1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/GenericDomTree.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Cloning.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/LoopUtils.h" 57 #include "llvm/Transforms/Utils/ValueMapper.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <numeric> 62 #include <utility> 63 64 #define DEBUG_TYPE "simple-loop-unswitch" 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 STATISTIC(NumBranches, "Number of branches unswitched"); 70 STATISTIC(NumSwitches, "Number of switches unswitched"); 71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 72 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 73 STATISTIC( 74 NumCostMultiplierSkipped, 75 "Number of unswitch candidates that had their cost multiplier skipped"); 76 77 static cl::opt<bool> EnableNonTrivialUnswitch( 78 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 79 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 80 "following the configuration passed into the pass.")); 81 82 static cl::opt<int> 83 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 84 cl::ZeroOrMore, 85 cl::desc("The cost threshold for unswitching a loop.")); 86 87 static cl::opt<bool> EnableUnswitchCostMultiplier( 88 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 89 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 90 "explosion in nontrivial unswitch.")); 91 static cl::opt<int> UnswitchSiblingsToplevelDiv( 92 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 93 cl::desc("Toplevel siblings divisor for cost multiplier.")); 94 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 95 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 96 cl::desc("Number of unswitch candidates that are ignored when calculating " 97 "cost multiplier.")); 98 static cl::opt<bool> UnswitchGuards( 99 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 100 cl::desc("If enabled, simple loop unswitching will also consider " 101 "llvm.experimental.guard intrinsics as unswitch candidates.")); 102 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 103 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 104 cl::init(false), cl::Hidden, 105 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 106 "null checks to save time analyzing if we can keep it.")); 107 static cl::opt<unsigned> 108 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 109 cl::desc("Max number of memory uses to explore during " 110 "partial unswitching analysis"), 111 cl::init(100), cl::Hidden); 112 113 /// Collect all of the loop invariant input values transitively used by the 114 /// homogeneous instruction graph from a given root. 115 /// 116 /// This essentially walks from a root recursively through loop variant operands 117 /// which have the exact same opcode and finds all inputs which are loop 118 /// invariant. For some operations these can be re-associated and unswitched out 119 /// of the loop entirely. 120 static TinyPtrVector<Value *> 121 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 122 LoopInfo &LI) { 123 assert(!L.isLoopInvariant(&Root) && 124 "Only need to walk the graph if root itself is not invariant."); 125 TinyPtrVector<Value *> Invariants; 126 127 bool IsRootAnd = match(&Root, m_LogicalAnd()); 128 bool IsRootOr = match(&Root, m_LogicalOr()); 129 130 // Build a worklist and recurse through operators collecting invariants. 131 SmallVector<Instruction *, 4> Worklist; 132 SmallPtrSet<Instruction *, 8> Visited; 133 Worklist.push_back(&Root); 134 Visited.insert(&Root); 135 do { 136 Instruction &I = *Worklist.pop_back_val(); 137 for (Value *OpV : I.operand_values()) { 138 // Skip constants as unswitching isn't interesting for them. 139 if (isa<Constant>(OpV)) 140 continue; 141 142 // Add it to our result if loop invariant. 143 if (L.isLoopInvariant(OpV)) { 144 Invariants.push_back(OpV); 145 continue; 146 } 147 148 // If not an instruction with the same opcode, nothing we can do. 149 Instruction *OpI = dyn_cast<Instruction>(OpV); 150 151 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 152 (IsRootOr && match(OpI, m_LogicalOr())))) { 153 // Visit this operand. 154 if (Visited.insert(OpI).second) 155 Worklist.push_back(OpI); 156 } 157 } 158 } while (!Worklist.empty()); 159 160 return Invariants; 161 } 162 163 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 164 Constant &Replacement) { 165 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 166 167 // Replace uses of LIC in the loop with the given constant. 168 // We use make_early_inc_range as set invalidates the iterator. 169 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 170 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 171 172 // Replace this use within the loop body. 173 if (UserI && L.contains(UserI)) 174 U.set(&Replacement); 175 } 176 } 177 178 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 179 /// incoming values along this edge. 180 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 181 BasicBlock &ExitBB) { 182 for (Instruction &I : ExitBB) { 183 auto *PN = dyn_cast<PHINode>(&I); 184 if (!PN) 185 // No more PHIs to check. 186 return true; 187 188 // If the incoming value for this edge isn't loop invariant the unswitch 189 // won't be trivial. 190 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 191 return false; 192 } 193 llvm_unreachable("Basic blocks should never be empty!"); 194 } 195 196 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 197 /// end of \p BB and conditionally branch on the copied condition. We only 198 /// branch on a single value. 199 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 200 ArrayRef<Value *> Invariants, 201 bool Direction, 202 BasicBlock &UnswitchedSucc, 203 BasicBlock &NormalSucc) { 204 IRBuilder<> IRB(&BB); 205 206 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 207 IRB.CreateAnd(Invariants); 208 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 209 Direction ? &NormalSucc : &UnswitchedSucc); 210 } 211 212 /// Copy a set of loop invariant values, and conditionally branch on them. 213 static void buildPartialInvariantUnswitchConditionalBranch( 214 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 215 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 216 MemorySSAUpdater *MSSAU) { 217 ValueToValueMapTy VMap; 218 for (auto *Val : reverse(ToDuplicate)) { 219 Instruction *Inst = cast<Instruction>(Val); 220 Instruction *NewInst = Inst->clone(); 221 BB.getInstList().insert(BB.end(), NewInst); 222 RemapInstruction(NewInst, VMap, 223 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 224 VMap[Val] = NewInst; 225 226 if (!MSSAU) 227 continue; 228 229 MemorySSA *MSSA = MSSAU->getMemorySSA(); 230 if (auto *MemUse = 231 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 232 auto *DefiningAccess = MemUse->getDefiningAccess(); 233 // Get the first defining access before the loop. 234 while (L.contains(DefiningAccess->getBlock())) { 235 // If the defining access is a MemoryPhi, get the incoming 236 // value for the pre-header as defining access. 237 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 238 DefiningAccess = 239 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 240 else 241 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 242 } 243 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 244 NewInst->getParent(), 245 MemorySSA::BeforeTerminator); 246 } 247 } 248 249 IRBuilder<> IRB(&BB); 250 Value *Cond = VMap[ToDuplicate[0]]; 251 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 252 Direction ? &NormalSucc : &UnswitchedSucc); 253 } 254 255 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 256 /// 257 /// Requires that the loop exit and unswitched basic block are the same, and 258 /// that the exiting block was a unique predecessor of that block. Rewrites the 259 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 260 /// PHI nodes from the old preheader that now contains the unswitched 261 /// terminator. 262 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 263 BasicBlock &OldExitingBB, 264 BasicBlock &OldPH) { 265 for (PHINode &PN : UnswitchedBB.phis()) { 266 // When the loop exit is directly unswitched we just need to update the 267 // incoming basic block. We loop to handle weird cases with repeated 268 // incoming blocks, but expect to typically only have one operand here. 269 for (auto i : seq<int>(0, PN.getNumOperands())) { 270 assert(PN.getIncomingBlock(i) == &OldExitingBB && 271 "Found incoming block different from unique predecessor!"); 272 PN.setIncomingBlock(i, &OldPH); 273 } 274 } 275 } 276 277 /// Rewrite the PHI nodes in the loop exit basic block and the split off 278 /// unswitched block. 279 /// 280 /// Because the exit block remains an exit from the loop, this rewrites the 281 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 282 /// nodes into the unswitched basic block to select between the value in the 283 /// old preheader and the loop exit. 284 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 285 BasicBlock &UnswitchedBB, 286 BasicBlock &OldExitingBB, 287 BasicBlock &OldPH, 288 bool FullUnswitch) { 289 assert(&ExitBB != &UnswitchedBB && 290 "Must have different loop exit and unswitched blocks!"); 291 Instruction *InsertPt = &*UnswitchedBB.begin(); 292 for (PHINode &PN : ExitBB.phis()) { 293 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 294 PN.getName() + ".split", InsertPt); 295 296 // Walk backwards over the old PHI node's inputs to minimize the cost of 297 // removing each one. We have to do this weird loop manually so that we 298 // create the same number of new incoming edges in the new PHI as we expect 299 // each case-based edge to be included in the unswitched switch in some 300 // cases. 301 // FIXME: This is really, really gross. It would be much cleaner if LLVM 302 // allowed us to create a single entry for a predecessor block without 303 // having separate entries for each "edge" even though these edges are 304 // required to produce identical results. 305 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 306 if (PN.getIncomingBlock(i) != &OldExitingBB) 307 continue; 308 309 Value *Incoming = PN.getIncomingValue(i); 310 if (FullUnswitch) 311 // No more edge from the old exiting block to the exit block. 312 PN.removeIncomingValue(i); 313 314 NewPN->addIncoming(Incoming, &OldPH); 315 } 316 317 // Now replace the old PHI with the new one and wire the old one in as an 318 // input to the new one. 319 PN.replaceAllUsesWith(NewPN); 320 NewPN->addIncoming(&PN, &ExitBB); 321 } 322 } 323 324 /// Hoist the current loop up to the innermost loop containing a remaining exit. 325 /// 326 /// Because we've removed an exit from the loop, we may have changed the set of 327 /// loops reachable and need to move the current loop up the loop nest or even 328 /// to an entirely separate nest. 329 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 330 DominatorTree &DT, LoopInfo &LI, 331 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 332 // If the loop is already at the top level, we can't hoist it anywhere. 333 Loop *OldParentL = L.getParentLoop(); 334 if (!OldParentL) 335 return; 336 337 SmallVector<BasicBlock *, 4> Exits; 338 L.getExitBlocks(Exits); 339 Loop *NewParentL = nullptr; 340 for (auto *ExitBB : Exits) 341 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 342 if (!NewParentL || NewParentL->contains(ExitL)) 343 NewParentL = ExitL; 344 345 if (NewParentL == OldParentL) 346 return; 347 348 // The new parent loop (if different) should always contain the old one. 349 if (NewParentL) 350 assert(NewParentL->contains(OldParentL) && 351 "Can only hoist this loop up the nest!"); 352 353 // The preheader will need to move with the body of this loop. However, 354 // because it isn't in this loop we also need to update the primary loop map. 355 assert(OldParentL == LI.getLoopFor(&Preheader) && 356 "Parent loop of this loop should contain this loop's preheader!"); 357 LI.changeLoopFor(&Preheader, NewParentL); 358 359 // Remove this loop from its old parent. 360 OldParentL->removeChildLoop(&L); 361 362 // Add the loop either to the new parent or as a top-level loop. 363 if (NewParentL) 364 NewParentL->addChildLoop(&L); 365 else 366 LI.addTopLevelLoop(&L); 367 368 // Remove this loops blocks from the old parent and every other loop up the 369 // nest until reaching the new parent. Also update all of these 370 // no-longer-containing loops to reflect the nesting change. 371 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 372 OldContainingL = OldContainingL->getParentLoop()) { 373 llvm::erase_if(OldContainingL->getBlocksVector(), 374 [&](const BasicBlock *BB) { 375 return BB == &Preheader || L.contains(BB); 376 }); 377 378 OldContainingL->getBlocksSet().erase(&Preheader); 379 for (BasicBlock *BB : L.blocks()) 380 OldContainingL->getBlocksSet().erase(BB); 381 382 // Because we just hoisted a loop out of this one, we have essentially 383 // created new exit paths from it. That means we need to form LCSSA PHI 384 // nodes for values used in the no-longer-nested loop. 385 formLCSSA(*OldContainingL, DT, &LI, SE); 386 387 // We shouldn't need to form dedicated exits because the exit introduced 388 // here is the (just split by unswitching) preheader. However, after trivial 389 // unswitching it is possible to get new non-dedicated exits out of parent 390 // loop so let's conservatively form dedicated exit blocks and figure out 391 // if we can optimize later. 392 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 393 /*PreserveLCSSA*/ true); 394 } 395 } 396 397 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 398 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 399 // as exiting block. 400 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 401 Loop *TopMost = LI.getLoopFor(ExitBB); 402 Loop *Current = TopMost; 403 while (Current) { 404 if (Current->isLoopExiting(ExitBB)) 405 TopMost = Current; 406 Current = Current->getParentLoop(); 407 } 408 return TopMost; 409 } 410 411 /// Unswitch a trivial branch if the condition is loop invariant. 412 /// 413 /// This routine should only be called when loop code leading to the branch has 414 /// been validated as trivial (no side effects). This routine checks if the 415 /// condition is invariant and one of the successors is a loop exit. This 416 /// allows us to unswitch without duplicating the loop, making it trivial. 417 /// 418 /// If this routine fails to unswitch the branch it returns false. 419 /// 420 /// If the branch can be unswitched, this routine splits the preheader and 421 /// hoists the branch above that split. Preserves loop simplified form 422 /// (splitting the exit block as necessary). It simplifies the branch within 423 /// the loop to an unconditional branch but doesn't remove it entirely. Further 424 /// cleanup can be done with some simplifycfg like pass. 425 /// 426 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 427 /// invalidated by this. 428 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 429 LoopInfo &LI, ScalarEvolution *SE, 430 MemorySSAUpdater *MSSAU) { 431 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 432 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 433 434 // The loop invariant values that we want to unswitch. 435 TinyPtrVector<Value *> Invariants; 436 437 // When true, we're fully unswitching the branch rather than just unswitching 438 // some input conditions to the branch. 439 bool FullUnswitch = false; 440 441 if (L.isLoopInvariant(BI.getCondition())) { 442 Invariants.push_back(BI.getCondition()); 443 FullUnswitch = true; 444 } else { 445 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 446 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 447 if (Invariants.empty()) { 448 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 449 return false; 450 } 451 } 452 453 // Check that one of the branch's successors exits, and which one. 454 bool ExitDirection = true; 455 int LoopExitSuccIdx = 0; 456 auto *LoopExitBB = BI.getSuccessor(0); 457 if (L.contains(LoopExitBB)) { 458 ExitDirection = false; 459 LoopExitSuccIdx = 1; 460 LoopExitBB = BI.getSuccessor(1); 461 if (L.contains(LoopExitBB)) { 462 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 463 return false; 464 } 465 } 466 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 467 auto *ParentBB = BI.getParent(); 468 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 469 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 470 return false; 471 } 472 473 // When unswitching only part of the branch's condition, we need the exit 474 // block to be reached directly from the partially unswitched input. This can 475 // be done when the exit block is along the true edge and the branch condition 476 // is a graph of `or` operations, or the exit block is along the false edge 477 // and the condition is a graph of `and` operations. 