xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision dd4dd501166627527302d8fa2bc172ba0258f92d)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/GuardUtils.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ProfDataUtils.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/GenericDomTree.h"
55 #include "llvm/Support/InstructionCost.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/Transforms/Utils/Cloning.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/ValueMapper.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <iterator>
66 #include <numeric>
67 #include <optional>
68 #include <utility>
69 
70 #define DEBUG_TYPE "simple-loop-unswitch"
71 
72 using namespace llvm;
73 using namespace llvm::PatternMatch;
74 
75 STATISTIC(NumBranches, "Number of branches unswitched");
76 STATISTIC(NumSwitches, "Number of switches unswitched");
77 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
78 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
79 STATISTIC(
80     NumCostMultiplierSkipped,
81     "Number of unswitch candidates that had their cost multiplier skipped");
82 STATISTIC(NumInvariantConditionsInjected,
83           "Number of invariant conditions injected and unswitched");
84 
85 static cl::opt<bool> EnableNonTrivialUnswitch(
86     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
87     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
88              "following the configuration passed into the pass."));
89 
90 static cl::opt<int>
91     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
92                       cl::desc("The cost threshold for unswitching a loop."));
93 
94 static cl::opt<bool> EnableUnswitchCostMultiplier(
95     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
96     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
97              "explosion in nontrivial unswitch."));
98 static cl::opt<int> UnswitchSiblingsToplevelDiv(
99     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
100     cl::desc("Toplevel siblings divisor for cost multiplier."));
101 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
102     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
103     cl::desc("Number of unswitch candidates that are ignored when calculating "
104              "cost multiplier."));
105 static cl::opt<bool> UnswitchGuards(
106     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
107     cl::desc("If enabled, simple loop unswitching will also consider "
108              "llvm.experimental.guard intrinsics as unswitch candidates."));
109 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
110     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
111     cl::init(false), cl::Hidden,
112     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
113              "null checks to save time analyzing if we can keep it."));
114 static cl::opt<unsigned>
115     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
116                   cl::desc("Max number of memory uses to explore during "
117                            "partial unswitching analysis"),
118                   cl::init(100), cl::Hidden);
119 static cl::opt<bool> FreezeLoopUnswitchCond(
120     "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
121     cl::desc("If enabled, the freeze instruction will be added to condition "
122              "of loop unswitch to prevent miscompilation."));
123 
124 static cl::opt<bool> InjectInvariantConditions(
125     "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden,
126     cl::desc("Whether we should inject new invariants and unswitch them to "
127              "eliminate some existing (non-invariant) conditions."),
128     cl::init(true));
129 
130 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold(
131     "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
132     cl::Hidden, cl::desc("Only try to inject loop invariant conditions and "
133                          "unswitch on them to eliminate branches that are "
134                          "not-taken 1/<this option> times or less."),
135     cl::init(16));
136 
137 namespace {
138 struct CompareDesc {
139   BranchInst *Term;
140   Value *Invariant;
141   BasicBlock *InLoopSucc;
142 
143   CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc)
144       : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
145 };
146 
147 struct InjectedInvariant {
148   ICmpInst::Predicate Pred;
149   Value *LHS;
150   Value *RHS;
151   BasicBlock *InLoopSucc;
152 
153   InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
154                     BasicBlock *InLoopSucc)
155       : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
156 };
157 
158 struct NonTrivialUnswitchCandidate {
159   Instruction *TI = nullptr;
160   TinyPtrVector<Value *> Invariants;
161   std::optional<InstructionCost> Cost;
162   std::optional<InjectedInvariant> PendingInjection;
163   NonTrivialUnswitchCandidate(
164       Instruction *TI, ArrayRef<Value *> Invariants,
165       std::optional<InstructionCost> Cost = std::nullopt,
166       std::optional<InjectedInvariant> PendingInjection = std::nullopt)
167       : TI(TI), Invariants(Invariants), Cost(Cost),
168         PendingInjection(PendingInjection) {};
169 
170   bool hasPendingInjection() const { return PendingInjection.has_value(); }
171 };
172 } // end anonymous namespace.
173 
174 // Helper to skip (select x, true, false), which matches both a logical AND and
175 // OR and can confuse code that tries to determine if \p Cond is either a
176 // logical AND or OR but not both.
177 static Value *skipTrivialSelect(Value *Cond) {
178   Value *CondNext;
179   while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
180     Cond = CondNext;
181   return Cond;
182 }
183 
184 /// Collect all of the loop invariant input values transitively used by the
185 /// homogeneous instruction graph from a given root.
186 ///
187 /// This essentially walks from a root recursively through loop variant operands
188 /// which have perform the same logical operation (AND or OR) and finds all
189 /// inputs which are loop invariant. For some operations these can be
190 /// re-associated and unswitched out of the loop entirely.
191 static TinyPtrVector<Value *>
192 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
193                                          const LoopInfo &LI) {
194   assert(!L.isLoopInvariant(&Root) &&
195          "Only need to walk the graph if root itself is not invariant.");
196   TinyPtrVector<Value *> Invariants;
197 
198   bool IsRootAnd = match(&Root, m_LogicalAnd());
199   bool IsRootOr  = match(&Root, m_LogicalOr());
200 
201   // Build a worklist and recurse through operators collecting invariants.
202   SmallVector<Instruction *, 4> Worklist;
203   SmallPtrSet<Instruction *, 8> Visited;
204   Worklist.push_back(&Root);
205   Visited.insert(&Root);
206   do {
207     Instruction &I = *Worklist.pop_back_val();
208     for (Value *OpV : I.operand_values()) {
209       // Skip constants as unswitching isn't interesting for them.
210       if (isa<Constant>(OpV))
211         continue;
212 
213       // Add it to our result if loop invariant.
214       if (L.isLoopInvariant(OpV)) {
215         Invariants.push_back(OpV);
216         continue;
217       }
218 
219       // If not an instruction with the same opcode, nothing we can do.
220       Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
221 
222       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
223                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
224         // Visit this operand.
225         if (Visited.insert(OpI).second)
226           Worklist.push_back(OpI);
227       }
228     }
229   } while (!Worklist.empty());
230 
231   return Invariants;
232 }
233 
234 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
235                                      Constant &Replacement) {
236   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
237 
238   // Replace uses of LIC in the loop with the given constant.
239   // We use make_early_inc_range as set invalidates the iterator.
240   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
241     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
242 
243     // Replace this use within the loop body.
244     if (UserI && L.contains(UserI))
245       U.set(&Replacement);
246   }
247 }
248 
249 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
250 /// incoming values along this edge.
251 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
252                                          const BasicBlock &ExitingBB,
253                                          const BasicBlock &ExitBB) {
254   for (const Instruction &I : ExitBB) {
255     auto *PN = dyn_cast<PHINode>(&I);
256     if (!PN)
257       // No more PHIs to check.
258       return true;
259 
260     // If the incoming value for this edge isn't loop invariant the unswitch
261     // won't be trivial.
262     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
263       return false;
264   }
265   llvm_unreachable("Basic blocks should never be empty!");
266 }
267 
268 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
269 /// end of \p BB and conditionally branch on the copied condition. We only
270 /// branch on a single value.
271 static void buildPartialUnswitchConditionalBranch(
272     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
273     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
274     const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
275   IRBuilder<> IRB(&BB);
276 
277   SmallVector<Value *> FrozenInvariants;
278   for (Value *Inv : Invariants) {
279     if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
280       Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
281     FrozenInvariants.push_back(Inv);
282   }
283 
284   Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
285                           : IRB.CreateAnd(FrozenInvariants);
286   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
287                    Direction ? &NormalSucc : &UnswitchedSucc);
288 }
289 
290 /// Copy a set of loop invariant values, and conditionally branch on them.
291 static void buildPartialInvariantUnswitchConditionalBranch(
292     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
293     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
294     MemorySSAUpdater *MSSAU) {
295   ValueToValueMapTy VMap;
296   for (auto *Val : reverse(ToDuplicate)) {
297     Instruction *Inst = cast<Instruction>(Val);
298     Instruction *NewInst = Inst->clone();
299     NewInst->insertInto(&BB, BB.end());
300     RemapInstruction(NewInst, VMap,
301                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
302     VMap[Val] = NewInst;
303 
304     if (!MSSAU)
305       continue;
306 
307     MemorySSA *MSSA = MSSAU->getMemorySSA();
308     if (auto *MemUse =
309             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
310       auto *DefiningAccess = MemUse->getDefiningAccess();
311       // Get the first defining access before the loop.
312       while (L.contains(DefiningAccess->getBlock())) {
313         // If the defining access is a MemoryPhi, get the incoming
314         // value for the pre-header as defining access.
315         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
316           DefiningAccess =
317               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
318         else
319           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
320       }
321       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
322                                     NewInst->getParent(),
323                                     MemorySSA::BeforeTerminator);
324     }
325   }
326 
327   IRBuilder<> IRB(&BB);
328   Value *Cond = VMap[ToDuplicate[0]];
329   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
330                    Direction ? &NormalSucc : &UnswitchedSucc);
331 }
332 
333 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
334 ///
335 /// Requires that the loop exit and unswitched basic block are the same, and
336 /// that the exiting block was a unique predecessor of that block. Rewrites the
337 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
338 /// PHI nodes from the old preheader that now contains the unswitched
339 /// terminator.
340 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
341                                                   BasicBlock &OldExitingBB,
342                                                   BasicBlock &OldPH) {
343   for (PHINode &PN : UnswitchedBB.phis()) {
344     // When the loop exit is directly unswitched we just need to update the
345     // incoming basic block. We loop to handle weird cases with repeated
346     // incoming blocks, but expect to typically only have one operand here.
347     for (auto i : seq<int>(0, PN.getNumOperands())) {
348       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
349              "Found incoming block different from unique predecessor!");
350       PN.setIncomingBlock(i, &OldPH);
351     }
352   }
353 }
354 
355 /// Rewrite the PHI nodes in the loop exit basic block and the split off
356 /// unswitched block.
357 ///
358 /// Because the exit block remains an exit from the loop, this rewrites the
359 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
360 /// nodes into the unswitched basic block to select between the value in the
361 /// old preheader and the loop exit.
362 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
363                                                       BasicBlock &UnswitchedBB,
364                                                       BasicBlock &OldExitingBB,
365                                                       BasicBlock &OldPH,
366                                                       bool FullUnswitch) {
367   assert(&ExitBB != &UnswitchedBB &&
368          "Must have different loop exit and unswitched blocks!");
369   Instruction *InsertPt = &*UnswitchedBB.begin();
370   for (PHINode &PN : ExitBB.phis()) {
371     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
372                                   PN.getName() + ".split", InsertPt);
373 
374     // Walk backwards over the old PHI node's inputs to minimize the cost of
375     // removing each one. We have to do this weird loop manually so that we
376     // create the same number of new incoming edges in the new PHI as we expect
377     // each case-based edge to be included in the unswitched switch in some
378     // cases.
379     // FIXME: This is really, really gross. It would be much cleaner if LLVM
380     // allowed us to create a single entry for a predecessor block without
381     // having separate entries for each "edge" even though these edges are
382     // required to produce identical results.
383     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
384       if (PN.getIncomingBlock(i) != &OldExitingBB)
385         continue;
386 
387       Value *Incoming = PN.getIncomingValue(i);
388       if (FullUnswitch)
389         // No more edge from the old exiting block to the exit block.
390         PN.removeIncomingValue(i);
391 
392       NewPN->addIncoming(Incoming, &OldPH);
393     }
394 
395     // Now replace the old PHI with the new one and wire the old one in as an
396     // input to the new one.
397     PN.replaceAllUsesWith(NewPN);
398     NewPN->addIncoming(&PN, &ExitBB);
399   }
400 }
401 
402 /// Hoist the current loop up to the innermost loop containing a remaining exit.
403 ///
404 /// Because we've removed an exit from the loop, we may have changed the set of
405 /// loops reachable and need to move the current loop up the loop nest or even
406 /// to an entirely separate nest.
407 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
408                                  DominatorTree &DT, LoopInfo &LI,
409                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
410   // If the loop is already at the top level, we can't hoist it anywhere.
411   Loop *OldParentL = L.getParentLoop();
412   if (!OldParentL)
413     return;
414 
415   SmallVector<BasicBlock *, 4> Exits;
416   L.getExitBlocks(Exits);
417   Loop *NewParentL = nullptr;
418   for (auto *ExitBB : Exits)
419     if (Loop *ExitL = LI.getLoopFor(ExitBB))
420       if (!NewParentL || NewParentL->contains(ExitL))
421         NewParentL = ExitL;
422 
423   if (NewParentL == OldParentL)
424     return;
425 
426   // The new parent loop (if different) should always contain the old one.
427   if (NewParentL)
428     assert(NewParentL->contains(OldParentL) &&
429            "Can only hoist this loop up the nest!");
430 
431   // The preheader will need to move with the body of this loop. However,
432   // because it isn't in this loop we also need to update the primary loop map.
433   assert(OldParentL == LI.getLoopFor(&Preheader) &&
434          "Parent loop of this loop should contain this loop's preheader!");
435   LI.changeLoopFor(&Preheader, NewParentL);
436 
437   // Remove this loop from its old parent.
438   OldParentL->removeChildLoop(&L);
439 
440   // Add the loop either to the new parent or as a top-level loop.
441   if (NewParentL)
442     NewParentL->addChildLoop(&L);
443   else
444     LI.addTopLevelLoop(&L);
445 
446   // Remove this loops blocks from the old parent and every other loop up the
447   // nest until reaching the new parent. Also update all of these
448   // no-longer-containing loops to reflect the nesting change.
449   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
450        OldContainingL = OldContainingL->getParentLoop()) {
451     llvm::erase_if(OldContainingL->getBlocksVector(),
452                    [&](const BasicBlock *BB) {
453                      return BB == &Preheader || L.contains(BB);
454                    });
455 
456     OldContainingL->getBlocksSet().erase(&Preheader);
457     for (BasicBlock *BB : L.blocks())
458       OldContainingL->getBlocksSet().erase(BB);
459 
460     // Because we just hoisted a loop out of this one, we have essentially
461     // created new exit paths from it. That means we need to form LCSSA PHI
462     // nodes for values used in the no-longer-nested loop.
463     formLCSSA(*OldContainingL, DT, &LI, SE);
464 
465     // We shouldn't need to form dedicated exits because the exit introduced
466     // here is the (just split by unswitching) preheader. However, after trivial
467     // unswitching it is possible to get new non-dedicated exits out of parent
468     // loop so let's conservatively form dedicated exit blocks and figure out
469     // if we can optimize later.
470     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
471                             /*PreserveLCSSA*/ true);
472   }
473 }
474 
475 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
476 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
477 // as exiting block.
478 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
479                                          const LoopInfo &LI) {
480   const Loop *TopMost = LI.getLoopFor(ExitBB);
481   const Loop *Current = TopMost;
482   while (Current) {
483     if (Current->isLoopExiting(ExitBB))
484       TopMost = Current;
485     Current = Current->getParentLoop();
486   }
487   return TopMost;
488 }
489 
490 /// Unswitch a trivial branch if the condition is loop invariant.
491 ///
492 /// This routine should only be called when loop code leading to the branch has
493 /// been validated as trivial (no side effects). This routine checks if the
494 /// condition is invariant and one of the successors is a loop exit. This
495 /// allows us to unswitch without duplicating the loop, making it trivial.
496 ///
497 /// If this routine fails to unswitch the branch it returns false.
498 ///
499 /// If the branch can be unswitched, this routine splits the preheader and
500 /// hoists the branch above that split. Preserves loop simplified form
501 /// (splitting the exit block as necessary). It simplifies the branch within
502 /// the loop to an unconditional branch but doesn't remove it entirely. Further
503 /// cleanup can be done with some simplifycfg like pass.
504 ///
505 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
506 /// invalidated by this.
507 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
508                                   LoopInfo &LI, ScalarEvolution *SE,
509                                   MemorySSAUpdater *MSSAU) {
510   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
511   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
512 
513   // The loop invariant values that we want to unswitch.
514   TinyPtrVector<Value *> Invariants;
515 
516   // When true, we're fully unswitching the branch rather than just unswitching
517   // some input conditions to the branch.
