xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision db7a87ed4fa79a7c366438ae62d8a1088a11f29c)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/LoopAnalysisManager.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/MustExecute.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/GenericDomTree.h"
52 #include "llvm/Support/InstructionCost.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/ValueMapper.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <iterator>
63 #include <numeric>
64 #include <utility>
65 
66 #define DEBUG_TYPE "simple-loop-unswitch"
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 STATISTIC(NumBranches, "Number of branches unswitched");
72 STATISTIC(NumSwitches, "Number of switches unswitched");
73 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
74 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
75 STATISTIC(
76     NumCostMultiplierSkipped,
77     "Number of unswitch candidates that had their cost multiplier skipped");
78 
79 static cl::opt<bool> EnableNonTrivialUnswitch(
80     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
81     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
82              "following the configuration passed into the pass."));
83 
84 static cl::opt<int>
85     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
86                       cl::ZeroOrMore,
87                       cl::desc("The cost threshold for unswitching a loop."));
88 
89 static cl::opt<bool> EnableUnswitchCostMultiplier(
90     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
91     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
92              "explosion in nontrivial unswitch."));
93 static cl::opt<int> UnswitchSiblingsToplevelDiv(
94     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
95     cl::desc("Toplevel siblings divisor for cost multiplier."));
96 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
97     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
98     cl::desc("Number of unswitch candidates that are ignored when calculating "
99              "cost multiplier."));
100 static cl::opt<bool> UnswitchGuards(
101     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
102     cl::desc("If enabled, simple loop unswitching will also consider "
103              "llvm.experimental.guard intrinsics as unswitch candidates."));
104 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
105     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
106     cl::init(false), cl::Hidden,
107     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
108              "null checks to save time analyzing if we can keep it."));
109 static cl::opt<unsigned>
110     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
111                   cl::desc("Max number of memory uses to explore during "
112                            "partial unswitching analysis"),
113                   cl::init(100), cl::Hidden);
114 static cl::opt<bool> FreezeLoopUnswitchCond(
115     "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
116     cl::desc("If enabled, the freeze instruction will be added to condition "
117              "of loop unswitch to prevent miscompilation."));
118 
119 // Helper to skip (select x, true, false), which matches both a logical AND and
120 // OR and can confuse code that tries to determine if \p Cond is either a
121 // logical AND or OR but not both.
122 static Value *skipTrivialSelect(Value *Cond) {
123   Value *CondNext;
124   while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
125     Cond = CondNext;
126   return Cond;
127 }
128 
129 /// Collect all of the loop invariant input values transitively used by the
130 /// homogeneous instruction graph from a given root.
131 ///
132 /// This essentially walks from a root recursively through loop variant operands
133 /// which have perform the same logical operation (AND or OR) and finds all
134 /// inputs which are loop invariant. For some operations these can be
135 /// re-associated and unswitched out of the loop entirely.
136 static TinyPtrVector<Value *>
137 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
138                                          LoopInfo &LI) {
139   assert(!L.isLoopInvariant(&Root) &&
140          "Only need to walk the graph if root itself is not invariant.");
141   TinyPtrVector<Value *> Invariants;
142 
143   bool IsRootAnd = match(&Root, m_LogicalAnd());
144   bool IsRootOr  = match(&Root, m_LogicalOr());
145 
146   // Build a worklist and recurse through operators collecting invariants.
147   SmallVector<Instruction *, 4> Worklist;
148   SmallPtrSet<Instruction *, 8> Visited;
149   Worklist.push_back(&Root);
150   Visited.insert(&Root);
151   do {
152     Instruction &I = *Worklist.pop_back_val();
153     for (Value *OpV : I.operand_values()) {
154       // Skip constants as unswitching isn't interesting for them.
155       if (isa<Constant>(OpV))
156         continue;
157 
158       // Add it to our result if loop invariant.
159       if (L.isLoopInvariant(OpV)) {
160         Invariants.push_back(OpV);
161         continue;
162       }
163 
164       // If not an instruction with the same opcode, nothing we can do.
165       Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
166 
167       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
168                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
169         // Visit this operand.
170         if (Visited.insert(OpI).second)
171           Worklist.push_back(OpI);
172       }
173     }
174   } while (!Worklist.empty());
175 
176   return Invariants;
177 }
178 
179 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
180                                      Constant &Replacement) {
181   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
182 
183   // Replace uses of LIC in the loop with the given constant.
184   // We use make_early_inc_range as set invalidates the iterator.
185   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
186     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
187 
188     // Replace this use within the loop body.
189     if (UserI && L.contains(UserI))
190       U.set(&Replacement);
191   }
192 }
193 
194 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
195 /// incoming values along this edge.
196 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
197                                          BasicBlock &ExitBB) {
198   for (Instruction &I : ExitBB) {
199     auto *PN = dyn_cast<PHINode>(&I);
200     if (!PN)
201       // No more PHIs to check.
202       return true;
203 
204     // If the incoming value for this edge isn't loop invariant the unswitch
205     // won't be trivial.
206     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
207       return false;
208   }
209   llvm_unreachable("Basic blocks should never be empty!");
210 }
211 
212 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
213 /// end of \p BB and conditionally branch on the copied condition. We only
214 /// branch on a single value.
215 static void buildPartialUnswitchConditionalBranch(
216     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
217     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
218     Instruction *I, AssumptionCache *AC, DominatorTree &DT) {
219   IRBuilder<> IRB(&BB);
220 
221   SmallVector<Value *> FrozenInvariants;
222   for (Value *Inv : Invariants) {
223     if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
224       Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
225     FrozenInvariants.push_back(Inv);
226   }
227 
228   Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
229                           : IRB.CreateAnd(FrozenInvariants);
230   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
231                    Direction ? &NormalSucc : &UnswitchedSucc);
232 }
233 
234 /// Copy a set of loop invariant values, and conditionally branch on them.
235 static void buildPartialInvariantUnswitchConditionalBranch(
236     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
237     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
238     MemorySSAUpdater *MSSAU) {
239   ValueToValueMapTy VMap;
240   for (auto *Val : reverse(ToDuplicate)) {
241     Instruction *Inst = cast<Instruction>(Val);
242     Instruction *NewInst = Inst->clone();
243     BB.getInstList().insert(BB.end(), NewInst);
244     RemapInstruction(NewInst, VMap,
245                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
246     VMap[Val] = NewInst;
247 
248     if (!MSSAU)
249       continue;
250 
251     MemorySSA *MSSA = MSSAU->getMemorySSA();
252     if (auto *MemUse =
253             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
254       auto *DefiningAccess = MemUse->getDefiningAccess();
255       // Get the first defining access before the loop.
256       while (L.contains(DefiningAccess->getBlock())) {
257         // If the defining access is a MemoryPhi, get the incoming
258         // value for the pre-header as defining access.
259         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
260           DefiningAccess =
261               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
262         else
263           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
264       }
265       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
266                                     NewInst->getParent(),
267                                     MemorySSA::BeforeTerminator);
268     }
269   }
270 
271   IRBuilder<> IRB(&BB);
272   Value *Cond = VMap[ToDuplicate[0]];
273   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
274                    Direction ? &NormalSucc : &UnswitchedSucc);
275 }
276 
277 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
278 ///
279 /// Requires that the loop exit and unswitched basic block are the same, and
280 /// that the exiting block was a unique predecessor of that block. Rewrites the
281 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
282 /// PHI nodes from the old preheader that now contains the unswitched
283 /// terminator.
284 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
285                                                   BasicBlock &OldExitingBB,
286                                                   BasicBlock &OldPH) {
287   for (PHINode &PN : UnswitchedBB.phis()) {
288     // When the loop exit is directly unswitched we just need to update the
289     // incoming basic block. We loop to handle weird cases with repeated
290     // incoming blocks, but expect to typically only have one operand here.
291     for (auto i : seq<int>(0, PN.getNumOperands())) {
292       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
293              "Found incoming block different from unique predecessor!");
294       PN.setIncomingBlock(i, &OldPH);
295     }
296   }
297 }
298 
299 /// Rewrite the PHI nodes in the loop exit basic block and the split off
300 /// unswitched block.
301 ///
302 /// Because the exit block remains an exit from the loop, this rewrites the
303 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
304 /// nodes into the unswitched basic block to select between the value in the
305 /// old preheader and the loop exit.
306 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
307                                                       BasicBlock &UnswitchedBB,
308                                                       BasicBlock &OldExitingBB,
309                                                       BasicBlock &OldPH,
310                                                       bool FullUnswitch) {
311   assert(&ExitBB != &UnswitchedBB &&
312          "Must have different loop exit and unswitched blocks!");
313   Instruction *InsertPt = &*UnswitchedBB.begin();
314   for (PHINode &PN : ExitBB.phis()) {
315     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
316                                   PN.getName() + ".split", InsertPt);
317 
318     // Walk backwards over the old PHI node's inputs to minimize the cost of
319     // removing each one. We have to do this weird loop manually so that we
320     // create the same number of new incoming edges in the new PHI as we expect
321     // each case-based edge to be included in the unswitched switch in some
322     // cases.
323     // FIXME: This is really, really gross. It would be much cleaner if LLVM
324     // allowed us to create a single entry for a predecessor block without
325     // having separate entries for each "edge" even though these edges are
326     // required to produce identical results.
327     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
328       if (PN.getIncomingBlock(i) != &OldExitingBB)
329         continue;
330 
331       Value *Incoming = PN.getIncomingValue(i);
332       if (FullUnswitch)
333         // No more edge from the old exiting block to the exit block.
334         PN.removeIncomingValue(i);
335 
336       NewPN->addIncoming(Incoming, &OldPH);
337     }
338 
339     // Now replace the old PHI with the new one and wire the old one in as an
340     // input to the new one.
341     PN.replaceAllUsesWith(NewPN);
342     NewPN->addIncoming(&PN, &ExitBB);
343   }
344 }
345 
346 /// Hoist the current loop up to the innermost loop containing a remaining exit.
347 ///
348 /// Because we've removed an exit from the loop, we may have changed the set of
349 /// loops reachable and need to move the current loop up the loop nest or even
350 /// to an entirely separate nest.
351 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
352                                  DominatorTree &DT, LoopInfo &LI,
353                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
354   // If the loop is already at the top level, we can't hoist it anywhere.
355   Loop *OldParentL = L.getParentLoop();
356   if (!OldParentL)
357     return;
358 
359   SmallVector<BasicBlock *, 4> Exits;
360   L.getExitBlocks(Exits);
361   Loop *NewParentL = nullptr;
362   for (auto *ExitBB : Exits)
363     if (Loop *ExitL = LI.getLoopFor(ExitBB))
364       if (!NewParentL || NewParentL->contains(ExitL))
365         NewParentL = ExitL;
366 
367   if (NewParentL == OldParentL)
368     return;
369 
370   // The new parent loop (if different) should always contain the old one.
371   if (NewParentL)
372     assert(NewParentL->contains(OldParentL) &&
373            "Can only hoist this loop up the nest!");
374 
375   // The preheader will need to move with the body of this loop. However,
376   // because it isn't in this loop we also need to update the primary loop map.
377   assert(OldParentL == LI.getLoopFor(&Preheader) &&
378          "Parent loop of this loop should contain this loop's preheader!");
379   LI.changeLoopFor(&Preheader, NewParentL);
380 
381   // Remove this loop from its old parent.
382   OldParentL->removeChildLoop(&L);
383 
384   // Add the loop either to the new parent or as a top-level loop.
385   if (NewParentL)
386     NewParentL->addChildLoop(&L);
387   else
388     LI.addTopLevelLoop(&L);
389 
390   // Remove this loops blocks from the old parent and every other loop up the
391   // nest until reaching the new parent. Also update all of these
392   // no-longer-containing loops to reflect the nesting change.
393   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
394        OldContainingL = OldContainingL->getParentLoop()) {
395     llvm::erase_if(OldContainingL->getBlocksVector(),
396                    [&](const BasicBlock *BB) {
397                      return BB == &Preheader || L.contains(BB);
398                    });
399 
400     OldContainingL->getBlocksSet().erase(&Preheader);
401     for (BasicBlock *BB : L.blocks())
402       OldContainingL->getBlocksSet().erase(BB);
403 
404     // Because we just hoisted a loop out of this one, we have essentially
405     // created new exit paths from it. That means we need to form LCSSA PHI
406     // nodes for values used in the no-longer-nested loop.
407     formLCSSA(*OldContainingL, DT, &LI, SE);
408 
409     // We shouldn't need to form dedicated exits because the exit introduced
410     // here is the (just split by unswitching) preheader. However, after trivial
411     // unswitching it is possible to get new non-dedicated exits out of parent
412     // loop so let's conservatively form dedicated exit blocks and figure out
413     // if we can optimize later.
414     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
415                             /*PreserveLCSSA*/ true);
416   }
417 }
418 
419 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
420 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
421 // as exiting block.