478 if (!FullUnswitch) { 479 if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr()) 480 : !match(BI.getCondition(), m_LogicalAnd())) { 481 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 482 "non-full unswitch!\n"); 483 return false; 484 } 485 } 486 487 LLVM_DEBUG({ 488 dbgs() << " unswitching trivial invariant conditions for: " << BI 489 << "\n"; 490 for (Value *Invariant : Invariants) { 491 dbgs() << " " << *Invariant << " == true"; 492 if (Invariant != Invariants.back()) 493 dbgs() << " ||"; 494 dbgs() << "\n"; 495 } 496 }); 497 498 // If we have scalar evolutions, we need to invalidate them including this 499 // loop, the loop containing the exit block and the topmost parent loop 500 // exiting via LoopExitBB. 501 if (SE) { 502 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 503 SE->forgetLoop(ExitL); 504 else 505 // Forget the entire nest as this exits the entire nest. 506 SE->forgetTopmostLoop(&L); 507 } 508 509 if (MSSAU && VerifyMemorySSA) 510 MSSAU->getMemorySSA()->verifyMemorySSA(); 511 512 // Split the preheader, so that we know that there is a safe place to insert 513 // the conditional branch. We will change the preheader to have a conditional 514 // branch on LoopCond. 515 BasicBlock *OldPH = L.getLoopPreheader(); 516 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 517 518 // Now that we have a place to insert the conditional branch, create a place 519 // to branch to: this is the exit block out of the loop that we are 520 // unswitching. We need to split this if there are other loop predecessors. 521 // Because the loop is in simplified form, *any* other predecessor is enough. 522 BasicBlock *UnswitchedBB; 523 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 524 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 525 "A branch's parent isn't a predecessor!"); 526 UnswitchedBB = LoopExitBB; 527 } else { 528 UnswitchedBB = 529 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 530 } 531 532 if (MSSAU && VerifyMemorySSA) 533 MSSAU->getMemorySSA()->verifyMemorySSA(); 534 535 // Actually move the invariant uses into the unswitched position. If possible, 536 // we do this by moving the instructions, but when doing partial unswitching 537 // we do it by building a new merge of the values in the unswitched position. 538 OldPH->getTerminator()->eraseFromParent(); 539 if (FullUnswitch) { 540 // If fully unswitching, we can use the existing branch instruction. 541 // Splice it into the old PH to gate reaching the new preheader and re-point 542 // its successors. 543 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 544 BI); 545 if (MSSAU) { 546 // Temporarily clone the terminator, to make MSSA update cheaper by 547 // separating "insert edge" updates from "remove edge" ones. 548 ParentBB->getInstList().push_back(BI.clone()); 549 } else { 550 // Create a new unconditional branch that will continue the loop as a new 551 // terminator. 552 BranchInst::Create(ContinueBB, ParentBB); 553 } 554 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 555 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 556 } else { 557 // Only unswitching a subset of inputs to the condition, so we will need to 558 // build a new branch that merges the invariant inputs. 559 if (ExitDirection) 560 assert(match(BI.getCondition(), m_LogicalOr()) && 561 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 562 "condition!"); 563 else 564 assert(match(BI.getCondition(), m_LogicalAnd()) && 565 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 566 " condition!"); 567 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 568 *UnswitchedBB, *NewPH); 569 } 570 571 // Update the dominator tree with the added edge. 572 DT.insertEdge(OldPH, UnswitchedBB); 573 574 // After the dominator tree was updated with the added edge, update MemorySSA 575 // if available. 576 if (MSSAU) { 577 SmallVector<CFGUpdate, 1> Updates; 578 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 579 MSSAU->applyInsertUpdates(Updates, DT); 580 } 581 582 // Finish updating dominator tree and memory ssa for full unswitch. 583 if (FullUnswitch) { 584 if (MSSAU) { 585 // Remove the cloned branch instruction. 586 ParentBB->getTerminator()->eraseFromParent(); 587 // Create unconditional branch now. 588 BranchInst::Create(ContinueBB, ParentBB); 589 MSSAU->removeEdge(ParentBB, LoopExitBB); 590 } 591 DT.deleteEdge(ParentBB, LoopExitBB); 592 } 593 594 if (MSSAU && VerifyMemorySSA) 595 MSSAU->getMemorySSA()->verifyMemorySSA(); 596 597 // Rewrite the relevant PHI nodes. 598 if (UnswitchedBB == LoopExitBB) 599 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 600 else 601 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 602 *ParentBB, *OldPH, FullUnswitch); 603 604 // The constant we can replace all of our invariants with inside the loop 605 // body. If any of the invariants have a value other than this the loop won't 606 // be entered. 607 ConstantInt *Replacement = ExitDirection 608 ? ConstantInt::getFalse(BI.getContext()) 609 : ConstantInt::getTrue(BI.getContext()); 610 611 // Since this is an i1 condition we can also trivially replace uses of it 612 // within the loop with a constant. 613 for (Value *Invariant : Invariants) 614 replaceLoopInvariantUses(L, Invariant, *Replacement); 615 616 // If this was full unswitching, we may have changed the nesting relationship 617 // for this loop so hoist it to its correct parent if needed. 618 if (FullUnswitch) 619 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 620 621 if (MSSAU && VerifyMemorySSA) 622 MSSAU->getMemorySSA()->verifyMemorySSA(); 623 624 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 625 ++NumTrivial; 626 ++NumBranches; 627 return true; 628 } 629 630 /// Unswitch a trivial switch if the condition is loop invariant. 631 /// 632 /// This routine should only be called when loop code leading to the switch has 633 /// been validated as trivial (no side effects). This routine checks if the 634 /// condition is invariant and that at least one of the successors is a loop 635 /// exit. This allows us to unswitch without duplicating the loop, making it 636 /// trivial. 637 /// 638 /// If this routine fails to unswitch the switch it returns false. 639 /// 640 /// If the switch can be unswitched, this routine splits the preheader and 641 /// copies the switch above that split. If the default case is one of the 642 /// exiting cases, it copies the non-exiting cases and points them at the new 643 /// preheader. If the default case is not exiting, it copies the exiting cases 644 /// and points the default at the preheader. It preserves loop simplified form 645 /// (splitting the exit blocks as necessary). It simplifies the switch within 646 /// the loop by removing now-dead cases. If the default case is one of those 647 /// unswitched, it replaces its destination with a new basic block containing 648 /// only unreachable. Such basic blocks, while technically loop exits, are not 649 /// considered for unswitching so this is a stable transform and the same 650 /// switch will not be revisited. If after unswitching there is only a single 651 /// in-loop successor, the switch is further simplified to an unconditional 652 /// branch. Still more cleanup can be done with some simplifycfg like pass. 653 /// 654 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 655 /// invalidated by this. 656 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 657 LoopInfo &LI, ScalarEvolution *SE, 658 MemorySSAUpdater *MSSAU) { 659 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 660 Value *LoopCond = SI.getCondition(); 661 662 // If this isn't switching on an invariant condition, we can't unswitch it. 663 if (!L.isLoopInvariant(LoopCond)) 664 return false; 665 666 auto *ParentBB = SI.getParent(); 667 668 // The same check must be used both for the default and the exit cases. We 669 // should never leave edges from the switch instruction to a basic block that 670 // we are unswitching, hence the condition used to determine the default case 671 // needs to also be used to populate ExitCaseIndices, which is then used to 672 // remove cases from the switch. 673 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 674 // BBToCheck is not an exit block if it is inside loop L. 675 if (L.contains(&BBToCheck)) 676 return false; 677 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 678 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 679 return false; 680 // We do not unswitch a block that only has an unreachable statement, as 681 // it's possible this is a previously unswitched block. Only unswitch if 682 // either the terminator is not unreachable, or, if it is, it's not the only 683 // instruction in the block. 684 auto *TI = BBToCheck.getTerminator(); 685 bool isUnreachable = isa<UnreachableInst>(TI); 686 return !isUnreachable || 687 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 688 }; 689 690 SmallVector<int, 4> ExitCaseIndices; 691 for (auto Case : SI.cases()) 692 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 693 ExitCaseIndices.push_back(Case.getCaseIndex()); 694 BasicBlock *DefaultExitBB = nullptr; 695 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 696 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 697 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 698 DefaultExitBB = SI.getDefaultDest(); 699 } else if (ExitCaseIndices.empty()) 700 return false; 701 702 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 703 704 if (MSSAU && VerifyMemorySSA) 705 MSSAU->getMemorySSA()->verifyMemorySSA(); 706 707 // We may need to invalidate SCEVs for the outermost loop reached by any of 708 // the exits. 709 Loop *OuterL = &L; 710 711 if (DefaultExitBB) { 712 // Clear out the default destination temporarily to allow accurate 713 // predecessor lists to be examined below. 714 SI.setDefaultDest(nullptr); 715 // Check the loop containing this exit. 716 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 717 if (!ExitL || ExitL->contains(OuterL)) 718 OuterL = ExitL; 719 } 720 721 // Store the exit cases into a separate data structure and remove them from 722 // the switch. 723 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 724 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 725 4> ExitCases; 726 ExitCases.reserve(ExitCaseIndices.size()); 727 SwitchInstProfUpdateWrapper SIW(SI); 728 // We walk the case indices backwards so that we remove the last case first 729 // and don't disrupt the earlier indices. 730 for (unsigned Index : reverse(ExitCaseIndices)) { 731 auto CaseI = SI.case_begin() + Index; 732 // Compute the outer loop from this exit. 733 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 734 if (!ExitL || ExitL->contains(OuterL)) 735 OuterL = ExitL; 736 // Save the value of this case. 737 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 738 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 739 // Delete the unswitched cases. 740 SIW.removeCase(CaseI); 741 } 742 743 if (SE) { 744 if (OuterL) 745 SE->forgetLoop(OuterL); 746 else 747 SE->forgetTopmostLoop(&L); 748 } 749 750 // Check if after this all of the remaining cases point at the same 751 // successor. 752 BasicBlock *CommonSuccBB = nullptr; 753 if (SI.getNumCases() > 0 && 754 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 755 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 756 })) 757 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 758 if (!DefaultExitBB) { 759 // If we're not unswitching the default, we need it to match any cases to 760 // have a common successor or if we have no cases it is the common 761 // successor. 762 if (SI.getNumCases() == 0) 763 CommonSuccBB = SI.getDefaultDest(); 764 else if (SI.getDefaultDest() != CommonSuccBB) 765 CommonSuccBB = nullptr; 766 } 767 768 // Split the preheader, so that we know that there is a safe place to insert 769 // the switch. 770 BasicBlock *OldPH = L.getLoopPreheader(); 771 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 772 OldPH->getTerminator()->eraseFromParent(); 773 774 // Now add the unswitched switch. 775 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 776 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 777 778 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 779 // First, we split any exit blocks with remaining in-loop predecessors. Then 780 // we update the PHIs in one of two ways depending on if there was a split. 781 // We walk in reverse so that we split in the same order as the cases 782 // appeared. This is purely for convenience of reading the resulting IR, but 783 // it doesn't cost anything really. 784 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 785 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 786 // Handle the default exit if necessary. 787 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 788 // ranges aren't quite powerful enough yet. 789 if (DefaultExitBB) { 790 if (pred_empty(DefaultExitBB)) { 791 UnswitchedExitBBs.insert(DefaultExitBB); 792 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 793 } else { 794 auto *SplitBB = 795 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 796 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 797 *ParentBB, *OldPH, 798 /*FullUnswitch*/ true); 799 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 800 } 801 } 802 // Note that we must use a reference in the for loop so that we update the 803 // container. 804 for (auto &ExitCase : reverse(ExitCases)) { 805 // Grab a reference to the exit block in the pair so that we can update it. 806 BasicBlock *ExitBB = std::get<1>(ExitCase); 807 808 // If this case is the last edge into the exit block, we can simply reuse it 809 // as it will no longer be a loop exit. No mapping necessary. 810 if (pred_empty(ExitBB)) { 811 // Only rewrite once. 812 if (UnswitchedExitBBs.insert(ExitBB).second) 813 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 814 continue; 815 } 816 817 // Otherwise we need to split the exit block so that we retain an exit 818 // block from the loop and a target for the unswitched condition. 819 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 820 if (!SplitExitBB) { 821 // If this is the first time we see this, do the split and remember it. 822 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 823 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 824 *ParentBB, *OldPH, 825 /*FullUnswitch*/ true); 826 } 827 // Update the case pair to point to the split block. 828 std::get<1>(ExitCase) = SplitExitBB; 829 } 830 831 // Now add the unswitched cases. We do this in reverse order as we built them 832 // in reverse order. 833 for (auto &ExitCase : reverse(ExitCases)) { 834 ConstantInt *CaseVal = std::get<0>(ExitCase); 835 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 836 837 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 838 } 839 840 // If the default was unswitched, re-point it and add explicit cases for 841 // entering the loop. 842 if (DefaultExitBB) { 843 NewSIW->setDefaultDest(DefaultExitBB); 844 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 845 846 // We removed all the exit cases, so we just copy the cases to the 847 // unswitched switch. 848 for (const auto &Case : SI.cases()) 849 NewSIW.addCase(Case.getCaseValue(), NewPH, 850 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 851 } else if (DefaultCaseWeight) { 852 // We have to set branch weight of the default case. 853 uint64_t SW = *DefaultCaseWeight; 854 for (const auto &Case : SI.cases()) { 855 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 856 assert(W && 857 "case weight must be defined as default case weight is defined"); 858 SW += *W; 859 } 860 NewSIW.setSuccessorWeight(0, SW); 861 } 862 863 // If we ended up with a common successor for every path through the switch 864 // after unswitching, rewrite it to an unconditional branch to make it easy 865 // to recognize. Otherwise we potentially have to recognize the default case 866 // pointing at unreachable and other complexity. 