518   bool FullUnswitch = false;
519 
520   Value *Cond = skipTrivialSelect(BI.getCondition());
521   if (L.isLoopInvariant(Cond)) {
522     Invariants.push_back(Cond);
523     FullUnswitch = true;
524   } else {
525     if (auto *CondInst = dyn_cast<Instruction>(Cond))
526       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
527     if (Invariants.empty()) {
528       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
529       return false;
530     }
531   }
532 
533   // Check that one of the branch's successors exits, and which one.
534   bool ExitDirection = true;
535   int LoopExitSuccIdx = 0;
536   auto *LoopExitBB = BI.getSuccessor(0);
537   if (L.contains(LoopExitBB)) {
538     ExitDirection = false;
539     LoopExitSuccIdx = 1;
540     LoopExitBB = BI.getSuccessor(1);
541     if (L.contains(LoopExitBB)) {
542       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
543       return false;
544     }
545   }
546   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
547   auto *ParentBB = BI.getParent();
548   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
549     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
550     return false;
551   }
552 
553   // When unswitching only part of the branch's condition, we need the exit
554   // block to be reached directly from the partially unswitched input. This can
555   // be done when the exit block is along the true edge and the branch condition
556   // is a graph of `or` operations, or the exit block is along the false edge
557   // and the condition is a graph of `and` operations.
558   if (!FullUnswitch) {
559     if (ExitDirection ? !match(Cond, m_LogicalOr())
560                       : !match(Cond, m_LogicalAnd())) {
561       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
562                            "non-full unswitch!\n");
563       return false;
564     }
565   }
566 
567   LLVM_DEBUG({
568     dbgs() << "    unswitching trivial invariant conditions for: " << BI
569            << "\n";
570     for (Value *Invariant : Invariants) {
571       dbgs() << "      " << *Invariant << " == true";
572       if (Invariant != Invariants.back())
573         dbgs() << " ||";
574       dbgs() << "\n";
575     }
576   });
577 
578   // If we have scalar evolutions, we need to invalidate them including this
579   // loop, the loop containing the exit block and the topmost parent loop
580   // exiting via LoopExitBB.
581   if (SE) {
582     if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
583       SE->forgetLoop(ExitL);
584     else
585       // Forget the entire nest as this exits the entire nest.
586       SE->forgetTopmostLoop(&L);
587     SE->forgetBlockAndLoopDispositions();
588   }
589 
590   if (MSSAU && VerifyMemorySSA)
591     MSSAU->getMemorySSA()->verifyMemorySSA();
592 
593   // Split the preheader, so that we know that there is a safe place to insert
594   // the conditional branch. We will change the preheader to have a conditional
595   // branch on LoopCond.
596   BasicBlock *OldPH = L.getLoopPreheader();
597   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
598 
599   // Now that we have a place to insert the conditional branch, create a place
600   // to branch to: this is the exit block out of the loop that we are
601   // unswitching. We need to split this if there are other loop predecessors.
602   // Because the loop is in simplified form, *any* other predecessor is enough.
603   BasicBlock *UnswitchedBB;
604   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
605     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
606            "A branch's parent isn't a predecessor!");
607     UnswitchedBB = LoopExitBB;
608   } else {
609     UnswitchedBB =
610         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
611   }
612 
613   if (MSSAU && VerifyMemorySSA)
614     MSSAU->getMemorySSA()->verifyMemorySSA();
615 
616   // Actually move the invariant uses into the unswitched position. If possible,
617   // we do this by moving the instructions, but when doing partial unswitching
618   // we do it by building a new merge of the values in the unswitched position.
619   OldPH->getTerminator()->eraseFromParent();
620   if (FullUnswitch) {
621     // If fully unswitching, we can use the existing branch instruction.
622     // Splice it into the old PH to gate reaching the new preheader and re-point
623     // its successors.
624     OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator());
625     BI.setCondition(Cond);
626     if (MSSAU) {
627       // Temporarily clone the terminator, to make MSSA update cheaper by
628       // separating "insert edge" updates from "remove edge" ones.
629       BI.clone()->insertInto(ParentBB, ParentBB->end());
630     } else {
631       // Create a new unconditional branch that will continue the loop as a new
632       // terminator.
633       BranchInst::Create(ContinueBB, ParentBB);
634     }
635     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
636     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
637   } else {
638     // Only unswitching a subset of inputs to the condition, so we will need to
639     // build a new branch that merges the invariant inputs.
640     if (ExitDirection)
641       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
642              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
643              "condition!");
644     else
645       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
646              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
647              " condition!");
648     buildPartialUnswitchConditionalBranch(
649         *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
650         FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
651   }
652 
653   // Update the dominator tree with the added edge.
654   DT.insertEdge(OldPH, UnswitchedBB);
655 
656   // After the dominator tree was updated with the added edge, update MemorySSA
657   // if available.
658   if (MSSAU) {
659     SmallVector<CFGUpdate, 1> Updates;
660     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
661     MSSAU->applyInsertUpdates(Updates, DT);
662   }
663 
664   // Finish updating dominator tree and memory ssa for full unswitch.
665   if (FullUnswitch) {
666     if (MSSAU) {
667       // Remove the cloned branch instruction.
668       ParentBB->getTerminator()->eraseFromParent();
669       // Create unconditional branch now.
670       BranchInst::Create(ContinueBB, ParentBB);
671       MSSAU->removeEdge(ParentBB, LoopExitBB);
672     }
673     DT.deleteEdge(ParentBB, LoopExitBB);
674   }
675 
676   if (MSSAU && VerifyMemorySSA)
677     MSSAU->getMemorySSA()->verifyMemorySSA();
678 
679   // Rewrite the relevant PHI nodes.
680   if (UnswitchedBB == LoopExitBB)
681     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
682   else
683     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
684                                               *ParentBB, *OldPH, FullUnswitch);
685 
686   // The constant we can replace all of our invariants with inside the loop
687   // body. If any of the invariants have a value other than this the loop won't
688   // be entered.
689   ConstantInt *Replacement = ExitDirection
690                                  ? ConstantInt::getFalse(BI.getContext())
691                                  : ConstantInt::getTrue(BI.getContext());
692 
693   // Since this is an i1 condition we can also trivially replace uses of it
694   // within the loop with a constant.
695   for (Value *Invariant : Invariants)
696     replaceLoopInvariantUses(L, Invariant, *Replacement);
697 
698   // If this was full unswitching, we may have changed the nesting relationship
699   // for this loop so hoist it to its correct parent if needed.
700   if (FullUnswitch)
701     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
702 
703   if (MSSAU && VerifyMemorySSA)
704     MSSAU->getMemorySSA()->verifyMemorySSA();
705 
706   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
707   ++NumTrivial;
708   ++NumBranches;
709   return true;
710 }
711 
712 /// Unswitch a trivial switch if the condition is loop invariant.
713 ///
714 /// This routine should only be called when loop code leading to the switch has
715 /// been validated as trivial (no side effects). This routine checks if the
716 /// condition is invariant and that at least one of the successors is a loop
717 /// exit. This allows us to unswitch without duplicating the loop, making it
718 /// trivial.
719 ///
720 /// If this routine fails to unswitch the switch it returns false.
721 ///
722 /// If the switch can be unswitched, this routine splits the preheader and
723 /// copies the switch above that split. If the default case is one of the
724 /// exiting cases, it copies the non-exiting cases and points them at the new
725 /// preheader. If the default case is not exiting, it copies the exiting cases
726 /// and points the default at the preheader. It preserves loop simplified form
727 /// (splitting the exit blocks as necessary). It simplifies the switch within
728 /// the loop by removing now-dead cases. If the default case is one of those
729 /// unswitched, it replaces its destination with a new basic block containing
730 /// only unreachable. Such basic blocks, while technically loop exits, are not
731 /// considered for unswitching so this is a stable transform and the same
732 /// switch will not be revisited. If after unswitching there is only a single
733 /// in-loop successor, the switch is further simplified to an unconditional
734 /// branch. Still more cleanup can be done with some simplifycfg like pass.
735 ///
736 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
737 /// invalidated by this.
738 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
739                                   LoopInfo &LI, ScalarEvolution *SE,
740                                   MemorySSAUpdater *MSSAU) {
741   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
742   Value *LoopCond = SI.getCondition();
743 
744   // If this isn't switching on an invariant condition, we can't unswitch it.
745   if (!L.isLoopInvariant(LoopCond))
746     return false;
747 
748   auto *ParentBB = SI.getParent();
749 
750   // The same check must be used both for the default and the exit cases. We
751   // should never leave edges from the switch instruction to a basic block that
752   // we are unswitching, hence the condition used to determine the default case
753   // needs to also be used to populate ExitCaseIndices, which is then used to
754   // remove cases from the switch.
755   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
756     // BBToCheck is not an exit block if it is inside loop L.
757     if (L.contains(&BBToCheck))
758       return false;
759     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
760     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
761       return false;
762     // We do not unswitch a block that only has an unreachable statement, as
763     // it's possible this is a previously unswitched block. Only unswitch if
764     // either the terminator is not unreachable, or, if it is, it's not the only
765     // instruction in the block.
766     auto *TI = BBToCheck.getTerminator();
767     bool isUnreachable = isa<UnreachableInst>(TI);
768     return !isUnreachable ||
769            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
770   };
771 
772   SmallVector<int, 4> ExitCaseIndices;
773   for (auto Case : SI.cases())
774     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
775       ExitCaseIndices.push_back(Case.getCaseIndex());
776   BasicBlock *DefaultExitBB = nullptr;
777   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
778       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
779   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
780     DefaultExitBB = SI.getDefaultDest();
781   } else if (ExitCaseIndices.empty())
782     return false;
783 
784   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
785 
786   if (MSSAU && VerifyMemorySSA)
787     MSSAU->getMemorySSA()->verifyMemorySSA();
788 
789   // We may need to invalidate SCEVs for the outermost loop reached by any of
790   // the exits.
791   Loop *OuterL = &L;
792 
793   if (DefaultExitBB) {
794     // Check the loop containing this exit.
795     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
796     if (!ExitL || ExitL->contains(OuterL))
797       OuterL = ExitL;
798   }
799 
800   if (SE) {
801     if (OuterL)
802       SE->forgetLoop(OuterL);
803     else
804       SE->forgetTopmostLoop(&L);
805   }
806 
807   if (DefaultExitBB) {
808     // Clear out the default destination temporarily to allow accurate
809     // predecessor lists to be examined below.
810     SI.setDefaultDest(nullptr);
811   }
812 
813   // Store the exit cases into a separate data structure and remove them from
814   // the switch.
815   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
816                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
817               4> ExitCases;
818   ExitCases.reserve(ExitCaseIndices.size());
819   SwitchInstProfUpdateWrapper SIW(SI);
820   // We walk the case indices backwards so that we remove the last case first
821   // and don't disrupt the earlier indices.
822   for (unsigned Index : reverse(ExitCaseIndices)) {
823     auto CaseI = SI.case_begin() + Index;
824     // Compute the outer loop from this exit.
825     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
826     if (!ExitL || ExitL->contains(OuterL))
827       OuterL = ExitL;
828     // Save the value of this case.
829     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
830     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
831     // Delete the unswitched cases.
832     SIW.removeCase(CaseI);
833   }
834 
835   // Check if after this all of the remaining cases point at the same
836   // successor.
837   BasicBlock *CommonSuccBB = nullptr;
838   if (SI.getNumCases() > 0 &&
839       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
840         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
841       }))
842     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
843   if (!DefaultExitBB) {
844     // If we're not unswitching the default, we need it to match any cases to
845     // have a common successor or if we have no cases it is the common
846     // successor.
847     if (SI.getNumCases() == 0)
848       CommonSuccBB = SI.getDefaultDest();
849     else if (SI.getDefaultDest() != CommonSuccBB)
850       CommonSuccBB = nullptr;
851   }
852 
853   // Split the preheader, so that we know that there is a safe place to insert
854   // the switch.
855   BasicBlock *OldPH = L.getLoopPreheader();
856   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
857   OldPH->getTerminator()->eraseFromParent();
858 
859   // Now add the unswitched switch.
860   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
861   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
862 
863   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
864   // First, we split any exit blocks with remaining in-loop predecessors. Then
865   // we update the PHIs in one of two ways depending on if there was a split.
866   // We walk in reverse so that we split in the same order as the cases
867   // appeared. This is purely for convenience of reading the resulting IR, but
868   // it doesn't cost anything really.
869   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
870   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
871   // Handle the default exit if necessary.
872   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
873   // ranges aren't quite powerful enough yet.
874   if (DefaultExitBB) {
875     if (pred_empty(DefaultExitBB)) {
876       UnswitchedExitBBs.insert(DefaultExitBB);
877       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
878     } else {
879       auto *SplitBB =
880           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
881       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
882                                                 *ParentBB, *OldPH,
883                                                 /*FullUnswitch*/ true);
884       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
885     }
886   }
887   // Note that we must use a reference in the for loop so that we update the
888   // container.
889   for (auto &ExitCase : reverse(ExitCases)) {
890     // Grab a reference to the exit block in the pair so that we can update it.
891     BasicBlock *ExitBB = std::get<1>(ExitCase);
892 
893     // If this case is the last edge into the exit block, we can simply reuse it
894     // as it will no longer be a loop exit. No mapping necessary.
895     if (pred_empty(ExitBB)) {
896       // Only rewrite once.
897       if (UnswitchedExitBBs.insert(ExitBB).second)
898         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
899       continue;
900     }
901 
902     // Otherwise we need to split the exit block so that we retain an exit
903     // block from the loop and a target for the unswitched condition.
904     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
905     if (!SplitExitBB) {
906       // If this is the first time we see this, do the split and remember it.
907       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
908       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
909                                                 *ParentBB, *OldPH,
910                                                 /*FullUnswitch*/ true);
911     }
912     // Update the case pair to point to the split block.
913     std::get<1>(ExitCase) = SplitExitBB;
914   }
915 
916   // Now add the unswitched cases. We do this in reverse order as we built them
917   // in reverse order.
918   for (auto &ExitCase : reverse(ExitCases)) {
919     ConstantInt *CaseVal = std::get<0>(ExitCase);
920     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
921 
922     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
923   }
924 
925   // If the default was unswitched, re-point it and add explicit cases for
926   // entering the loop.
927   if (DefaultExitBB) {
928     NewSIW->setDefaultDest(DefaultExitBB);
929     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
930 
931     // We removed all the exit cases, so we just copy the cases to the
932     // unswitched switch.
933     for (const auto &Case : SI.cases())
934       NewSIW.addCase(Case.getCaseValue(), NewPH,
935                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
936   } else if (DefaultCaseWeight) {
937     // We have to set branch weight of the default case.
938     uint64_t SW = *DefaultCaseWeight;
939     for (const auto &Case : SI.cases()) {
940       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
941       assert(W &&
942              "case weight must be defined as default case weight is defined");
943       SW += *W;
944     }
945     NewSIW.setSuccessorWeight(0, SW);
946   }
947 
948   // If we ended up with a common successor for every path through the switch
949   // after unswitching, rewrite it to an unconditional branch to make it easy
950   // to recognize. Otherwise we potentially have to recognize the default case
951   // pointing at unreachable and other complexity.
952   if (CommonSuccBB) {
953     BasicBlock *BB = SI.getParent();
954     // We may have had multiple edges to this common successor block, so remove
955     // them as predecessors. We skip the first one, either the default or the
956     // actual first case.
957     bool SkippedFirst = DefaultExitBB == nullptr;
958     for (auto Case : SI.cases()) {
959       assert(Case.getCaseSuccessor() == CommonSuccBB &&
960              "Non-common successor!");
961       (void)Case;
962       if (!SkippedFirst) {
963         SkippedFirst = true;
964         continue;
965       }
966       CommonSuccBB->removePredecessor(BB,
967                                       /*KeepOneInputPHIs*/ true);
968     }
969     // Now nuke the switch and replace it with a direct branch.
970     SIW.eraseFromParent();
971     BranchInst::Create(CommonSuccBB, BB);
972   } else if (DefaultExitBB) {
973     assert(SI.getNumCases() > 0 &&
974            "If we had no cases we'd have a common successor!");
975     // Move the last case to the default successor. This is valid as if the
976     // default got unswitched it cannot be reached. This has the advantage of
977     // being simple and keeping the number of edges from this switch to
978     // successors the same, and avoiding any PHI update complexity.