422 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
423   Loop *TopMost = LI.getLoopFor(ExitBB);
424   Loop *Current = TopMost;
425   while (Current) {
426     if (Current->isLoopExiting(ExitBB))
427       TopMost = Current;
428     Current = Current->getParentLoop();
429   }
430   return TopMost;
431 }
432 
433 /// Unswitch a trivial branch if the condition is loop invariant.
434 ///
435 /// This routine should only be called when loop code leading to the branch has
436 /// been validated as trivial (no side effects). This routine checks if the
437 /// condition is invariant and one of the successors is a loop exit. This
438 /// allows us to unswitch without duplicating the loop, making it trivial.
439 ///
440 /// If this routine fails to unswitch the branch it returns false.
441 ///
442 /// If the branch can be unswitched, this routine splits the preheader and
443 /// hoists the branch above that split. Preserves loop simplified form
444 /// (splitting the exit block as necessary). It simplifies the branch within
445 /// the loop to an unconditional branch but doesn't remove it entirely. Further
446 /// cleanup can be done with some simplifycfg like pass.
447 ///
448 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
449 /// invalidated by this.
450 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
451                                   LoopInfo &LI, ScalarEvolution *SE,
452                                   MemorySSAUpdater *MSSAU) {
453   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
454   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
455 
456   // The loop invariant values that we want to unswitch.
457   TinyPtrVector<Value *> Invariants;
458 
459   // When true, we're fully unswitching the branch rather than just unswitching
460   // some input conditions to the branch.
461   bool FullUnswitch = false;
462 
463   if (L.isLoopInvariant(BI.getCondition())) {
464     Invariants.push_back(BI.getCondition());
465     FullUnswitch = true;
466   } else {
467     if (auto *CondInst =
468             dyn_cast<Instruction>(skipTrivialSelect(BI.getCondition())))
469       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
470     if (Invariants.empty()) {
471       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
472       return false;
473     }
474   }
475 
476   // Check that one of the branch's successors exits, and which one.
477   bool ExitDirection = true;
478   int LoopExitSuccIdx = 0;
479   auto *LoopExitBB = BI.getSuccessor(0);
480   if (L.contains(LoopExitBB)) {
481     ExitDirection = false;
482     LoopExitSuccIdx = 1;
483     LoopExitBB = BI.getSuccessor(1);
484     if (L.contains(LoopExitBB)) {
485       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
486       return false;
487     }
488   }
489   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
490   auto *ParentBB = BI.getParent();
491   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
492     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
493     return false;
494   }
495 
496   // When unswitching only part of the branch's condition, we need the exit
497   // block to be reached directly from the partially unswitched input. This can
498   // be done when the exit block is along the true edge and the branch condition
499   // is a graph of `or` operations, or the exit block is along the false edge
500   // and the condition is a graph of `and` operations.
501   if (!FullUnswitch) {
502     Value *Cond = skipTrivialSelect(BI.getCondition());
503     if (ExitDirection ? !match(Cond, m_LogicalOr())
504                       : !match(Cond, m_LogicalAnd())) {
505       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
506                            "non-full unswitch!\n");
507       return false;
508     }
509   }
510 
511   LLVM_DEBUG({
512     dbgs() << "    unswitching trivial invariant conditions for: " << BI
513            << "\n";
514     for (Value *Invariant : Invariants) {
515       dbgs() << "      " << *Invariant << " == true";
516       if (Invariant != Invariants.back())
517         dbgs() << " ||";
518       dbgs() << "\n";
519     }
520   });
521 
522   // If we have scalar evolutions, we need to invalidate them including this
523   // loop, the loop containing the exit block and the topmost parent loop
524   // exiting via LoopExitBB.
525   if (SE) {
526     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
527       SE->forgetLoop(ExitL);
528     else
529       // Forget the entire nest as this exits the entire nest.
530       SE->forgetTopmostLoop(&L);
531   }
532 
533   if (MSSAU && VerifyMemorySSA)
534     MSSAU->getMemorySSA()->verifyMemorySSA();
535 
536   // Split the preheader, so that we know that there is a safe place to insert
537   // the conditional branch. We will change the preheader to have a conditional
538   // branch on LoopCond.
539   BasicBlock *OldPH = L.getLoopPreheader();
540   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
541 
542   // Now that we have a place to insert the conditional branch, create a place
543   // to branch to: this is the exit block out of the loop that we are
544   // unswitching. We need to split this if there are other loop predecessors.
545   // Because the loop is in simplified form, *any* other predecessor is enough.
546   BasicBlock *UnswitchedBB;
547   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
548     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
549            "A branch's parent isn't a predecessor!");
550     UnswitchedBB = LoopExitBB;
551   } else {
552     UnswitchedBB =
553         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
554   }
555 
556   if (MSSAU && VerifyMemorySSA)
557     MSSAU->getMemorySSA()->verifyMemorySSA();
558 
559   // Actually move the invariant uses into the unswitched position. If possible,
560   // we do this by moving the instructions, but when doing partial unswitching
561   // we do it by building a new merge of the values in the unswitched position.
562   OldPH->getTerminator()->eraseFromParent();
563   if (FullUnswitch) {
564     // If fully unswitching, we can use the existing branch instruction.
565     // Splice it into the old PH to gate reaching the new preheader and re-point
566     // its successors.
567     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
568                                 BI);
569     if (MSSAU) {
570       // Temporarily clone the terminator, to make MSSA update cheaper by
571       // separating "insert edge" updates from "remove edge" ones.
572       ParentBB->getInstList().push_back(BI.clone());
573     } else {
574       // Create a new unconditional branch that will continue the loop as a new
575       // terminator.
576       BranchInst::Create(ContinueBB, ParentBB);
577     }
578     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
579     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
580   } else {
581     // Only unswitching a subset of inputs to the condition, so we will need to
582     // build a new branch that merges the invariant inputs.
583     if (ExitDirection)
584       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
585              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
586              "condition!");
587     else
588       assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
589              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
590              " condition!");
591     buildPartialUnswitchConditionalBranch(
592         *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
593         FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
594   }
595 
596   // Update the dominator tree with the added edge.
597   DT.insertEdge(OldPH, UnswitchedBB);
598 
599   // After the dominator tree was updated with the added edge, update MemorySSA
600   // if available.
601   if (MSSAU) {
602     SmallVector<CFGUpdate, 1> Updates;
603     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
604     MSSAU->applyInsertUpdates(Updates, DT);
605   }
606 
607   // Finish updating dominator tree and memory ssa for full unswitch.
608   if (FullUnswitch) {
609     if (MSSAU) {
610       // Remove the cloned branch instruction.
611       ParentBB->getTerminator()->eraseFromParent();
612       // Create unconditional branch now.
613       BranchInst::Create(ContinueBB, ParentBB);
614       MSSAU->removeEdge(ParentBB, LoopExitBB);
615     }
616     DT.deleteEdge(ParentBB, LoopExitBB);
617   }
618 
619   if (MSSAU && VerifyMemorySSA)
620     MSSAU->getMemorySSA()->verifyMemorySSA();
621 
622   // Rewrite the relevant PHI nodes.
623   if (UnswitchedBB == LoopExitBB)
624     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
625   else
626     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
627                                               *ParentBB, *OldPH, FullUnswitch);
628 
629   // The constant we can replace all of our invariants with inside the loop
630   // body. If any of the invariants have a value other than this the loop won't
631   // be entered.
632   ConstantInt *Replacement = ExitDirection
633                                  ? ConstantInt::getFalse(BI.getContext())
634                                  : ConstantInt::getTrue(BI.getContext());
635 
636   // Since this is an i1 condition we can also trivially replace uses of it
637   // within the loop with a constant.
638   for (Value *Invariant : Invariants)
639     replaceLoopInvariantUses(L, Invariant, *Replacement);
640 
641   // If this was full unswitching, we may have changed the nesting relationship
642   // for this loop so hoist it to its correct parent if needed.
643   if (FullUnswitch)
644     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
645 
646   if (MSSAU && VerifyMemorySSA)
647     MSSAU->getMemorySSA()->verifyMemorySSA();
648 
649   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
650   ++NumTrivial;
651   ++NumBranches;
652   return true;
653 }
654 
655 /// Unswitch a trivial switch if the condition is loop invariant.
656 ///
657 /// This routine should only be called when loop code leading to the switch has
658 /// been validated as trivial (no side effects). This routine checks if the
659 /// condition is invariant and that at least one of the successors is a loop
660 /// exit. This allows us to unswitch without duplicating the loop, making it
661 /// trivial.
662 ///
663 /// If this routine fails to unswitch the switch it returns false.
664 ///
665 /// If the switch can be unswitched, this routine splits the preheader and
666 /// copies the switch above that split. If the default case is one of the
667 /// exiting cases, it copies the non-exiting cases and points them at the new
668 /// preheader. If the default case is not exiting, it copies the exiting cases
669 /// and points the default at the preheader. It preserves loop simplified form
670 /// (splitting the exit blocks as necessary). It simplifies the switch within
671 /// the loop by removing now-dead cases. If the default case is one of those
672 /// unswitched, it replaces its destination with a new basic block containing
673 /// only unreachable. Such basic blocks, while technically loop exits, are not
674 /// considered for unswitching so this is a stable transform and the same
675 /// switch will not be revisited. If after unswitching there is only a single
676 /// in-loop successor, the switch is further simplified to an unconditional
677 /// branch. Still more cleanup can be done with some simplifycfg like pass.
678 ///
679 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
680 /// invalidated by this.
681 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
682                                   LoopInfo &LI, ScalarEvolution *SE,
683                                   MemorySSAUpdater *MSSAU) {
684   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
685   Value *LoopCond = SI.getCondition();
686 
687   // If this isn't switching on an invariant condition, we can't unswitch it.
688   if (!L.isLoopInvariant(LoopCond))
689     return false;
690 
691   auto *ParentBB = SI.getParent();
692 
693   // The same check must be used both for the default and the exit cases. We
694   // should never leave edges from the switch instruction to a basic block that
695   // we are unswitching, hence the condition used to determine the default case
696   // needs to also be used to populate ExitCaseIndices, which is then used to
697   // remove cases from the switch.
698   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
699     // BBToCheck is not an exit block if it is inside loop L.
700     if (L.contains(&BBToCheck))
701       return false;
702     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
703     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
704       return false;
705     // We do not unswitch a block that only has an unreachable statement, as
706     // it's possible this is a previously unswitched block. Only unswitch if
707     // either the terminator is not unreachable, or, if it is, it's not the only
708     // instruction in the block.
709     auto *TI = BBToCheck.getTerminator();
710     bool isUnreachable = isa<UnreachableInst>(TI);
711     return !isUnreachable ||
712            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
713   };
714 
715   SmallVector<int, 4> ExitCaseIndices;
716   for (auto Case : SI.cases())
717     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
718       ExitCaseIndices.push_back(Case.getCaseIndex());
719   BasicBlock *DefaultExitBB = nullptr;
720   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
721       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
722   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
723     DefaultExitBB = SI.getDefaultDest();
724   } else if (ExitCaseIndices.empty())
725     return false;
726 
727   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
728 
729   if (MSSAU && VerifyMemorySSA)
730     MSSAU->getMemorySSA()->verifyMemorySSA();
731 
732   // We may need to invalidate SCEVs for the outermost loop reached by any of
733   // the exits.
734   Loop *OuterL = &L;
735 
736   if (DefaultExitBB) {
737     // Clear out the default destination temporarily to allow accurate
738     // predecessor lists to be examined below.
739     SI.setDefaultDest(nullptr);
740     // Check the loop containing this exit.
741     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
742     if (!ExitL || ExitL->contains(OuterL))
743       OuterL = ExitL;
744   }
745 
746   // Store the exit cases into a separate data structure and remove them from
747   // the switch.
748   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
749                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
750               4> ExitCases;
751   ExitCases.reserve(ExitCaseIndices.size());
752   SwitchInstProfUpdateWrapper SIW(SI);
753   // We walk the case indices backwards so that we remove the last case first
754   // and don't disrupt the earlier indices.
755   for (unsigned Index : reverse(ExitCaseIndices)) {
756     auto CaseI = SI.case_begin() + Index;
757     // Compute the outer loop from this exit.
758     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
759     if (!ExitL || ExitL->contains(OuterL))
760       OuterL = ExitL;
761     // Save the value of this case.
762     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
763     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
764     // Delete the unswitched cases.
765     SIW.removeCase(CaseI);
766   }
767 
768   if (SE) {
769     if (OuterL)
770       SE->forgetLoop(OuterL);
771     else
772       SE->forgetTopmostLoop(&L);
773   }
774 
775   // Check if after this all of the remaining cases point at the same
776   // successor.
777   BasicBlock *CommonSuccBB = nullptr;
778   if (SI.getNumCases() > 0 &&
779       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
780         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
781       }))
782     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
783   if (!DefaultExitBB) {
784     // If we're not unswitching the default, we need it to match any cases to
785     // have a common successor or if we have no cases it is the common
786     // successor.