867 if (CommonSuccBB) { 868 BasicBlock *BB = SI.getParent(); 869 // We may have had multiple edges to this common successor block, so remove 870 // them as predecessors. We skip the first one, either the default or the 871 // actual first case. 872 bool SkippedFirst = DefaultExitBB == nullptr; 873 for (auto Case : SI.cases()) { 874 assert(Case.getCaseSuccessor() == CommonSuccBB && 875 "Non-common successor!"); 876 (void)Case; 877 if (!SkippedFirst) { 878 SkippedFirst = true; 879 continue; 880 } 881 CommonSuccBB->removePredecessor(BB, 882 /*KeepOneInputPHIs*/ true); 883 } 884 // Now nuke the switch and replace it with a direct branch. 885 SIW.eraseFromParent(); 886 BranchInst::Create(CommonSuccBB, BB); 887 } else if (DefaultExitBB) { 888 assert(SI.getNumCases() > 0 && 889 "If we had no cases we'd have a common successor!"); 890 // Move the last case to the default successor. This is valid as if the 891 // default got unswitched it cannot be reached. This has the advantage of 892 // being simple and keeping the number of edges from this switch to 893 // successors the same, and avoiding any PHI update complexity. 894 auto LastCaseI = std::prev(SI.case_end()); 895 896 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 897 SIW.setSuccessorWeight( 898 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 899 SIW.removeCase(LastCaseI); 900 } 901 902 // Walk the unswitched exit blocks and the unswitched split blocks and update 903 // the dominator tree based on the CFG edits. While we are walking unordered 904 // containers here, the API for applyUpdates takes an unordered list of 905 // updates and requires them to not contain duplicates. 906 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 907 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 908 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 909 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 910 } 911 for (auto SplitUnswitchedPair : SplitExitBBMap) { 912 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 913 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 914 } 915 916 if (MSSAU) { 917 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 918 if (VerifyMemorySSA) 919 MSSAU->getMemorySSA()->verifyMemorySSA(); 920 } else { 921 DT.applyUpdates(DTUpdates); 922 } 923 924 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 925 926 // We may have changed the nesting relationship for this loop so hoist it to 927 // its correct parent if needed. 928 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 929 930 if (MSSAU && VerifyMemorySSA) 931 MSSAU->getMemorySSA()->verifyMemorySSA(); 932 933 ++NumTrivial; 934 ++NumSwitches; 935 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 936 return true; 937 } 938 939 /// This routine scans the loop to find a branch or switch which occurs before 940 /// any side effects occur. These can potentially be unswitched without 941 /// duplicating the loop. If a branch or switch is successfully unswitched the 942 /// scanning continues to see if subsequent branches or switches have become 943 /// trivial. Once all trivial candidates have been unswitched, this routine 944 /// returns. 945 /// 946 /// The return value indicates whether anything was unswitched (and therefore 947 /// changed). 948 /// 949 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 950 /// invalidated by this. 951 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 952 LoopInfo &LI, ScalarEvolution *SE, 953 MemorySSAUpdater *MSSAU) { 954 bool Changed = false; 955 956 // If loop header has only one reachable successor we should keep looking for 957 // trivial condition candidates in the successor as well. An alternative is 958 // to constant fold conditions and merge successors into loop header (then we 959 // only need to check header's terminator). The reason for not doing this in 960 // LoopUnswitch pass is that it could potentially break LoopPassManager's 961 // invariants. Folding dead branches could either eliminate the current loop 962 // or make other loops unreachable. LCSSA form might also not be preserved 963 // after deleting branches. The following code keeps traversing loop header's 964 // successors until it finds the trivial condition candidate (condition that 965 // is not a constant). Since unswitching generates branches with constant 966 // conditions, this scenario could be very common in practice. 967 BasicBlock *CurrentBB = L.getHeader(); 968 SmallPtrSet<BasicBlock *, 8> Visited; 969 Visited.insert(CurrentBB); 970 do { 971 // Check if there are any side-effecting instructions (e.g. stores, calls, 972 // volatile loads) in the part of the loop that the code *would* execute 973 // without unswitching. 974 if (MSSAU) // Possible early exit with MSSA 975 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 976 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 977 return Changed; 978 if (llvm::any_of(*CurrentBB, 979 [](Instruction &I) { return I.mayHaveSideEffects(); })) 980 return Changed; 981 982 Instruction *CurrentTerm = CurrentBB->getTerminator(); 983 984 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 985 // Don't bother trying to unswitch past a switch with a constant 986 // condition. This should be removed prior to running this pass by 987 // simplifycfg. 988 if (isa<Constant>(SI->getCondition())) 989 return Changed; 990 991 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 992 // Couldn't unswitch this one so we're done. 993 return Changed; 994 995 // Mark that we managed to unswitch something. 996 Changed = true; 997 998 // If unswitching turned the terminator into an unconditional branch then 999 // we can continue. The unswitching logic specifically works to fold any 1000 // cases it can into an unconditional branch to make it easier to 1001 // recognize here. 1002 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1003 if (!BI || BI->isConditional()) 1004 return Changed; 1005 1006 CurrentBB = BI->getSuccessor(0); 1007 continue; 1008 } 1009 1010 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1011 if (!BI) 1012 // We do not understand other terminator instructions. 1013 return Changed; 1014 1015 // Don't bother trying to unswitch past an unconditional branch or a branch 1016 // with a constant value. These should be removed by simplifycfg prior to 1017 // running this pass. 1018 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 1019 return Changed; 1020 1021 // Found a trivial condition candidate: non-foldable conditional branch. If 1022 // we fail to unswitch this, we can't do anything else that is trivial. 1023 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1024 return Changed; 1025 1026 // Mark that we managed to unswitch something. 1027 Changed = true; 1028 1029 // If we only unswitched some of the conditions feeding the branch, we won't 1030 // have collapsed it to a single successor. 1031 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1032 if (BI->isConditional()) 1033 return Changed; 1034 1035 // Follow the newly unconditional branch into its successor. 1036 CurrentBB = BI->getSuccessor(0); 1037 1038 // When continuing, if we exit the loop or reach a previous visited block, 1039 // then we can not reach any trivial condition candidates (unfoldable 1040 // branch instructions or switch instructions) and no unswitch can happen. 1041 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1042 1043 return Changed; 1044 } 1045 1046 /// Build the cloned blocks for an unswitched copy of the given loop. 1047 /// 1048 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1049 /// after the split block (`SplitBB`) that will be used to select between the 1050 /// cloned and original loop. 1051 /// 1052 /// This routine handles cloning all of the necessary loop blocks and exit 1053 /// blocks including rewriting their instructions and the relevant PHI nodes. 1054 /// Any loop blocks or exit blocks which are dominated by a different successor 1055 /// than the one for this clone of the loop blocks can be trivially skipped. We 1056 /// use the `DominatingSucc` map to determine whether a block satisfies that 1057 /// property with a simple map lookup. 1058 /// 1059 /// It also correctly creates the unconditional branch in the cloned 1060 /// unswitched parent block to only point at the unswitched successor. 1061 /// 1062 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1063 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1064 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1065 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1066 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1067 /// instead the caller must recompute an accurate DT. It *does* correctly 1068 /// update the `AssumptionCache` provided in `AC`. 1069 static BasicBlock *buildClonedLoopBlocks( 1070 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1071 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1072 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1073 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1074 ValueToValueMapTy &VMap, 1075 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1076 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1077 SmallVector<BasicBlock *, 4> NewBlocks; 1078 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1079 1080 // We will need to clone a bunch of blocks, wrap up the clone operation in 1081 // a helper. 1082 auto CloneBlock = [&](BasicBlock *OldBB) { 1083 // Clone the basic block and insert it before the new preheader. 1084 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1085 NewBB->moveBefore(LoopPH); 1086 1087 // Record this block and the mapping. 1088 NewBlocks.push_back(NewBB); 1089 VMap[OldBB] = NewBB; 1090 1091 return NewBB; 1092 }; 1093 1094 // We skip cloning blocks when they have a dominating succ that is not the 1095 // succ we are cloning for. 1096 auto SkipBlock = [&](BasicBlock *BB) { 1097 auto It = DominatingSucc.find(BB); 1098 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1099 }; 1100 1101 // First, clone the preheader. 1102 auto *ClonedPH = CloneBlock(LoopPH); 1103 1104 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1105 for (auto *LoopBB : L.blocks()) 1106 if (!SkipBlock(LoopBB)) 1107 CloneBlock(LoopBB); 1108 1109 // Split all the loop exit edges so that when we clone the exit blocks, if 1110 // any of the exit blocks are *also* a preheader for some other loop, we 1111 // don't create multiple predecessors entering the loop header. 1112 for (auto *ExitBB : ExitBlocks) { 1113 if (SkipBlock(ExitBB)) 1114 continue; 1115 1116 // When we are going to clone an exit, we don't need to clone all the 1117 // instructions in the exit block and we want to ensure we have an easy 1118 // place to merge the CFG, so split the exit first. This is always safe to 1119 // do because there cannot be any non-loop predecessors of a loop exit in 1120 // loop simplified form. 1121 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1122 1123 // Rearrange the names to make it easier to write test cases by having the 1124 // exit block carry the suffix rather than the merge block carrying the 1125 // suffix. 1126 MergeBB->takeName(ExitBB); 1127 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1128 1129 // Now clone the original exit block. 1130 auto *ClonedExitBB = CloneBlock(ExitBB); 1131 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1132 "Exit block should have been split to have one successor!"); 1133 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1134 "Cloned exit block has the wrong successor!"); 1135 1136 // Remap any cloned instructions and create a merge phi node for them. 1137 for (auto ZippedInsts : llvm::zip_first( 1138 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1139 llvm::make_range(ClonedExitBB->begin(), 1140 std::prev(ClonedExitBB->end())))) { 1141 Instruction &I = std::get<0>(ZippedInsts); 1142 Instruction &ClonedI = std::get<1>(ZippedInsts); 1143 1144 // The only instructions in the exit block should be PHI nodes and 1145 // potentially a landing pad. 1146 assert( 1147 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1148 "Bad instruction in exit block!"); 1149 // We should have a value map between the instruction and its clone. 1150 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1151 1152 auto *MergePN = 1153 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1154 &*MergeBB->getFirstInsertionPt()); 1155 I.replaceAllUsesWith(MergePN); 1156 MergePN->addIncoming(&I, ExitBB); 1157 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1158 } 1159 } 1160 1161 // Rewrite the instructions in the cloned blocks to refer to the instructions 1162 // in the cloned blocks. We have to do this as a second pass so that we have 1163 // everything available. Also, we have inserted new instructions which may 1164 // include assume intrinsics, so we update the assumption cache while 1165 // processing this. 1166 for (auto *ClonedBB : NewBlocks) 1167 for (Instruction &I : *ClonedBB) { 1168 RemapInstruction(&I, VMap, 1169 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1170 if (auto *II = dyn_cast<AssumeInst>(&I)) 1171 AC.registerAssumption(II); 1172 } 1173 1174 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1175 // have spurious incoming values. 1176 for (auto *LoopBB : L.blocks()) 1177 if (SkipBlock(LoopBB)) 1178 for (auto *SuccBB : successors(LoopBB)) 1179 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1180 for (PHINode &PN : ClonedSuccBB->phis()) 1181 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1182 1183 // Remove the cloned parent as a predecessor of any successor we ended up 1184 // cloning other than the unswitched one. 1185 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1186 for (auto *SuccBB : successors(ParentBB)) { 1187 if (SuccBB == UnswitchedSuccBB) 1188 continue; 1189 1190 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1191 if (!ClonedSuccBB) 1192 continue; 1193 1194 ClonedSuccBB->removePredecessor(ClonedParentBB, 1195 /*KeepOneInputPHIs*/ true); 1196 } 1197 1198 // Replace the cloned branch with an unconditional branch to the cloned 1199 // unswitched successor. 1200 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1201 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1202 // Trivial Simplification. If Terminator is a conditional branch and 1203 // condition becomes dead - erase it. 1204 Value *ClonedConditionToErase = nullptr; 1205 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1206 ClonedConditionToErase = BI->getCondition(); 1207 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1208 ClonedConditionToErase = SI->getCondition(); 1209 1210 ClonedTerminator->eraseFromParent(); 1211 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1212 1213 if (ClonedConditionToErase) 1214 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1215 MSSAU); 1216 1217 // If there are duplicate entries in the PHI nodes because of multiple edges 1218 // to the unswitched successor, we need to nuke all but one as we replaced it 1219 // with a direct branch. 1220 for (PHINode &PN : ClonedSuccBB->phis()) { 1221 bool Found = false; 1222 // Loop over the incoming operands backwards so we can easily delete as we 1223 // go without invalidating the index. 1224 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1225 if (PN.getIncomingBlock(i) != ClonedParentBB) 1226 continue; 1227 if (!Found) { 1228 Found = true; 1229 continue; 1230 } 1231 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1232 } 1233 } 1234 1235 // Record the domtree updates for the new blocks. 1236 SmallPtrSet<BasicBlock *, 4> SuccSet; 1237 for (auto *ClonedBB : NewBlocks) { 1238 for (auto *SuccBB : successors(ClonedBB)) 1239 if (SuccSet.insert(SuccBB).second) 1240 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1241 SuccSet.clear(); 1242 } 1243 1244 return ClonedPH; 1245 } 1246 1247 /// Recursively clone the specified loop and all of its children. 1248 /// 1249 /// The target parent loop for the clone should be provided, or can be null if 1250 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1251 /// with the provided value map. The entire original loop must be present in 1252 /// the value map. The cloned loop is returned. 