSelect(BI->getCondition())));
2995     // Calculate cost multiplier which is a tool to limit potentially
2996     // exponential behavior of loop-unswitch.
2997     if (EnableUnswitchCostMultiplier) {
2998       int CostMultiplier =
2999           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3000       assert(
3001           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3002           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3003       CandidateCost *= CostMultiplier;
3004       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3005                         << " (multiplier: " << CostMultiplier << ")"
3006                         << " for unswitch candidate: " << TI << "\n");
3007     } else {
3008       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3009                         << " for unswitch candidate: " << TI << "\n");
3010     }
3011 
3012     if (!Best || CandidateCost < Best->Cost) {
3013       Best = Candidate;
3014       Best->Cost = CandidateCost;
3015     }
3016   }
3017   assert(Best && "Must be!");
3018   return *Best;
3019 }
3020 
3021 static bool unswitchBestCondition(
3022     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3023     AAResults &AA, TargetTransformInfo &TTI,
3024     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3025     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3026     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3027   // Collect all invariant conditions within this loop (as opposed to an inner
3028   // loop which would be handled when visiting that inner loop).
3029   SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3030   IVConditionInfo PartialIVInfo;
3031   Instruction *PartialIVCondBranch = nullptr;
3032   // If we didn't find any candidates, we're done.
3033   if (!collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3034                                  PartialIVCondBranch, L, LI, AA, MSSAU))
3035     return false;
3036 
3037   LLVM_DEBUG(
3038       dbgs() << "Considering " << UnswitchCandidates.size()
3039              << " non-trivial loop invariant conditions for unswitching.\n");
3040 
3041   NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3042       UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3043 
3044   assert(Best.TI && "Failed to find loop unswitch candidate");
3045   assert(Best.Cost && "Failed to compute cost");
3046 
3047   if (*Best.Cost >= UnswitchThreshold) {
3048     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3049                       << "\n");
3050     return false;
3051   }
3052 
3053   if (Best.TI != PartialIVCondBranch)
3054     PartialIVInfo.InstToDuplicate.clear();
3055 
3056   // If the best candidate is a guard, turn it into a branch.
3057   if (isGuard(Best.TI))
3058     Best.TI =
3059         turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3060 
3061   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = " << Best.Cost
3062                     << ") terminator: " << *Best.TI << "\n");
3063   unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3064                                LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB);
3065   return true;
3066 }
3067 
3068 /// Unswitch control flow predicated on loop invariant conditions.
3069 ///
3070 /// This first hoists all branches or switches which are trivial (IE, do not
3071 /// require duplicating any part of the loop) out of the loop body. It then
3072 /// looks at other loop invariant control flows and tries to unswitch those as
3073 /// well by cloning the loop if the result is small enough.
3074 ///
3075 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3076 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3077 /// valid (i.e. its use is enabled).
3078 ///
3079 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3080 /// true, we will attempt to do non-trivial unswitching as well as trivial
3081 /// unswitching.
3082 ///
3083 /// The `UnswitchCB` callback provided will be run after unswitching is
3084 /// complete, with the first parameter set to `true` if the provided loop
3085 /// remains a loop, and a list of new sibling loops created.
3086 ///
3087 /// If `SE` is non-null, we will update that analysis based on the unswitching
3088 /// done.
3089 static bool
3090 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3091              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3092              bool NonTrivial,
3093              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3094              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3095              ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
3096              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3097   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3098          "Loops must be in LCSSA form before unswitching.");
3099 
3100   // Must be in loop simplified form: we need a preheader and dedicated exits.
3101   if (!L.isLoopSimplifyForm())
3102     return false;
3103 
3104   // Try trivial unswitch first before loop over other basic blocks in the loop.
3105   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3106     // If we unswitched successfully we will want to clean up the loop before
3107     // processing it further so just mark it as unswitched and return.
3108     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3109     return true;
3110   }
3111 
3112   // Check whether we should continue with non-trivial conditions.
3113   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3114   //                           unswitching for testing and debugging.
3115   // NonTrivial: Parameter that enables non-trivial unswitching for this
3116   //             invocation of the transform. But this should be allowed only
3117   //             for targets without branch divergence.
3118   //
3119   // FIXME: If divergence analysis becomes available to a loop
3120   // transform, we should allow unswitching for non-trivial uniform
3121   // branches even on targets that have divergence.
3122   // https://bugs.llvm.org/show_bug.cgi?id=48819
3123   bool ContinueWithNonTrivial =
3124       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3125   if (!ContinueWithNonTrivial)
3126     return false;
3127 
3128   // Skip non-trivial unswitching for optsize functions.
3129   if (L.getHeader()->getParent()->hasOptSize())
3130     return false;
3131 
3132   // Skip cold loops, as unswitching them brings little benefit
3133   // but increases the code size
3134   if (PSI && PSI->hasProfileSummary() && BFI &&
3135       PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) {
3136     LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3137     return false;
3138   }
3139 
3140   // Perform legality checks.
3141   if (!isSafeForNoNTrivialUnswitching(L, LI))
3142     return false;
3143 
3144   // For non-trivial unswitching, because it often creates new loops, we rely on
3145   // the pass manager to iterate on the loops rather than trying to immediately
3146   // reach a fixed point. There is no substantial advantage to iterating
3147   // internally, and if any of the new loops are simplified enough to contain
3148   // trivial unswitching we want to prefer those.
3149 
3150   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3151   // a partial unswitch when possible below the threshold.
3152   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3153                             DestroyLoopCB))
3154     return true;
3155 
3156   // No other opportunities to unswitch.