787     if (SI.getNumCases() == 0)
788       CommonSuccBB = SI.getDefaultDest();
789     else if (SI.getDefaultDest() != CommonSuccBB)
790       CommonSuccBB = nullptr;
791   }
792 
793   // Split the preheader, so that we know that there is a safe place to insert
794   // the switch.
795   BasicBlock *OldPH = L.getLoopPreheader();
796   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
797   OldPH->getTerminator()->eraseFromParent();
798 
799   // Now add the unswitched switch.
800   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
801   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
802 
803   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
804   // First, we split any exit blocks with remaining in-loop predecessors. Then
805   // we update the PHIs in one of two ways depending on if there was a split.
806   // We walk in reverse so that we split in the same order as the cases
807   // appeared. This is purely for convenience of reading the resulting IR, but
808   // it doesn't cost anything really.
809   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
810   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
811   // Handle the default exit if necessary.
812   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
813   // ranges aren't quite powerful enough yet.
814   if (DefaultExitBB) {
815     if (pred_empty(DefaultExitBB)) {
816       UnswitchedExitBBs.insert(DefaultExitBB);
817       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
818     } else {
819       auto *SplitBB =
820           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
821       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
822                                                 *ParentBB, *OldPH,
823                                                 /*FullUnswitch*/ true);
824       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
825     }
826   }
827   // Note that we must use a reference in the for loop so that we update the
828   // container.
829   for (auto &ExitCase : reverse(ExitCases)) {
830     // Grab a reference to the exit block in the pair so that we can update it.
831     BasicBlock *ExitBB = std::get<1>(ExitCase);
832 
833     // If this case is the last edge into the exit block, we can simply reuse it
834     // as it will no longer be a loop exit. No mapping necessary.
835     if (pred_empty(ExitBB)) {
836       // Only rewrite once.
837       if (UnswitchedExitBBs.insert(ExitBB).second)
838         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
839       continue;
840     }
841 
842     // Otherwise we need to split the exit block so that we retain an exit
843     // block from the loop and a target for the unswitched condition.
844     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
845     if (!SplitExitBB) {
846       // If this is the first time we see this, do the split and remember it.
847       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
848       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
849                                                 *ParentBB, *OldPH,
850                                                 /*FullUnswitch*/ true);
851     }
852     // Update the case pair to point to the split block.
853     std::get<1>(ExitCase) = SplitExitBB;
854   }
855 
856   // Now add the unswitched cases. We do this in reverse order as we built them
857   // in reverse order.
858   for (auto &ExitCase : reverse(ExitCases)) {
859     ConstantInt *CaseVal = std::get<0>(ExitCase);
860     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
861 
862     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
863   }
864 
865   // If the default was unswitched, re-point it and add explicit cases for
866   // entering the loop.
867   if (DefaultExitBB) {
868     NewSIW->setDefaultDest(DefaultExitBB);
869     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
870 
871     // We removed all the exit cases, so we just copy the cases to the
872     // unswitched switch.
873     for (const auto &Case : SI.cases())
874       NewSIW.addCase(Case.getCaseValue(), NewPH,
875                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
876   } else if (DefaultCaseWeight) {
877     // We have to set branch weight of the default case.
878     uint64_t SW = *DefaultCaseWeight;
879     for (const auto &Case : SI.cases()) {
880       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
881       assert(W &&
882              "case weight must be defined as default case weight is defined");
883       SW += *W;
884     }
885     NewSIW.setSuccessorWeight(0, SW);
886   }
887 
888   // If we ended up with a common successor for every path through the switch
889   // after unswitching, rewrite it to an unconditional branch to make it easy
890   // to recognize. Otherwise we potentially have to recognize the default case
891   // pointing at unreachable and other complexity.
892   if (CommonSuccBB) {
893     BasicBlock *BB = SI.getParent();
894     // We may have had multiple edges to this common successor block, so remove
895     // them as predecessors. We skip the first one, either the default or the
896     // actual first case.
897     bool SkippedFirst = DefaultExitBB == nullptr;
898     for (auto Case : SI.cases()) {
899       assert(Case.getCaseSuccessor() == CommonSuccBB &&
900              "Non-common successor!");
901       (void)Case;
902       if (!SkippedFirst) {
903         SkippedFirst = true;
904         continue;
905       }
906       CommonSuccBB->removePredecessor(BB,
907                                       /*KeepOneInputPHIs*/ true);
908     }
909     // Now nuke the switch and replace it with a direct branch.
910     SIW.eraseFromParent();
911     BranchInst::Create(CommonSuccBB, BB);
912   } else if (DefaultExitBB) {
913     assert(SI.getNumCases() > 0 &&
914            "If we had no cases we'd have a common successor!");
915     // Move the last case to the default successor. This is valid as if the
916     // default got unswitched it cannot be reached. This has the advantage of
917     // being simple and keeping the number of edges from this switch to
918     // successors the same, and avoiding any PHI update complexity.
919     auto LastCaseI = std::prev(SI.case_end());
920 
921     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
922     SIW.setSuccessorWeight(
923         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
924     SIW.removeCase(LastCaseI);
925   }
926 
927   // Walk the unswitched exit blocks and the unswitched split blocks and update
928   // the dominator tree based on the CFG edits. While we are walking unordered
929   // containers here, the API for applyUpdates takes an unordered list of
930   // updates and requires them to not contain duplicates.
931   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
932   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
933     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
934     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
935   }
936   for (auto SplitUnswitchedPair : SplitExitBBMap) {
937     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
938     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
939   }
940 
941   if (MSSAU) {
942     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
943     if (VerifyMemorySSA)
944       MSSAU->getMemorySSA()->verifyMemorySSA();
945   } else {
946     DT.applyUpdates(DTUpdates);
947   }
948 
949   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
950 
951   // We may have changed the nesting relationship for this loop so hoist it to
952   // its correct parent if needed.
953   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
954 
955   if (MSSAU && VerifyMemorySSA)
956     MSSAU->getMemorySSA()->verifyMemorySSA();
957 
958   ++NumTrivial;
959   ++NumSwitches;
960   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
961   return true;
962 }
963 
964 /// This routine scans the loop to find a branch or switch which occurs before
965 /// any side effects occur. These can potentially be unswitched without
966 /// duplicating the loop. If a branch or switch is successfully unswitched the
967 /// scanning continues to see if subsequent branches or switches have become
968 /// trivial. Once all trivial candidates have been unswitched, this routine
969 /// returns.
970 ///
971 /// The return value indicates whether anything was unswitched (and therefore
972 /// changed).
973 ///
974 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
975 /// invalidated by this.
976 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
977                                          LoopInfo &LI, ScalarEvolution *SE,
978                                          MemorySSAUpdater *MSSAU) {
979   bool Changed = false;
980 
981   // If loop header has only one reachable successor we should keep looking for
982   // trivial condition candidates in the successor as well. An alternative is
983   // to constant fold conditions and merge successors into loop header (then we
984   // only need to check header's terminator). The reason for not doing this in
985   // LoopUnswitch pass is that it could potentially break LoopPassManager's
986   // invariants. Folding dead branches could either eliminate the current loop
987   // or make other loops unreachable. LCSSA form might also not be preserved
988   // after deleting branches. The following code keeps traversing loop header's
989   // successors until it finds the trivial condition candidate (condition that
990   // is not a constant). Since unswitching generates branches with constant
991   // conditions, this scenario could be very common in practice.
992   BasicBlock *CurrentBB = L.getHeader();
993   SmallPtrSet<BasicBlock *, 8> Visited;
994   Visited.insert(CurrentBB);
995   do {
996     // Check if there are any side-effecting instructions (e.g. stores, calls,
997     // volatile loads) in the part of the loop that the code *would* execute
998     // without unswitching.
999     if (MSSAU) // Possible early exit with MSSA
1000       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1001         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1002           return Changed;
1003     if (llvm::any_of(*CurrentBB,
1004                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
1005       return Changed;
1006 
1007     Instruction *CurrentTerm = CurrentBB->getTerminator();
1008 
1009     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1010       // Don't bother trying to unswitch past a switch with a constant
1011       // condition. This should be removed prior to running this pass by
1012       // simplifycfg.
1013       if (isa<Constant>(SI->getCondition()))
1014         return Changed;
1015 
1016       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1017         // Couldn't unswitch this one so we're done.
1018         return Changed;
1019 
1020       // Mark that we managed to unswitch something.
1021       Changed = true;
1022 
1023       // If unswitching turned the terminator into an unconditional branch then
1024       // we can continue. The unswitching logic specifically works to fold any
1025       // cases it can into an unconditional branch to make it easier to
1026       // recognize here.
1027       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1028       if (!BI || BI->isConditional())
1029         return Changed;
1030 
1031       CurrentBB = BI->getSuccessor(0);
1032       continue;
1033     }
1034 
1035     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1036     if (!BI)
1037       // We do not understand other terminator instructions.
1038       return Changed;
1039 
1040     // Don't bother trying to unswitch past an unconditional branch or a branch
1041     // with a constant value. These should be removed by simplifycfg prior to
1042     // running this pass.
1043     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1044       return Changed;
1045 
1046     // Found a trivial condition candidate: non-foldable conditional branch. If
1047     // we fail to unswitch this, we can't do anything else that is trivial.
1048     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1049       return Changed;
1050 
1051     // Mark that we managed to unswitch something.
1052     Changed = true;
1053 
1054     // If we only unswitched some of the conditions feeding the branch, we won't
1055     // have collapsed it to a single successor.
1056     BI = cast<BranchInst>(CurrentBB->getTerminator());
1057     if (BI->isConditional())
1058       return Changed;
1059 
1060     // Follow the newly unconditional branch into its successor.
1061     CurrentBB = BI->getSuccessor(0);
1062 
1063     // When continuing, if we exit the loop or reach a previous visited block,
1064     // then we can not reach any trivial condition candidates (unfoldable
1065     // branch instructions or switch instructions) and no unswitch can happen.
1066   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1067 
1068   return Changed;
1069 }
1070 
1071 /// Build the cloned blocks for an unswitched copy of the given loop.
1072 ///
1073 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1074 /// after the split block (`SplitBB`) that will be used to select between the
1075 /// cloned and original loop.
1076 ///
1077 /// This routine handles cloning all of the necessary loop blocks and exit
1078 /// blocks including rewriting their instructions and the relevant PHI nodes.
1079 /// Any loop blocks or exit blocks which are dominated by a different successor
1080 /// than the one for this clone of the loop blocks can be trivially skipped. We
1081 /// use the `DominatingSucc` map to determine whether a block satisfies that
1082 /// property with a simple map lookup.
1083 ///
1084 /// It also correctly creates the unconditional branch in the cloned
1085 /// unswitched parent block to only point at the unswitched successor.
1086 ///
1087 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1088 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1089 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1090 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1091 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1092 /// instead the caller must recompute an accurate DT. It *does* correctly
1093 /// update the `AssumptionCache` provided in `AC`.
1094 static BasicBlock *buildClonedLoopBlocks(
1095     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1096     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1097     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1098     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1099     ValueToValueMapTy &VMap,
1100     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1101     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1102   SmallVector<BasicBlock *, 4> NewBlocks;
1103   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1104 
1105   // We will need to clone a bunch of blocks, wrap up the clone operation in
1106   // a helper.
1107   auto CloneBlock = [&](BasicBlock *OldBB) {
1108     // Clone the basic block and insert it before the new preheader.
1109     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1110     NewBB->moveBefore(LoopPH);
1111 
1112     // Record this block and the mapping.
1113     NewBlocks.push_back(NewBB);
1114     VMap[OldBB] = NewBB;
1115 
1116     return NewBB;
1117   };
1118 
1119   // We skip cloning blocks when they have a dominating succ that is not the
1120   // succ we are cloning for.
1121   auto SkipBlock = [&](BasicBlock *BB) {
1122     auto It = DominatingSucc.find(BB);
1123     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1124   };
1125 
1126   // First, clone the preheader.
1127   auto *ClonedPH = CloneBlock(LoopPH);
1128 
1129   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1130   for (auto *LoopBB : L.blocks())
1131     if (!SkipBlock(LoopBB))
1132       CloneBlock(LoopBB);
1133 
1134   // Split all the loop exit edges so that when we clone the exit blocks, if
1135   // any of the exit blocks are *also* a preheader for some other loop, we
1136   // don't create multiple predecessors entering the loop header.
1137   for (auto *ExitBB : ExitBlocks) {
1138     if (SkipBlock(ExitBB))
1139       continue;
1140 
1141     // When we are going to clone an exit, we don't need to clone all the
1142     // instructions in the exit block and we want to ensure we have an easy
1143     // place to merge the CFG, so split the exit first. This is always safe to
1144     // do because there cannot be any non-loop predecessors of a loop exit in
1145     // loop simplified form.