1253 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1254 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1255 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1256 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1257 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1258 for (auto *BB : OrigL.blocks()) { 1259 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1260 ClonedL.addBlockEntry(ClonedBB); 1261 if (LI.getLoopFor(BB) == &OrigL) 1262 LI.changeLoopFor(ClonedBB, &ClonedL); 1263 } 1264 }; 1265 1266 // We specially handle the first loop because it may get cloned into 1267 // a different parent and because we most commonly are cloning leaf loops. 1268 Loop *ClonedRootL = LI.AllocateLoop(); 1269 if (RootParentL) 1270 RootParentL->addChildLoop(ClonedRootL); 1271 else 1272 LI.addTopLevelLoop(ClonedRootL); 1273 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1274 1275 if (OrigRootL.isInnermost()) 1276 return ClonedRootL; 1277 1278 // If we have a nest, we can quickly clone the entire loop nest using an 1279 // iterative approach because it is a tree. We keep the cloned parent in the 1280 // data structure to avoid repeatedly querying through a map to find it. 1281 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1282 // Build up the loops to clone in reverse order as we'll clone them from the 1283 // back. 1284 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1285 LoopsToClone.push_back({ClonedRootL, ChildL}); 1286 do { 1287 Loop *ClonedParentL, *L; 1288 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1289 Loop *ClonedL = LI.AllocateLoop(); 1290 ClonedParentL->addChildLoop(ClonedL); 1291 AddClonedBlocksToLoop(*L, *ClonedL); 1292 for (Loop *ChildL : llvm::reverse(*L)) 1293 LoopsToClone.push_back({ClonedL, ChildL}); 1294 } while (!LoopsToClone.empty()); 1295 1296 return ClonedRootL; 1297 } 1298 1299 /// Build the cloned loops of an original loop from unswitching. 1300 /// 1301 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1302 /// operation. We need to re-verify that there even is a loop (as the backedge 1303 /// may not have been cloned), and even if there are remaining backedges the 1304 /// backedge set may be different. However, we know that each child loop is 1305 /// undisturbed, we only need to find where to place each child loop within 1306 /// either any parent loop or within a cloned version of the original loop. 1307 /// 1308 /// Because child loops may end up cloned outside of any cloned version of the 1309 /// original loop, multiple cloned sibling loops may be created. All of them 1310 /// are returned so that the newly introduced loop nest roots can be 1311 /// identified. 1312 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1313 const ValueToValueMapTy &VMap, LoopInfo &LI, 1314 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1315 Loop *ClonedL = nullptr; 1316 1317 auto *OrigPH = OrigL.getLoopPreheader(); 1318 auto *OrigHeader = OrigL.getHeader(); 1319 1320 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1321 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1322 1323 // We need to know the loops of the cloned exit blocks to even compute the 1324 // accurate parent loop. If we only clone exits to some parent of the 1325 // original parent, we want to clone into that outer loop. We also keep track 1326 // of the loops that our cloned exit blocks participate in. 1327 Loop *ParentL = nullptr; 1328 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1329 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1330 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1331 for (auto *ExitBB : ExitBlocks) 1332 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1333 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1334 ExitLoopMap[ClonedExitBB] = ExitL; 1335 ClonedExitsInLoops.push_back(ClonedExitBB); 1336 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1337 ParentL = ExitL; 1338 } 1339 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1340 ParentL->contains(OrigL.getParentLoop())) && 1341 "The computed parent loop should always contain (or be) the parent of " 1342 "the original loop."); 1343 1344 // We build the set of blocks dominated by the cloned header from the set of 1345 // cloned blocks out of the original loop. While not all of these will 1346 // necessarily be in the cloned loop, it is enough to establish that they 1347 // aren't in unreachable cycles, etc. 1348 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1349 for (auto *BB : OrigL.blocks()) 1350 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1351 ClonedLoopBlocks.insert(ClonedBB); 1352 1353 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1354 // skipped cloning some region of this loop which can in turn skip some of 1355 // the backedges so we have to rebuild the blocks in the loop based on the 1356 // backedges that remain after cloning. 1357 SmallVector<BasicBlock *, 16> Worklist; 1358 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1359 for (auto *Pred : predecessors(ClonedHeader)) { 1360 // The only possible non-loop header predecessor is the preheader because 1361 // we know we cloned the loop in simplified form. 1362 if (Pred == ClonedPH) 1363 continue; 1364 1365 // Because the loop was in simplified form, the only non-loop predecessor 1366 // should be the preheader. 1367 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1368 "header other than the preheader " 1369 "that is not part of the loop!"); 1370 1371 // Insert this block into the loop set and on the first visit (and if it 1372 // isn't the header we're currently walking) put it into the worklist to 1373 // recurse through. 1374 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1375 Worklist.push_back(Pred); 1376 } 1377 1378 // If we had any backedges then there *is* a cloned loop. Put the header into 1379 // the loop set and then walk the worklist backwards to find all the blocks 1380 // that remain within the loop after cloning. 1381 if (!BlocksInClonedLoop.empty()) { 1382 BlocksInClonedLoop.insert(ClonedHeader); 1383 1384 while (!Worklist.empty()) { 1385 BasicBlock *BB = Worklist.pop_back_val(); 1386 assert(BlocksInClonedLoop.count(BB) && 1387 "Didn't put block into the loop set!"); 1388 1389 // Insert any predecessors that are in the possible set into the cloned 1390 // set, and if the insert is successful, add them to the worklist. Note 1391 // that we filter on the blocks that are definitely reachable via the 1392 // backedge to the loop header so we may prune out dead code within the 1393 // cloned loop. 1394 for (auto *Pred : predecessors(BB)) 1395 if (ClonedLoopBlocks.count(Pred) && 1396 BlocksInClonedLoop.insert(Pred).second) 1397 Worklist.push_back(Pred); 1398 } 1399 1400 ClonedL = LI.AllocateLoop(); 1401 if (ParentL) { 1402 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1403 ParentL->addChildLoop(ClonedL); 1404 } else { 1405 LI.addTopLevelLoop(ClonedL); 1406 } 1407 NonChildClonedLoops.push_back(ClonedL); 1408 1409 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1410 // We don't want to just add the cloned loop blocks based on how we 1411 // discovered them. The original order of blocks was carefully built in 1412 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1413 // that logic, we just re-walk the original blocks (and those of the child 1414 // loops) and filter them as we add them into the cloned loop. 1415 for (auto *BB : OrigL.blocks()) { 1416 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1417 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1418 continue; 1419 1420 // Directly add the blocks that are only in this loop. 1421 if (LI.getLoopFor(BB) == &OrigL) { 1422 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1423 continue; 1424 } 1425 1426 // We want to manually add it to this loop and parents. 1427 // Registering it with LoopInfo will happen when we clone the top 1428 // loop for this block. 1429 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1430 PL->addBlockEntry(ClonedBB); 1431 } 1432 1433 // Now add each child loop whose header remains within the cloned loop. All 1434 // of the blocks within the loop must satisfy the same constraints as the 1435 // header so once we pass the header checks we can just clone the entire 1436 // child loop nest. 1437 for (Loop *ChildL : OrigL) { 1438 auto *ClonedChildHeader = 1439 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1440 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1441 continue; 1442 1443 #ifndef NDEBUG 1444 // We should never have a cloned child loop header but fail to have 1445 // all of the blocks for that child loop. 1446 for (auto *ChildLoopBB : ChildL->blocks()) 1447 assert(BlocksInClonedLoop.count( 1448 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1449 "Child cloned loop has a header within the cloned outer " 1450 "loop but not all of its blocks!"); 1451 #endif 1452 1453 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1454 } 1455 } 1456 1457 // Now that we've handled all the components of the original loop that were 1458 // cloned into a new loop, we still need to handle anything from the original 1459 // loop that wasn't in a cloned loop. 1460 1461 // Figure out what blocks are left to place within any loop nest containing 1462 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1463 // them. 1464 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1465 if (BlocksInClonedLoop.empty()) 1466 UnloopedBlockSet.insert(ClonedPH); 1467 for (auto *ClonedBB : ClonedLoopBlocks) 1468 if (!BlocksInClonedLoop.count(ClonedBB)) 1469 UnloopedBlockSet.insert(ClonedBB); 1470 1471 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1472 // backwards across these to process them inside out. The order shouldn't 1473 // matter as we're just trying to build up the map from inside-out; we use 1474 // the map in a more stably ordered way below. 1475 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1476 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1477 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1478 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1479 }); 1480 1481 // Populate the existing ExitLoopMap with everything reachable from each 1482 // exit, starting from the inner most exit. 1483 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1484 assert(Worklist.empty() && "Didn't clear worklist!"); 1485 1486 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1487 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1488 1489 // Walk the CFG back until we hit the cloned PH adding everything reachable 1490 // and in the unlooped set to this exit block's loop. 1491 Worklist.push_back(ExitBB); 1492 do { 1493 BasicBlock *BB = Worklist.pop_back_val(); 1494 // We can stop recursing at the cloned preheader (if we get there). 1495 if (BB == ClonedPH) 1496 continue; 1497 1498 for (BasicBlock *PredBB : predecessors(BB)) { 1499 // If this pred has already been moved to our set or is part of some 1500 // (inner) loop, no update needed. 1501 if (!UnloopedBlockSet.erase(PredBB)) { 1502 assert( 1503 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1504 "Predecessor not mapped to a loop!"); 1505 continue; 1506 } 1507 1508 // We just insert into the loop set here. We'll add these blocks to the 1509 // exit loop after we build up the set in an order that doesn't rely on 1510 // predecessor order (which in turn relies on use list order). 1511 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1512 (void)Inserted; 1513 assert(Inserted && "Should only visit an unlooped block once!"); 1514 1515 // And recurse through to its predecessors. 1516 Worklist.push_back(PredBB); 1517 } 1518 } while (!Worklist.empty()); 1519 } 1520 1521 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1522 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1523 // in their original order adding them to the correct loop. 1524 1525 // We need a stable insertion order. We use the order of the original loop 1526 // order and map into the correct parent loop. 1527 for (auto *BB : llvm::concat<BasicBlock *const>( 1528 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1529 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1530 OuterL->addBasicBlockToLoop(BB, LI); 1531 1532 #ifndef NDEBUG 1533 for (auto &BBAndL : ExitLoopMap) { 1534 auto *BB = BBAndL.first; 1535 auto *OuterL = BBAndL.second; 1536 assert(LI.getLoopFor(BB) == OuterL && 1537 "Failed to put all blocks into outer loops!"); 1538 } 1539 #endif 1540 1541 // Now that all the blocks are placed into the correct containing loop in the 1542 // absence of child loops, find all the potentially cloned child loops and 1543 // clone them into whatever outer loop we placed their header into. 1544 for (Loop *ChildL : OrigL) { 1545 auto *ClonedChildHeader = 1546 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1547 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1548 continue; 1549 1550 #ifndef NDEBUG 1551 for (auto *ChildLoopBB : ChildL->blocks()) 1552 assert(VMap.count(ChildLoopBB) && 1553 "Cloned a child loop header but not all of that loops blocks!"); 1554 #endif 1555 1556 NonChildClonedLoops.push_back(cloneLoopNest( 1557 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1558 } 1559 } 1560 1561 static void 1562 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1563 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1564 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1565 // Find all the dead clones, and remove them from their successors. 1566 SmallVector<BasicBlock *, 16> DeadBlocks; 1567 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1568 for (auto &VMap : VMaps) 1569 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1570 if (!DT.isReachableFromEntry(ClonedBB)) { 1571 for (BasicBlock *SuccBB : successors(ClonedBB)) 1572 SuccBB->removePredecessor(ClonedBB); 1573 DeadBlocks.push_back(ClonedBB); 1574 } 1575 1576 // Remove all MemorySSA in the dead blocks 1577 if (MSSAU) { 1578 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1579 DeadBlocks.end()); 1580 MSSAU->removeBlocks(DeadBlockSet); 1581 } 1582 1583 // Drop any remaining references to break cycles. 1584 for (BasicBlock *BB : DeadBlocks) 1585 BB->dropAllReferences(); 1586 // Erase them from the IR. 1587 for (BasicBlock *BB : DeadBlocks) 1588 BB->eraseFromParent(); 1589 } 1590 1591 static void 1592 deleteDeadBlocksFromLoop(Loop &L, 1593 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1594 DominatorTree &DT, LoopInfo &LI, 1595 MemorySSAUpdater *MSSAU, 1596 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1597 // Find all the dead blocks tied to this loop, and remove them from their 1598 // successors. 1599 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1600 1601 // Start with loop/exit blocks and get a transitive closure of reachable dead 1602 // blocks. 1603 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1604 ExitBlocks.end()); 1605 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1606 while (!DeathCandidates.empty()) { 1607 auto *BB = DeathCandidates.pop_back_val(); 1608 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1609 for (BasicBlock *SuccBB : successors(BB)) { 1610 SuccBB->removePredecessor(BB); 1611 DeathCandidates.push_back(SuccBB); 1612 } 1613 DeadBlockSet.insert(BB); 1614 } 1615 } 1616 1617 // Remove all MemorySSA in the dead blocks 1618 if (MSSAU) 1619 MSSAU->removeBlocks(DeadBlockSet); 1620 1621 // Filter out the dead blocks from the exit blocks list so that it can be 1622 // used in the caller. 1623 llvm::erase_if(ExitBlocks, 1624 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1625 1626 // Walk from this loop up through its parents removing all of the dead blocks. 1627 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1628 for (auto *BB : DeadBlockSet) 1629 ParentL->getBlocksSet().erase(BB); 1630 llvm::erase_if(ParentL->getBlocksVector(), 1631 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1632 } 1633 1634 // Now delete the dead child loops. This raw delete will clear them 1635 // recursively. 