979     auto LastCaseI = std::prev(SI.case_end());
980 
981     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
982     SIW.setSuccessorWeight(
983         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
984     SIW.removeCase(LastCaseI);
985   }
986 
987   // Walk the unswitched exit blocks and the unswitched split blocks and update
988   // the dominator tree based on the CFG edits. While we are walking unordered
989   // containers here, the API for applyUpdates takes an unordered list of
990   // updates and requires them to not contain duplicates.
991   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
992   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
993     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
994     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
995   }
996   for (auto SplitUnswitchedPair : SplitExitBBMap) {
997     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
998     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
999   }
1000 
1001   if (MSSAU) {
1002     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
1003     if (VerifyMemorySSA)
1004       MSSAU->getMemorySSA()->verifyMemorySSA();
1005   } else {
1006     DT.applyUpdates(DTUpdates);
1007   }
1008 
1009   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1010 
1011   // We may have changed the nesting relationship for this loop so hoist it to
1012   // its correct parent if needed.
1013   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
1014 
1015   if (MSSAU && VerifyMemorySSA)
1016     MSSAU->getMemorySSA()->verifyMemorySSA();
1017 
1018   ++NumTrivial;
1019   ++NumSwitches;
1020   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
1021   return true;
1022 }
1023 
1024 /// This routine scans the loop to find a branch or switch which occurs before
1025 /// any side effects occur. These can potentially be unswitched without
1026 /// duplicating the loop. If a branch or switch is successfully unswitched the
1027 /// scanning continues to see if subsequent branches or switches have become
1028 /// trivial. Once all trivial candidates have been unswitched, this routine
1029 /// returns.
1030 ///
1031 /// The return value indicates whether anything was unswitched (and therefore
1032 /// changed).
1033 ///
1034 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
1035 /// invalidated by this.
1036 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
1037                                          LoopInfo &LI, ScalarEvolution *SE,
1038                                          MemorySSAUpdater *MSSAU) {
1039   bool Changed = false;
1040 
1041   // If loop header has only one reachable successor we should keep looking for
1042   // trivial condition candidates in the successor as well. An alternative is
1043   // to constant fold conditions and merge successors into loop header (then we
1044   // only need to check header's terminator). The reason for not doing this in
1045   // LoopUnswitch pass is that it could potentially break LoopPassManager's
1046   // invariants. Folding dead branches could either eliminate the current loop
1047   // or make other loops unreachable. LCSSA form might also not be preserved
1048   // after deleting branches. The following code keeps traversing loop header's
1049   // successors until it finds the trivial condition candidate (condition that
1050   // is not a constant). Since unswitching generates branches with constant
1051   // conditions, this scenario could be very common in practice.
1052   BasicBlock *CurrentBB = L.getHeader();
1053   SmallPtrSet<BasicBlock *, 8> Visited;
1054   Visited.insert(CurrentBB);
1055   do {
1056     // Check if there are any side-effecting instructions (e.g. stores, calls,
1057     // volatile loads) in the part of the loop that the code *would* execute
1058     // without unswitching.
1059     if (MSSAU) // Possible early exit with MSSA
1060       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1061         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1062           return Changed;
1063     if (llvm::any_of(*CurrentBB,
1064                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
1065       return Changed;
1066 
1067     Instruction *CurrentTerm = CurrentBB->getTerminator();
1068 
1069     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1070       // Don't bother trying to unswitch past a switch with a constant
1071       // condition. This should be removed prior to running this pass by
1072       // simplifycfg.
1073       if (isa<Constant>(SI->getCondition()))
1074         return Changed;
1075 
1076       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1077         // Couldn't unswitch this one so we're done.
1078         return Changed;
1079 
1080       // Mark that we managed to unswitch something.
1081       Changed = true;
1082 
1083       // If unswitching turned the terminator into an unconditional branch then
1084       // we can continue. The unswitching logic specifically works to fold any
1085       // cases it can into an unconditional branch to make it easier to
1086       // recognize here.
1087       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1088       if (!BI || BI->isConditional())
1089         return Changed;
1090 
1091       CurrentBB = BI->getSuccessor(0);
1092       continue;
1093     }
1094 
1095     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1096     if (!BI)
1097       // We do not understand other terminator instructions.
1098       return Changed;
1099 
1100     // Don't bother trying to unswitch past an unconditional branch or a branch
1101     // with a constant value. These should be removed by simplifycfg prior to
1102     // running this pass.
1103     if (!BI->isConditional() ||
1104         isa<Constant>(skipTrivialSelect(BI->getCondition())))
1105       return Changed;
1106 
1107     // Found a trivial condition candidate: non-foldable conditional branch. If
1108     // we fail to unswitch this, we can't do anything else that is trivial.
1109     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1110       return Changed;
1111 
1112     // Mark that we managed to unswitch something.
1113     Changed = true;
1114 
1115     // If we only unswitched some of the conditions feeding the branch, we won't
1116     // have collapsed it to a single successor.
1117     BI = cast<BranchInst>(CurrentBB->getTerminator());
1118     if (BI->isConditional())
1119       return Changed;
1120 
1121     // Follow the newly unconditional branch into its successor.
1122     CurrentBB = BI->getSuccessor(0);
1123 
1124     // When continuing, if we exit the loop or reach a previous visited block,
1125     // then we can not reach any trivial condition candidates (unfoldable
1126     // branch instructions or switch instructions) and no unswitch can happen.
1127   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1128 
1129   return Changed;
1130 }
1131 
1132 /// Build the cloned blocks for an unswitched copy of the given loop.
1133 ///
1134 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1135 /// after the split block (`SplitBB`) that will be used to select between the
1136 /// cloned and original loop.
1137 ///
1138 /// This routine handles cloning all of the necessary loop blocks and exit
1139 /// blocks including rewriting their instructions and the relevant PHI nodes.
1140 /// Any loop blocks or exit blocks which are dominated by a different successor
1141 /// than the one for this clone of the loop blocks can be trivially skipped. We
1142 /// use the `DominatingSucc` map to determine whether a block satisfies that
1143 /// property with a simple map lookup.
1144 ///
1145 /// It also correctly creates the unconditional branch in the cloned
1146 /// unswitched parent block to only point at the unswitched successor.
1147 ///
1148 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1149 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1150 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1151 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1152 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1153 /// instead the caller must recompute an accurate DT. It *does* correctly
1154 /// update the `AssumptionCache` provided in `AC`.
1155 static BasicBlock *buildClonedLoopBlocks(
1156     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1157     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1158     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1159     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1160     ValueToValueMapTy &VMap,
1161     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1162     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1163     ScalarEvolution *SE) {
1164   SmallVector<BasicBlock *, 4> NewBlocks;
1165   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1166 
1167   // We will need to clone a bunch of blocks, wrap up the clone operation in
1168   // a helper.
1169   auto CloneBlock = [&](BasicBlock *OldBB) {
1170     // Clone the basic block and insert it before the new preheader.
1171     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1172     NewBB->moveBefore(LoopPH);
1173 
1174     // Record this block and the mapping.
1175     NewBlocks.push_back(NewBB);
1176     VMap[OldBB] = NewBB;
1177 
1178     return NewBB;
1179   };
1180 
1181   // We skip cloning blocks when they have a dominating succ that is not the
1182   // succ we are cloning for.
1183   auto SkipBlock = [&](BasicBlock *BB) {
1184     auto It = DominatingSucc.find(BB);
1185     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1186   };
1187 
1188   // First, clone the preheader.
1189   auto *ClonedPH = CloneBlock(LoopPH);
1190 
1191   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1192   for (auto *LoopBB : L.blocks())
1193     if (!SkipBlock(LoopBB))
1194       CloneBlock(LoopBB);
1195 
1196   // Split all the loop exit edges so that when we clone the exit blocks, if
1197   // any of the exit blocks are *also* a preheader for some other loop, we
1198   // don't create multiple predecessors entering the loop header.
1199   for (auto *ExitBB : ExitBlocks) {
1200     if (SkipBlock(ExitBB))
1201       continue;
1202 
1203     // When we are going to clone an exit, we don't need to clone all the
1204     // instructions in the exit block and we want to ensure we have an easy
1205     // place to merge the CFG, so split the exit first. This is always safe to
1206     // do because there cannot be any non-loop predecessors of a loop exit in
1207     // loop simplified form.
1208     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1209 
1210     // Rearrange the names to make it easier to write test cases by having the
1211     // exit block carry the suffix rather than the merge block carrying the
1212     // suffix.
1213     MergeBB->takeName(ExitBB);
1214     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1215 
1216     // Now clone the original exit block.
1217     auto *ClonedExitBB = CloneBlock(ExitBB);
1218     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1219            "Exit block should have been split to have one successor!");
1220     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1221            "Cloned exit block has the wrong successor!");
1222 
1223     // Remap any cloned instructions and create a merge phi node for them.
1224     for (auto ZippedInsts : llvm::zip_first(
1225              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1226              llvm::make_range(ClonedExitBB->begin(),
1227                               std::prev(ClonedExitBB->end())))) {
1228       Instruction &I = std::get<0>(ZippedInsts);
1229       Instruction &ClonedI = std::get<1>(ZippedInsts);
1230 
1231       // The only instructions in the exit block should be PHI nodes and
1232       // potentially a landing pad.
1233       assert(
1234           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1235           "Bad instruction in exit block!");
1236       // We should have a value map between the instruction and its clone.
1237       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1238 
1239       // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1240       if (SE && isa<PHINode>(I))
1241         SE->forgetValue(&I);
1242 
1243       auto *MergePN =
1244           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1245                           &*MergeBB->getFirstInsertionPt());
1246       I.replaceAllUsesWith(MergePN);
1247       MergePN->addIncoming(&I, ExitBB);
1248       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1249     }
1250   }
1251 
1252   // Rewrite the instructions in the cloned blocks to refer to the instructions
1253   // in the cloned blocks. We have to do this as a second pass so that we have
1254   // everything available. Also, we have inserted new instructions which may
1255   // include assume intrinsics, so we update the assumption cache while
1256   // processing this.
1257   for (auto *ClonedBB : NewBlocks)
1258     for (Instruction &I : *ClonedBB) {
1259       RemapInstruction(&I, VMap,
1260                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1261       if (auto *II = dyn_cast<AssumeInst>(&I))
1262         AC.registerAssumption(II);
1263     }
1264 
1265   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1266   // have spurious incoming values.
1267   for (auto *LoopBB : L.blocks())
1268     if (SkipBlock(LoopBB))
1269       for (auto *SuccBB : successors(LoopBB))
1270         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1271           for (PHINode &PN : ClonedSuccBB->phis())
1272             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1273 
1274   // Remove the cloned parent as a predecessor of any successor we ended up
1275   // cloning other than the unswitched one.
1276   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1277   for (auto *SuccBB : successors(ParentBB)) {
1278     if (SuccBB == UnswitchedSuccBB)
1279       continue;
1280 
1281     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1282     if (!ClonedSuccBB)
1283       continue;
1284 
1285     ClonedSuccBB->removePredecessor(ClonedParentBB,
1286                                     /*KeepOneInputPHIs*/ true);
1287   }
1288 
1289   // Replace the cloned branch with an unconditional branch to the cloned
1290   // unswitched successor.
1291   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1292   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1293   // Trivial Simplification. If Terminator is a conditional branch and
1294   // condition becomes dead - erase it.
1295   Value *ClonedConditionToErase = nullptr;
1296   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1297     ClonedConditionToErase = BI->getCondition();
1298   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1299     ClonedConditionToErase = SI->getCondition();
1300 
1301   ClonedTerminator->eraseFromParent();
1302   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1303 
1304   if (ClonedConditionToErase)
1305     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1306                                                MSSAU);
1307 
1308   // If there are duplicate entries in the PHI nodes because of multiple edges
1309   // to the unswitched successor, we need to nuke all but one as we replaced it
1310   // with a direct branch.
1311   for (PHINode &PN : ClonedSuccBB->phis()) {
1312     bool Found = false;
1313     // Loop over the incoming operands backwards so we can easily delete as we
1314     // go without invalidating the index.
1315     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1316       if (PN.getIncomingBlock(i) != ClonedParentBB)
1317         continue;
1318       if (!Found) {
1319         Found = true;
1320         continue;
1321       }
1322       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1323     }
1324   }
1325 
1326   // Record the domtree updates for the new blocks.
1327   SmallPtrSet<BasicBlock *, 4> SuccSet;
1328   for (auto *ClonedBB : NewBlocks) {
1329     for (auto *SuccBB : successors(ClonedBB))
1330       if (SuccSet.insert(SuccBB).second)
1331         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1332     SuccSet.clear();
1333   }
1334 
1335   return ClonedPH;
1336 }
1337 
1338 /// Recursively clone the specified loop and all of its children.
1339 ///
1340 /// The target parent loop for the clone should be provided, or can be null if
1341 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1342 /// with the provided value map. The entire original loop must be present in
1343 /// the value map. The cloned loop is returned.
1344 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1345                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1346   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1347     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1348     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1349     for (auto *BB : OrigL.blocks()) {
1350       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1351       ClonedL.addBlockEntry(ClonedBB);
1352       if (LI.getLoopFor(BB) == &OrigL)
1353         LI.changeLoopFor(ClonedBB, &ClonedL);
1354     }
1355   };
1356 
1357   // We specially handle the first loop because it may get cloned into
1358   // a different parent and because we most commonly are cloning leaf loops.
1359   Loop *ClonedRootL = LI.AllocateLoop();
1360   if (RootParentL)
1361     RootParentL->addChildLoop(ClonedRootL);
1362   else
1363     LI.addTopLevelLoop(ClonedRootL);
1364   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1365 
1366   if (OrigRootL.isInnermost())
1367     return ClonedRootL;
1368 
1369   // If we have a nest, we can quickly clone the entire loop nest using an
1370   // iterative approach because it is a tree. We keep the cloned parent in the
1371   // data structure to avoid repeatedly querying through a map to find it.
1372   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1373   // Build up the loops to clone in reverse order as we'll clone them from the
1374   // back.
1375   for (Loop *ChildL : llvm::reverse(OrigRootL))
1376     LoopsToClone.push_back({ClonedRootL, ChildL});
1377   do {
1378     Loop *ClonedParentL, *L;
1379     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1380     Loop *ClonedL = LI.AllocateLoop();
1381     ClonedParentL->addChildLoop(ClonedL);
1382     AddClonedBlocksToLoop(*L, *ClonedL);
1383     for (Loop *ChildL : llvm::reverse(*L))
1384       LoopsToClone.push_back({ClonedL, ChildL});
1385   } while (!LoopsToClone.empty());
1386 
1387   return ClonedRootL;
1388 }
1389 
1390 /// Build the cloned loops of an original loop from unswitching.
1391 ///
1392 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1393 /// operation. We need to re-verify that there even is a loop (as the backedge
1394 /// may not have been cloned), and even if there are remaining backedges the
1395 /// backedge set may be different. However, we know that each child loop is
1396 /// undisturbed, we only need to find where to place each child loop within
1397 /// either any parent loop or within a cloned version of the original loop.
1398 ///
1399 /// Because child loops may end up cloned outside of any cloned version of the
1400 /// original loop, multiple cloned sibling loops may be created. All of them
1401 /// are returned so that the newly introduced loop nest roots can be
1402 /// identified.
1403 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1404                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1405                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1406   Loop *ClonedL = nullptr;
1407 
1408   auto *OrigPH = OrigL.getLoopPreheader();
1409   auto *OrigHeader = OrigL.getHeader();
1410 
1411   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1412   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1413 
1414   // We need to know the loops of the cloned exit blocks to even compute the
1415   // accurate parent loop. If we only clone exits to some parent of the
1416   // original parent, we want to clone into that outer loop. We also keep track
1417   // of the loops that our cloned exit blocks participate in.
1418   Loop *ParentL = nullptr;
1419   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1420   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1421   ClonedExitsInLoops.reserve(ExitBlocks.size());
1422   for (auto *ExitBB : ExitBlocks)
1423     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1424       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1425         ExitLoopMap[ClonedExitBB] = ExitL;
1426         ClonedExitsInLoops.push_back(ClonedExitBB);
1427         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1428           ParentL = ExitL;
1429       }
1430   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1431           ParentL->contains(OrigL.getParentLoop())) &&
1432          "The computed parent loop should always contain (or be) the parent of "
1433          "the original loop.");
1434 
1435   // We build the set of blocks dominated by the cloned header from the set of
1436   // cloned blocks out of the original loop. While not all of these will
1437   // necessarily be in the cloned loop, it is enough to establish that they
1438   // aren't in unreachable cycles, etc.