1146     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1147 
1148     // Rearrange the names to make it easier to write test cases by having the
1149     // exit block carry the suffix rather than the merge block carrying the
1150     // suffix.
1151     MergeBB->takeName(ExitBB);
1152     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1153 
1154     // Now clone the original exit block.
1155     auto *ClonedExitBB = CloneBlock(ExitBB);
1156     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1157            "Exit block should have been split to have one successor!");
1158     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1159            "Cloned exit block has the wrong successor!");
1160 
1161     // Remap any cloned instructions and create a merge phi node for them.
1162     for (auto ZippedInsts : llvm::zip_first(
1163              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1164              llvm::make_range(ClonedExitBB->begin(),
1165                               std::prev(ClonedExitBB->end())))) {
1166       Instruction &I = std::get<0>(ZippedInsts);
1167       Instruction &ClonedI = std::get<1>(ZippedInsts);
1168 
1169       // The only instructions in the exit block should be PHI nodes and
1170       // potentially a landing pad.
1171       assert(
1172           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1173           "Bad instruction in exit block!");
1174       // We should have a value map between the instruction and its clone.
1175       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1176 
1177       auto *MergePN =
1178           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1179                           &*MergeBB->getFirstInsertionPt());
1180       I.replaceAllUsesWith(MergePN);
1181       MergePN->addIncoming(&I, ExitBB);
1182       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1183     }
1184   }
1185 
1186   // Rewrite the instructions in the cloned blocks to refer to the instructions
1187   // in the cloned blocks. We have to do this as a second pass so that we have
1188   // everything available. Also, we have inserted new instructions which may
1189   // include assume intrinsics, so we update the assumption cache while
1190   // processing this.
1191   for (auto *ClonedBB : NewBlocks)
1192     for (Instruction &I : *ClonedBB) {
1193       RemapInstruction(&I, VMap,
1194                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1195       if (auto *II = dyn_cast<AssumeInst>(&I))
1196         AC.registerAssumption(II);
1197     }
1198 
1199   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1200   // have spurious incoming values.
1201   for (auto *LoopBB : L.blocks())
1202     if (SkipBlock(LoopBB))
1203       for (auto *SuccBB : successors(LoopBB))
1204         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1205           for (PHINode &PN : ClonedSuccBB->phis())
1206             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1207 
1208   // Remove the cloned parent as a predecessor of any successor we ended up
1209   // cloning other than the unswitched one.
1210   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1211   for (auto *SuccBB : successors(ParentBB)) {
1212     if (SuccBB == UnswitchedSuccBB)
1213       continue;
1214 
1215     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1216     if (!ClonedSuccBB)
1217       continue;
1218 
1219     ClonedSuccBB->removePredecessor(ClonedParentBB,
1220                                     /*KeepOneInputPHIs*/ true);
1221   }
1222 
1223   // Replace the cloned branch with an unconditional branch to the cloned
1224   // unswitched successor.
1225   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1226   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1227   // Trivial Simplification. If Terminator is a conditional branch and
1228   // condition becomes dead - erase it.
1229   Value *ClonedConditionToErase = nullptr;
1230   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1231     ClonedConditionToErase = BI->getCondition();
1232   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1233     ClonedConditionToErase = SI->getCondition();
1234 
1235   ClonedTerminator->eraseFromParent();
1236   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1237 
1238   if (ClonedConditionToErase)
1239     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1240                                                MSSAU);
1241 
1242   // If there are duplicate entries in the PHI nodes because of multiple edges
1243   // to the unswitched successor, we need to nuke all but one as we replaced it
1244   // with a direct branch.
1245   for (PHINode &PN : ClonedSuccBB->phis()) {
1246     bool Found = false;
1247     // Loop over the incoming operands backwards so we can easily delete as we
1248     // go without invalidating the index.
1249     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1250       if (PN.getIncomingBlock(i) != ClonedParentBB)
1251         continue;
1252       if (!Found) {
1253         Found = true;
1254         continue;
1255       }
1256       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1257     }
1258   }
1259 
1260   // Record the domtree updates for the new blocks.
1261   SmallPtrSet<BasicBlock *, 4> SuccSet;
1262   for (auto *ClonedBB : NewBlocks) {
1263     for (auto *SuccBB : successors(ClonedBB))
1264       if (SuccSet.insert(SuccBB).second)
1265         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1266     SuccSet.clear();
1267   }
1268 
1269   return ClonedPH;
1270 }
1271 
1272 /// Recursively clone the specified loop and all of its children.
1273 ///
1274 /// The target parent loop for the clone should be provided, or can be null if
1275 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1276 /// with the provided value map. The entire original loop must be present in
1277 /// the value map. The cloned loop is returned.
1278 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1279                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1280   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1281     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1282     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1283     for (auto *BB : OrigL.blocks()) {
1284       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1285       ClonedL.addBlockEntry(ClonedBB);
1286       if (LI.getLoopFor(BB) == &OrigL)
1287         LI.changeLoopFor(ClonedBB, &ClonedL);
1288     }
1289   };
1290 
1291   // We specially handle the first loop because it may get cloned into
1292   // a different parent and because we most commonly are cloning leaf loops.
1293   Loop *ClonedRootL = LI.AllocateLoop();
1294   if (RootParentL)
1295     RootParentL->addChildLoop(ClonedRootL);
1296   else
1297     LI.addTopLevelLoop(ClonedRootL);
1298   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1299 
1300   if (OrigRootL.isInnermost())
1301     return ClonedRootL;
1302 
1303   // If we have a nest, we can quickly clone the entire loop nest using an
1304   // iterative approach because it is a tree. We keep the cloned parent in the
1305   // data structure to avoid repeatedly querying through a map to find it.
1306   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1307   // Build up the loops to clone in reverse order as we'll clone them from the
1308   // back.
1309   for (Loop *ChildL : llvm::reverse(OrigRootL))
1310     LoopsToClone.push_back({ClonedRootL, ChildL});
1311   do {
1312     Loop *ClonedParentL, *L;
1313     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1314     Loop *ClonedL = LI.AllocateLoop();
1315     ClonedParentL->addChildLoop(ClonedL);
1316     AddClonedBlocksToLoop(*L, *ClonedL);
1317     for (Loop *ChildL : llvm::reverse(*L))
1318       LoopsToClone.push_back({ClonedL, ChildL});
1319   } while (!LoopsToClone.empty());
1320 
1321   return ClonedRootL;
1322 }
1323 
1324 /// Build the cloned loops of an original loop from unswitching.
1325 ///
1326 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1327 /// operation. We need to re-verify that there even is a loop (as the backedge
1328 /// may not have been cloned), and even if there are remaining backedges the
1329 /// backedge set may be different. However, we know that each child loop is
1330 /// undisturbed, we only need to find where to place each child loop within
1331 /// either any parent loop or within a cloned version of the original loop.
1332 ///
1333 /// Because child loops may end up cloned outside of any cloned version of the
1334 /// original loop, multiple cloned sibling loops may be created. All of them
1335 /// are returned so that the newly introduced loop nest roots can be
1336 /// identified.
1337 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1338                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1339                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1340   Loop *ClonedL = nullptr;
1341 
1342   auto *OrigPH = OrigL.getLoopPreheader();
1343   auto *OrigHeader = OrigL.getHeader();
1344 
1345   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1346   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1347 
1348   // We need to know the loops of the cloned exit blocks to even compute the
1349   // accurate parent loop. If we only clone exits to some parent of the
1350   // original parent, we want to clone into that outer loop. We also keep track
1351   // of the loops that our cloned exit blocks participate in.
1352   Loop *ParentL = nullptr;
1353   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1354   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1355   ClonedExitsInLoops.reserve(ExitBlocks.size());
1356   for (auto *ExitBB : ExitBlocks)
1357     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1358       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1359         ExitLoopMap[ClonedExitBB] = ExitL;
1360         ClonedExitsInLoops.push_back(ClonedExitBB);
1361         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1362           ParentL = ExitL;
1363       }
1364   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1365           ParentL->contains(OrigL.getParentLoop())) &&
1366          "The computed parent loop should always contain (or be) the parent of "
1367          "the original loop.");
1368 
1369   // We build the set of blocks dominated by the cloned header from the set of
1370   // cloned blocks out of the original loop. While not all of these will
1371   // necessarily be in the cloned loop, it is enough to establish that they
1372   // aren't in unreachable cycles, etc.
1373   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1374   for (auto *BB : OrigL.blocks())
1375     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1376       ClonedLoopBlocks.insert(ClonedBB);
1377 
1378   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1379   // skipped cloning some region of this loop which can in turn skip some of
1380   // the backedges so we have to rebuild the blocks in the loop based on the
1381   // backedges that remain after cloning.
1382   SmallVector<BasicBlock *, 16> Worklist;
1383   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1384   for (auto *Pred : predecessors(ClonedHeader)) {
1385     // The only possible non-loop header predecessor is the preheader because
1386     // we know we cloned the loop in simplified form.
1387     if (Pred == ClonedPH)
1388       continue;
1389 
1390     // Because the loop was in simplified form, the only non-loop predecessor
1391     // should be the preheader.
1392     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1393                                            "header other than the preheader "
1394                                            "that is not part of the loop!");
1395 
1396     // Insert this block into the loop set and on the first visit (and if it
1397     // isn't the header we're currently walking) put it into the worklist to
1398     // recurse through.
1399     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1400       Worklist.push_back(Pred);
1401   }
1402 
1403   // If we had any backedges then there *is* a cloned loop. Put the header into
1404   // the loop set and then walk the worklist backwards to find all the blocks
1405   // that remain within the loop after cloning.
1406   if (!BlocksInClonedLoop.empty()) {
1407     BlocksInClonedLoop.insert(ClonedHeader);
1408 
1409     while (!Worklist.empty()) {
1410       BasicBlock *BB = Worklist.pop_back_val();
1411       assert(BlocksInClonedLoop.count(BB) &&
1412              "Didn't put block into the loop set!");
1413 
1414       // Insert any predecessors that are in the possible set into the cloned
1415       // set, and if the insert is successful, add them to the worklist. Note
1416       // that we filter on the blocks that are definitely reachable via the
1417       // backedge to the loop header so we may prune out dead code within the
1418       // cloned loop.
1419       for (auto *Pred : predecessors(BB))
1420         if (ClonedLoopBlocks.count(Pred) &&
1421             BlocksInClonedLoop.insert(Pred).second)
1422           Worklist.push_back(Pred);
1423     }
1424 
1425     ClonedL = LI.AllocateLoop();
1426     if (ParentL) {
1427       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1428       ParentL->addChildLoop(ClonedL);
1429     } else {
1430       LI.addTopLevelLoop(ClonedL);
1431     }
1432     NonChildClonedLoops.push_back(ClonedL);
1433 
1434     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1435     // We don't want to just add the cloned loop blocks based on how we
1436     // discovered them. The original order of blocks was carefully built in
1437     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1438     // that logic, we just re-walk the original blocks (and those of the child
1439     // loops) and filter them as we add them into the cloned loop.
1440     for (auto *BB : OrigL.blocks()) {
1441       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1442       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1443         continue;
1444 
1445       // Directly add the blocks that are only in this loop.
1446       if (LI.getLoopFor(BB) == &OrigL) {
1447         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1448         continue;
1449       }
1450 
1451       // We want to manually add it to this loop and parents.
1452       // Registering it with LoopInfo will happen when we clone the top
1453       // loop for this block.
1454       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1455         PL->addBlockEntry(ClonedBB);
1456     }
1457 
1458     // Now add each child loop whose header remains within the cloned loop. All
1459     // of the blocks within the loop must satisfy the same constraints as the
1460     // header so once we pass the header checks we can just clone the entire
1461     // child loop nest.
1462     for (Loop *ChildL : OrigL) {
1463       auto *ClonedChildHeader =
1464           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1465       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1466         continue;
1467 
1468 #ifndef NDEBUG
1469       // We should never have a cloned child loop header but fail to have
1470       // all of the blocks for that child loop.
1471       for (auto *ChildLoopBB : ChildL->blocks())
1472         assert(BlocksInClonedLoop.count(
1473                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1474                "Child cloned loop has a header within the cloned outer "
1475                "loop but not all of its blocks!");
1476 #endif
1477 
1478       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1479     }
1480   }
1481 
1482   // Now that we've handled all the components of the original loop that were
1483   // cloned into a new loop, we still need to handle anything from the original
1484   // loop that wasn't in a cloned loop.
1485 
1486   // Figure out what blocks are left to place within any loop nest containing
1487   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1488   // them.
1489   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1490   if (BlocksInClonedLoop.empty())
1491     UnloopedBlockSet.insert(ClonedPH);
1492   for (auto *ClonedBB : ClonedLoopBlocks)
1493     if (!BlocksInClonedLoop.count(ClonedBB))
1494       UnloopedBlockSet.insert(ClonedBB);
1495 
1496   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1497   // backwards across these to process them inside out. The order shouldn't
1498   // matter as we're just trying to build up the map from inside-out; we use
1499   // the map in a more stably ordered way below.