1636 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1637 if (!DeadBlockSet.count(ChildL->getHeader())) 1638 return false; 1639 1640 assert(llvm::all_of(ChildL->blocks(), 1641 [&](BasicBlock *ChildBB) { 1642 return DeadBlockSet.count(ChildBB); 1643 }) && 1644 "If the child loop header is dead all blocks in the child loop must " 1645 "be dead as well!"); 1646 DestroyLoopCB(*ChildL, ChildL->getName()); 1647 LI.destroy(ChildL); 1648 return true; 1649 }); 1650 1651 // Remove the loop mappings for the dead blocks and drop all the references 1652 // from these blocks to others to handle cyclic references as we start 1653 // deleting the blocks themselves. 1654 for (auto *BB : DeadBlockSet) { 1655 // Check that the dominator tree has already been updated. 1656 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1657 LI.changeLoopFor(BB, nullptr); 1658 // Drop all uses of the instructions to make sure we won't have dangling 1659 // uses in other blocks. 1660 for (auto &I : *BB) 1661 if (!I.use_empty()) 1662 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1663 BB->dropAllReferences(); 1664 } 1665 1666 // Actually delete the blocks now that they've been fully unhooked from the 1667 // IR. 1668 for (auto *BB : DeadBlockSet) 1669 BB->eraseFromParent(); 1670 } 1671 1672 /// Recompute the set of blocks in a loop after unswitching. 1673 /// 1674 /// This walks from the original headers predecessors to rebuild the loop. We 1675 /// take advantage of the fact that new blocks can't have been added, and so we 1676 /// filter by the original loop's blocks. This also handles potentially 1677 /// unreachable code that we don't want to explore but might be found examining 1678 /// the predecessors of the header. 1679 /// 1680 /// If the original loop is no longer a loop, this will return an empty set. If 1681 /// it remains a loop, all the blocks within it will be added to the set 1682 /// (including those blocks in inner loops). 1683 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1684 LoopInfo &LI) { 1685 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1686 1687 auto *PH = L.getLoopPreheader(); 1688 auto *Header = L.getHeader(); 1689 1690 // A worklist to use while walking backwards from the header. 1691 SmallVector<BasicBlock *, 16> Worklist; 1692 1693 // First walk the predecessors of the header to find the backedges. This will 1694 // form the basis of our walk. 1695 for (auto *Pred : predecessors(Header)) { 1696 // Skip the preheader. 1697 if (Pred == PH) 1698 continue; 1699 1700 // Because the loop was in simplified form, the only non-loop predecessor 1701 // is the preheader. 1702 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1703 "than the preheader that is not part of the " 1704 "loop!"); 1705 1706 // Insert this block into the loop set and on the first visit and, if it 1707 // isn't the header we're currently walking, put it into the worklist to 1708 // recurse through. 1709 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1710 Worklist.push_back(Pred); 1711 } 1712 1713 // If no backedges were found, we're done. 1714 if (LoopBlockSet.empty()) 1715 return LoopBlockSet; 1716 1717 // We found backedges, recurse through them to identify the loop blocks. 1718 while (!Worklist.empty()) { 1719 BasicBlock *BB = Worklist.pop_back_val(); 1720 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1721 1722 // No need to walk past the header. 1723 if (BB == Header) 1724 continue; 1725 1726 // Because we know the inner loop structure remains valid we can use the 1727 // loop structure to jump immediately across the entire nested loop. 1728 // Further, because it is in loop simplified form, we can directly jump 1729 // to its preheader afterward. 1730 if (Loop *InnerL = LI.getLoopFor(BB)) 1731 if (InnerL != &L) { 1732 assert(L.contains(InnerL) && 1733 "Should not reach a loop *outside* this loop!"); 1734 // The preheader is the only possible predecessor of the loop so 1735 // insert it into the set and check whether it was already handled. 1736 auto *InnerPH = InnerL->getLoopPreheader(); 1737 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1738 "but not contain the inner loop " 1739 "preheader!"); 1740 if (!LoopBlockSet.insert(InnerPH).second) 1741 // The only way to reach the preheader is through the loop body 1742 // itself so if it has been visited the loop is already handled. 1743 continue; 1744 1745 // Insert all of the blocks (other than those already present) into 1746 // the loop set. We expect at least the block that led us to find the 1747 // inner loop to be in the block set, but we may also have other loop 1748 // blocks if they were already enqueued as predecessors of some other 1749 // outer loop block. 1750 for (auto *InnerBB : InnerL->blocks()) { 1751 if (InnerBB == BB) { 1752 assert(LoopBlockSet.count(InnerBB) && 1753 "Block should already be in the set!"); 1754 continue; 1755 } 1756 1757 LoopBlockSet.insert(InnerBB); 1758 } 1759 1760 // Add the preheader to the worklist so we will continue past the 1761 // loop body. 1762 Worklist.push_back(InnerPH); 1763 continue; 1764 } 1765 1766 // Insert any predecessors that were in the original loop into the new 1767 // set, and if the insert is successful, add them to the worklist. 1768 for (auto *Pred : predecessors(BB)) 1769 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1770 Worklist.push_back(Pred); 1771 } 1772 1773 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1774 1775 // We've found all the blocks participating in the loop, return our completed 1776 // set. 1777 return LoopBlockSet; 1778 } 1779 1780 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1781 /// 1782 /// The removal may have removed some child loops entirely but cannot have 1783 /// disturbed any remaining child loops. However, they may need to be hoisted 1784 /// to the parent loop (or to be top-level loops). The original loop may be 1785 /// completely removed. 1786 /// 1787 /// The sibling loops resulting from this update are returned. If the original 1788 /// loop remains a valid loop, it will be the first entry in this list with all 1789 /// of the newly sibling loops following it. 1790 /// 1791 /// Returns true if the loop remains a loop after unswitching, and false if it 1792 /// is no longer a loop after unswitching (and should not continue to be 1793 /// referenced). 1794 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1795 LoopInfo &LI, 1796 SmallVectorImpl<Loop *> &HoistedLoops) { 1797 auto *PH = L.getLoopPreheader(); 1798 1799 // Compute the actual parent loop from the exit blocks. Because we may have 1800 // pruned some exits the loop may be different from the original parent. 1801 Loop *ParentL = nullptr; 1802 SmallVector<Loop *, 4> ExitLoops; 1803 SmallVector<BasicBlock *, 4> ExitsInLoops; 1804 ExitsInLoops.reserve(ExitBlocks.size()); 1805 for (auto *ExitBB : ExitBlocks) 1806 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1807 ExitLoops.push_back(ExitL); 1808 ExitsInLoops.push_back(ExitBB); 1809 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1810 ParentL = ExitL; 1811 } 1812 1813 // Recompute the blocks participating in this loop. This may be empty if it 1814 // is no longer a loop. 1815 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1816 1817 // If we still have a loop, we need to re-set the loop's parent as the exit 1818 // block set changing may have moved it within the loop nest. Note that this 1819 // can only happen when this loop has a parent as it can only hoist the loop 1820 // *up* the nest. 1821 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1822 // Remove this loop's (original) blocks from all of the intervening loops. 1823 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1824 IL = IL->getParentLoop()) { 1825 IL->getBlocksSet().erase(PH); 1826 for (auto *BB : L.blocks()) 1827 IL->getBlocksSet().erase(BB); 1828 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1829 return BB == PH || L.contains(BB); 1830 }); 1831 } 1832 1833 LI.changeLoopFor(PH, ParentL); 1834 L.getParentLoop()->removeChildLoop(&L); 1835 if (ParentL) 1836 ParentL->addChildLoop(&L); 1837 else 1838 LI.addTopLevelLoop(&L); 1839 } 1840 1841 // Now we update all the blocks which are no longer within the loop. 1842 auto &Blocks = L.getBlocksVector(); 1843 auto BlocksSplitI = 1844 LoopBlockSet.empty() 1845 ? Blocks.begin() 1846 : std::stable_partition( 1847 Blocks.begin(), Blocks.end(), 1848 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1849 1850 // Before we erase the list of unlooped blocks, build a set of them. 1851 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1852 if (LoopBlockSet.empty()) 1853 UnloopedBlocks.insert(PH); 1854 1855 // Now erase these blocks from the loop. 1856 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1857 L.getBlocksSet().erase(BB); 1858 Blocks.erase(BlocksSplitI, Blocks.end()); 1859 1860 // Sort the exits in ascending loop depth, we'll work backwards across these 1861 // to process them inside out. 1862 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1863 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1864 }); 1865 1866 // We'll build up a set for each exit loop. 1867 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1868 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1869 1870 auto RemoveUnloopedBlocksFromLoop = 1871 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1872 for (auto *BB : UnloopedBlocks) 1873 L.getBlocksSet().erase(BB); 1874 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1875 return UnloopedBlocks.count(BB); 1876 }); 1877 }; 1878 1879 SmallVector<BasicBlock *, 16> Worklist; 1880 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1881 assert(Worklist.empty() && "Didn't clear worklist!"); 1882 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1883 1884 // Grab the next exit block, in decreasing loop depth order. 1885 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1886 Loop &ExitL = *LI.getLoopFor(ExitBB); 1887 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1888 1889 // Erase all of the unlooped blocks from the loops between the previous 1890 // exit loop and this exit loop. This works because the ExitInLoops list is 1891 // sorted in increasing order of loop depth and thus we visit loops in 1892 // decreasing order of loop depth. 1893 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1894 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1895 1896 // Walk the CFG back until we hit the cloned PH adding everything reachable 1897 // and in the unlooped set to this exit block's loop. 1898 Worklist.push_back(ExitBB); 1899 do { 1900 BasicBlock *BB = Worklist.pop_back_val(); 1901 // We can stop recursing at the cloned preheader (if we get there). 1902 if (BB == PH) 1903 continue; 1904 1905 for (BasicBlock *PredBB : predecessors(BB)) { 1906 // If this pred has already been moved to our set or is part of some 1907 // (inner) loop, no update needed. 1908 if (!UnloopedBlocks.erase(PredBB)) { 1909 assert((NewExitLoopBlocks.count(PredBB) || 1910 ExitL.contains(LI.getLoopFor(PredBB))) && 1911 "Predecessor not in a nested loop (or already visited)!"); 1912 continue; 1913 } 1914 1915 // We just insert into the loop set here. We'll add these blocks to the 1916 // exit loop after we build up the set in a deterministic order rather 1917 // than the predecessor-influenced visit order. 1918 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1919 (void)Inserted; 1920 assert(Inserted && "Should only visit an unlooped block once!"); 1921 1922 // And recurse through to its predecessors. 1923 Worklist.push_back(PredBB); 1924 } 1925 } while (!Worklist.empty()); 1926 1927 // If blocks in this exit loop were directly part of the original loop (as 1928 // opposed to a child loop) update the map to point to this exit loop. This 1929 // just updates a map and so the fact that the order is unstable is fine. 1930 for (auto *BB : NewExitLoopBlocks) 1931 if (Loop *BBL = LI.getLoopFor(BB)) 1932 if (BBL == &L || !L.contains(BBL)) 1933 LI.changeLoopFor(BB, &ExitL); 1934 1935 // We will remove the remaining unlooped blocks from this loop in the next 1936 // iteration or below. 1937 NewExitLoopBlocks.clear(); 1938 } 1939 1940 // Any remaining unlooped blocks are no longer part of any loop unless they 1941 // are part of some child loop. 1942 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1943 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1944 for (auto *BB : UnloopedBlocks) 1945 if (Loop *BBL = LI.getLoopFor(BB)) 1946 if (BBL == &L || !L.contains(BBL)) 1947 LI.changeLoopFor(BB, nullptr); 1948 1949 // Sink all the child loops whose headers are no longer in the loop set to 1950 // the parent (or to be top level loops). We reach into the loop and directly 1951 // update its subloop vector to make this batch update efficient. 1952 auto &SubLoops = L.getSubLoopsVector(); 1953 auto SubLoopsSplitI = 1954 LoopBlockSet.empty() 1955 ? SubLoops.begin() 1956 : std::stable_partition( 1957 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1958 return LoopBlockSet.count(SubL->getHeader()); 1959 }); 1960 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1961 HoistedLoops.push_back(HoistedL); 1962 HoistedL->setParentLoop(nullptr); 1963 1964 // To compute the new parent of this hoisted loop we look at where we 1965 // placed the preheader above. We can't lookup the header itself because we 1966 // retained the mapping from the header to the hoisted loop. But the 1967 // preheader and header should have the exact same new parent computed 1968 // based on the set of exit blocks from the original loop as the preheader 1969 // is a predecessor of the header and so reached in the reverse walk. And 1970 // because the loops were all in simplified form the preheader of the 1971 // hoisted loop can't be part of some *other* loop. 1972 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1973 NewParentL->addChildLoop(HoistedL); 1974 else 1975 LI.addTopLevelLoop(HoistedL); 1976 } 1977 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1978 1979 // Actually delete the loop if nothing remained within it. 1980 if (Blocks.empty()) { 1981 assert(SubLoops.empty() && 1982 "Failed to remove all subloops from the original loop!"); 1983 if (Loop *ParentL = L.getParentLoop()) 1984 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1985 else 1986 LI.removeLoop(llvm::find(LI, &L)); 1987 // markLoopAsDeleted for L should be triggered by the caller (it is typically 1988 // done by using the UnswitchCB callback). 1989 LI.destroy(&L); 1990 return false; 1991 } 1992 1993 return true; 1994 } 1995 1996 /// Helper to visit a dominator subtree, invoking a callable on each node. 1997 /// 1998 /// Returning false at any point will stop walking past that node of the tree. 1999 template <typename CallableT> 2000 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2001 SmallVector<DomTreeNode *, 4> DomWorklist; 2002 DomWorklist.push_back(DT[BB]); 2003 #ifndef NDEBUG 2004 SmallPtrSet<DomTreeNode *, 4> Visited; 2005 Visited.insert(DT[BB]); 2006 #endif 2007 do { 2008 DomTreeNode *N = DomWorklist.pop_back_val(); 2009 2010 // Visit this node. 2011 if (!Callable(N->getBlock())) 2012 continue; 2013 2014 // Accumulate the child nodes. 2015 for (DomTreeNode *ChildN : *N) { 2016 assert(Visited.insert(ChildN).second && 2017 "Cannot visit a node twice when walking a tree!"); 2018 DomWorklist.push_back(ChildN); 2019 } 2020 } while (!DomWorklist.empty()); 2021 } 2022 2023 static void unswitchNontrivialInvariants( 2024 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2025 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo, 2026 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2027 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2028 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2029 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2030 auto *ParentBB = TI.getParent(); 2031 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2032 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2033 2034 // We can only unswitch switches, conditional branches with an invariant 2035 // condition, or combining invariant conditions with an instruction or 2036 // partially invariant instructions. 