3157   return false;
3158 }
3159 
3160 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3161                                               LoopStandardAnalysisResults &AR,
3162                                               LPMUpdater &U) {
3163   Function &F = *L.getHeader()->getParent();
3164   (void)F;
3165   ProfileSummaryInfo *PSI = nullptr;
3166   if (auto OuterProxy =
3167           AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3168               .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3169     PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3170   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3171                     << "\n");
3172 
3173   // Save the current loop name in a variable so that we can report it even
3174   // after it has been deleted.
3175   std::string LoopName = std::string(L.getName());
3176 
3177   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3178                                         bool PartiallyInvariant,
3179                                         ArrayRef<Loop *> NewLoops) {
3180     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3181     if (!NewLoops.empty())
3182       U.addSiblingLoops(NewLoops);
3183 
3184     // If the current loop remains valid, we should revisit it to catch any
3185     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3186     if (CurrentLoopValid) {
3187       if (PartiallyInvariant) {
3188         // Mark the new loop as partially unswitched, to avoid unswitching on
3189         // the same condition again.
3190         auto &Context = L.getHeader()->getContext();
3191         MDNode *DisableUnswitchMD = MDNode::get(
3192             Context,
3193             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3194         MDNode *NewLoopID = makePostTransformationMetadata(
3195             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3196             {DisableUnswitchMD});
3197         L.setLoopID(NewLoopID);
3198       } else
3199         U.revisitCurrentLoop();
3200     } else
3201       U.markLoopAsDeleted(L, LoopName);
3202   };
3203 
3204   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3205     U.markLoopAsDeleted(L, Name);
3206   };
3207 
3208   Optional<MemorySSAUpdater> MSSAU;
3209   if (AR.MSSA) {
3210     MSSAU = MemorySSAUpdater(AR.MSSA);
3211     if (VerifyMemorySSA)
3212       AR.MSSA->verifyMemorySSA();
3213   }
3214   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3215                     UnswitchCB, &AR.SE, MSSAU ? MSSAU.getPointer() : nullptr,
3216                     PSI, AR.BFI, DestroyLoopCB))
3217     return PreservedAnalyses::all();
3218 
3219   if (AR.MSSA && VerifyMemorySSA)
3220     AR.MSSA->verifyMemorySSA();
3221 
3222   // Historically this pass has had issues with the dominator tree so verify it
3223   // in asserts builds.
3224   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3225 
3226   auto PA = getLoopPassPreservedAnalyses();
3227   if (AR.MSSA)
3228     PA.preserve<MemorySSAAnalysis>();
3229   return PA;
3230 }
3231 
3232 void SimpleLoopUnswitchPass::printPipeline(
3233     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3234   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3235       OS, MapClassName2PassName);
3236 
3237   OS << "<";
3238   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3239   OS << (Trivial ? "" : "no-") << "trivial";
3240   OS << ">";
3241 }
3242 
3243 namespace {
3244 
3245 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3246   bool NonTrivial;
3247 
3248 public:
3249   static char ID; // Pass ID, replacement for typeid
3250 
3251   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3252       : LoopPass(ID), NonTrivial(NonTrivial) {
3253     initializeSimpleLoopUnswitchLegacyPassPass(
3254         *PassRegistry::getPassRegistry());
3255   }
3256 
3257   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3258 
3259   void getAnalysisUsage(AnalysisUsage &AU) const override {
3260     AU.addRequired<AssumptionCacheTracker>();
3261     AU.addRequired<TargetTransformInfoWrapperPass>();
3262     AU.addRequired<MemorySSAWrapperPass>();
3263     AU.addPreserved<MemorySSAWrapperPass>();
3264     getLoopAnalysisUsage(AU);
3265   }
3266 };
3267 
3268 } // end anonymous namespace
3269 
3270 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3271   if (skipLoop(L))
3272     return false;
3273 
3274   Function &F = *L->getHeader()->getParent();
3275 
3276   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3277                     << "\n");
3278   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3279   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3280   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3281   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3282   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3283   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3284   MemorySSAUpdater MSSAU(MSSA);
3285 
3286   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3287   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3288 
3289   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3290                                ArrayRef<Loop *> NewLoops) {
3291     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3292     for (auto *NewL : NewLoops)
3293       LPM.addLoop(*NewL);
3294 
3295     // If the current loop remains valid, re-add it to the queue. This is
3296     // a little wasteful as we'll finish processing the current loop as well,
3297     // but it is the best we can do in the old PM.
3298     if (CurrentLoopValid) {
3299       // If the current loop has been unswitched using a partially invariant
3300       // condition, we should not re-add the current loop to avoid unswitching
3301       // on the same condition again.
3302       if (!PartiallyInvariant)
3303         LPM.addLoop(*L);
3304     } else
3305       LPM.markLoopAsDeleted(*L);
3306   };
3307 
3308   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3309     LPM.markLoopAsDeleted(L);
3310   };
3311 
3312   if (VerifyMemorySSA)
3313     MSSA->verifyMemorySSA();
3314   bool Changed =
3315       unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
3316                    &MSSAU, nullptr, nullptr, DestroyLoopCB);
3317 
3318   if (VerifyMemorySSA)
3319     MSSA->verifyMemorySSA();
3320 
3321   // Historically this pass has had issues with the dominator tree so verify it
3322   // in asserts builds.
3323   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3324 
3325   return Changed;
3326 }
3327 
3328 char SimpleLoopUnswitchLegacyPass::ID = 0;
3329 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3330                       "Simple unswitch loops", false, false)
3331 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3332 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3333 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3334 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3335 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3336 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3337 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3338                     "Simple unswitch loops", false, false)
3339 
3340 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3341   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3342 }
3343