1500   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1501   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1502     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1503            ExitLoopMap.lookup(RHS)->getLoopDepth();
1504   });
1505 
1506   // Populate the existing ExitLoopMap with everything reachable from each
1507   // exit, starting from the inner most exit.
1508   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1509     assert(Worklist.empty() && "Didn't clear worklist!");
1510 
1511     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1512     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1513 
1514     // Walk the CFG back until we hit the cloned PH adding everything reachable
1515     // and in the unlooped set to this exit block's loop.
1516     Worklist.push_back(ExitBB);
1517     do {
1518       BasicBlock *BB = Worklist.pop_back_val();
1519       // We can stop recursing at the cloned preheader (if we get there).
1520       if (BB == ClonedPH)
1521         continue;
1522 
1523       for (BasicBlock *PredBB : predecessors(BB)) {
1524         // If this pred has already been moved to our set or is part of some
1525         // (inner) loop, no update needed.
1526         if (!UnloopedBlockSet.erase(PredBB)) {
1527           assert(
1528               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1529               "Predecessor not mapped to a loop!");
1530           continue;
1531         }
1532 
1533         // We just insert into the loop set here. We'll add these blocks to the
1534         // exit loop after we build up the set in an order that doesn't rely on
1535         // predecessor order (which in turn relies on use list order).
1536         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1537         (void)Inserted;
1538         assert(Inserted && "Should only visit an unlooped block once!");
1539 
1540         // And recurse through to its predecessors.
1541         Worklist.push_back(PredBB);
1542       }
1543     } while (!Worklist.empty());
1544   }
1545 
1546   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1547   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1548   // in their original order adding them to the correct loop.
1549 
1550   // We need a stable insertion order. We use the order of the original loop
1551   // order and map into the correct parent loop.
1552   for (auto *BB : llvm::concat<BasicBlock *const>(
1553            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1554     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1555       OuterL->addBasicBlockToLoop(BB, LI);
1556 
1557 #ifndef NDEBUG
1558   for (auto &BBAndL : ExitLoopMap) {
1559     auto *BB = BBAndL.first;
1560     auto *OuterL = BBAndL.second;
1561     assert(LI.getLoopFor(BB) == OuterL &&
1562            "Failed to put all blocks into outer loops!");
1563   }
1564 #endif
1565 
1566   // Now that all the blocks are placed into the correct containing loop in the
1567   // absence of child loops, find all the potentially cloned child loops and
1568   // clone them into whatever outer loop we placed their header into.
1569   for (Loop *ChildL : OrigL) {
1570     auto *ClonedChildHeader =
1571         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1572     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1573       continue;
1574 
1575 #ifndef NDEBUG
1576     for (auto *ChildLoopBB : ChildL->blocks())
1577       assert(VMap.count(ChildLoopBB) &&
1578              "Cloned a child loop header but not all of that loops blocks!");
1579 #endif
1580 
1581     NonChildClonedLoops.push_back(cloneLoopNest(
1582         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1583   }
1584 }
1585 
1586 static void
1587 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1588                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1589                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1590   // Find all the dead clones, and remove them from their successors.
1591   SmallVector<BasicBlock *, 16> DeadBlocks;
1592   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1593     for (auto &VMap : VMaps)
1594       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1595         if (!DT.isReachableFromEntry(ClonedBB)) {
1596           for (BasicBlock *SuccBB : successors(ClonedBB))
1597             SuccBB->removePredecessor(ClonedBB);
1598           DeadBlocks.push_back(ClonedBB);
1599         }
1600 
1601   // Remove all MemorySSA in the dead blocks
1602   if (MSSAU) {
1603     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1604                                                  DeadBlocks.end());
1605     MSSAU->removeBlocks(DeadBlockSet);
1606   }
1607 
1608   // Drop any remaining references to break cycles.
1609   for (BasicBlock *BB : DeadBlocks)
1610     BB->dropAllReferences();
1611   // Erase them from the IR.
1612   for (BasicBlock *BB : DeadBlocks)
1613     BB->eraseFromParent();
1614 }
1615 
1616 static void
1617 deleteDeadBlocksFromLoop(Loop &L,
1618                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1619                          DominatorTree &DT, LoopInfo &LI,
1620                          MemorySSAUpdater *MSSAU,
1621                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1622   // Find all the dead blocks tied to this loop, and remove them from their
1623   // successors.
1624   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1625 
1626   // Start with loop/exit blocks and get a transitive closure of reachable dead
1627   // blocks.
1628   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1629                                                 ExitBlocks.end());
1630   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1631   while (!DeathCandidates.empty()) {
1632     auto *BB = DeathCandidates.pop_back_val();
1633     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1634       for (BasicBlock *SuccBB : successors(BB)) {
1635         SuccBB->removePredecessor(BB);
1636         DeathCandidates.push_back(SuccBB);
1637       }
1638       DeadBlockSet.insert(BB);
1639     }
1640   }
1641 
1642   // Remove all MemorySSA in the dead blocks
1643   if (MSSAU)
1644     MSSAU->removeBlocks(DeadBlockSet);
1645 
1646   // Filter out the dead blocks from the exit blocks list so that it can be
1647   // used in the caller.
1648   llvm::erase_if(ExitBlocks,
1649                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1650 
1651   // Walk from this loop up through its parents removing all of the dead blocks.
1652   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1653     for (auto *BB : DeadBlockSet)
1654       ParentL->getBlocksSet().erase(BB);
1655     llvm::erase_if(ParentL->getBlocksVector(),
1656                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1657   }
1658 
1659   // Now delete the dead child loops. This raw delete will clear them
1660   // recursively.
1661   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1662     if (!DeadBlockSet.count(ChildL->getHeader()))
1663       return false;
1664 
1665     assert(llvm::all_of(ChildL->blocks(),
1666                         [&](BasicBlock *ChildBB) {
1667                           return DeadBlockSet.count(ChildBB);
1668                         }) &&
1669            "If the child loop header is dead all blocks in the child loop must "
1670            "be dead as well!");
1671     DestroyLoopCB(*ChildL, ChildL->getName());
1672     LI.destroy(ChildL);
1673     return true;
1674   });
1675 
1676   // Remove the loop mappings for the dead blocks and drop all the references
1677   // from these blocks to others to handle cyclic references as we start
1678   // deleting the blocks themselves.
1679   for (auto *BB : DeadBlockSet) {
1680     // Check that the dominator tree has already been updated.
1681     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1682     LI.changeLoopFor(BB, nullptr);
1683     // Drop all uses of the instructions to make sure we won't have dangling
1684     // uses in other blocks.
1685     for (auto &I : *BB)
1686       if (!I.use_empty())
1687         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1688     BB->dropAllReferences();
1689   }
1690 
1691   // Actually delete the blocks now that they've been fully unhooked from the
1692   // IR.
1693   for (auto *BB : DeadBlockSet)
1694     BB->eraseFromParent();
1695 }
1696 
1697 /// Recompute the set of blocks in a loop after unswitching.
1698 ///
1699 /// This walks from the original headers predecessors to rebuild the loop. We
1700 /// take advantage of the fact that new blocks can't have been added, and so we
1701 /// filter by the original loop's blocks. This also handles potentially
1702 /// unreachable code that we don't want to explore but might be found examining
1703 /// the predecessors of the header.
1704 ///
1705 /// If the original loop is no longer a loop, this will return an empty set. If
1706 /// it remains a loop, all the blocks within it will be added to the set
1707 /// (including those blocks in inner loops).
1708 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1709                                                                  LoopInfo &LI) {
1710   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1711 
1712   auto *PH = L.getLoopPreheader();
1713   auto *Header = L.getHeader();
1714 
1715   // A worklist to use while walking backwards from the header.
1716   SmallVector<BasicBlock *, 16> Worklist;
1717 
1718   // First walk the predecessors of the header to find the backedges. This will
1719   // form the basis of our walk.
1720   for (auto *Pred : predecessors(Header)) {
1721     // Skip the preheader.
1722     if (Pred == PH)
1723       continue;
1724 
1725     // Because the loop was in simplified form, the only non-loop predecessor
1726     // is the preheader.
1727     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1728                                "than the preheader that is not part of the "
1729                                "loop!");
1730 
1731     // Insert this block into the loop set and on the first visit and, if it
1732     // isn't the header we're currently walking, put it into the worklist to
1733     // recurse through.
1734     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1735       Worklist.push_back(Pred);
1736   }
1737 
1738   // If no backedges were found, we're done.
1739   if (LoopBlockSet.empty())
1740     return LoopBlockSet;
1741 
1742   // We found backedges, recurse through them to identify the loop blocks.
1743   while (!Worklist.empty()) {
1744     BasicBlock *BB = Worklist.pop_back_val();
1745     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1746 
1747     // No need to walk past the header.
1748     if (BB == Header)
1749       continue;
1750 
1751     // Because we know the inner loop structure remains valid we can use the
1752     // loop structure to jump immediately across the entire nested loop.
1753     // Further, because it is in loop simplified form, we can directly jump
1754     // to its preheader afterward.
1755     if (Loop *InnerL = LI.getLoopFor(BB))
1756       if (InnerL != &L) {
1757         assert(L.contains(InnerL) &&
1758                "Should not reach a loop *outside* this loop!");
1759         // The preheader is the only possible predecessor of the loop so
1760         // insert it into the set and check whether it was already handled.
1761         auto *InnerPH = InnerL->getLoopPreheader();
1762         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1763                                       "but not contain the inner loop "
1764                                       "preheader!");
1765         if (!LoopBlockSet.insert(InnerPH).second)
1766           // The only way to reach the preheader is through the loop body
1767           // itself so if it has been visited the loop is already handled.
1768           continue;
1769 
1770         // Insert all of the blocks (other than those already present) into
1771         // the loop set. We expect at least the block that led us to find the
1772         // inner loop to be in the block set, but we may also have other loop
1773         // blocks if they were already enqueued as predecessors of some other
1774         // outer loop block.
1775         for (auto *InnerBB : InnerL->blocks()) {
1776           if (InnerBB == BB) {
1777             assert(LoopBlockSet.count(InnerBB) &&
1778                    "Block should already be in the set!");
1779             continue;
1780           }
1781 
1782           LoopBlockSet.insert(InnerBB);
1783         }
1784 
1785         // Add the preheader to the worklist so we will continue past the
1786         // loop body.
1787         Worklist.push_back(InnerPH);
1788         continue;
1789       }
1790 
1791     // Insert any predecessors that were in the original loop into the new
1792     // set, and if the insert is successful, add them to the worklist.
1793     for (auto *Pred : predecessors(BB))
1794       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1795         Worklist.push_back(Pred);
1796   }
1797 
1798   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1799 
1800   // We've found all the blocks participating in the loop, return our completed
1801   // set.
1802   return LoopBlockSet;
1803 }
1804 
1805 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1806 ///
1807 /// The removal may have removed some child loops entirely but cannot have
1808 /// disturbed any remaining child loops. However, they may need to be hoisted
1809 /// to the parent loop (or to be top-level loops). The original loop may be
1810 /// completely removed.
1811 ///
1812 /// The sibling loops resulting from this update are returned. If the original
1813 /// loop remains a valid loop, it will be the first entry in this list with all
1814 /// of the newly sibling loops following it.
1815 ///
1816 /// Returns true if the loop remains a loop after unswitching, and false if it
1817 /// is no longer a loop after unswitching (and should not continue to be
1818 /// referenced).
1819 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1820                                      LoopInfo &LI,
1821                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1822   auto *PH = L.getLoopPreheader();
1823 
1824   // Compute the actual parent loop from the exit blocks. Because we may have
1825   // pruned some exits the loop may be different from the original parent.
1826   Loop *ParentL = nullptr;
1827   SmallVector<Loop *, 4> ExitLoops;
1828   SmallVector<BasicBlock *, 4> ExitsInLoops;
1829   ExitsInLoops.reserve(ExitBlocks.size());
1830   for (auto *ExitBB : ExitBlocks)
1831     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1832       ExitLoops.push_back(ExitL);
1833       ExitsInLoops.push_back(ExitBB);
1834       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1835         ParentL = ExitL;
1836     }
1837 
1838   // Recompute the blocks participating in this loop. This may be empty if it
1839   // is no longer a loop.
1840   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1841 
1842   // If we still have a loop, we need to re-set the loop's parent as the exit
1843   // block set changing may have moved it within the loop nest. Note that this
1844   // can only happen when this loop has a parent as it can only hoist the loop
1845   // *up* the nest.
1846   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1847     // Remove this loop's (original) blocks from all of the intervening loops.