2037 assert((SI || (BI && BI->isConditional())) && 2038 "Can only unswitch switches and conditional branch!"); 2039 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2040 bool FullUnswitch = 2041 SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant); 2042 if (FullUnswitch) 2043 assert(Invariants.size() == 1 && 2044 "Cannot have other invariants with full unswitching!"); 2045 else 2046 assert(isa<Instruction>(BI->getCondition()) && 2047 "Partial unswitching requires an instruction as the condition!"); 2048 2049 if (MSSAU && VerifyMemorySSA) 2050 MSSAU->getMemorySSA()->verifyMemorySSA(); 2051 2052 // Constant and BBs tracking the cloned and continuing successor. When we are 2053 // unswitching the entire condition, this can just be trivially chosen to 2054 // unswitch towards `true`. However, when we are unswitching a set of 2055 // invariants combined with `and` or `or` or partially invariant instructions, 2056 // the combining operation determines the best direction to unswitch: we want 2057 // to unswitch the direction that will collapse the branch. 2058 bool Direction = true; 2059 int ClonedSucc = 0; 2060 if (!FullUnswitch) { 2061 Value *Cond = BI->getCondition(); 2062 (void)Cond; 2063 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2064 PartiallyInvariant) && 2065 "Only `or`, `and`, an `select`, partially invariant instructions " 2066 "can combine invariants being unswitched."); 2067 if (!match(BI->getCondition(), m_LogicalOr())) { 2068 if (match(BI->getCondition(), m_LogicalAnd()) || 2069 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2070 Direction = false; 2071 ClonedSucc = 1; 2072 } 2073 } 2074 } 2075 2076 BasicBlock *RetainedSuccBB = 2077 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2078 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2079 if (BI) 2080 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2081 else 2082 for (auto Case : SI->cases()) 2083 if (Case.getCaseSuccessor() != RetainedSuccBB) 2084 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2085 2086 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2087 "Should not unswitch the same successor we are retaining!"); 2088 2089 // The branch should be in this exact loop. Any inner loop's invariant branch 2090 // should be handled by unswitching that inner loop. The caller of this 2091 // routine should filter out any candidates that remain (but were skipped for 2092 // whatever reason). 2093 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2094 2095 // Compute the parent loop now before we start hacking on things. 2096 Loop *ParentL = L.getParentLoop(); 2097 // Get blocks in RPO order for MSSA update, before changing the CFG. 2098 LoopBlocksRPO LBRPO(&L); 2099 if (MSSAU) 2100 LBRPO.perform(&LI); 2101 2102 // Compute the outer-most loop containing one of our exit blocks. This is the 2103 // furthest up our loopnest which can be mutated, which we will use below to 2104 // update things. 2105 Loop *OuterExitL = &L; 2106 for (auto *ExitBB : ExitBlocks) { 2107 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2108 if (!NewOuterExitL) { 2109 // We exited the entire nest with this block, so we're done. 2110 OuterExitL = nullptr; 2111 break; 2112 } 2113 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2114 OuterExitL = NewOuterExitL; 2115 } 2116 2117 // At this point, we're definitely going to unswitch something so invalidate 2118 // any cached information in ScalarEvolution for the outer most loop 2119 // containing an exit block and all nested loops. 2120 if (SE) { 2121 if (OuterExitL) 2122 SE->forgetLoop(OuterExitL); 2123 else 2124 SE->forgetTopmostLoop(&L); 2125 } 2126 2127 // If the edge from this terminator to a successor dominates that successor, 2128 // store a map from each block in its dominator subtree to it. This lets us 2129 // tell when cloning for a particular successor if a block is dominated by 2130 // some *other* successor with a single data structure. We use this to 2131 // significantly reduce cloning. 2132 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2133 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2134 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2135 if (SuccBB->getUniquePredecessor() || 2136 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2137 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2138 })) 2139 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2140 DominatingSucc[BB] = SuccBB; 2141 return true; 2142 }); 2143 2144 // Split the preheader, so that we know that there is a safe place to insert 2145 // the conditional branch. We will change the preheader to have a conditional 2146 // branch on LoopCond. The original preheader will become the split point 2147 // between the unswitched versions, and we will have a new preheader for the 2148 // original loop. 2149 BasicBlock *SplitBB = L.getLoopPreheader(); 2150 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2151 2152 // Keep track of the dominator tree updates needed. 2153 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2154 2155 // Clone the loop for each unswitched successor. 2156 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2157 VMaps.reserve(UnswitchedSuccBBs.size()); 2158 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2159 for (auto *SuccBB : UnswitchedSuccBBs) { 2160 VMaps.emplace_back(new ValueToValueMapTy()); 2161 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2162 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2163 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2164 } 2165 2166 // Drop metadata if we may break its semantics by moving this instr into the 2167 // split block. 2168 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2169 if (DropNonTrivialImplicitNullChecks) 2170 // Do not spend time trying to understand if we can keep it, just drop it 2171 // to save compile time. 2172 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2173 else { 2174 // It is only legal to preserve make.implicit metadata if we are 2175 // guaranteed no reach implicit null check after following this branch. 2176 ICFLoopSafetyInfo SafetyInfo; 2177 SafetyInfo.computeLoopSafetyInfo(&L); 2178 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2179 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2180 } 2181 } 2182 2183 // The stitching of the branched code back together depends on whether we're 2184 // doing full unswitching or not with the exception that we always want to 2185 // nuke the initial terminator placed in the split block. 2186 SplitBB->getTerminator()->eraseFromParent(); 2187 if (FullUnswitch) { 2188 // Splice the terminator from the original loop and rewrite its 2189 // successors. 2190 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2191 2192 // Keep a clone of the terminator for MSSA updates. 2193 Instruction *NewTI = TI.clone(); 2194 ParentBB->getInstList().push_back(NewTI); 2195 2196 // First wire up the moved terminator to the preheaders. 2197 if (BI) { 2198 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2199 BI->setSuccessor(ClonedSucc, ClonedPH); 2200 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2201 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2202 } else { 2203 assert(SI && "Must either be a branch or switch!"); 2204 2205 // Walk the cases and directly update their successors. 2206 assert(SI->getDefaultDest() == RetainedSuccBB && 2207 "Not retaining default successor!"); 2208 SI->setDefaultDest(LoopPH); 2209 for (auto &Case : SI->cases()) 2210 if (Case.getCaseSuccessor() == RetainedSuccBB) 2211 Case.setSuccessor(LoopPH); 2212 else 2213 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2214 2215 // We need to use the set to populate domtree updates as even when there 2216 // are multiple cases pointing at the same successor we only want to 2217 // remove and insert one edge in the domtree. 2218 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2219 DTUpdates.push_back( 2220 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2221 } 2222 2223 if (MSSAU) { 2224 DT.applyUpdates(DTUpdates); 2225 DTUpdates.clear(); 2226 2227 // Remove all but one edge to the retained block and all unswitched 2228 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2229 // when we know we only keep a single edge for each case. 2230 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2231 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2232 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2233 2234 for (auto &VMap : VMaps) 2235 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2236 /*IgnoreIncomingWithNoClones=*/true); 2237 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2238 2239 // Remove all edges to unswitched blocks. 2240 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2241 MSSAU->removeEdge(ParentBB, SuccBB); 2242 } 2243 2244 // Now unhook the successor relationship as we'll be replacing 2245 // the terminator with a direct branch. This is much simpler for branches 2246 // than switches so we handle those first. 2247 if (BI) { 2248 // Remove the parent as a predecessor of the unswitched successor. 2249 assert(UnswitchedSuccBBs.size() == 1 && 2250 "Only one possible unswitched block for a branch!"); 2251 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2252 UnswitchedSuccBB->removePredecessor(ParentBB, 2253 /*KeepOneInputPHIs*/ true); 2254 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2255 } else { 2256 // Note that we actually want to remove the parent block as a predecessor 2257 // of *every* case successor. The case successor is either unswitched, 2258 // completely eliminating an edge from the parent to that successor, or it 2259 // is a duplicate edge to the retained successor as the retained successor 2260 // is always the default successor and as we'll replace this with a direct 2261 // branch we no longer need the duplicate entries in the PHI nodes. 2262 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2263 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2264 "Not retaining default successor!"); 2265 for (auto &Case : NewSI->cases()) 2266 Case.getCaseSuccessor()->removePredecessor( 2267 ParentBB, 2268 /*KeepOneInputPHIs*/ true); 2269 2270 // We need to use the set to populate domtree updates as even when there 2271 // are multiple cases pointing at the same successor we only want to 2272 // remove and insert one edge in the domtree. 2273 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2274 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2275 } 2276 2277 // After MSSAU update, remove the cloned terminator instruction NewTI. 2278 ParentBB->getTerminator()->eraseFromParent(); 2279 2280 // Create a new unconditional branch to the continuing block (as opposed to 2281 // the one cloned). 2282 BranchInst::Create(RetainedSuccBB, ParentBB); 2283 } else { 2284 assert(BI && "Only branches have partial unswitching."); 2285 assert(UnswitchedSuccBBs.size() == 1 && 2286 "Only one possible unswitched block for a branch!"); 2287 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2288 // When doing a partial unswitch, we have to do a bit more work to build up 2289 // the branch in the split block. 2290 if (PartiallyInvariant) 2291 buildPartialInvariantUnswitchConditionalBranch( 2292 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2293 else 2294 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2295 *ClonedPH, *LoopPH); 2296 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2297 2298 if (MSSAU) { 2299 DT.applyUpdates(DTUpdates); 2300 DTUpdates.clear(); 2301 2302 // Perform MSSA cloning updates. 2303 for (auto &VMap : VMaps) 2304 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2305 /*IgnoreIncomingWithNoClones=*/true); 2306 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2307 } 2308 } 2309 2310 // Apply the updates accumulated above to get an up-to-date dominator tree. 2311 DT.applyUpdates(DTUpdates); 2312 2313 // Now that we have an accurate dominator tree, first delete the dead cloned 2314 // blocks so that we can accurately build any cloned loops. It is important to 2315 // not delete the blocks from the original loop yet because we still want to 2316 // reference the original loop to understand the cloned loop's structure. 2317 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2318 2319 // Build the cloned loop structure itself. This may be substantially 2320 // different from the original structure due to the simplified CFG. This also 2321 // handles inserting all the cloned blocks into the correct loops. 2322 SmallVector<Loop *, 4> NonChildClonedLoops; 2323 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2324 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2325 2326 // Now that our cloned loops have been built, we can update the original loop. 2327 // First we delete the dead blocks from it and then we rebuild the loop 2328 // structure taking these deletions into account. 2329 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB); 2330 2331 if (MSSAU && VerifyMemorySSA) 2332 MSSAU->getMemorySSA()->verifyMemorySSA(); 2333 2334 SmallVector<Loop *, 4> HoistedLoops; 2335 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2336 2337 if (MSSAU && VerifyMemorySSA) 2338 MSSAU->getMemorySSA()->verifyMemorySSA(); 2339 2340 // This transformation has a high risk of corrupting the dominator tree, and 2341 // the below steps to rebuild loop structures will result in hard to debug 2342 // errors in that case so verify that the dominator tree is sane first. 2343 // FIXME: Remove this when the bugs stop showing up and rely on existing 2344 // verification steps. 2345 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2346 2347 if (BI && !PartiallyInvariant) { 2348 // If we unswitched a branch which collapses the condition to a known 2349 // constant we want to replace all the uses of the invariants within both 2350 // the original and cloned blocks. We do this here so that we can use the 2351 // now updated dominator tree to identify which side the users are on. 2352 assert(UnswitchedSuccBBs.size() == 1 && 2353 "Only one possible unswitched block for a branch!"); 2354 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2355 2356 // When considering multiple partially-unswitched invariants 2357 // we cant just go replace them with constants in both branches. 2358 // 2359 // For 'AND' we infer that true branch ("continue") means true 2360 // for each invariant operand. 2361 // For 'OR' we can infer that false branch ("continue") means false 2362 // for each invariant operand. 2363 // So it happens that for multiple-partial case we dont replace 2364 // in the unswitched branch. 2365 bool ReplaceUnswitched = 2366 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2367 2368 ConstantInt *UnswitchedReplacement = 2369 Direction ? ConstantInt::getTrue(BI->getContext()) 2370 : ConstantInt::getFalse(BI->getContext()); 2371 ConstantInt *ContinueReplacement = 2372 Direction ? ConstantInt::getFalse(BI->getContext()) 2373 : ConstantInt::getTrue(BI->getContext()); 2374 for (Value *Invariant : Invariants) { 2375 assert(!isa<Constant>(Invariant) && 2376 "Should not be replacing constant values!"); 2377 // Use make_early_inc_range here as set invalidates the iterator. 2378 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2379 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2380 if (!UserI) 2381 continue; 2382 2383 // Replace it with the 'continue' side if in the main loop body, and the 2384 // unswitched if in the cloned blocks. 2385 if (DT.dominates(LoopPH, UserI->getParent())) 2386 U.set(ContinueReplacement); 2387 else if (ReplaceUnswitched && 2388 DT.dominates(ClonedPH, UserI->getParent())) 2389 U.set(UnswitchedReplacement); 2390 } 2391 } 2392 } 2393 2394 // We can change which blocks are exit blocks of all the cloned sibling 2395 // loops, the current loop, and any parent loops which shared exit blocks 2396 // with the current loop. As a consequence, we need to re-form LCSSA for 2397 // them. But we shouldn't need to re-form LCSSA for any child loops. 2398 // FIXME: This could be made more efficient by tracking which exit blocks are 2399 // new, and focusing on them, but that isn't likely to be necessary. 2400 // 2401 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2402 // loop nest and update every loop that could have had its exits changed. We 2403 // also need to cover any intervening loops. We add all of these loops to 2404 // a list and sort them by loop depth to achieve this without updating 2405 // unnecessary loops. 