1439   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1440   for (auto *BB : OrigL.blocks())
1441     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1442       ClonedLoopBlocks.insert(ClonedBB);
1443 
1444   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1445   // skipped cloning some region of this loop which can in turn skip some of
1446   // the backedges so we have to rebuild the blocks in the loop based on the
1447   // backedges that remain after cloning.
1448   SmallVector<BasicBlock *, 16> Worklist;
1449   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1450   for (auto *Pred : predecessors(ClonedHeader)) {
1451     // The only possible non-loop header predecessor is the preheader because
1452     // we know we cloned the loop in simplified form.
1453     if (Pred == ClonedPH)
1454       continue;
1455 
1456     // Because the loop was in simplified form, the only non-loop predecessor
1457     // should be the preheader.
1458     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1459                                            "header other than the preheader "
1460                                            "that is not part of the loop!");
1461 
1462     // Insert this block into the loop set and on the first visit (and if it
1463     // isn't the header we're currently walking) put it into the worklist to
1464     // recurse through.
1465     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1466       Worklist.push_back(Pred);
1467   }
1468 
1469   // If we had any backedges then there *is* a cloned loop. Put the header into
1470   // the loop set and then walk the worklist backwards to find all the blocks
1471   // that remain within the loop after cloning.
1472   if (!BlocksInClonedLoop.empty()) {
1473     BlocksInClonedLoop.insert(ClonedHeader);
1474 
1475     while (!Worklist.empty()) {
1476       BasicBlock *BB = Worklist.pop_back_val();
1477       assert(BlocksInClonedLoop.count(BB) &&
1478              "Didn't put block into the loop set!");
1479 
1480       // Insert any predecessors that are in the possible set into the cloned
1481       // set, and if the insert is successful, add them to the worklist. Note
1482       // that we filter on the blocks that are definitely reachable via the
1483       // backedge to the loop header so we may prune out dead code within the
1484       // cloned loop.
1485       for (auto *Pred : predecessors(BB))
1486         if (ClonedLoopBlocks.count(Pred) &&
1487             BlocksInClonedLoop.insert(Pred).second)
1488           Worklist.push_back(Pred);
1489     }
1490 
1491     ClonedL = LI.AllocateLoop();
1492     if (ParentL) {
1493       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1494       ParentL->addChildLoop(ClonedL);
1495     } else {
1496       LI.addTopLevelLoop(ClonedL);
1497     }
1498     NonChildClonedLoops.push_back(ClonedL);
1499 
1500     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1501     // We don't want to just add the cloned loop blocks based on how we
1502     // discovered them. The original order of blocks was carefully built in
1503     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1504     // that logic, we just re-walk the original blocks (and those of the child
1505     // loops) and filter them as we add them into the cloned loop.
1506     for (auto *BB : OrigL.blocks()) {
1507       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1508       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1509         continue;
1510 
1511       // Directly add the blocks that are only in this loop.
1512       if (LI.getLoopFor(BB) == &OrigL) {
1513         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1514         continue;
1515       }
1516 
1517       // We want to manually add it to this loop and parents.
1518       // Registering it with LoopInfo will happen when we clone the top
1519       // loop for this block.
1520       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1521         PL->addBlockEntry(ClonedBB);
1522     }
1523 
1524     // Now add each child loop whose header remains within the cloned loop. All
1525     // of the blocks within the loop must satisfy the same constraints as the
1526     // header so once we pass the header checks we can just clone the entire
1527     // child loop nest.
1528     for (Loop *ChildL : OrigL) {
1529       auto *ClonedChildHeader =
1530           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1531       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1532         continue;
1533 
1534 #ifndef NDEBUG
1535       // We should never have a cloned child loop header but fail to have
1536       // all of the blocks for that child loop.
1537       for (auto *ChildLoopBB : ChildL->blocks())
1538         assert(BlocksInClonedLoop.count(
1539                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1540                "Child cloned loop has a header within the cloned outer "
1541                "loop but not all of its blocks!");
1542 #endif
1543 
1544       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1545     }
1546   }
1547 
1548   // Now that we've handled all the components of the original loop that were
1549   // cloned into a new loop, we still need to handle anything from the original
1550   // loop that wasn't in a cloned loop.
1551 
1552   // Figure out what blocks are left to place within any loop nest containing
1553   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1554   // them.
1555   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1556   if (BlocksInClonedLoop.empty())
1557     UnloopedBlockSet.insert(ClonedPH);
1558   for (auto *ClonedBB : ClonedLoopBlocks)
1559     if (!BlocksInClonedLoop.count(ClonedBB))
1560       UnloopedBlockSet.insert(ClonedBB);
1561 
1562   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1563   // backwards across these to process them inside out. The order shouldn't
1564   // matter as we're just trying to build up the map from inside-out; we use
1565   // the map in a more stably ordered way below.
1566   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1567   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1568     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1569            ExitLoopMap.lookup(RHS)->getLoopDepth();
1570   });
1571 
1572   // Populate the existing ExitLoopMap with everything reachable from each
1573   // exit, starting from the inner most exit.
1574   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1575     assert(Worklist.empty() && "Didn't clear worklist!");
1576 
1577     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1578     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1579 
1580     // Walk the CFG back until we hit the cloned PH adding everything reachable
1581     // and in the unlooped set to this exit block's loop.
1582     Worklist.push_back(ExitBB);
1583     do {
1584       BasicBlock *BB = Worklist.pop_back_val();
1585       // We can stop recursing at the cloned preheader (if we get there).
1586       if (BB == ClonedPH)
1587         continue;
1588 
1589       for (BasicBlock *PredBB : predecessors(BB)) {
1590         // If this pred has already been moved to our set or is part of some
1591         // (inner) loop, no update needed.
1592         if (!UnloopedBlockSet.erase(PredBB)) {
1593           assert(
1594               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1595               "Predecessor not mapped to a loop!");
1596           continue;
1597         }
1598 
1599         // We just insert into the loop set here. We'll add these blocks to the
1600         // exit loop after we build up the set in an order that doesn't rely on
1601         // predecessor order (which in turn relies on use list order).
1602         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1603         (void)Inserted;
1604         assert(Inserted && "Should only visit an unlooped block once!");
1605 
1606         // And recurse through to its predecessors.
1607         Worklist.push_back(PredBB);
1608       }
1609     } while (!Worklist.empty());
1610   }
1611 
1612   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1613   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1614   // in their original order adding them to the correct loop.
1615 
1616   // We need a stable insertion order. We use the order of the original loop
1617   // order and map into the correct parent loop.
1618   for (auto *BB : llvm::concat<BasicBlock *const>(
1619            ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1620     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1621       OuterL->addBasicBlockToLoop(BB, LI);
1622 
1623 #ifndef NDEBUG
1624   for (auto &BBAndL : ExitLoopMap) {
1625     auto *BB = BBAndL.first;
1626     auto *OuterL = BBAndL.second;
1627     assert(LI.getLoopFor(BB) == OuterL &&
1628            "Failed to put all blocks into outer loops!");
1629   }
1630 #endif
1631 
1632   // Now that all the blocks are placed into the correct containing loop in the
1633   // absence of child loops, find all the potentially cloned child loops and
1634   // clone them into whatever outer loop we placed their header into.
1635   for (Loop *ChildL : OrigL) {
1636     auto *ClonedChildHeader =
1637         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1638     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1639       continue;
1640 
1641 #ifndef NDEBUG
1642     for (auto *ChildLoopBB : ChildL->blocks())
1643       assert(VMap.count(ChildLoopBB) &&
1644              "Cloned a child loop header but not all of that loops blocks!");
1645 #endif
1646 
1647     NonChildClonedLoops.push_back(cloneLoopNest(
1648         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1649   }
1650 }
1651 
1652 static void
1653 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1654                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1655                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1656   // Find all the dead clones, and remove them from their successors.
1657   SmallVector<BasicBlock *, 16> DeadBlocks;
1658   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1659     for (const auto &VMap : VMaps)
1660       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1661         if (!DT.isReachableFromEntry(ClonedBB)) {
1662           for (BasicBlock *SuccBB : successors(ClonedBB))
1663             SuccBB->removePredecessor(ClonedBB);
1664           DeadBlocks.push_back(ClonedBB);
1665         }
1666 
1667   // Remove all MemorySSA in the dead blocks
1668   if (MSSAU) {
1669     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1670                                                  DeadBlocks.end());
1671     MSSAU->removeBlocks(DeadBlockSet);
1672   }
1673 
1674   // Drop any remaining references to break cycles.
1675   for (BasicBlock *BB : DeadBlocks)
1676     BB->dropAllReferences();
1677   // Erase them from the IR.
1678   for (BasicBlock *BB : DeadBlocks)
1679     BB->eraseFromParent();
1680 }
1681 
1682 static void
1683 deleteDeadBlocksFromLoop(Loop &L,
1684                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1685                          DominatorTree &DT, LoopInfo &LI,
1686                          MemorySSAUpdater *MSSAU,
1687                          ScalarEvolution *SE,
1688                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1689   // Find all the dead blocks tied to this loop, and remove them from their
1690   // successors.
1691   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1692 
1693   // Start with loop/exit blocks and get a transitive closure of reachable dead
1694   // blocks.
1695   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1696                                                 ExitBlocks.end());
1697   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1698   while (!DeathCandidates.empty()) {
1699     auto *BB = DeathCandidates.pop_back_val();
1700     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1701       for (BasicBlock *SuccBB : successors(BB)) {
1702         SuccBB->removePredecessor(BB);
1703         DeathCandidates.push_back(SuccBB);
1704       }
1705       DeadBlockSet.insert(BB);
1706     }
1707   }
1708 
1709   // Remove all MemorySSA in the dead blocks
1710   if (MSSAU)
1711     MSSAU->removeBlocks(DeadBlockSet);
1712 
1713   // Filter out the dead blocks from the exit blocks list so that it can be
1714   // used in the caller.
1715   llvm::erase_if(ExitBlocks,
1716                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1717 
1718   // Walk from this loop up through its parents removing all of the dead blocks.
1719   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1720     for (auto *BB : DeadBlockSet)
1721       ParentL->getBlocksSet().erase(BB);
1722     llvm::erase_if(ParentL->getBlocksVector(),
1723                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1724   }
1725 
1726   // Now delete the dead child loops. This raw delete will clear them
1727   // recursively.
1728   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1729     if (!DeadBlockSet.count(ChildL->getHeader()))
1730       return false;
1731 
1732     assert(llvm::all_of(ChildL->blocks(),
1733                         [&](BasicBlock *ChildBB) {
1734                           return DeadBlockSet.count(ChildBB);
1735                         }) &&
1736            "If the child loop header is dead all blocks in the child loop must "
1737            "be dead as well!");
1738     DestroyLoopCB(*ChildL, ChildL->getName());
1739     if (SE)
1740       SE->forgetBlockAndLoopDispositions();
1741     LI.destroy(ChildL);
1742     return true;
1743   });
1744 
1745   // Remove the loop mappings for the dead blocks and drop all the references
1746   // from these blocks to others to handle cyclic references as we start
1747   // deleting the blocks themselves.
1748   for (auto *BB : DeadBlockSet) {
1749     // Check that the dominator tree has already been updated.
1750     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1751     LI.changeLoopFor(BB, nullptr);
1752     // Drop all uses of the instructions to make sure we won't have dangling
1753     // uses in other blocks.
1754     for (auto &I : *BB)
1755       if (!I.use_empty())
1756         I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1757     BB->dropAllReferences();
1758   }
1759 
1760   // Actually delete the blocks now that they've been fully unhooked from the
1761   // IR.
1762   for (auto *BB : DeadBlockSet)
1763     BB->eraseFromParent();
1764 }
1765 
1766 /// Recompute the set of blocks in a loop after unswitching.
1767 ///
1768 /// This walks from the original headers predecessors to rebuild the loop. We
1769 /// take advantage of the fact that new blocks can't have been added, and so we
1770 /// filter by the original loop's blocks. This also handles potentially
1771 /// unreachable code that we don't want to explore but might be found examining
1772 /// the predecessors of the header.
1773 ///
1774 /// If the original loop is no longer a loop, this will return an empty set. If
1775 /// it remains a loop, all the blocks within it will be added to the set
1776 /// (including those blocks in inner loops).
1777 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1778                                                                  LoopInfo &LI) {
1779   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1780 
1781   auto *PH = L.getLoopPreheader();
1782   auto *Header = L.getHeader();
1783 
1784   // A worklist to use while walking backwards from the header.
1785   SmallVector<BasicBlock *, 16> Worklist;
1786 
1787   // First walk the predecessors of the header to find the backedges. This will
1788   // form the basis of our walk.
1789   for (auto *Pred : predecessors(Header)) {
1790     // Skip the preheader.
1791     if (Pred == PH)
1792       continue;
1793 
1794     // Because the loop was in simplified form, the only non-loop predecessor
1795     // is the preheader.
1796     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1797                                "than the preheader that is not part of the "
1798                                "loop!");
1799 
1800     // Insert this block into the loop set and on the first visit and, if it
1801     // isn't the header we're currently walking, put it into the worklist to
1802     // recurse through.
1803     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1804       Worklist.push_back(Pred);
1805   }
1806 
1807   // If no backedges were found, we're done.
1808   if (LoopBlockSet.empty())
1809     return LoopBlockSet;
1810 
1811   // We found backedges, recurse through them to identify the loop blocks.
1812   while (!Worklist.empty()) {
1813     BasicBlock *BB = Worklist.pop_back_val();
1814     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1815 
1816     // No need to walk past the header.
1817     if (BB == Header)
1818       continue;
1819 
1820     // Because we know the inner loop structure remains valid we can use the
1821     // loop structure to jump immediately across the entire nested loop.
1822     // Further, because it is in loop simplified form, we can directly jump
1823     // to its preheader afterward.
1824     if (Loop *InnerL = LI.getLoopFor(BB))
1825       if (InnerL != &L) {
1826         assert(L.contains(InnerL) &&
1827                "Should not reach a loop *outside* this loop!");
1828         // The preheader is the only possible predecessor of the loop so
1829         // insert it into the set and check whether it was already handled.
1830         auto *InnerPH = InnerL->getLoopPreheader();
1831         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1832                                       "but not contain the inner loop "
1833                                       "preheader!");
1834         if (!LoopBlockSet.insert(InnerPH).second)
1835           // The only way to reach the preheader is through the loop body
1836           // itself so if it has been visited the loop is already handled.
1837           continue;
1838 
1839         // Insert all of the blocks (other than those already present) into
1840         // the loop set. We expect at least the block that led us to find the
1841         // inner loop to be in the block set, but we may also have other loop
1842         // blocks if they were already enqueued as predecessors of some other
1843         // outer loop block.
1844         for (auto *InnerBB : InnerL->blocks()) {
1845           if (InnerBB == BB) {
1846             assert(LoopBlockSet.count(InnerBB) &&
1847                    "Block should already be in the set!");
1848             continue;
1849           }
1850 
1851           LoopBlockSet.insert(InnerBB);
1852         }
1853 
1854         // Add the preheader to the worklist so we will continue past the
1855         // loop body.
1856         Worklist.push_back(InnerPH);
1857         continue;
1858       }
1859 
1860     // Insert any predecessors that were in the original loop into the new
1861     // set, and if the insert is successful, add them to the worklist.
1862     for (auto *Pred : predecessors(BB))
1863       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1864         Worklist.push_back(Pred);
1865   }
1866 
1867   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1868 
1869   // We've found all the blocks participating in the loop, return our completed
1870   // set.
1871   return LoopBlockSet;
1872 }
1873 
1874 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1875 ///
1876 /// The removal may have removed some child loops entirely but cannot have
1877 /// disturbed any remaining child loops. However, they may need to be hoisted
1878 /// to the parent loop (or to be top-level loops). The original loop may be
1879 /// completely removed.
1880 ///
1881 /// The sibling loops resulting from this update are returned. If the original
1882 /// loop remains a valid loop, it will be the first entry in this list with all
1883 /// of the newly sibling loops following it.
1884 ///
1885 /// Returns true if the loop remains a loop after unswitching, and false if it
1886 /// is no longer a loop after unswitching (and should not continue to be
1887 /// referenced).