1848     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1849          IL = IL->getParentLoop()) {
1850       IL->getBlocksSet().erase(PH);
1851       for (auto *BB : L.blocks())
1852         IL->getBlocksSet().erase(BB);
1853       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1854         return BB == PH || L.contains(BB);
1855       });
1856     }
1857 
1858     LI.changeLoopFor(PH, ParentL);
1859     L.getParentLoop()->removeChildLoop(&L);
1860     if (ParentL)
1861       ParentL->addChildLoop(&L);
1862     else
1863       LI.addTopLevelLoop(&L);
1864   }
1865 
1866   // Now we update all the blocks which are no longer within the loop.
1867   auto &Blocks = L.getBlocksVector();
1868   auto BlocksSplitI =
1869       LoopBlockSet.empty()
1870           ? Blocks.begin()
1871           : std::stable_partition(
1872                 Blocks.begin(), Blocks.end(),
1873                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1874 
1875   // Before we erase the list of unlooped blocks, build a set of them.
1876   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1877   if (LoopBlockSet.empty())
1878     UnloopedBlocks.insert(PH);
1879 
1880   // Now erase these blocks from the loop.
1881   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1882     L.getBlocksSet().erase(BB);
1883   Blocks.erase(BlocksSplitI, Blocks.end());
1884 
1885   // Sort the exits in ascending loop depth, we'll work backwards across these
1886   // to process them inside out.
1887   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1888     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1889   });
1890 
1891   // We'll build up a set for each exit loop.
1892   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1893   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1894 
1895   auto RemoveUnloopedBlocksFromLoop =
1896       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1897         for (auto *BB : UnloopedBlocks)
1898           L.getBlocksSet().erase(BB);
1899         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1900           return UnloopedBlocks.count(BB);
1901         });
1902       };
1903 
1904   SmallVector<BasicBlock *, 16> Worklist;
1905   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1906     assert(Worklist.empty() && "Didn't clear worklist!");
1907     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1908 
1909     // Grab the next exit block, in decreasing loop depth order.
1910     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1911     Loop &ExitL = *LI.getLoopFor(ExitBB);
1912     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1913 
1914     // Erase all of the unlooped blocks from the loops between the previous
1915     // exit loop and this exit loop. This works because the ExitInLoops list is
1916     // sorted in increasing order of loop depth and thus we visit loops in
1917     // decreasing order of loop depth.
1918     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1919       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1920 
1921     // Walk the CFG back until we hit the cloned PH adding everything reachable
1922     // and in the unlooped set to this exit block's loop.
1923     Worklist.push_back(ExitBB);
1924     do {
1925       BasicBlock *BB = Worklist.pop_back_val();
1926       // We can stop recursing at the cloned preheader (if we get there).
1927       if (BB == PH)
1928         continue;
1929 
1930       for (BasicBlock *PredBB : predecessors(BB)) {
1931         // If this pred has already been moved to our set or is part of some
1932         // (inner) loop, no update needed.
1933         if (!UnloopedBlocks.erase(PredBB)) {
1934           assert((NewExitLoopBlocks.count(PredBB) ||
1935                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1936                  "Predecessor not in a nested loop (or already visited)!");
1937           continue;
1938         }
1939 
1940         // We just insert into the loop set here. We'll add these blocks to the
1941         // exit loop after we build up the set in a deterministic order rather
1942         // than the predecessor-influenced visit order.
1943         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1944         (void)Inserted;
1945         assert(Inserted && "Should only visit an unlooped block once!");
1946 
1947         // And recurse through to its predecessors.
1948         Worklist.push_back(PredBB);
1949       }
1950     } while (!Worklist.empty());
1951 
1952     // If blocks in this exit loop were directly part of the original loop (as
1953     // opposed to a child loop) update the map to point to this exit loop. This
1954     // just updates a map and so the fact that the order is unstable is fine.
1955     for (auto *BB : NewExitLoopBlocks)
1956       if (Loop *BBL = LI.getLoopFor(BB))
1957         if (BBL == &L || !L.contains(BBL))
1958           LI.changeLoopFor(BB, &ExitL);
1959 
1960     // We will remove the remaining unlooped blocks from this loop in the next
1961     // iteration or below.
1962     NewExitLoopBlocks.clear();
1963   }
1964 
1965   // Any remaining unlooped blocks are no longer part of any loop unless they
1966   // are part of some child loop.
1967   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1968     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1969   for (auto *BB : UnloopedBlocks)
1970     if (Loop *BBL = LI.getLoopFor(BB))
1971       if (BBL == &L || !L.contains(BBL))
1972         LI.changeLoopFor(BB, nullptr);
1973 
1974   // Sink all the child loops whose headers are no longer in the loop set to
1975   // the parent (or to be top level loops). We reach into the loop and directly
1976   // update its subloop vector to make this batch update efficient.
1977   auto &SubLoops = L.getSubLoopsVector();
1978   auto SubLoopsSplitI =
1979       LoopBlockSet.empty()
1980           ? SubLoops.begin()
1981           : std::stable_partition(
1982                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1983                   return LoopBlockSet.count(SubL->getHeader());
1984                 });
1985   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1986     HoistedLoops.push_back(HoistedL);
1987     HoistedL->setParentLoop(nullptr);
1988 
1989     // To compute the new parent of this hoisted loop we look at where we
1990     // placed the preheader above. We can't lookup the header itself because we
1991     // retained the mapping from the header to the hoisted loop. But the
1992     // preheader and header should have the exact same new parent computed
1993     // based on the set of exit blocks from the original loop as the preheader
1994     // is a predecessor of the header and so reached in the reverse walk. And
1995     // because the loops were all in simplified form the preheader of the
1996     // hoisted loop can't be part of some *other* loop.
1997     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1998       NewParentL->addChildLoop(HoistedL);
1999     else
2000       LI.addTopLevelLoop(HoistedL);
2001   }
2002   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2003 
2004   // Actually delete the loop if nothing remained within it.
2005   if (Blocks.empty()) {
2006     assert(SubLoops.empty() &&
2007            "Failed to remove all subloops from the original loop!");
2008     if (Loop *ParentL = L.getParentLoop())
2009       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2010     else
2011       LI.removeLoop(llvm::find(LI, &L));
2012     // markLoopAsDeleted for L should be triggered by the caller (it is typically
2013     // done by using the UnswitchCB callback).
2014     LI.destroy(&L);
2015     return false;
2016   }
2017 
2018   return true;
2019 }
2020 
2021 /// Helper to visit a dominator subtree, invoking a callable on each node.
2022 ///
2023 /// Returning false at any point will stop walking past that node of the tree.
2024 template <typename CallableT>
2025 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2026   SmallVector<DomTreeNode *, 4> DomWorklist;
2027   DomWorklist.push_back(DT[BB]);
2028 #ifndef NDEBUG
2029   SmallPtrSet<DomTreeNode *, 4> Visited;
2030   Visited.insert(DT[BB]);
2031 #endif
2032   do {
2033     DomTreeNode *N = DomWorklist.pop_back_val();
2034 
2035     // Visit this node.
2036     if (!Callable(N->getBlock()))
2037       continue;
2038 
2039     // Accumulate the child nodes.
2040     for (DomTreeNode *ChildN : *N) {
2041       assert(Visited.insert(ChildN).second &&
2042              "Cannot visit a node twice when walking a tree!");
2043       DomWorklist.push_back(ChildN);
2044     }
2045   } while (!DomWorklist.empty());
2046 }
2047 
2048 static void unswitchNontrivialInvariants(
2049     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2050     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2051     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2052     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2053     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2054     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2055   auto *ParentBB = TI.getParent();
2056   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2057   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2058 
2059   // We can only unswitch switches, conditional branches with an invariant
2060   // condition, or combining invariant conditions with an instruction or
2061   // partially invariant instructions.
2062   assert((SI || (BI && BI->isConditional())) &&
2063          "Can only unswitch switches and conditional branch!");
2064   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2065   bool FullUnswitch =
2066       SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2067   if (FullUnswitch)
2068     assert(Invariants.size() == 1 &&
2069            "Cannot have other invariants with full unswitching!");
2070   else
2071     assert(isa<Instruction>(BI->getCondition()) &&
2072            "Partial unswitching requires an instruction as the condition!");
2073 
2074   if (MSSAU && VerifyMemorySSA)
2075     MSSAU->getMemorySSA()->verifyMemorySSA();
2076 
2077   // Constant and BBs tracking the cloned and continuing successor. When we are
2078   // unswitching the entire condition, this can just be trivially chosen to
2079   // unswitch towards `true`. However, when we are unswitching a set of
2080   // invariants combined with `and` or `or` or partially invariant instructions,
2081   // the combining operation determines the best direction to unswitch: we want
2082   // to unswitch the direction that will collapse the branch.
2083   bool Direction = true;
2084   int ClonedSucc = 0;
2085   if (!FullUnswitch) {
2086     Value *Cond = skipTrivialSelect(BI->getCondition());
2087     (void)Cond;
2088     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2089             PartiallyInvariant) &&
2090            "Only `or`, `and`, an `select`, partially invariant instructions "
2091            "can combine invariants being unswitched.");
2092     if (!match(Cond, m_LogicalOr())) {
2093       if (match(Cond, m_LogicalAnd()) ||
2094           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2095         Direction = false;
2096         ClonedSucc = 1;
2097       }
2098     }
2099   }
2100 
2101   BasicBlock *RetainedSuccBB =
2102       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2103   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2104   if (BI)
2105     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2106   else
2107     for (auto Case : SI->cases())
2108       if (Case.getCaseSuccessor() != RetainedSuccBB)
2109         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2110 
2111   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2112          "Should not unswitch the same successor we are retaining!");
2113 
2114   // The branch should be in this exact loop. Any inner loop's invariant branch
2115   // should be handled by unswitching that inner loop. The caller of this
2116   // routine should filter out any candidates that remain (but were skipped for
2117   // whatever reason).
2118   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2119 
2120   // Compute the parent loop now before we start hacking on things.
2121   Loop *ParentL = L.getParentLoop();
2122   // Get blocks in RPO order for MSSA update, before changing the CFG.
2123   LoopBlocksRPO LBRPO(&L);
2124   if (MSSAU)
2125     LBRPO.perform(&LI);
2126 
2127   // Compute the outer-most loop containing one of our exit blocks. This is the
2128   // furthest up our loopnest which can be mutated, which we will use below to
2129   // update things.
2130   Loop *OuterExitL = &L;
2131   for (auto *ExitBB : ExitBlocks) {
2132     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2133     if (!NewOuterExitL) {
2134       // We exited the entire nest with this block, so we're done.
2135       OuterExitL = nullptr;
2136       break;
2137     }
2138     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2139       OuterExitL = NewOuterExitL;
2140   }
2141 
2142   // At this point, we're definitely going to unswitch something so invalidate
2143   // any cached information in ScalarEvolution for the outer most loop
2144   // containing an exit block and all nested loops.
2145   if (SE) {
2146     if (OuterExitL)
2147       SE->forgetLoop(OuterExitL);
2148     else
2149       SE->forgetTopmostLoop(&L);
2150   }
2151 
2152   bool InsertFreeze = false;
2153   if (FreezeLoopUnswitchCond) {
2154     ICFLoopSafetyInfo SafetyInfo;
2155     SafetyInfo.computeLoopSafetyInfo(&L);
2156     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2157   }
2158 
2159   // If the edge from this terminator to a successor dominates that successor,
2160   // store a map from each block in its dominator subtree to it. This lets us
2161   // tell when cloning for a particular successor if a block is dominated by
2162   // some *other* successor with a single data structure. We use this to
2163   // significantly reduce cloning.
2164   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2165   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2166            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2167     if (SuccBB->getUniquePredecessor() ||
2168         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2169           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2170         }))
2171       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2172         DominatingSucc[BB] = SuccBB;
2173         return true;
2174       });
2175 
2176   // Split the preheader, so that we know that there is a safe place to insert
2177   // the conditional branch. We will change the preheader to have a conditional
2178   // branch on LoopCond. The original preheader will become the split point
2179   // between the unswitched versions, and we will have a new preheader for the
2180   // original loop.
2181   BasicBlock *SplitBB = L.getLoopPreheader();
2182   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2183 
2184   // Keep track of the dominator tree updates needed.
2185   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2186 
2187   // Clone the loop for each unswitched successor.
2188   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2189   VMaps.reserve(UnswitchedSuccBBs.size());
2190   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2191   for (auto *SuccBB : UnswitchedSuccBBs) {
2192     VMaps.emplace_back(new ValueToValueMapTy());
2193     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2194         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2195         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2196   }
2197 
2198   // Drop metadata if we may break its semantics by moving this instr into the
2199   // split block.
2200   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2201     if (DropNonTrivialImplicitNullChecks)
2202       // Do not spend time trying to understand if we can keep it, just drop it
2203       // to save compile time.
2204       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2205     else {
2206       // It is only legal to preserve make.implicit metadata if we are
2207       // guaranteed no reach implicit null check after following this branch.