2406 auto UpdateLoop = [&](Loop &UpdateL) { 2407 #ifndef NDEBUG 2408 UpdateL.verifyLoop(); 2409 for (Loop *ChildL : UpdateL) { 2410 ChildL->verifyLoop(); 2411 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2412 "Perturbed a child loop's LCSSA form!"); 2413 } 2414 #endif 2415 // First build LCSSA for this loop so that we can preserve it when 2416 // forming dedicated exits. We don't want to perturb some other loop's 2417 // LCSSA while doing that CFG edit. 2418 formLCSSA(UpdateL, DT, &LI, SE); 2419 2420 // For loops reached by this loop's original exit blocks we may 2421 // introduced new, non-dedicated exits. At least try to re-form dedicated 2422 // exits for these loops. This may fail if they couldn't have dedicated 2423 // exits to start with. 2424 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2425 }; 2426 2427 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2428 // and we can do it in any order as they don't nest relative to each other. 2429 // 2430 // Also check if any of the loops we have updated have become top-level loops 2431 // as that will necessitate widening the outer loop scope. 2432 for (Loop *UpdatedL : 2433 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2434 UpdateLoop(*UpdatedL); 2435 if (UpdatedL->isOutermost()) 2436 OuterExitL = nullptr; 2437 } 2438 if (IsStillLoop) { 2439 UpdateLoop(L); 2440 if (L.isOutermost()) 2441 OuterExitL = nullptr; 2442 } 2443 2444 // If the original loop had exit blocks, walk up through the outer most loop 2445 // of those exit blocks to update LCSSA and form updated dedicated exits. 2446 if (OuterExitL != &L) 2447 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2448 OuterL = OuterL->getParentLoop()) 2449 UpdateLoop(*OuterL); 2450 2451 #ifndef NDEBUG 2452 // Verify the entire loop structure to catch any incorrect updates before we 2453 // progress in the pass pipeline. 2454 LI.verify(DT); 2455 #endif 2456 2457 // Now that we've unswitched something, make callbacks to report the changes. 2458 // For that we need to merge together the updated loops and the cloned loops 2459 // and check whether the original loop survived. 2460 SmallVector<Loop *, 4> SibLoops; 2461 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2462 if (UpdatedL->getParentLoop() == ParentL) 2463 SibLoops.push_back(UpdatedL); 2464 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2465 2466 if (MSSAU && VerifyMemorySSA) 2467 MSSAU->getMemorySSA()->verifyMemorySSA(); 2468 2469 if (BI) 2470 ++NumBranches; 2471 else 2472 ++NumSwitches; 2473 } 2474 2475 /// Recursively compute the cost of a dominator subtree based on the per-block 2476 /// cost map provided. 2477 /// 2478 /// The recursive computation is memozied into the provided DT-indexed cost map 2479 /// to allow querying it for most nodes in the domtree without it becoming 2480 /// quadratic. 2481 static InstructionCost computeDomSubtreeCost( 2482 DomTreeNode &N, 2483 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2484 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2485 // Don't accumulate cost (or recurse through) blocks not in our block cost 2486 // map and thus not part of the duplication cost being considered. 2487 auto BBCostIt = BBCostMap.find(N.getBlock()); 2488 if (BBCostIt == BBCostMap.end()) 2489 return 0; 2490 2491 // Lookup this node to see if we already computed its cost. 2492 auto DTCostIt = DTCostMap.find(&N); 2493 if (DTCostIt != DTCostMap.end()) 2494 return DTCostIt->second; 2495 2496 // If not, we have to compute it. We can't use insert above and update 2497 // because computing the cost may insert more things into the map. 2498 InstructionCost Cost = std::accumulate( 2499 N.begin(), N.end(), BBCostIt->second, 2500 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2501 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2502 }); 2503 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2504 (void)Inserted; 2505 assert(Inserted && "Should not insert a node while visiting children!"); 2506 return Cost; 2507 } 2508 2509 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2510 /// making the following replacement: 2511 /// 2512 /// --code before guard-- 2513 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2514 /// --code after guard-- 2515 /// 2516 /// into 2517 /// 2518 /// --code before guard-- 2519 /// br i1 %cond, label %guarded, label %deopt 2520 /// 2521 /// guarded: 2522 /// --code after guard-- 2523 /// 2524 /// deopt: 2525 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2526 /// unreachable 2527 /// 2528 /// It also makes all relevant DT and LI updates, so that all structures are in 2529 /// valid state after this transform. 2530 static BranchInst * 2531 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2532 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2533 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2534 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2535 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2536 BasicBlock *CheckBB = GI->getParent(); 2537 2538 if (MSSAU && VerifyMemorySSA) 2539 MSSAU->getMemorySSA()->verifyMemorySSA(); 2540 2541 // Remove all CheckBB's successors from DomTree. A block can be seen among 2542 // successors more than once, but for DomTree it should be added only once. 2543 SmallPtrSet<BasicBlock *, 4> Successors; 2544 for (auto *Succ : successors(CheckBB)) 2545 if (Successors.insert(Succ).second) 2546 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2547 2548 Instruction *DeoptBlockTerm = 2549 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2550 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2551 // SplitBlockAndInsertIfThen inserts control flow that branches to 2552 // DeoptBlockTerm if the condition is true. We want the opposite. 2553 CheckBI->swapSuccessors(); 2554 2555 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2556 GuardedBlock->setName("guarded"); 2557 CheckBI->getSuccessor(1)->setName("deopt"); 2558 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2559 2560 // We now have a new exit block. 2561 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2562 2563 if (MSSAU) 2564 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2565 2566 GI->moveBefore(DeoptBlockTerm); 2567 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2568 2569 // Add new successors of CheckBB into DomTree. 2570 for (auto *Succ : successors(CheckBB)) 2571 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2572 2573 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2574 // successors. 2575 for (auto *Succ : Successors) 2576 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2577 2578 // Make proper changes to DT. 2579 DT.applyUpdates(DTUpdates); 2580 // Inform LI of a new loop block. 2581 L.addBasicBlockToLoop(GuardedBlock, LI); 2582 2583 if (MSSAU) { 2584 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2585 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2586 if (VerifyMemorySSA) 2587 MSSAU->getMemorySSA()->verifyMemorySSA(); 2588 } 2589 2590 ++NumGuards; 2591 return CheckBI; 2592 } 2593 2594 /// Cost multiplier is a way to limit potentially exponential behavior 2595 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2596 /// candidates available. Also accounting for the number of "sibling" loops with 2597 /// the idea to account for previous unswitches that already happened on this 2598 /// cluster of loops. There was an attempt to keep this formula simple, 2599 /// just enough to limit the worst case behavior. Even if it is not that simple 2600 /// now it is still not an attempt to provide a detailed heuristic size 2601 /// prediction. 2602 /// 2603 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2604 /// unswitch candidates, making adequate predictions instead of wild guesses. 2605 /// That requires knowing not just the number of "remaining" candidates but 2606 /// also costs of unswitching for each of these candidates. 2607 static int CalculateUnswitchCostMultiplier( 2608 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2609 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2610 UnswitchCandidates) { 2611 2612 // Guards and other exiting conditions do not contribute to exponential 2613 // explosion as soon as they dominate the latch (otherwise there might be 2614 // another path to the latch remaining that does not allow to eliminate the 2615 // loop copy on unswitch). 2616 BasicBlock *Latch = L.getLoopLatch(); 2617 BasicBlock *CondBlock = TI.getParent(); 2618 if (DT.dominates(CondBlock, Latch) && 2619 (isGuard(&TI) || 2620 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2621 return L.contains(SuccBB); 2622 }) <= 1)) { 2623 NumCostMultiplierSkipped++; 2624 return 1; 2625 } 2626 2627 auto *ParentL = L.getParentLoop(); 2628 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2629 : std::distance(LI.begin(), LI.end())); 2630 // Count amount of clones that all the candidates might cause during 2631 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2632 int UnswitchedClones = 0; 2633 for (auto Candidate : UnswitchCandidates) { 2634 Instruction *CI = Candidate.first; 2635 BasicBlock *CondBlock = CI->getParent(); 2636 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2637 if (isGuard(CI)) { 2638 if (!SkipExitingSuccessors) 2639 UnswitchedClones++; 2640 continue; 2641 } 2642 int NonExitingSuccessors = llvm::count_if( 2643 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2644 return !SkipExitingSuccessors || L.contains(SuccBB); 2645 }); 2646 UnswitchedClones += Log2_32(NonExitingSuccessors); 2647 } 2648 2649 // Ignore up to the "unscaled candidates" number of unswitch candidates 2650 // when calculating the power-of-two scaling of the cost. The main idea 2651 // with this control is to allow a small number of unswitches to happen 2652 // and rely more on siblings multiplier (see below) when the number 2653 // of candidates is small. 2654 unsigned ClonesPower = 2655 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2656 2657 // Allowing top-level loops to spread a bit more than nested ones. 2658 int SiblingsMultiplier = 2659 std::max((ParentL ? SiblingsCount 2660 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2661 1); 2662 // Compute the cost multiplier in a way that won't overflow by saturating 2663 // at an upper bound. 2664 int CostMultiplier; 2665 if (ClonesPower > Log2_32(UnswitchThreshold) || 2666 SiblingsMultiplier > UnswitchThreshold) 2667 CostMultiplier = UnswitchThreshold; 2668 else 2669 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2670 (int)UnswitchThreshold); 2671 2672 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2673 << " (siblings " << SiblingsMultiplier << " * clones " 2674 << (1 << ClonesPower) << ")" 2675 << " for unswitch candidate: " << TI << "\n"); 2676 return CostMultiplier; 2677 } 2678 2679 static bool unswitchBestCondition( 2680 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2681 AAResults &AA, TargetTransformInfo &TTI, 2682 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2683 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2684 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2685 // Collect all invariant conditions within this loop (as opposed to an inner 2686 // loop which would be handled when visiting that inner loop). 2687 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2688 UnswitchCandidates; 2689 2690 // Whether or not we should also collect guards in the loop. 2691 bool CollectGuards = false; 2692 if (UnswitchGuards) { 2693 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2694 Intrinsic::getName(Intrinsic::experimental_guard)); 2695 if (GuardDecl && !GuardDecl->use_empty()) 2696 CollectGuards = true; 2697 } 2698 2699 IVConditionInfo PartialIVInfo; 2700 for (auto *BB : L.blocks()) { 2701 if (LI.getLoopFor(BB) != &L) 2702 continue; 2703 2704 if (CollectGuards) 2705 for (auto &I : *BB) 2706 if (isGuard(&I)) { 2707 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2708 // TODO: Support AND, OR conditions and partial unswitching. 2709 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2710 UnswitchCandidates.push_back({&I, {Cond}}); 2711 } 2712 2713 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2714 // We can only consider fully loop-invariant switch conditions as we need 2715 // to completely eliminate the switch after unswitching. 2716 if (!isa<Constant>(SI->getCondition()) && 2717 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2718 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2719 continue; 2720 } 2721 2722 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2723 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2724 BI->getSuccessor(0) == BI->getSuccessor(1)) 2725 continue; 2726 2727 // If BI's condition is 'select _, true, false', simplify it to confuse 2728 // matchers 2729 Value *Cond = BI->getCondition(), *CondNext; 2730 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 2731 Cond = CondNext; 2732 BI->setCondition(Cond); 2733 2734 if (isa<Constant>(Cond)) 2735 continue; 2736 2737 if (L.isLoopInvariant(BI->getCondition())) { 2738 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2739 continue; 2740 } 2741 2742 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2743 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2744 TinyPtrVector<Value *> Invariants = 2745 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2746 if (Invariants.empty()) 2747 continue; 2748 2749 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2750 continue; 2751 } 2752 } 2753 2754 Instruction *PartialIVCondBranch = nullptr; 2755 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2756 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2757 return TerminatorAndInvariants.first == L.getHeader()->getTerminator(); 2758 })) { 2759 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2760 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2761 LLVM_DEBUG( 2762 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2763 << *Info->InstToDuplicate[0] << "\n"); 2764 PartialIVInfo = *Info; 2765 PartialIVCondBranch = L.getHeader()->getTerminator(); 2766 TinyPtrVector<Value *> ValsToDuplicate; 2767 for (auto *Inst : Info->InstToDuplicate) 2768 ValsToDuplicate.push_back(Inst); 2769 UnswitchCandidates.push_back( 2770 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2771 } 2772 } 2773 2774 // If we didn't find any candidates, we're done. 2775 if (UnswitchCandidates.empty()) 2776 return false; 2777 2778 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2779 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2780 // irreducible control flow into reducible control flow and introduce new 2781 // loops "out of thin air". If we ever discover important use cases for doing 2782 // this, we can add support to loop unswitch, but it is a lot of complexity 2783 // for what seems little or no real world benefit. 2784 LoopBlocksRPO RPOT(&L); 2785 RPOT.perform(&LI); 2786 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2787 return false; 2788 2789 SmallVector<BasicBlock *, 4> ExitBlocks; 2790 L.getUniqueExitBlocks(ExitBlocks); 2791 2792 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 2793 // instruction as we don't know how to split those exit blocks. 2794 // FIXME: We should teach SplitBlock to handle this and remove this 2795 // restriction. 2796 for (auto *ExitBB : ExitBlocks) { 2797 auto *I = ExitBB->getFirstNonPHI(); 2798 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 2799 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 2800 "in exit block\n"); 2801 return false; 2802 } 2803 } 2804 2805 LLVM_DEBUG( 2806 dbgs() << "Considering " << UnswitchCandidates.size() 2807 << " non-trivial loop invariant conditions for unswitching.\n"); 2808 2809 // Given that unswitching these terminators will require duplicating parts of 2810 // the loop, so we need to be able to model that cost. Compute the ephemeral 2811 // values and set up a data structure to hold per-BB costs. We cache each 2812 // block's cost so that we don't recompute this when considering different 2813 // subsets of the loop for duplication during unswitching. 2814 SmallPtrSet<const Value *, 4> EphValues; 2815 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2816 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2817 2818 // Compute the cost of each block, as well as the total loop cost. Also, bail 2819 // out if we see instructions which are incompatible with loop unswitching 2820 // (convergent, noduplicate, or cross-basic-block tokens). 2821 // FIXME: We might be able to safely handle some of these in non-duplicated 2822 // regions. 