1888 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1889                                      LoopInfo &LI,
1890                                      SmallVectorImpl<Loop *> &HoistedLoops,
1891                                      ScalarEvolution *SE) {
1892   auto *PH = L.getLoopPreheader();
1893 
1894   // Compute the actual parent loop from the exit blocks. Because we may have
1895   // pruned some exits the loop may be different from the original parent.
1896   Loop *ParentL = nullptr;
1897   SmallVector<Loop *, 4> ExitLoops;
1898   SmallVector<BasicBlock *, 4> ExitsInLoops;
1899   ExitsInLoops.reserve(ExitBlocks.size());
1900   for (auto *ExitBB : ExitBlocks)
1901     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1902       ExitLoops.push_back(ExitL);
1903       ExitsInLoops.push_back(ExitBB);
1904       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1905         ParentL = ExitL;
1906     }
1907 
1908   // Recompute the blocks participating in this loop. This may be empty if it
1909   // is no longer a loop.
1910   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1911 
1912   // If we still have a loop, we need to re-set the loop's parent as the exit
1913   // block set changing may have moved it within the loop nest. Note that this
1914   // can only happen when this loop has a parent as it can only hoist the loop
1915   // *up* the nest.
1916   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1917     // Remove this loop's (original) blocks from all of the intervening loops.
1918     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1919          IL = IL->getParentLoop()) {
1920       IL->getBlocksSet().erase(PH);
1921       for (auto *BB : L.blocks())
1922         IL->getBlocksSet().erase(BB);
1923       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1924         return BB == PH || L.contains(BB);
1925       });
1926     }
1927 
1928     LI.changeLoopFor(PH, ParentL);
1929     L.getParentLoop()->removeChildLoop(&L);
1930     if (ParentL)
1931       ParentL->addChildLoop(&L);
1932     else
1933       LI.addTopLevelLoop(&L);
1934   }
1935 
1936   // Now we update all the blocks which are no longer within the loop.
1937   auto &Blocks = L.getBlocksVector();
1938   auto BlocksSplitI =
1939       LoopBlockSet.empty()
1940           ? Blocks.begin()
1941           : std::stable_partition(
1942                 Blocks.begin(), Blocks.end(),
1943                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1944 
1945   // Before we erase the list of unlooped blocks, build a set of them.
1946   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1947   if (LoopBlockSet.empty())
1948     UnloopedBlocks.insert(PH);
1949 
1950   // Now erase these blocks from the loop.
1951   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1952     L.getBlocksSet().erase(BB);
1953   Blocks.erase(BlocksSplitI, Blocks.end());
1954 
1955   // Sort the exits in ascending loop depth, we'll work backwards across these
1956   // to process them inside out.
1957   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1958     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1959   });
1960 
1961   // We'll build up a set for each exit loop.
1962   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1963   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1964 
1965   auto RemoveUnloopedBlocksFromLoop =
1966       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1967         for (auto *BB : UnloopedBlocks)
1968           L.getBlocksSet().erase(BB);
1969         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1970           return UnloopedBlocks.count(BB);
1971         });
1972       };
1973 
1974   SmallVector<BasicBlock *, 16> Worklist;
1975   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1976     assert(Worklist.empty() && "Didn't clear worklist!");
1977     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1978 
1979     // Grab the next exit block, in decreasing loop depth order.
1980     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1981     Loop &ExitL = *LI.getLoopFor(ExitBB);
1982     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1983 
1984     // Erase all of the unlooped blocks from the loops between the previous
1985     // exit loop and this exit loop. This works because the ExitInLoops list is
1986     // sorted in increasing order of loop depth and thus we visit loops in
1987     // decreasing order of loop depth.
1988     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1989       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1990 
1991     // Walk the CFG back until we hit the cloned PH adding everything reachable
1992     // and in the unlooped set to this exit block's loop.
1993     Worklist.push_back(ExitBB);
1994     do {
1995       BasicBlock *BB = Worklist.pop_back_val();
1996       // We can stop recursing at the cloned preheader (if we get there).
1997       if (BB == PH)
1998         continue;
1999 
2000       for (BasicBlock *PredBB : predecessors(BB)) {
2001         // If this pred has already been moved to our set or is part of some
2002         // (inner) loop, no update needed.
2003         if (!UnloopedBlocks.erase(PredBB)) {
2004           assert((NewExitLoopBlocks.count(PredBB) ||
2005                   ExitL.contains(LI.getLoopFor(PredBB))) &&
2006                  "Predecessor not in a nested loop (or already visited)!");
2007           continue;
2008         }
2009 
2010         // We just insert into the loop set here. We'll add these blocks to the
2011         // exit loop after we build up the set in a deterministic order rather
2012         // than the predecessor-influenced visit order.
2013         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
2014         (void)Inserted;
2015         assert(Inserted && "Should only visit an unlooped block once!");
2016 
2017         // And recurse through to its predecessors.
2018         Worklist.push_back(PredBB);
2019       }
2020     } while (!Worklist.empty());
2021 
2022     // If blocks in this exit loop were directly part of the original loop (as
2023     // opposed to a child loop) update the map to point to this exit loop. This
2024     // just updates a map and so the fact that the order is unstable is fine.
2025     for (auto *BB : NewExitLoopBlocks)
2026       if (Loop *BBL = LI.getLoopFor(BB))
2027         if (BBL == &L || !L.contains(BBL))
2028           LI.changeLoopFor(BB, &ExitL);
2029 
2030     // We will remove the remaining unlooped blocks from this loop in the next
2031     // iteration or below.
2032     NewExitLoopBlocks.clear();
2033   }
2034 
2035   // Any remaining unlooped blocks are no longer part of any loop unless they
2036   // are part of some child loop.
2037   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
2038     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2039   for (auto *BB : UnloopedBlocks)
2040     if (Loop *BBL = LI.getLoopFor(BB))
2041       if (BBL == &L || !L.contains(BBL))
2042         LI.changeLoopFor(BB, nullptr);
2043 
2044   // Sink all the child loops whose headers are no longer in the loop set to
2045   // the parent (or to be top level loops). We reach into the loop and directly
2046   // update its subloop vector to make this batch update efficient.
2047   auto &SubLoops = L.getSubLoopsVector();
2048   auto SubLoopsSplitI =
2049       LoopBlockSet.empty()
2050           ? SubLoops.begin()
2051           : std::stable_partition(
2052                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2053                   return LoopBlockSet.count(SubL->getHeader());
2054                 });
2055   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2056     HoistedLoops.push_back(HoistedL);
2057     HoistedL->setParentLoop(nullptr);
2058 
2059     // To compute the new parent of this hoisted loop we look at where we
2060     // placed the preheader above. We can't lookup the header itself because we
2061     // retained the mapping from the header to the hoisted loop. But the
2062     // preheader and header should have the exact same new parent computed
2063     // based on the set of exit blocks from the original loop as the preheader
2064     // is a predecessor of the header and so reached in the reverse walk. And
2065     // because the loops were all in simplified form the preheader of the
2066     // hoisted loop can't be part of some *other* loop.
2067     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2068       NewParentL->addChildLoop(HoistedL);
2069     else
2070       LI.addTopLevelLoop(HoistedL);
2071   }
2072   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2073 
2074   // Actually delete the loop if nothing remained within it.
2075   if (Blocks.empty()) {
2076     assert(SubLoops.empty() &&
2077            "Failed to remove all subloops from the original loop!");
2078     if (Loop *ParentL = L.getParentLoop())
2079       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2080     else
2081       LI.removeLoop(llvm::find(LI, &L));
2082     // markLoopAsDeleted for L should be triggered by the caller (it is typically
2083     // done by using the UnswitchCB callback).
2084     if (SE)
2085       SE->forgetBlockAndLoopDispositions();
2086     LI.destroy(&L);
2087     return false;
2088   }
2089 
2090   return true;
2091 }
2092 
2093 /// Helper to visit a dominator subtree, invoking a callable on each node.
2094 ///
2095 /// Returning false at any point will stop walking past that node of the tree.
2096 template <typename CallableT>
2097 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2098   SmallVector<DomTreeNode *, 4> DomWorklist;
2099   DomWorklist.push_back(DT[BB]);
2100 #ifndef NDEBUG
2101   SmallPtrSet<DomTreeNode *, 4> Visited;
2102   Visited.insert(DT[BB]);
2103 #endif
2104   do {
2105     DomTreeNode *N = DomWorklist.pop_back_val();
2106 
2107     // Visit this node.
2108     if (!Callable(N->getBlock()))
2109       continue;
2110 
2111     // Accumulate the child nodes.
2112     for (DomTreeNode *ChildN : *N) {
2113       assert(Visited.insert(ChildN).second &&
2114              "Cannot visit a node twice when walking a tree!");
2115       DomWorklist.push_back(ChildN);
2116     }
2117   } while (!DomWorklist.empty());
2118 }
2119 
2120 static void unswitchNontrivialInvariants(
2121     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2122     IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2123     AssumptionCache &AC,
2124     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2125     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2126     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2127   auto *ParentBB = TI.getParent();
2128   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2129   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2130 
2131   // We can only unswitch switches, conditional branches with an invariant
2132   // condition, or combining invariant conditions with an instruction or
2133   // partially invariant instructions.
2134   assert((SI || (BI && BI->isConditional())) &&
2135          "Can only unswitch switches and conditional branch!");
2136   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2137   bool FullUnswitch =
2138       SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2139              !PartiallyInvariant);
2140   if (FullUnswitch)
2141     assert(Invariants.size() == 1 &&
2142            "Cannot have other invariants with full unswitching!");
2143   else
2144     assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2145            "Partial unswitching requires an instruction as the condition!");
2146 
2147   if (MSSAU && VerifyMemorySSA)
2148     MSSAU->getMemorySSA()->verifyMemorySSA();
2149 
2150   // Constant and BBs tracking the cloned and continuing successor. When we are
2151   // unswitching the entire condition, this can just be trivially chosen to
2152   // unswitch towards `true`. However, when we are unswitching a set of
2153   // invariants combined with `and` or `or` or partially invariant instructions,
2154   // the combining operation determines the best direction to unswitch: we want
2155   // to unswitch the direction that will collapse the branch.
2156   bool Direction = true;
2157   int ClonedSucc = 0;
2158   if (!FullUnswitch) {
2159     Value *Cond = skipTrivialSelect(BI->getCondition());
2160     (void)Cond;
2161     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2162             PartiallyInvariant) &&
2163            "Only `or`, `and`, an `select`, partially invariant instructions "
2164            "can combine invariants being unswitched.");
2165     if (!match(Cond, m_LogicalOr())) {
2166       if (match(Cond, m_LogicalAnd()) ||
2167           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2168         Direction = false;
2169         ClonedSucc = 1;
2170       }
2171     }
2172   }
2173 
2174   BasicBlock *RetainedSuccBB =
2175       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2176   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2177   if (BI)
2178     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2179   else
2180     for (auto Case : SI->cases())
2181       if (Case.getCaseSuccessor() != RetainedSuccBB)
2182         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2183 
2184   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2185          "Should not unswitch the same successor we are retaining!");
2186 
2187   // The branch should be in this exact loop. Any inner loop's invariant branch
2188   // should be handled by unswitching that inner loop. The caller of this
2189   // routine should filter out any candidates that remain (but were skipped for
2190   // whatever reason).
2191   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2192 
2193   // Compute the parent loop now before we start hacking on things.
2194   Loop *ParentL = L.getParentLoop();
2195   // Get blocks in RPO order for MSSA update, before changing the CFG.
2196   LoopBlocksRPO LBRPO(&L);
2197   if (MSSAU)
2198     LBRPO.perform(&LI);
2199 
2200   // Compute the outer-most loop containing one of our exit blocks. This is the
2201   // furthest up our loopnest which can be mutated, which we will use below to
2202   // update things.
2203   Loop *OuterExitL = &L;
2204   SmallVector<BasicBlock *, 4> ExitBlocks;
2205   L.getUniqueExitBlocks(ExitBlocks);
2206   for (auto *ExitBB : ExitBlocks) {
2207     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2208     if (!NewOuterExitL) {
2209       // We exited the entire nest with this block, so we're done.
2210       OuterExitL = nullptr;
2211       break;
2212     }
2213     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2214       OuterExitL = NewOuterExitL;
2215   }
2216 
2217   // At this point, we're definitely going to unswitch something so invalidate
2218   // any cached information in ScalarEvolution for the outer most loop
2219   // containing an exit block and all nested loops.
2220   if (SE) {
2221     if (OuterExitL)
2222       SE->forgetLoop(OuterExitL);
2223     else
2224       SE->forgetTopmostLoop(&L);
2225     SE->forgetBlockAndLoopDispositions();
2226   }
2227 
2228   bool InsertFreeze = false;
2229   if (FreezeLoopUnswitchCond) {
2230     ICFLoopSafetyInfo SafetyInfo;
2231     SafetyInfo.computeLoopSafetyInfo(&L);
2232     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2233   }
2234 
2235   // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform,
2236   // otherwise the branch instruction will have been moved outside the loop
2237   // already, and may imply that a poison condition is always UB.
2238   Value *FullUnswitchCond = nullptr;
2239   if (FullUnswitch) {
2240     FullUnswitchCond =
2241         BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition();
2242     if (InsertFreeze)
2243       InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
2244           FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
2245   }
2246 
2247   // If the edge from this terminator to a successor dominates that successor,
2248   // store a map from each block in its dominator subtree to it. This lets us
2249   // tell when cloning for a particular successor if a block is dominated by
2250   // some *other* successor with a single data structure. We use this to
2251   // significantly reduce cloning.
2252   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2253   for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
2254                                                       UnswitchedSuccBBs))
2255     if (SuccBB->getUniquePredecessor() ||
2256         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2257           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2258         }))
2259       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2260         DominatingSucc[BB] = SuccBB;
2261         return true;
2262       });
2263 
2264   // Split the preheader, so that we know that there is a safe place to insert
2265   // the conditional branch. We will change the preheader to have a conditional
2266   // branch on LoopCond. The original preheader will become the split point
2267   // between the unswitched versions, and we will have a new preheader for the
2268   // original loop.
2269   BasicBlock *SplitBB = L.getLoopPreheader();
2270   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2271 
2272   // Keep track of the dominator tree updates needed.
2273   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2274 
2275   // Clone the loop for each unswitched successor.
2276   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2277   VMaps.reserve(UnswitchedSuccBBs.size());
2278   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2279   for (auto *SuccBB : UnswitchedSuccBBs) {
2280     VMaps.emplace_back(new ValueToValueMapTy());
2281     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2282         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2283         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2284   }
2285 
2286   // Drop metadata if we may break its semantics by moving this instr into the
2287   // split block.
2288   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2289     if (DropNonTrivialImplicitNullChecks)
2290       // Do not spend time trying to understand if we can keep it, just drop it
2291       // to save compile time.
2292       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2293     else {
2294       // It is only legal to preserve make.implicit metadata if we are
2295       // guaranteed no reach implicit null check after following this branch.
2296       ICFLoopSafetyInfo SafetyInfo;
2297       SafetyInfo.computeLoopSafetyInfo(&L);
2298       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2299         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2300     }
2301   }
2302 
2303   // The stitching of the branched code back together depends on whether we're
2304   // doing full unswitching or not with the exception that we always want to
2305   // nuke the initial terminator placed in the split block.
2306   SplitBB->getTerminator()->eraseFromParent();
2307   if (FullUnswitch) {
2308     // Splice the terminator from the original loop and rewrite its
2309     // successors.
2310     SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator());
2311 
2312     // Keep a clone of the terminator for MSSA updates.
2313     Instruction *NewTI = TI.clone();
2314     NewTI->insertInto(ParentBB, ParentBB->end());
2315 
2316     // First wire up the moved terminator to the preheaders.
2317     if (BI) {
2318       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2319       BI->setSuccessor(ClonedSucc, ClonedPH);
2320       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2321       if (InsertFreeze)
2322         FullUnswitchCond = new FreezeInst(
2323             FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI);
2324       BI->setCondition(FullUnswitchCond);
2325       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2326     } else {
2327       assert(SI && "Must either be a branch or switch!");
2328 
2329       // Walk the cases and directly update their successors.