2208       ICFLoopSafetyInfo SafetyInfo;
2209       SafetyInfo.computeLoopSafetyInfo(&L);
2210       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2211         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2212     }
2213   }
2214 
2215   // The stitching of the branched code back together depends on whether we're
2216   // doing full unswitching or not with the exception that we always want to
2217   // nuke the initial terminator placed in the split block.
2218   SplitBB->getTerminator()->eraseFromParent();
2219   if (FullUnswitch) {
2220     // Splice the terminator from the original loop and rewrite its
2221     // successors.
2222     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2223 
2224     // Keep a clone of the terminator for MSSA updates.
2225     Instruction *NewTI = TI.clone();
2226     ParentBB->getInstList().push_back(NewTI);
2227 
2228     // First wire up the moved terminator to the preheaders.
2229     if (BI) {
2230       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2231       BI->setSuccessor(ClonedSucc, ClonedPH);
2232       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2233       if (InsertFreeze) {
2234         auto Cond = BI->getCondition();
2235         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2236           BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI));
2237       }
2238       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2239     } else {
2240       assert(SI && "Must either be a branch or switch!");
2241 
2242       // Walk the cases and directly update their successors.
2243       assert(SI->getDefaultDest() == RetainedSuccBB &&
2244              "Not retaining default successor!");
2245       SI->setDefaultDest(LoopPH);
2246       for (auto &Case : SI->cases())
2247         if (Case.getCaseSuccessor() == RetainedSuccBB)
2248           Case.setSuccessor(LoopPH);
2249         else
2250           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2251 
2252       if (InsertFreeze) {
2253         auto Cond = SI->getCondition();
2254         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2255           SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2256       }
2257       // We need to use the set to populate domtree updates as even when there
2258       // are multiple cases pointing at the same successor we only want to
2259       // remove and insert one edge in the domtree.
2260       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2261         DTUpdates.push_back(
2262             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2263     }
2264 
2265     if (MSSAU) {
2266       DT.applyUpdates(DTUpdates);
2267       DTUpdates.clear();
2268 
2269       // Remove all but one edge to the retained block and all unswitched
2270       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2271       // when we know we only keep a single edge for each case.
2272       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2273       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2274         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2275 
2276       for (auto &VMap : VMaps)
2277         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2278                                    /*IgnoreIncomingWithNoClones=*/true);
2279       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2280 
2281       // Remove all edges to unswitched blocks.
2282       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2283         MSSAU->removeEdge(ParentBB, SuccBB);
2284     }
2285 
2286     // Now unhook the successor relationship as we'll be replacing
2287     // the terminator with a direct branch. This is much simpler for branches
2288     // than switches so we handle those first.
2289     if (BI) {
2290       // Remove the parent as a predecessor of the unswitched successor.
2291       assert(UnswitchedSuccBBs.size() == 1 &&
2292              "Only one possible unswitched block for a branch!");
2293       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2294       UnswitchedSuccBB->removePredecessor(ParentBB,
2295                                           /*KeepOneInputPHIs*/ true);
2296       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2297     } else {
2298       // Note that we actually want to remove the parent block as a predecessor
2299       // of *every* case successor. The case successor is either unswitched,
2300       // completely eliminating an edge from the parent to that successor, or it
2301       // is a duplicate edge to the retained successor as the retained successor
2302       // is always the default successor and as we'll replace this with a direct
2303       // branch we no longer need the duplicate entries in the PHI nodes.
2304       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2305       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2306              "Not retaining default successor!");
2307       for (auto &Case : NewSI->cases())
2308         Case.getCaseSuccessor()->removePredecessor(
2309             ParentBB,
2310             /*KeepOneInputPHIs*/ true);
2311 
2312       // We need to use the set to populate domtree updates as even when there
2313       // are multiple cases pointing at the same successor we only want to
2314       // remove and insert one edge in the domtree.
2315       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2316         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2317     }
2318 
2319     // After MSSAU update, remove the cloned terminator instruction NewTI.
2320     ParentBB->getTerminator()->eraseFromParent();
2321 
2322     // Create a new unconditional branch to the continuing block (as opposed to
2323     // the one cloned).
2324     BranchInst::Create(RetainedSuccBB, ParentBB);
2325   } else {
2326     assert(BI && "Only branches have partial unswitching.");
2327     assert(UnswitchedSuccBBs.size() == 1 &&
2328            "Only one possible unswitched block for a branch!");
2329     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2330     // When doing a partial unswitch, we have to do a bit more work to build up
2331     // the branch in the split block.
2332     if (PartiallyInvariant)
2333       buildPartialInvariantUnswitchConditionalBranch(
2334           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2335     else {
2336       buildPartialUnswitchConditionalBranch(
2337           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2338           FreezeLoopUnswitchCond, BI, &AC, DT);
2339     }
2340     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2341 
2342     if (MSSAU) {
2343       DT.applyUpdates(DTUpdates);
2344       DTUpdates.clear();
2345 
2346       // Perform MSSA cloning updates.
2347       for (auto &VMap : VMaps)
2348         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2349                                    /*IgnoreIncomingWithNoClones=*/true);
2350       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2351     }
2352   }
2353 
2354   // Apply the updates accumulated above to get an up-to-date dominator tree.
2355   DT.applyUpdates(DTUpdates);
2356 
2357   // Now that we have an accurate dominator tree, first delete the dead cloned
2358   // blocks so that we can accurately build any cloned loops. It is important to
2359   // not delete the blocks from the original loop yet because we still want to
2360   // reference the original loop to understand the cloned loop's structure.
2361   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2362 
2363   // Build the cloned loop structure itself. This may be substantially
2364   // different from the original structure due to the simplified CFG. This also
2365   // handles inserting all the cloned blocks into the correct loops.
2366   SmallVector<Loop *, 4> NonChildClonedLoops;
2367   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2368     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2369 
2370   // Now that our cloned loops have been built, we can update the original loop.
2371   // First we delete the dead blocks from it and then we rebuild the loop
2372   // structure taking these deletions into account.
2373   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2374 
2375   if (MSSAU && VerifyMemorySSA)
2376     MSSAU->getMemorySSA()->verifyMemorySSA();
2377 
2378   SmallVector<Loop *, 4> HoistedLoops;
2379   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2380 
2381   if (MSSAU && VerifyMemorySSA)
2382     MSSAU->getMemorySSA()->verifyMemorySSA();
2383 
2384   // This transformation has a high risk of corrupting the dominator tree, and
2385   // the below steps to rebuild loop structures will result in hard to debug
2386   // errors in that case so verify that the dominator tree is sane first.
2387   // FIXME: Remove this when the bugs stop showing up and rely on existing
2388   // verification steps.
2389   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2390 
2391   if (BI && !PartiallyInvariant) {
2392     // If we unswitched a branch which collapses the condition to a known
2393     // constant we want to replace all the uses of the invariants within both
2394     // the original and cloned blocks. We do this here so that we can use the
2395     // now updated dominator tree to identify which side the users are on.
2396     assert(UnswitchedSuccBBs.size() == 1 &&
2397            "Only one possible unswitched block for a branch!");
2398     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2399 
2400     // When considering multiple partially-unswitched invariants
2401     // we cant just go replace them with constants in both branches.
2402     //
2403     // For 'AND' we infer that true branch ("continue") means true
2404     // for each invariant operand.
2405     // For 'OR' we can infer that false branch ("continue") means false
2406     // for each invariant operand.
2407     // So it happens that for multiple-partial case we dont replace
2408     // in the unswitched branch.
2409     bool ReplaceUnswitched =
2410         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2411 
2412     ConstantInt *UnswitchedReplacement =
2413         Direction ? ConstantInt::getTrue(BI->getContext())
2414                   : ConstantInt::getFalse(BI->getContext());
2415     ConstantInt *ContinueReplacement =
2416         Direction ? ConstantInt::getFalse(BI->getContext())
2417                   : ConstantInt::getTrue(BI->getContext());
2418     for (Value *Invariant : Invariants) {
2419       assert(!isa<Constant>(Invariant) &&
2420              "Should not be replacing constant values!");
2421       // Use make_early_inc_range here as set invalidates the iterator.
2422       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2423         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2424         if (!UserI)
2425           continue;
2426 
2427         // Replace it with the 'continue' side if in the main loop body, and the
2428         // unswitched if in the cloned blocks.
2429         if (DT.dominates(LoopPH, UserI->getParent()))
2430           U.set(ContinueReplacement);
2431         else if (ReplaceUnswitched &&
2432                  DT.dominates(ClonedPH, UserI->getParent()))
2433           U.set(UnswitchedReplacement);
2434       }
2435     }
2436   }
2437 
2438   // We can change which blocks are exit blocks of all the cloned sibling
2439   // loops, the current loop, and any parent loops which shared exit blocks
2440   // with the current loop. As a consequence, we need to re-form LCSSA for
2441   // them. But we shouldn't need to re-form LCSSA for any child loops.
2442   // FIXME: This could be made more efficient by tracking which exit blocks are
2443   // new, and focusing on them, but that isn't likely to be necessary.
2444   //
2445   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2446   // loop nest and update every loop that could have had its exits changed. We
2447   // also need to cover any intervening loops. We add all of these loops to
2448   // a list and sort them by loop depth to achieve this without updating
2449   // unnecessary loops.
2450   auto UpdateLoop = [&](Loop &UpdateL) {
2451 #ifndef NDEBUG
2452     UpdateL.verifyLoop();
2453     for (Loop *ChildL : UpdateL) {
2454       ChildL->verifyLoop();
2455       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2456              "Perturbed a child loop's LCSSA form!");
2457     }
2458 #endif
2459     // First build LCSSA for this loop so that we can preserve it when
2460     // forming dedicated exits. We don't want to perturb some other loop's
2461     // LCSSA while doing that CFG edit.
2462     formLCSSA(UpdateL, DT, &LI, SE);
2463 
2464     // For loops reached by this loop's original exit blocks we may
2465     // introduced new, non-dedicated exits. At least try to re-form dedicated
2466     // exits for these loops. This may fail if they couldn't have dedicated
2467     // exits to start with.
2468     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2469   };
2470 
2471   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2472   // and we can do it in any order as they don't nest relative to each other.
2473   //
2474   // Also check if any of the loops we have updated have become top-level loops
2475   // as that will necessitate widening the outer loop scope.
2476   for (Loop *UpdatedL :
2477        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2478     UpdateLoop(*UpdatedL);
2479     if (UpdatedL->isOutermost())
2480       OuterExitL = nullptr;
2481   }
2482   if (IsStillLoop) {
2483     UpdateLoop(L);
2484     if (L.isOutermost())
2485       OuterExitL = nullptr;
2486   }
2487 
2488   // If the original loop had exit blocks, walk up through the outer most loop
2489   // of those exit blocks to update LCSSA and form updated dedicated exits.
2490   if (OuterExitL != &L)
2491     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2492          OuterL = OuterL->getParentLoop())
2493       UpdateLoop(*OuterL);
2494 
2495 #ifndef NDEBUG
2496   // Verify the entire loop structure to catch any incorrect updates before we
2497   // progress in the pass pipeline.
2498   LI.verify(DT);
2499 #endif
2500 
2501   // Now that we've unswitched something, make callbacks to report the changes.
2502   // For that we need to merge together the updated loops and the cloned loops
2503   // and check whether the original loop survived.
2504   SmallVector<Loop *, 4> SibLoops;
2505   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2506     if (UpdatedL->getParentLoop() == ParentL)
2507       SibLoops.push_back(UpdatedL);
2508   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2509 
2510   if (MSSAU && VerifyMemorySSA)
2511     MSSAU->getMemorySSA()->verifyMemorySSA();
2512 
2513   if (BI)
2514     ++NumBranches;
2515   else
2516     ++NumSwitches;
2517 }
2518 
2519 /// Recursively compute the cost of a dominator subtree based on the per-block
2520 /// cost map provided.
2521 ///
2522 /// The recursive computation is memozied into the provided DT-indexed cost map
2523 /// to allow querying it for most nodes in the domtree without it becoming
2524 /// quadratic.
2525 static InstructionCost computeDomSubtreeCost(
2526     DomTreeNode &N,
2527     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2528     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2529   // Don't accumulate cost (or recurse through) blocks not in our block cost
2530   // map and thus not part of the duplication cost being considered.
2531   auto BBCostIt = BBCostMap.find(N.getBlock());
2532   if (BBCostIt == BBCostMap.end())
2533     return 0;
2534 
2535   // Lookup this node to see if we already computed its cost.
2536   auto DTCostIt = DTCostMap.find(&N);
2537   if (DTCostIt != DTCostMap.end())
2538     return DTCostIt->second;
2539 
2540   // If not, we have to compute it. We can't use insert above and update
2541   // because computing the cost may insert more things into the map.