2823 TargetTransformInfo::TargetCostKind CostKind = 2824 L.getHeader()->getParent()->hasMinSize() 2825 ? TargetTransformInfo::TCK_CodeSize 2826 : TargetTransformInfo::TCK_SizeAndLatency; 2827 InstructionCost LoopCost = 0; 2828 for (auto *BB : L.blocks()) { 2829 InstructionCost Cost = 0; 2830 for (auto &I : *BB) { 2831 if (EphValues.count(&I)) 2832 continue; 2833 2834 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2835 return false; 2836 if (auto *CB = dyn_cast<CallBase>(&I)) 2837 if (CB->isConvergent() || CB->cannotDuplicate()) 2838 return false; 2839 2840 Cost += TTI.getUserCost(&I, CostKind); 2841 } 2842 assert(Cost >= 0 && "Must not have negative costs!"); 2843 LoopCost += Cost; 2844 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2845 BBCostMap[BB] = Cost; 2846 } 2847 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2848 2849 // Now we find the best candidate by searching for the one with the following 2850 // properties in order: 2851 // 2852 // 1) An unswitching cost below the threshold 2853 // 2) The smallest number of duplicated unswitch candidates (to avoid 2854 // creating redundant subsequent unswitching) 2855 // 3) The smallest cost after unswitching. 2856 // 2857 // We prioritize reducing fanout of unswitch candidates provided the cost 2858 // remains below the threshold because this has a multiplicative effect. 2859 // 2860 // This requires memoizing each dominator subtree to avoid redundant work. 2861 // 2862 // FIXME: Need to actually do the number of candidates part above. 2863 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2864 // Given a terminator which might be unswitched, computes the non-duplicated 2865 // cost for that terminator. 2866 auto ComputeUnswitchedCost = [&](Instruction &TI, 2867 bool FullUnswitch) -> InstructionCost { 2868 BasicBlock &BB = *TI.getParent(); 2869 SmallPtrSet<BasicBlock *, 4> Visited; 2870 2871 InstructionCost Cost = 0; 2872 for (BasicBlock *SuccBB : successors(&BB)) { 2873 // Don't count successors more than once. 2874 if (!Visited.insert(SuccBB).second) 2875 continue; 2876 2877 // If this is a partial unswitch candidate, then it must be a conditional 2878 // branch with a condition of either `or`, `and`, their corresponding 2879 // select forms or partially invariant instructions. In that case, one of 2880 // the successors is necessarily duplicated, so don't even try to remove 2881 // its cost. 2882 if (!FullUnswitch) { 2883 auto &BI = cast<BranchInst>(TI); 2884 if (match(BI.getCondition(), m_LogicalAnd())) { 2885 if (SuccBB == BI.getSuccessor(1)) 2886 continue; 2887 } else if (match(BI.getCondition(), m_LogicalOr())) { 2888 if (SuccBB == BI.getSuccessor(0)) 2889 continue; 2890 } else if ((PartialIVInfo.KnownValue->isOneValue() && 2891 SuccBB == BI.getSuccessor(0)) || 2892 (!PartialIVInfo.KnownValue->isOneValue() && 2893 SuccBB == BI.getSuccessor(1))) 2894 continue; 2895 } 2896 2897 // This successor's domtree will not need to be duplicated after 2898 // unswitching if the edge to the successor dominates it (and thus the 2899 // entire tree). This essentially means there is no other path into this 2900 // subtree and so it will end up live in only one clone of the loop. 2901 if (SuccBB->getUniquePredecessor() || 2902 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2903 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2904 })) { 2905 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2906 assert(Cost <= LoopCost && 2907 "Non-duplicated cost should never exceed total loop cost!"); 2908 } 2909 } 2910 2911 // Now scale the cost by the number of unique successors minus one. We 2912 // subtract one because there is already at least one copy of the entire 2913 // loop. This is computing the new cost of unswitching a condition. 2914 // Note that guards always have 2 unique successors that are implicit and 2915 // will be materialized if we decide to unswitch it. 2916 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2917 assert(SuccessorsCount > 1 && 2918 "Cannot unswitch a condition without multiple distinct successors!"); 2919 return (LoopCost - Cost) * (SuccessorsCount - 1); 2920 }; 2921 Instruction *BestUnswitchTI = nullptr; 2922 InstructionCost BestUnswitchCost = 0; 2923 ArrayRef<Value *> BestUnswitchInvariants; 2924 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2925 Instruction &TI = *TerminatorAndInvariants.first; 2926 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2927 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2928 InstructionCost CandidateCost = ComputeUnswitchedCost( 2929 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2930 Invariants[0] == BI->getCondition())); 2931 // Calculate cost multiplier which is a tool to limit potentially 2932 // exponential behavior of loop-unswitch. 2933 if (EnableUnswitchCostMultiplier) { 2934 int CostMultiplier = 2935 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2936 assert( 2937 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2938 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2939 CandidateCost *= CostMultiplier; 2940 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2941 << " (multiplier: " << CostMultiplier << ")" 2942 << " for unswitch candidate: " << TI << "\n"); 2943 } else { 2944 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2945 << " for unswitch candidate: " << TI << "\n"); 2946 } 2947 2948 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2949 BestUnswitchTI = &TI; 2950 BestUnswitchCost = CandidateCost; 2951 BestUnswitchInvariants = Invariants; 2952 } 2953 } 2954 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2955 2956 if (BestUnswitchCost >= UnswitchThreshold) { 2957 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2958 << BestUnswitchCost << "\n"); 2959 return false; 2960 } 2961 2962 if (BestUnswitchTI != PartialIVCondBranch) 2963 PartialIVInfo.InstToDuplicate.clear(); 2964 2965 // If the best candidate is a guard, turn it into a branch. 2966 if (isGuard(BestUnswitchTI)) 2967 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2968 ExitBlocks, DT, LI, MSSAU); 2969 2970 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2971 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2972 << "\n"); 2973 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2974 ExitBlocks, PartialIVInfo, DT, LI, AC, 2975 UnswitchCB, SE, MSSAU, DestroyLoopCB); 2976 return true; 2977 } 2978 2979 /// Unswitch control flow predicated on loop invariant conditions. 2980 /// 2981 /// This first hoists all branches or switches which are trivial (IE, do not 2982 /// require duplicating any part of the loop) out of the loop body. It then 2983 /// looks at other loop invariant control flows and tries to unswitch those as 2984 /// well by cloning the loop if the result is small enough. 2985 /// 2986 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 2987 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 2988 /// valid (i.e. its use is enabled). 2989 /// 2990 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2991 /// true, we will attempt to do non-trivial unswitching as well as trivial 2992 /// unswitching. 2993 /// 2994 /// The `UnswitchCB` callback provided will be run after unswitching is 2995 /// complete, with the first parameter set to `true` if the provided loop 2996 /// remains a loop, and a list of new sibling loops created. 2997 /// 2998 /// If `SE` is non-null, we will update that analysis based on the unswitching 2999 /// done. 3000 static bool 3001 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3002 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3003 bool NonTrivial, 3004 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3005 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3006 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3007 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3008 "Loops must be in LCSSA form before unswitching."); 3009 3010 // Must be in loop simplified form: we need a preheader and dedicated exits. 3011 if (!L.isLoopSimplifyForm()) 3012 return false; 3013 3014 // Try trivial unswitch first before loop over other basic blocks in the loop. 3015 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3016 // If we unswitched successfully we will want to clean up the loop before 3017 // processing it further so just mark it as unswitched and return. 3018 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3019 return true; 3020 } 3021 3022 // Check whether we should continue with non-trivial conditions. 3023 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3024 // unswitching for testing and debugging. 3025 // NonTrivial: Parameter that enables non-trivial unswitching for this 3026 // invocation of the transform. But this should be allowed only 3027 // for targets without branch divergence. 3028 // 3029 // FIXME: If divergence analysis becomes available to a loop 3030 // transform, we should allow unswitching for non-trivial uniform 3031 // branches even on targets that have divergence. 3032 // https://bugs.llvm.org/show_bug.cgi?id=48819 3033 bool ContinueWithNonTrivial = 3034 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3035 if (!ContinueWithNonTrivial) 3036 return false; 3037 3038 // Skip non-trivial unswitching for optsize functions. 3039 if (L.getHeader()->getParent()->hasOptSize()) 3040 return false; 3041 3042 // Skip non-trivial unswitching for loops that cannot be cloned. 3043 if (!L.isSafeToClone()) 3044 return false; 3045 3046 // For non-trivial unswitching, because it often creates new loops, we rely on 3047 // the pass manager to iterate on the loops rather than trying to immediately 3048 // reach a fixed point. There is no substantial advantage to iterating 3049 // internally, and if any of the new loops are simplified enough to contain 3050 // trivial unswitching we want to prefer those. 3051 3052 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3053 // a partial unswitch when possible below the threshold. 3054 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3055 DestroyLoopCB)) 3056 return true; 3057 3058 // No other opportunities to unswitch. 3059 return false; 3060 } 3061 3062 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3063 LoopStandardAnalysisResults &AR, 3064 LPMUpdater &U) { 3065 Function &F = *L.getHeader()->getParent(); 3066 (void)F; 3067 3068 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3069 << "\n"); 3070 3071 // Save the current loop name in a variable so that we can report it even 3072 // after it has been deleted. 3073 std::string LoopName = std::string(L.getName()); 3074 3075 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3076 bool PartiallyInvariant, 3077 ArrayRef<Loop *> NewLoops) { 3078 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3079 if (!NewLoops.empty()) 3080 U.addSiblingLoops(NewLoops); 3081 3082 // If the current loop remains valid, we should revisit it to catch any 3083 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3084 if (CurrentLoopValid) { 3085 if (PartiallyInvariant) { 3086 // Mark the new loop as partially unswitched, to avoid unswitching on 3087 // the same condition again. 3088 auto &Context = L.getHeader()->getContext(); 3089 MDNode *DisableUnswitchMD = MDNode::get( 3090 Context, 3091 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3092 MDNode *NewLoopID = makePostTransformationMetadata( 3093 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3094 {DisableUnswitchMD}); 3095 L.setLoopID(NewLoopID); 3096 } else 3097 U.revisitCurrentLoop(); 3098 } else 3099 U.markLoopAsDeleted(L, LoopName); 3100 }; 3101 3102 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3103 U.markLoopAsDeleted(L, Name); 3104 }; 3105 3106 Optional<MemorySSAUpdater> MSSAU; 3107 if (AR.MSSA) { 3108 MSSAU = MemorySSAUpdater(AR.MSSA); 3109 if (VerifyMemorySSA) 3110 AR.MSSA->verifyMemorySSA(); 3111 } 3112 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3113 UnswitchCB, &AR.SE, 3114 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 3115 DestroyLoopCB)) 3116 return PreservedAnalyses::all(); 3117 3118 if (AR.MSSA && VerifyMemorySSA) 3119 AR.MSSA->verifyMemorySSA(); 3120 3121 // Historically this pass has had issues with the dominator tree so verify it 3122 // in asserts builds. 3123 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3124 3125 auto PA = getLoopPassPreservedAnalyses(); 3126 if (AR.MSSA) 3127 PA.preserve<MemorySSAAnalysis>(); 3128 return PA; 3129 } 3130 3131 void SimpleLoopUnswitchPass::printPipeline( 3132 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3133 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3134 OS, MapClassName2PassName); 3135 3136 OS << "<"; 3137 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3138 OS << (Trivial ? "" : "no-") << "trivial"; 3139 OS << ">"; 3140 } 3141 3142 namespace { 3143 3144 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3145 bool NonTrivial; 3146 3147 public: 3148 static char ID; // Pass ID, replacement for typeid 3149 3150 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3151 : LoopPass(ID), NonTrivial(NonTrivial) { 3152 initializeSimpleLoopUnswitchLegacyPassPass( 3153 *PassRegistry::getPassRegistry()); 3154 } 3155 3156 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3157 3158 void getAnalysisUsage(AnalysisUsage &AU) const override { 3159 AU.addRequired<AssumptionCacheTracker>(); 3160 AU.addRequired<TargetTransformInfoWrapperPass>(); 3161 AU.addRequired<MemorySSAWrapperPass>(); 3162 AU.addPreserved<MemorySSAWrapperPass>(); 3163 getLoopAnalysisUsage(AU); 3164 } 3165 }; 3166 3167 } // end anonymous namespace 3168 3169 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3170 if (skipLoop(L)) 3171 return false; 3172 3173 Function &F = *L->getHeader()->getParent(); 3174 3175 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3176 << "\n"); 3177 3178 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3179 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3180 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3181 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3182 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3183 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3184 MemorySSAUpdater MSSAU(MSSA); 3185 3186 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3187 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3188 3189 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3190 ArrayRef<Loop *> NewLoops) { 3191 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3192 for (auto *NewL : NewLoops) 3193 LPM.addLoop(*NewL); 3194 3195 // If the current loop remains valid, re-add it to the queue. This is 3196 // a little wasteful as we'll finish processing the current loop as well, 3197 // but it is the best we can do in the old PM. 3198 if (CurrentLoopValid) { 3199 // If the current loop has been unswitched using a partially invariant 3200 // condition, we should not re-add the current loop to avoid unswitching 3201 // on the same condition again. 3202 if (!PartiallyInvariant) 3203 LPM.addLoop(*L); 3204 } else 3205 LPM.markLoopAsDeleted(*L); 3206 }; 3207 3208 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3209 LPM.markLoopAsDeleted(L); 3210 }; 3211 3212 if (VerifyMemorySSA) 3213 MSSA->verifyMemorySSA(); 3214 3215 bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, 3216 UnswitchCB, SE, &MSSAU, DestroyLoopCB); 3217 3218 if (VerifyMemorySSA) 3219 MSSA->verifyMemorySSA(); 3220 3221 // Historically this pass has had issues with the dominator tree so verify it 3222 // in asserts builds. 3223 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3224 3225 return Changed; 3226 } 3227 3228 char SimpleLoopUnswitchLegacyPass::ID = 0; 3229 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3230 "Simple unswitch loops", false, false) 3231 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3232 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3233 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3234 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3235 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3236 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3237 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3238 "Simple unswitch loops", false, false) 3239 3240 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3241 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3242 } 3243