2330       assert(SI->getDefaultDest() == RetainedSuccBB &&
2331              "Not retaining default successor!");
2332       SI->setDefaultDest(LoopPH);
2333       for (const auto &Case : SI->cases())
2334         if (Case.getCaseSuccessor() == RetainedSuccBB)
2335           Case.setSuccessor(LoopPH);
2336         else
2337           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2338 
2339       if (InsertFreeze)
2340         SI->setCondition(new FreezeInst(
2341             FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI));
2342 
2343       // We need to use the set to populate domtree updates as even when there
2344       // are multiple cases pointing at the same successor we only want to
2345       // remove and insert one edge in the domtree.
2346       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2347         DTUpdates.push_back(
2348             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2349     }
2350 
2351     if (MSSAU) {
2352       DT.applyUpdates(DTUpdates);
2353       DTUpdates.clear();
2354 
2355       // Remove all but one edge to the retained block and all unswitched
2356       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2357       // when we know we only keep a single edge for each case.
2358       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2359       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2360         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2361 
2362       for (auto &VMap : VMaps)
2363         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2364                                    /*IgnoreIncomingWithNoClones=*/true);
2365       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2366 
2367       // Remove all edges to unswitched blocks.
2368       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2369         MSSAU->removeEdge(ParentBB, SuccBB);
2370     }
2371 
2372     // Now unhook the successor relationship as we'll be replacing
2373     // the terminator with a direct branch. This is much simpler for branches
2374     // than switches so we handle those first.
2375     if (BI) {
2376       // Remove the parent as a predecessor of the unswitched successor.
2377       assert(UnswitchedSuccBBs.size() == 1 &&
2378              "Only one possible unswitched block for a branch!");
2379       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2380       UnswitchedSuccBB->removePredecessor(ParentBB,
2381                                           /*KeepOneInputPHIs*/ true);
2382       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2383     } else {
2384       // Note that we actually want to remove the parent block as a predecessor
2385       // of *every* case successor. The case successor is either unswitched,
2386       // completely eliminating an edge from the parent to that successor, or it
2387       // is a duplicate edge to the retained successor as the retained successor
2388       // is always the default successor and as we'll replace this with a direct
2389       // branch we no longer need the duplicate entries in the PHI nodes.
2390       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2391       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2392              "Not retaining default successor!");
2393       for (const auto &Case : NewSI->cases())
2394         Case.getCaseSuccessor()->removePredecessor(
2395             ParentBB,
2396             /*KeepOneInputPHIs*/ true);
2397 
2398       // We need to use the set to populate domtree updates as even when there
2399       // are multiple cases pointing at the same successor we only want to
2400       // remove and insert one edge in the domtree.
2401       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2402         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2403     }
2404 
2405     // After MSSAU update, remove the cloned terminator instruction NewTI.
2406     ParentBB->getTerminator()->eraseFromParent();
2407 
2408     // Create a new unconditional branch to the continuing block (as opposed to
2409     // the one cloned).
2410     BranchInst::Create(RetainedSuccBB, ParentBB);
2411   } else {
2412     assert(BI && "Only branches have partial unswitching.");
2413     assert(UnswitchedSuccBBs.size() == 1 &&
2414            "Only one possible unswitched block for a branch!");
2415     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2416     // When doing a partial unswitch, we have to do a bit more work to build up
2417     // the branch in the split block.
2418     if (PartiallyInvariant)
2419       buildPartialInvariantUnswitchConditionalBranch(
2420           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2421     else {
2422       buildPartialUnswitchConditionalBranch(
2423           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2424           FreezeLoopUnswitchCond, BI, &AC, DT);
2425     }
2426     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2427 
2428     if (MSSAU) {
2429       DT.applyUpdates(DTUpdates);
2430       DTUpdates.clear();
2431 
2432       // Perform MSSA cloning updates.
2433       for (auto &VMap : VMaps)
2434         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2435                                    /*IgnoreIncomingWithNoClones=*/true);
2436       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2437     }
2438   }
2439 
2440   // Apply the updates accumulated above to get an up-to-date dominator tree.
2441   DT.applyUpdates(DTUpdates);
2442 
2443   // Now that we have an accurate dominator tree, first delete the dead cloned
2444   // blocks so that we can accurately build any cloned loops. It is important to
2445   // not delete the blocks from the original loop yet because we still want to
2446   // reference the original loop to understand the cloned loop's structure.
2447   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2448 
2449   // Build the cloned loop structure itself. This may be substantially
2450   // different from the original structure due to the simplified CFG. This also
2451   // handles inserting all the cloned blocks into the correct loops.
2452   SmallVector<Loop *, 4> NonChildClonedLoops;
2453   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2454     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2455 
2456   // Now that our cloned loops have been built, we can update the original loop.
2457   // First we delete the dead blocks from it and then we rebuild the loop
2458   // structure taking these deletions into account.
2459   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB);
2460 
2461   if (MSSAU && VerifyMemorySSA)
2462     MSSAU->getMemorySSA()->verifyMemorySSA();
2463 
2464   SmallVector<Loop *, 4> HoistedLoops;
2465   bool IsStillLoop =
2466       rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2467 
2468   if (MSSAU && VerifyMemorySSA)
2469     MSSAU->getMemorySSA()->verifyMemorySSA();
2470 
2471   // This transformation has a high risk of corrupting the dominator tree, and
2472   // the below steps to rebuild loop structures will result in hard to debug
2473   // errors in that case so verify that the dominator tree is sane first.
2474   // FIXME: Remove this when the bugs stop showing up and rely on existing
2475   // verification steps.
2476   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2477 
2478   if (BI && !PartiallyInvariant) {
2479     // If we unswitched a branch which collapses the condition to a known
2480     // constant we want to replace all the uses of the invariants within both
2481     // the original and cloned blocks. We do this here so that we can use the
2482     // now updated dominator tree to identify which side the users are on.
2483     assert(UnswitchedSuccBBs.size() == 1 &&
2484            "Only one possible unswitched block for a branch!");
2485     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2486 
2487     // When considering multiple partially-unswitched invariants
2488     // we cant just go replace them with constants in both branches.
2489     //
2490     // For 'AND' we infer that true branch ("continue") means true
2491     // for each invariant operand.
2492     // For 'OR' we can infer that false branch ("continue") means false
2493     // for each invariant operand.
2494     // So it happens that for multiple-partial case we dont replace
2495     // in the unswitched branch.
2496     bool ReplaceUnswitched =
2497         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2498 
2499     ConstantInt *UnswitchedReplacement =
2500         Direction ? ConstantInt::getTrue(BI->getContext())
2501                   : ConstantInt::getFalse(BI->getContext());
2502     ConstantInt *ContinueReplacement =
2503         Direction ? ConstantInt::getFalse(BI->getContext())
2504                   : ConstantInt::getTrue(BI->getContext());
2505     for (Value *Invariant : Invariants) {
2506       assert(!isa<Constant>(Invariant) &&
2507              "Should not be replacing constant values!");
2508       // Use make_early_inc_range here as set invalidates the iterator.
2509       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2510         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2511         if (!UserI)
2512           continue;
2513 
2514         // Replace it with the 'continue' side if in the main loop body, and the
2515         // unswitched if in the cloned blocks.
2516         if (DT.dominates(LoopPH, UserI->getParent()))
2517           U.set(ContinueReplacement);
2518         else if (ReplaceUnswitched &&
2519                  DT.dominates(ClonedPH, UserI->getParent()))
2520           U.set(UnswitchedReplacement);
2521       }
2522     }
2523   }
2524 
2525   // We can change which blocks are exit blocks of all the cloned sibling
2526   // loops, the current loop, and any parent loops which shared exit blocks
2527   // with the current loop. As a consequence, we need to re-form LCSSA for
2528   // them. But we shouldn't need to re-form LCSSA for any child loops.
2529   // FIXME: This could be made more efficient by tracking which exit blocks are
2530   // new, and focusing on them, but that isn't likely to be necessary.
2531   //
2532   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2533   // loop nest and update every loop that could have had its exits changed. We
2534   // also need to cover any intervening loops. We add all of these loops to
2535   // a list and sort them by loop depth to achieve this without updating
2536   // unnecessary loops.
2537   auto UpdateLoop = [&](Loop &UpdateL) {
2538 #ifndef NDEBUG
2539     UpdateL.verifyLoop();
2540     for (Loop *ChildL : UpdateL) {
2541       ChildL->verifyLoop();
2542       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2543              "Perturbed a child loop's LCSSA form!");
2544     }
2545 #endif
2546     // First build LCSSA for this loop so that we can preserve it when
2547     // forming dedicated exits. We don't want to perturb some other loop's
2548     // LCSSA while doing that CFG edit.
2549     formLCSSA(UpdateL, DT, &LI, SE);
2550 
2551     // For loops reached by this loop's original exit blocks we may
2552     // introduced new, non-dedicated exits. At least try to re-form dedicated
2553     // exits for these loops. This may fail if they couldn't have dedicated
2554     // exits to start with.
2555     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2556   };
2557 
2558   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2559   // and we can do it in any order as they don't nest relative to each other.
2560   //
2561   // Also check if any of the loops we have updated have become top-level loops
2562   // as that will necessitate widening the outer loop scope.
2563   for (Loop *UpdatedL :
2564        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2565     UpdateLoop(*UpdatedL);
2566     if (UpdatedL->isOutermost())
2567       OuterExitL = nullptr;
2568   }
2569   if (IsStillLoop) {
2570     UpdateLoop(L);
2571     if (L.isOutermost())
2572       OuterExitL = nullptr;
2573   }
2574 
2575   // If the original loop had exit blocks, walk up through the outer most loop
2576   // of those exit blocks to update LCSSA and form updated dedicated exits.
2577   if (OuterExitL != &L)
2578     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2579          OuterL = OuterL->getParentLoop())
2580       UpdateLoop(*OuterL);
2581 
2582 #ifndef NDEBUG
2583   // Verify the entire loop structure to catch any incorrect updates before we
2584   // progress in the pass pipeline.
2585   LI.verify(DT);
2586 #endif
2587 
2588   // Now that we've unswitched something, make callbacks to report the changes.
2589   // For that we need to merge together the updated loops and the cloned loops
2590   // and check whether the original loop survived.
2591   SmallVector<Loop *, 4> SibLoops;
2592   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2593     if (UpdatedL->getParentLoop() == ParentL)
2594       SibLoops.push_back(UpdatedL);
2595   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2596 
2597   if (MSSAU && VerifyMemorySSA)
2598     MSSAU->getMemorySSA()->verifyMemorySSA();
2599 
2600   if (BI)
2601     ++NumBranches;
2602   else
2603     ++NumSwitches;
2604 }
2605 
2606 /// Recursively compute the cost of a dominator subtree based on the per-block
2607 /// cost map provided.
2608 ///
2609 /// The recursive computation is memozied into the provided DT-indexed cost map
2610 /// to allow querying it for most nodes in the domtree without it becoming
2611 /// quadratic.
2612 static InstructionCost computeDomSubtreeCost(
2613     DomTreeNode &N,
2614     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2615     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2616   // Don't accumulate cost (or recurse through) blocks not in our block cost
2617   // map and thus not part of the duplication cost being considered.
2618   auto BBCostIt = BBCostMap.find(N.getBlock());
2619   if (BBCostIt == BBCostMap.end())
2620     return 0;
2621 
2622   // Lookup this node to see if we already computed its cost.
2623   auto DTCostIt = DTCostMap.find(&N);
2624   if (DTCostIt != DTCostMap.end())
2625     return DTCostIt->second;
2626 
2627   // If not, we have to compute it. We can't use insert above and update
2628   // because computing the cost may insert more things into the map.
2629   InstructionCost Cost = std::accumulate(
2630       N.begin(), N.end(), BBCostIt->second,
2631       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2632         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2633       });
2634   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2635   (void)Inserted;
2636   assert(Inserted && "Should not insert a node while visiting children!");
2637   return Cost;
2638 }
2639 
2640 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2641 /// making the following replacement:
2642 ///
2643 ///   --code before guard--
2644 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2645 ///   --code after guard--
2646 ///
2647 /// into
2648 ///
2649 ///   --code before guard--
2650 ///   br i1 %cond, label %guarded, label %deopt
2651 ///
2652 /// guarded:
2653 ///   --code after guard--
2654 ///
2655 /// deopt:
2656 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2657 ///   unreachable
2658 ///
2659 /// It also makes all relevant DT and LI updates, so that all structures are in
2660 /// valid state after this transform.
2661 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2662                                        DominatorTree &DT, LoopInfo &LI,
2663                                        MemorySSAUpdater *MSSAU) {
2664   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2665   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2666   BasicBlock *CheckBB = GI->getParent();
2667 
2668   if (MSSAU && VerifyMemorySSA)
2669      MSSAU->getMemorySSA()->verifyMemorySSA();
2670 
2671   // Remove all CheckBB's successors from DomTree. A block can be seen among
2672   // successors more than once, but for DomTree it should be added only once.
2673   SmallPtrSet<BasicBlock *, 4> Successors;
2674   for (auto *Succ : successors(CheckBB))
2675     if (Successors.insert(Succ).second)
2676       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2677 
2678   Instruction *DeoptBlockTerm =
2679       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2680   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2681   // SplitBlockAndInsertIfThen inserts control flow that branches to
2682   // DeoptBlockTerm if the condition is true.  We want the opposite.
2683   CheckBI->swapSuccessors();
2684 
2685   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2686   GuardedBlock->setName("guarded");
2687   CheckBI->getSuccessor(1)->setName("deopt");
2688   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2689 
2690   if (MSSAU)
2691     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2692 
2693   GI->moveBefore(DeoptBlockTerm);
2694   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2695 
2696   // Add new successors of CheckBB into DomTree.
2697   for (auto *Succ : successors(CheckBB))
2698     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2699 
2700   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2701   // successors.
2702   for (auto *Succ : Successors)
2703     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2704 
2705   // Make proper changes to DT.
2706   DT.applyUpdates(DTUpdates);
2707   // Inform LI of a new loop block.
2708   L.addBasicBlockToLoop(GuardedBlock, LI);
2709 
2710   if (MSSAU) {
2711     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2712     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2713     if (VerifyMemorySSA)
2714       MSSAU->getMemorySSA()->verifyMemorySSA();
2715   }
2716 
2717   ++NumGuards;
2718   return CheckBI;
2719 }
2720 
2721 /// Cost multiplier is a way to limit potentially exponential behavior
2722 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2723 /// candidates available. Also accounting for the number of "sibling" loops with
2724 /// the idea to account for previous unswitches that already happened on this
2725 /// cluster of loops. There was an attempt to keep this formula simple,
2726 /// just enough to limit the worst case behavior. Even if it is not that simple
2727 /// now it is still not an attempt to provide a detailed heuristic size
2728 /// prediction.
2729 ///
2730 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2731 /// unswitch candidates, making adequate predictions instead of wild guesses.
2732 /// That requires knowing not just the number of "remaining" candidates but
2733 /// also costs of unswitching for each of these candidates.
2734 static int CalculateUnswitchCostMultiplier(
2735     const Instruction &TI, const Loop &L, const LoopInfo &LI,
2736     const DominatorTree &DT,
2737     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2738 
2739   // Guards and other exiting conditions do not contribute to exponential
2740   // explosion as soon as they dominate the latch (otherwise there might be
2741   // another path to the latch remaining that does not allow to eliminate the
2742   // loop copy on unswitch).
2743   const BasicBlock *Latch = L.getLoopLatch();
2744   const BasicBlock *CondBlock = TI.getParent();
2745   if (DT.dominates(CondBlock, Latch) &&
2746       (isGuard(&TI) ||
2747        llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2748          return L.contains(SuccBB);
2749        }) <= 1)) {
2750     NumCostMultiplierSkipped++;
2751     return 1;
2752   }
2753 
2754   auto *ParentL = L.getParentLoop();
2755   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2756                                : std::distance(LI.begin(), LI.end()));
2757   // Count amount of clones that all the candidates might cause during
2758   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2759   int UnswitchedClones = 0;
2760   for (auto Candidate : UnswitchCandidates) {
2761     const Instruction *CI = Candidate.TI;
2762     const BasicBlock *CondBlock = CI->getParent();
2763     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2764     if (isGuard(CI)) {
2765       if (!SkipExitingSuccessors)
2766         UnswitchedClones++;
2767       continue;
2768     }
2769     int NonExitingSuccessors =
2770         llvm::count_if(successors(CondBlock),
2771                        [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2772           return !SkipExitingSuccessors || L.contains(SuccBB);
2773         });
2774     UnswitchedClones += Log2_32(NonExitingSuccessors);
2775   }
2776 
2777   // Ignore up to the "unscaled candidates" number of unswitch candidates
2778   // when calculating the power-of-two scaling of the cost. The main idea
2779   // with this control is to allow a small number of unswitches to happen
2780   // and rely more on siblings multiplier (see below) when the number
2781   // of candidates is small.
2782   unsigned ClonesPower =
2783       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2784 
2785   // Allowing top-level loops to spread a bit more than nested ones.
2786   int SiblingsMultiplier =
2787       std::max((ParentL ? SiblingsCount
2788                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2789                1);
2790   // Compute the cost multiplier in a way that won't overflow by saturating
2791   // at an upper bound.
2792   int CostMultiplier;
2793   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2794       SiblingsMultiplier > UnswitchThreshold)
2795     CostMultiplier = UnswitchThreshold;
2796   else
2797     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2798                               (int)UnswitchThreshold);
2799 
2800   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2801                     << " (siblings " << SiblingsMultiplier << " * clones "
2802                     << (1 << ClonesPower) << ")"
2803                     << " for unswitch candidate: " << TI << "\n");
2804   return CostMultiplier;
2805 }
2806 
2807 static bool collectUnswitchCandidates(
2808     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2809     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2810     const Loop &L, const LoopInfo &LI, AAResults &AA,
2811     const MemorySSAUpdater *MSSAU) {
2812   assert(UnswitchCandidates.empty() && "Should be!");
2813   // Whether or not we should also collect guards in the loop.
2814   bool CollectGuards = false;
2815   if (UnswitchGuards) {
2816     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2817         Intrinsic::getName(Intrinsic::experimental_guard));
2818     if (GuardDecl && !GuardDecl->use_empty())
2819       CollectGuards = true;
2820   }
2821 
2822   for (auto *BB : L.blocks()) {
2823     if (LI.getLoopFor(BB) != &L)
2824       continue;
2825 
2826     if (CollectGuards)
2827       for (auto &I : *BB)
2828         if (isGuard(&I)) {
2829           auto *Cond =
2830               skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2831           // TODO: Support AND, OR conditions and partial unswitching.
2832           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2833             UnswitchCandidates.push_back({&I, {Cond}});
2834         }
2835 
2836     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2837       // We can only consider fully loop-invariant switch conditions as we need
2838       // to completely eliminate the switch after unswitching.
2839       if (!isa<Constant>(SI->getCondition()) &&
2840           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2841         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2842       continue;
2843     }
2844 
2845     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2846     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2847         BI->getSuccessor(0) == BI->getSuccessor(1))
2848       continue;
2849 
2850     Value *Cond = skipTrivialSelect(BI->getCondition());
2851     if (isa<Constant>(Cond))
2852       continue;
2853 
2854     if (L.isLoopInvariant(Cond)) {
2855       UnswitchCandidates.push_back({BI, {Cond}});
2856       continue;
2857     }
2858 
2859     Instruction &CondI = *cast<Instruction>(Cond);
2860     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2861       TinyPtrVector<Value *> Invariants =
2862           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2863       if (Invariants.empty())
2864         continue;
2865 
2866       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2867       continue;
2868     }
2869   }
2870 
2871   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2872       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2873          return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2874        })) {
2875     MemorySSA *MSSA = MSSAU->getMemorySSA();
2876     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2877       LLVM_DEBUG(
2878           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2879                  << *Info->InstToDuplicate[0] << "\n");
2880       PartialIVInfo = *Info;
2881       PartialIVCondBranch = L.getHeader()->getTerminator();
2882       TinyPtrVector<Value *> ValsToDuplicate;
2883       llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2884       UnswitchCandidates.push_back(
2885           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2886     }
2887   }
2888   return !UnswitchCandidates.empty();
2889 }
2890 
2891 /// Tries to canonicalize condition described by:
2892 ///
2893 ///   br (LHS pred RHS), label IfTrue, label IfFalse
2894 ///
2895 /// into its equivalent where `Pred` is something that we support for injected
2896 /// invariants (so far it is limited to ult), LHS in canonicalized form is
2897 /// non-invariant and RHS is an invariant.
2898 static void canonicalizeForInvariantConditionInjection(
2899     ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue,
2900     BasicBlock *&IfFalse, const Loop &L) {
2901   if (!L.contains(IfTrue)) {
2902     Pred = ICmpInst::getInversePredicate(Pred);
2903     std::swap(IfTrue, IfFalse);
2904   }
2905 
2906   // Move loop-invariant argument to RHS position.
2907   if (L.isLoopInvariant(LHS)) {
2908     Pred = ICmpInst::getSwappedPredicate(Pred);
2909     std::swap(LHS, RHS);
2910   }
2911 
2912   if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) {
2913     // Turn "x >=s 0" into "x <u UMIN_INT"
2914     Pred = ICmpInst::ICMP_ULT;
2915     RHS = ConstantInt::get(
2916         RHS->getContext(),
2917         APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth()));
2918   }
2919 }
2920 
2921 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
2922 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
2923 /// injecting a loop-invariant condition.
2924 static bool shouldTryInjectInvariantCondition(
2925     const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS,
2926     const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) {
2927   if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
2928     return false;
2929   // TODO: Support other predicates.
2930   if (Pred != ICmpInst::ICMP_ULT)
2931     return false;
2932   // TODO: Support non-loop-exiting branches?
2933   if (!L.contains(IfTrue) || L.contains(IfFalse))
2934     return false;
2935   // FIXME: For some reason this causes problems with MSSA updates, need to
2936   // investigate why. So far, just don't unswitch latch.
2937   if (L.getHeader() == IfTrue)
2938     return false;
2939   return true;
2940 }
2941 
2942 /// Returns true, if metadata on \p BI allows us to optimize branching into \p
2943 /// TakenSucc via injection of invariant conditions. The branch should be not
2944 /// enough and not previously unswitched, the information about this comes from
2945 /// the metadata.
2946 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI,
2947                                      const BasicBlock *TakenSucc) {
2948   // Skip branches that have already been unswithed this way. After successful
2949   // unswitching of injected condition, we will still have a copy of this loop
2950   // which looks exactly the same as original one. To prevent the 2nd attempt
2951   // of unswitching it in the same pass, mark this branch as "nothing to do
2952   // here".
2953   if (BI->hasMetadata("llvm.invariant.condition.injection.disabled"))
2954     return false;
2955   SmallVector<uint32_t> Weights;
2956   if (!extractBranchWeights(*BI, Weights))
2957     return false;
2958   unsigned T = InjectInvariantConditionHotnesThreshold;
2959   BranchProbability LikelyTaken(T - 1, T);
2960 
2961   assert(Weights.size() == 2 && "Unexpected profile data!");
2962   size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1;
2963   auto Num = Weights[Idx];
2964   auto Denom = Weights[0] + Weights[1];
2965   // Degenerate or overflowed metadata.
2966   if (Denom == 0 || Num > Denom)
2967     return false;
2968   BranchProbability ActualTaken(Num, Denom);
2969   if (LikelyTaken > ActualTaken)
2970     return false;
2971   return true;
2972 }
2973 
2974 /// Materialize pending invariant condition of the given candidate into IR. The
2975 /// injected loop-invariant condition implies the original loop-variant branch
2976 /// condition, so the materialization turns
2977 ///
2978 /// loop_block:
2979 ///   ...
2980 ///   br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
2981 ///
2982 /// into
2983 ///
2984 /// preheader:
2985 ///   %invariant_cond = LHS pred RHS
2986 /// ...
2987 /// loop_block:
2988 ///   br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
2989 /// OriginalCheck:
2990 ///   br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
2991 /// ...
2992 static NonTrivialUnswitchCandidate
2993 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L,
2994                                  DominatorTree &DT, LoopInfo &LI,
2995                                  AssumptionCache &AC, MemorySSAUpdater *MSSAU) {
2996   assert(Candidate.hasPendingInjection() && "Nothing to inject!");
2997   BasicBlock *Preheader = L.getLoopPreheader();
2998   assert(Preheader && "Loop is not in simplified form?");
2999   assert(LI.getLoopFor(Candidate.TI->getParent()) == &L &&
3000          "Unswitching branch of inner loop!");
3001 
3002   auto Pred = Candidate.PendingInjection->Pred;
3003   auto *LHS = Candidate.PendingInjection->LHS;
3004   auto *RHS = Candidate.PendingInjection->RHS;
3005   auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3006   auto *TI = cast<BranchInst>(Candidate.TI);
3007   auto *BB = Candidate.TI->getParent();
3008   auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1)
3009                                                           : TI->getSuccessor(0);
3010   // FIXME: Remove this once limitation on successors is lifted.
3011   assert(L.contains(InLoopSucc) && "Not supported yet!");
3012   assert(!L.contains(OutOfLoopSucc) && "Not supported yet!");
3013   auto &Ctx = BB->getContext();
3014 
3015   assert(LHS->getType() == RHS->getType() && "Type mismatch!");
3016   // Do not use builder here: CreateICmp may simplify this into a constant and
3017   // unswitching will break. Better optimize it away later.
3018   auto *InjectedCond =
3019       ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond",
3020                        Preheader->getTerminator());
3021   auto *OldCond = TI->getCondition();
3022 
3023   BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check",
3024                                               BB->getParent(), InLoopSucc);
3025   IRBuilder<> Builder(TI);
3026   auto *InvariantBr =
3027       Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock);
3028 
3029   Builder.SetInsertPoint(CheckBlock);
3030   auto *NewTerm = Builder.CreateCondBr(OldCond, InLoopSucc, OutOfLoopSucc);
3031 
3032   TI->eraseFromParent();
3033   // Prevent infinite unswitching.
3034   NewTerm->setMetadata("llvm.invariant.condition.injection.disabled",
3035                        MDNode::get(BB->getContext(), {}));
3036 
3037   // Fixup phis.
3038   for (auto &I : *InLoopSucc) {
3039     auto *PN = dyn_cast<PHINode>(&I);
3040     if (!PN)
3041       break;
3042     auto *Inc = PN->getIncomingValueForBlock(BB);
3043     PN->addIncoming(Inc, CheckBlock);
3044   }
3045   OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock);
3046 
3047   SmallVector<DominatorTree::UpdateType, 4> DTUpdates = {
3048     { DominatorTree::Insert, BB, CheckBlock },
3049     { DominatorTree::Insert, CheckBlock, InLoopSucc },
3050     { DominatorTree::Insert, CheckBlock, OutOfLoopSucc },
3051     { DominatorTree::Delete, BB, OutOfLoopSucc }
3052   };
3053 
3054   DT.applyUpdates(DTUpdates);
3055   if (MSSAU)
3056     MSSAU->applyUpdates(DTUpdates, DT);
3057   L.addBasicBlockToLoop(CheckBlock, LI);
3058 
3059 #ifndef NDEBUG
3060   DT.verify();
3061   LI.verify(DT);
3062   if (MSSAU && VerifyMemorySSA)
3063     MSSAU->getMemorySSA()->verifyMemorySSA();
3064 #endif
3065 
3066   // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3067   // higher because we have just inserted a new block. Need to think how to
3068   // adjust the cost of injected candidates when it was first computed.
3069   LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3070                     << " and considering it for unswitching.");
3071   ++NumInvariantConditionsInjected;
3072   return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3073                                      Candidate.Cost);
3074 }
3075 
3076 /// Given chain of loop branch conditions looking like:
3077 ///   br (Variant < Invariant1)
3078 ///   br (Variant < Invariant2)
3079 ///   br (Variant < Invariant3)
3080 ///   ...
3081 /// collect set of invariant conditions on which we want to unswitch, which
3082 /// look like:
3083 ///   Invariant1 <= Invariant2
3084 ///   Invariant2 <= Invariant3
3085 ///   ...
3086 /// Though they might not immediately exist in the IR, we can still inject them.
3087 static bool insertCandidatesWithPendingInjections(
3088     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L,
3089     ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares,
3090     const DominatorTree &DT) {
3091 
3092   assert(ICmpInst::isRelational(Pred));
3093   assert(ICmpInst::isStrictPredicate(Pred));
3094   if (Compares.size() < 2)
3095     return false;
3096   ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred);
3097   for (auto Prev = Compares.begin(), Next = Compares.begin() + 1;
3098        Next != Compares.end(); ++Prev, ++Next) {
3099     Value *LHS = Next->Invariant;
3100     Value *RHS = Prev->Invariant;
3101     BasicBlock *InLoopSucc = Prev->InLoopSucc;
3102     InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc);
3103     NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3104                                           std::nullopt, std::move(ToInject));
3105     UnswitchCandidates.push_back(std::move(Candidate));
3106   }
3107   return true;
3108 }
3109 
3110 /// Collect unswitch candidates by invariant conditions that are not immediately
3111 /// present in the loop. However, they can be injected into the code if we
3112 /// decide it's profitable.
3113 /// An example of such conditions is following:
3114 ///
3115 ///   for (...) {
3116 ///     x = load ...
3117 ///     if (! x <u C1) break;
3118 ///     if (! x <u C2) break;
3119 ///     <do something>
3120 ///   }
3121 ///
3122 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3123 /// C2" automatically implies "x <u C2", so we can get rid of one of
3124 /// loop-variant checks in unswitched loop version.
3125 static bool collectUnswitchCandidatesWithInjections(
3126     SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
3127     IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L,
3128     const DominatorTree &DT, const LoopInfo &LI, AAResults &AA,
3129     const MemorySSAUpdater *MSSAU) {
3130   if (!InjectInvariantConditions)
3131     return false;
3132 
3133   if (!DT.isReachableFromEntry(L.getHeader()))
3134     return false;
3135   auto *Latch = L.getLoopLatch();
3136   // Need to have a single latch and a preheader.
3137   if (!Latch)
3138     return false;
3139   assert(L.getLoopPreheader() && "Must have a preheader!");
3140 
3141   DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT;
3142   // Traverse the conditions that dominate latch (and therefore dominate each
3143   // other).
3144   for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock());
3145        DTN = DTN->getIDom()) {
3146     ICmpInst::Predicate Pred;
3147     Value *LHS = nullptr, *RHS = nullptr;
3148     BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
3149     auto *BB = DTN->getBlock();
3150     // Ignore inner loops.
3151     if (LI.getLoopFor(BB) != &L)
3152       continue;
3153     auto *Term = BB->getTerminator();
3154     if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
3155                           m_BasicBlock(IfTrue), m_BasicBlock(IfFalse))))
3156       continue;
3157     canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse,
3158                                                L);
3159     if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L))
3160       continue;
3161     if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue))
3162       continue;
3163     CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue);
3164     CandidatesULT[LHS].push_back(Desc);
3165   }
3166 
3167   bool Found = false;
3168   for (auto &It : CandidatesULT)
3169     Found |= insertCandidatesWithPendingInjections(
3170         UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT);
3171   return Found;
3172 }
3173 
3174 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
3175   if (!L.isSafeToClone())
3176     return false;
3177   for (auto *BB : L.blocks())
3178     for (auto &I : *BB) {
3179       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
3180         return false;
3181       if (auto *CB = dyn_cast<CallBase>(&I)) {
3182         assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
3183         if (CB->isConvergent())
3184           return false;
3185       }
3186     }
3187 
3188   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3189   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3190   // irreducible control flow into reducible control flow and introduce new
3191   // loops "out of thin air". If we ever discover important use cases for doing
3192   // this, we can add support to loop unswitch, but it is a lot of complexity
3193   // for what seems little or no real world benefit.
3194   LoopBlocksRPO RPOT(&L);
3195   RPOT.perform(&LI);
3196   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
3197     return false;
3198 
3199   SmallVector<BasicBlock *, 4> ExitBlocks;
3200   L.getUniqueExitBlocks(ExitBlocks);
3201   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3202   // instruction as we don't know how to split those exit blocks.
3203   // FIXME: We should teach SplitBlock to handle this and remove this
3204   // restriction.
3205   for (auto *ExitBB : ExitBlocks) {
3206     auto *I = ExitBB->getFirstNonPHI();
3207     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
3208       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3209                            "in exit block\n");
3210       return false;
3211     }
3212   }
3213 
3214   return true;
3215 }
3216 
3217 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
3218     ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
3219     const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
3220     const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
3221   // Given that unswitching these terminators will require duplicating parts of
3222   // the loop, so we need to be able to model that cost. Compute the ephemeral
3223   // values and set up a data structure to hold per-BB costs. We cache each
3224   // block's cost so that we don't recompute this when considering different
3225   // subsets of the loop for duplication during unswitching.
3226   SmallPtrSet<const Value *, 4> EphValues;
3227   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
3228   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
3229 
3230   // Compute the cost of each block, as well as the total loop cost. Also, bail
3231   // out if we see instructions which are incompatible with loop unswitching
3232   // (convergent, noduplicate, or cross-basic-block tokens).
3233   // FIXME: We might be able to safely handle some of these in non-duplicated
3234   // regions.
3235   TargetTransformInfo::TargetCostKind CostKind =
3236       L.getHeader()->getParent()->hasMinSize()
3237       ? TargetTransformInfo::TCK_CodeSize
3238       : TargetTransformInfo::TCK_SizeAndLatency;
3239   InstructionCost LoopCost = 0;
3240   for (auto *BB : L.blocks()) {
3241     InstructionCost Cost = 0;
3242     for (auto &I : *BB) {
3243       if (EphValues.count(&I))
3244         continue;
3245       Cost += TTI.getInstructionCost(&I, CostKind);
3246     }
3247     assert(Cost >= 0 && "Must not have negative costs!");
3248     LoopCost += Cost;
3249     assert(LoopCost >= 0 && "Must not have negative loop costs!");
3250     BBCostMap[BB] = Cost;
3251   }
3252   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
3253 
3254   // Now we find the best candidate by searching for the one with the following
3255   // properties in order:
3256   //
3257   // 1) An unswitching cost below the threshold
3258   // 2) The smallest number of duplicated unswitch candidates (to avoid
3259   //    creating redundant subsequent unswitching)
3260   // 3) The smallest cost after unswitching.
3261   //
3262   // We prioritize reducing fanout of unswitch candidates provided the cost
3263   // remains below the threshold because this has a multiplicative effect.
3264   //
3265   // This requires memoizing each dominator subtree to avoid redundant work.
3266   //
3267   // FIXME: Need to actually do the number of candidates part above.
3268   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
3269   // Given a terminator which might be unswitched, computes the non-duplicated
3270   // cost for that terminator.
3271   auto ComputeUnswitchedCost = [&](Instruction &TI,
3272                                    bool FullUnswitch) -> InstructionCost {
3273     BasicBlock &BB = *TI.getParent();
3274     SmallPtrSet<BasicBlock *, 4> Visited;
3275 
3276     InstructionCost Cost = 0;
3277     for (BasicBlock *SuccBB : successors(&BB)) {
3278       // Don't count successors more than once.
3279       if (!Visited.insert(SuccBB).second)
3280         continue;
3281 
3282       // If this is a partial unswitch candidate, then it must be a conditional
3283       // branch with a condition of either `or`, `and`, their corresponding
3284       // select forms or partially invariant instructions. In that case, one of
3285       // the successors is necessarily duplicated, so don't even try to remove
3286       // its cost.
3287       if (!FullUnswitch) {
3288         auto &BI = cast<BranchInst>(TI);
3289         Value *Cond = skipTrivialSelect(BI.getCondition());
3290         if (match(Cond, m_LogicalAnd())) {
3291           if (SuccBB == BI.getSuccessor(1))
3292             continue;
3293         } else if (match(Cond, m_LogicalOr())) {
3294           if (SuccBB == BI.getSuccessor(0))
3295             continue;
3296         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
3297                     SuccBB == BI.getSuccessor(0)) ||
3298                    (!PartialIVInfo.KnownValue->isOneValue() &&
3299                     SuccBB == BI.getSuccessor(1)))
3300           continue;
3301       }
3302 
3303       // This successor's domtree will not need to be duplicated after
3304       // unswitching if the edge to the successor dominates it (and thus the
3305       // entire tree). This essentially means there is no other path into this
3306       // subtree and so it will end up live in only one clone of the loop.
3307       if (SuccBB->getUniquePredecessor() ||
3308           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
3309             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
3310           })) {
3311         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
3312         assert(Cost <= LoopCost &&
3313                "Non-duplicated cost should never exceed total loop cost!");
3314       }
3315     }
3316 
3317     // Now scale the cost by the number of unique successors minus one. We
3318     // subtract one because there is already at least one copy of the entire
3319     // loop. This is computing the new cost of unswitching a condition.
3320     // Note that guards always have 2 unique successors that are implicit and
3321     // will be materialized if we decide to unswitch it.
3322     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
3323     assert(SuccessorsCount > 1 &&
3324            "Cannot unswitch a condition without multiple distinct successors!");
3325     return (LoopCost - Cost) * (SuccessorsCount - 1);
3326   };
3327 
3328   std::optional<NonTrivialUnswitchCandidate> Best;
3329   for (auto &Candidate : UnswitchCandidates) {
3330     Instruction &TI = *Candidate.TI;
3331     ArrayRef<Value *> Invariants = Candidate.Invariants;
3332     BranchInst *BI = dyn_cast<BranchInst>(&TI);
3333     bool FullUnswitch =
3334         !BI || Candidate.hasPendingInjection() ||
3335         (Invariants.size() == 1 &&
3336          Invariants[0] == skipTrivialSelect(BI->getCondition()));
3337     InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3338     // Calculate cost multiplier which is a tool to limit potentially
3339     // exponential behavior of loop-unswitch.
3340     if (EnableUnswitchCostMultiplier) {
3341       int CostMultiplier =
3342           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3343       assert(
3344           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3345           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3346       CandidateCost *= CostMultiplier;
3347       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3348                         << " (multiplier: " << CostMultiplier << ")"
3349                         << " for unswitch candidate: " << TI << "\n");
3350     } else {
3351       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
3352                         << " for unswitch candidate: " << TI << "\n");
3353     }
3354 
3355     if (!Best || CandidateCost < Best->Cost) {
3356       Best = Candidate;
3357       Best->Cost = CandidateCost;
3358     }
3359   }
3360   assert(Best && "Must be!");
3361   return *Best;
3362 }
3363 
3364 static bool unswitchBestCondition(
3365     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3366     AAResults &AA, TargetTransformInfo &TTI,
3367     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3368     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3369     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3370   // Collect all invariant conditions within this loop (as opposed to an inner
3371   // loop which would be handled when visiting that inner loop).
3372   SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3373   IVConditionInfo PartialIVInfo;
3374   Instruction *PartialIVCondBranch = nullptr;
3375   collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3376                             PartialIVCondBranch, L, LI, AA, MSSAU);
3377   collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo,
3378                                           PartialIVCondBranch, L, DT, LI, AA,
3379                                           MSSAU);
3380   // If we didn't find any candidates, we're done.
3381   if (UnswitchCandidates.empty())
3382     return false;
3383 
3384   LLVM_DEBUG(
3385       dbgs() << "Considering " << UnswitchCandidates.size()
3386              << " non-trivial loop invariant conditions for unswitching.\n");
3387 
3388   NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3389       UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3390 
3391   assert(Best.TI && "Failed to find loop unswitch candidate");
3392   assert(Best.Cost && "Failed to compute cost");
3393 
3394   if (*Best.Cost >= UnswitchThreshold) {
3395     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3396                       << "\n");
3397     return false;
3398   }
3399 
3400   if (Best.hasPendingInjection())
3401     Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU);
3402   assert(!Best.hasPendingInjection() &&
3403          "All injections should have been done by now!");
3404 
3405   if (Best.TI != PartialIVCondBranch)
3406     PartialIVInfo.InstToDuplicate.clear();
3407 
3408   // If the best candidate is a guard, turn it into a branch.
3409   if (isGuard(Best.TI))
3410     Best.TI =
3411         turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3412 
3413   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = " << Best.Cost
3414                     << ") terminator: " << *Best.TI << "\n");
3415   unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3416                                LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB);
3417   return true;
3418 }
3419 
3420 /// Unswitch control flow predicated on loop invariant conditions.
3421 ///
3422 /// This first hoists all branches or switches which are trivial (IE, do not
3423 /// require duplicating any part of the loop) out of the loop body. It then
3424 /// looks at other loop invariant control flows and tries to unswitch those as
3425 /// well by cloning the loop if the result is small enough.
3426 ///
3427 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3428 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3429 /// valid (i.e. its use is enabled).
3430 ///
3431 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3432 /// true, we will attempt to do non-trivial unswitching as well as trivial
3433 /// unswitching.
3434 ///
3435 /// The `UnswitchCB` callback provided will be run after unswitching is
3436 /// complete, with the first parameter set to `true` if the provided loop
3437 /// remains a loop, and a list of new sibling loops created.
3438 ///
3439 /// If `SE` is non-null, we will update that analysis based on the unswitching
3440 /// done.
3441 static bool
3442 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3443              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3444              bool NonTrivial,
3445              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3446              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3447              ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
3448              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3449   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3450          "Loops must be in LCSSA form before unswitching.");
3451 
3452   // Must be in loop simplified form: we need a preheader and dedicated exits.
3453   if (!L.isLoopSimplifyForm())
3454     return false;
3455 
3456   // Try trivial unswitch first before loop over other basic blocks in the loop.
3457   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3458     // If we unswitched successfully we will want to clean up the loop before
3459     // processing it further so just mark it as unswitched and return.
3460     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3461     return true;
3462   }
3463 
3464   // Check whether we should continue with non-trivial conditions.
3465   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3466   //                           unswitching for testing and debugging.
3467   // NonTrivial: Parameter that enables non-trivial unswitching for this
3468   //             invocation of the transform. But this should be allowed only
3469   //             for targets without branch divergence.
3470   //
3471   // FIXME: If divergence analysis becomes available to a loop
3472   // transform, we should allow unswitching for non-trivial uniform
3473   // branches even on targets that have divergence.
3474   // https://bugs.llvm.org/show_bug.cgi?id=48819
3475   bool ContinueWithNonTrivial =
3476       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3477   if (!ContinueWithNonTrivial)
3478     return false;
3479 
3480   // Skip non-trivial unswitching for optsize functions.
3481   if (L.getHeader()->getParent()->hasOptSize())
3482     return false;
3483 
3484   // Skip cold loops, as unswitching them brings little benefit
3485   // but increases the code size
3486   if (PSI && PSI->hasProfileSummary() && BFI &&
3487       PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) {
3488     LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3489     return false;
3490   }
3491 
3492   // Perform legality checks.
3493   if (!isSafeForNoNTrivialUnswitching(L, LI))
3494     return false;
3495 
3496   // For non-trivial unswitching, because it often creates new loops, we rely on
3497   // the pass manager to iterate on the loops rather than trying to immediately
3498   // reach a fixed point. There is no substantial advantage to iterating
3499   // internally, and if any of the new loops are simplified enough to contain
3500   // trivial unswitching we want to prefer those.
3501 
3502   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3503   // a partial unswitch when possible below the threshold.
3504   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3505                             DestroyLoopCB))
3506     return true;
3507 
3508   // No other opportunities to unswitch.
3509   return false;
3510 }
3511 
3512 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3513                                               LoopStandardAnalysisResults &AR,
3514                                               LPMUpdater &U) {
3515   Function &F = *L.getHeader()->getParent();
3516   (void)F;
3517   ProfileSummaryInfo *PSI = nullptr;
3518   if (auto OuterProxy =
3519           AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3520               .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3521     PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3522   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3523                     << "\n");
3524 
3525   // Save the current loop name in a variable so that we can report it even
3526   // after it has been deleted.
3527   std::string LoopName = std::string(L.getName());
3528 
3529   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3530                                         bool PartiallyInvariant,
3531                                         ArrayRef<Loop *> NewLoops) {
3532     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3533     if (!NewLoops.empty())
3534       U.addSiblingLoops(NewLoops);
3535 
3536     // If the current loop remains valid, we should revisit it to catch any
3537     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3538     if (CurrentLoopValid) {
3539       if (PartiallyInvariant) {
3540         // Mark the new loop as partially unswitched, to avoid unswitching on
3541         // the same condition again.
3542         auto &Context = L.getHeader()->getContext();
3543         MDNode *DisableUnswitchMD = MDNode::get(
3544             Context,
3545             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3546         MDNode *NewLoopID = makePostTransformationMetadata(
3547             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3548             {DisableUnswitchMD});
3549         L.setLoopID(NewLoopID);
3550       } else
3551         U.revisitCurrentLoop();
3552     } else
3553       U.markLoopAsDeleted(L, LoopName);
3554   };
3555 
3556   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3557     U.markLoopAsDeleted(L, Name);
3558   };
3559 
3560   std::optional<MemorySSAUpdater> MSSAU;
3561   if (AR.MSSA) {
3562     MSSAU = MemorySSAUpdater(AR.MSSA);
3563     if (VerifyMemorySSA)
3564       AR.MSSA->verifyMemorySSA();
3565   }
3566   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3567                     UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI,
3568                     DestroyLoopCB))
3569     return PreservedAnalyses::all();
3570 
3571   if (AR.MSSA && VerifyMemorySSA)
3572     AR.MSSA->verifyMemorySSA();
3573 
3574   // Historically this pass has had issues with the dominator tree so verify it
3575   // in asserts builds.
3576   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3577 
3578   auto PA = getLoopPassPreservedAnalyses();
3579   if (AR.MSSA)
3580     PA.preserve<MemorySSAAnalysis>();
3581   return PA;
3582 }
3583 
3584 void SimpleLoopUnswitchPass::printPipeline(
3585     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3586   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3587       OS, MapClassName2PassName);
3588 
3589   OS << '<';
3590   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3591   OS << (Trivial ? "" : "no-") << "trivial";
3592   OS << '>';
3593 }
3594 
3595 namespace {
3596 
3597 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3598   bool NonTrivial;
3599 
3600 public:
3601   static char ID; // Pass ID, replacement for typeid
3602 
3603   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3604       : LoopPass(ID), NonTrivial(NonTrivial) {
3605     initializeSimpleLoopUnswitchLegacyPassPass(
3606         *PassRegistry::getPassRegistry());
3607   }
3608 
3609   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3610 
3611   void getAnalysisUsage(AnalysisUsage &AU) const override {
3612     AU.addRequired<AssumptionCacheTracker>();
3613     AU.addRequired<TargetTransformInfoWrapperPass>();
3614     AU.addRequired<MemorySSAWrapperPass>();
3615     AU.addPreserved<MemorySSAWrapperPass>();
3616     getLoopAnalysisUsage(AU);
3617   }
3618 };
3619 
3620 } // end anonymous namespace
3621 
3622 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3623   if (skipLoop(L))
3624     return false;
3625 
3626   Function &F = *L->getHeader()->getParent();
3627 
3628   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3629                     << "\n");
3630   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3631   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3632   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3633   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3634   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3635   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3636   MemorySSAUpdater MSSAU(MSSA);
3637 
3638   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3639   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3640 
3641   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3642                                ArrayRef<Loop *> NewLoops) {
3643     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3644     for (auto *NewL : NewLoops)
3645       LPM.addLoop(*NewL);
3646 
3647     // If the current loop remains valid, re-add it to the queue. This is
3648     // a little wasteful as we'll finish processing the current loop as well,
3649     // but it is the best we can do in the old PM.
3650     if (CurrentLoopValid) {
3651       // If the current loop has been unswitched using a partially invariant
3652       // condition, we should not re-add the current loop to avoid unswitching
3653       // on the same condition again.
3654       if (!PartiallyInvariant)
3655         LPM.addLoop(*L);
3656     } else
3657       LPM.markLoopAsDeleted(*L);
3658   };
3659 
3660   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3661     LPM.markLoopAsDeleted(L);
3662   };
3663 
3664   if (VerifyMemorySSA)
3665     MSSA->verifyMemorySSA();
3666   bool Changed =
3667       unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
3668                    &MSSAU, nullptr, nullptr, DestroyLoopCB);
3669 
3670   if (VerifyMemorySSA)
3671     MSSA->verifyMemorySSA();
3672 
3673   // Historically this pass has had issues with the dominator tree so verify it
3674   // in asserts builds.
3675   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3676 
3677   return Changed;
3678 }
3679 
3680 char SimpleLoopUnswitchLegacyPass::ID = 0;
3681 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3682                       "Simple unswitch loops", false, false)
3683 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3684 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3685 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3686 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3687 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3688 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3689 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3690                     "Simple unswitch loops", false, false)
3691 
3692 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3693   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3694 }
3695