2542   InstructionCost Cost = std::accumulate(
2543       N.begin(), N.end(), BBCostIt->second,
2544       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2545         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2546       });
2547   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2548   (void)Inserted;
2549   assert(Inserted && "Should not insert a node while visiting children!");
2550   return Cost;
2551 }
2552 
2553 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2554 /// making the following replacement:
2555 ///
2556 ///   --code before guard--
2557 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2558 ///   --code after guard--
2559 ///
2560 /// into
2561 ///
2562 ///   --code before guard--
2563 ///   br i1 %cond, label %guarded, label %deopt
2564 ///
2565 /// guarded:
2566 ///   --code after guard--
2567 ///
2568 /// deopt:
2569 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2570 ///   unreachable
2571 ///
2572 /// It also makes all relevant DT and LI updates, so that all structures are in
2573 /// valid state after this transform.
2574 static BranchInst *
2575 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2576                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2577                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2578   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2579   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2580   BasicBlock *CheckBB = GI->getParent();
2581 
2582   if (MSSAU && VerifyMemorySSA)
2583      MSSAU->getMemorySSA()->verifyMemorySSA();
2584 
2585   // Remove all CheckBB's successors from DomTree. A block can be seen among
2586   // successors more than once, but for DomTree it should be added only once.
2587   SmallPtrSet<BasicBlock *, 4> Successors;
2588   for (auto *Succ : successors(CheckBB))
2589     if (Successors.insert(Succ).second)
2590       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2591 
2592   Instruction *DeoptBlockTerm =
2593       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2594   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2595   // SplitBlockAndInsertIfThen inserts control flow that branches to
2596   // DeoptBlockTerm if the condition is true.  We want the opposite.
2597   CheckBI->swapSuccessors();
2598 
2599   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2600   GuardedBlock->setName("guarded");
2601   CheckBI->getSuccessor(1)->setName("deopt");
2602   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2603 
2604   // We now have a new exit block.
2605   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2606 
2607   if (MSSAU)
2608     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2609 
2610   GI->moveBefore(DeoptBlockTerm);
2611   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2612 
2613   // Add new successors of CheckBB into DomTree.
2614   for (auto *Succ : successors(CheckBB))
2615     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2616 
2617   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2618   // successors.
2619   for (auto *Succ : Successors)
2620     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2621 
2622   // Make proper changes to DT.
2623   DT.applyUpdates(DTUpdates);
2624   // Inform LI of a new loop block.
2625   L.addBasicBlockToLoop(GuardedBlock, LI);
2626 
2627   if (MSSAU) {
2628     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2629     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2630     if (VerifyMemorySSA)
2631       MSSAU->getMemorySSA()->verifyMemorySSA();
2632   }
2633 
2634   ++NumGuards;
2635   return CheckBI;
2636 }
2637 
2638 /// Cost multiplier is a way to limit potentially exponential behavior
2639 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2640 /// candidates available. Also accounting for the number of "sibling" loops with
2641 /// the idea to account for previous unswitches that already happened on this
2642 /// cluster of loops. There was an attempt to keep this formula simple,
2643 /// just enough to limit the worst case behavior. Even if it is not that simple
2644 /// now it is still not an attempt to provide a detailed heuristic size
2645 /// prediction.
2646 ///
2647 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2648 /// unswitch candidates, making adequate predictions instead of wild guesses.
2649 /// That requires knowing not just the number of "remaining" candidates but
2650 /// also costs of unswitching for each of these candidates.
2651 static int CalculateUnswitchCostMultiplier(
2652     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2653     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2654         UnswitchCandidates) {
2655 
2656   // Guards and other exiting conditions do not contribute to exponential
2657   // explosion as soon as they dominate the latch (otherwise there might be
2658   // another path to the latch remaining that does not allow to eliminate the
2659   // loop copy on unswitch).
2660   BasicBlock *Latch = L.getLoopLatch();
2661   BasicBlock *CondBlock = TI.getParent();
2662   if (DT.dominates(CondBlock, Latch) &&
2663       (isGuard(&TI) ||
2664        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2665          return L.contains(SuccBB);
2666        }) <= 1)) {
2667     NumCostMultiplierSkipped++;
2668     return 1;
2669   }
2670 
2671   auto *ParentL = L.getParentLoop();
2672   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2673                                : std::distance(LI.begin(), LI.end()));
2674   // Count amount of clones that all the candidates might cause during
2675   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2676   int UnswitchedClones = 0;
2677   for (auto Candidate : UnswitchCandidates) {
2678     Instruction *CI = Candidate.first;
2679     BasicBlock *CondBlock = CI->getParent();
2680     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2681     if (isGuard(CI)) {
2682       if (!SkipExitingSuccessors)
2683         UnswitchedClones++;
2684       continue;
2685     }
2686     int NonExitingSuccessors = llvm::count_if(
2687         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2688           return !SkipExitingSuccessors || L.contains(SuccBB);
2689         });
2690     UnswitchedClones += Log2_32(NonExitingSuccessors);
2691   }
2692 
2693   // Ignore up to the "unscaled candidates" number of unswitch candidates
2694   // when calculating the power-of-two scaling of the cost. The main idea
2695   // with this control is to allow a small number of unswitches to happen
2696   // and rely more on siblings multiplier (see below) when the number
2697   // of candidates is small.
2698   unsigned ClonesPower =
2699       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2700 
2701   // Allowing top-level loops to spread a bit more than nested ones.
2702   int SiblingsMultiplier =
2703       std::max((ParentL ? SiblingsCount
2704                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2705                1);
2706   // Compute the cost multiplier in a way that won't overflow by saturating
2707   // at an upper bound.
2708   int CostMultiplier;
2709   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2710       SiblingsMultiplier > UnswitchThreshold)
2711     CostMultiplier = UnswitchThreshold;
2712   else
2713     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2714                               (int)UnswitchThreshold);
2715 
2716   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2717                     << " (siblings " << SiblingsMultiplier << " * clones "
2718                     << (1 << ClonesPower) << ")"
2719                     << " for unswitch candidate: " << TI << "\n");
2720   return CostMultiplier;
2721 }
2722 
2723 static bool unswitchBestCondition(
2724     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2725     AAResults &AA, TargetTransformInfo &TTI,
2726     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2727     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2728     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2729   // Collect all invariant conditions within this loop (as opposed to an inner
2730   // loop which would be handled when visiting that inner loop).
2731   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2732       UnswitchCandidates;
2733 
2734   // Whether or not we should also collect guards in the loop.
2735   bool CollectGuards = false;
2736   if (UnswitchGuards) {
2737     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2738         Intrinsic::getName(Intrinsic::experimental_guard));
2739     if (GuardDecl && !GuardDecl->use_empty())
2740       CollectGuards = true;
2741   }
2742 
2743   IVConditionInfo PartialIVInfo;
2744   for (auto *BB : L.blocks()) {
2745     if (LI.getLoopFor(BB) != &L)
2746       continue;
2747 
2748     if (CollectGuards)
2749       for (auto &I : *BB)
2750         if (isGuard(&I)) {
2751           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2752           // TODO: Support AND, OR conditions and partial unswitching.
2753           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2754             UnswitchCandidates.push_back({&I, {Cond}});
2755         }
2756 
2757     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2758       // We can only consider fully loop-invariant switch conditions as we need
2759       // to completely eliminate the switch after unswitching.
2760       if (!isa<Constant>(SI->getCondition()) &&
2761           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2762         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2763       continue;
2764     }
2765 
2766     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2767     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2768         BI->getSuccessor(0) == BI->getSuccessor(1))
2769       continue;
2770 
2771     Value *Cond = skipTrivialSelect(BI->getCondition());
2772     if (isa<Constant>(Cond))
2773       continue;
2774 
2775     if (L.isLoopInvariant(Cond)) {
2776       UnswitchCandidates.push_back({BI, {Cond}});
2777       continue;
2778     }
2779 
2780     Instruction &CondI = *cast<Instruction>(Cond);
2781     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2782       TinyPtrVector<Value *> Invariants =
2783           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2784       if (Invariants.empty())
2785         continue;
2786 
2787       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2788       continue;
2789     }
2790   }
2791 
2792   Instruction *PartialIVCondBranch = nullptr;
2793   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2794       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2795         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2796       })) {
2797     MemorySSA *MSSA = MSSAU->getMemorySSA();
2798     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2799       LLVM_DEBUG(
2800           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2801                  << *Info->InstToDuplicate[0] << "\n");
2802       PartialIVInfo = *Info;
2803       PartialIVCondBranch = L.getHeader()->getTerminator();
2804       TinyPtrVector<Value *> ValsToDuplicate;
2805       for (auto *Inst : Info->InstToDuplicate)
2806         ValsToDuplicate.push_back(Inst);
2807       UnswitchCandidates.push_back(
2808           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2809     }
2810   }
2811 
2812   // If we didn't find any candidates, we're done.
2813   if (UnswitchCandidates.empty())
2814     return false;
2815 
2816   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2817   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2818   // irreducible control flow into reducible control flow and introduce new
2819   // loops "out of thin air". If we ever discover important use cases for doing
2820   // this, we can add support to loop unswitch, but it is a lot of complexity
2821   // for what seems little or no real world benefit.
2822   LoopBlocksRPO RPOT(&L);
2823   RPOT.perform(&LI);
2824   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2825     return false;
2826 
2827   SmallVector<BasicBlock *, 4> ExitBlocks;
2828   L.getUniqueExitBlocks(ExitBlocks);
2829 
2830   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2831   // instruction as we don't know how to split those exit blocks.
2832   // FIXME: We should teach SplitBlock to handle this and remove this
2833   // restriction.
2834   for (auto *ExitBB : ExitBlocks) {
2835     auto *I = ExitBB->getFirstNonPHI();
2836     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2837       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2838                            "in exit block\n");
2839       return false;
2840     }
2841   }
2842 
2843   LLVM_DEBUG(
2844       dbgs() << "Considering " << UnswitchCandidates.size()
2845              << " non-trivial loop invariant conditions for unswitching.\n");
2846 
2847   // Given that unswitching these terminators will require duplicating parts of
2848   // the loop, so we need to be able to model that cost. Compute the ephemeral
2849   // values and set up a data structure to hold per-BB costs. We cache each
2850   // block's cost so that we don't recompute this when considering different
2851   // subsets of the loop for duplication during unswitching.
2852   SmallPtrSet<const Value *, 4> EphValues;
2853   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2854   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2855 
2856   // Compute the cost of each block, as well as the total loop cost. Also, bail
2857   // out if we see instructions which are incompatible with loop unswitching
2858   // (convergent, noduplicate, or cross-basic-block tokens).
2859   // FIXME: We might be able to safely handle some of these in non-duplicated
2860   // regions.
2861   TargetTransformInfo::TargetCostKind CostKind =
2862       L.getHeader()->getParent()->hasMinSize()
2863       ? TargetTransformInfo::TCK_CodeSize
2864       : TargetTransformInfo::TCK_SizeAndLatency;
2865   InstructionCost LoopCost = 0;
2866   for (auto *BB : L.blocks()) {
2867     InstructionCost Cost = 0;
2868     for (auto &I : *BB) {
2869       if (EphValues.count(&I))
2870         continue;
2871 
2872       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2873         return false;
2874       if (auto *CB = dyn_cast<CallBase>(&I))
2875         if (CB->isConvergent() || CB->cannotDuplicate())
2876           return false;
2877 
2878       Cost += TTI.getUserCost(&I, CostKind);
2879     }
2880     assert(Cost >= 0 && "Must not have negative costs!");
2881     LoopCost += Cost;
2882     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2883     BBCostMap[BB] = Cost;
2884   }
2885   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2886 
2887   // Now we find the best candidate by searching for the one with the following
2888   // properties in order:
2889   //
2890   // 1) An unswitching cost below the threshold
2891   // 2) The smallest number of duplicated unswitch candidates (to avoid
2892   //    creating redundant subsequent unswitching)
2893   // 3) The smallest cost after unswitching.
2894   //
2895   // We prioritize reducing fanout of unswitch candidates provided the cost
2896   // remains below the threshold because this has a multiplicative effect.
2897   //
2898   // This requires memoizing each dominator subtree to avoid redundant work.
2899   //
2900   // FIXME: Need to actually do the number of candidates part above.
2901   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2902   // Given a terminator which might be unswitched, computes the non-duplicated
2903   // cost for that terminator.
2904   auto ComputeUnswitchedCost = [&](Instruction &TI,
2905                                    bool FullUnswitch) -> InstructionCost {
2906     BasicBlock &BB = *TI.getParent();
2907     SmallPtrSet<BasicBlock *, 4> Visited;
2908 
2909     InstructionCost Cost = 0;
2910     for (BasicBlock *SuccBB : successors(&BB)) {
2911       // Don't count successors more than once.
2912       if (!Visited.insert(SuccBB).second)
2913         continue;
2914 
2915       // If this is a partial unswitch candidate, then it must be a conditional
2916       // branch with a condition of either `or`, `and`, their corresponding
2917       // select forms or partially invariant instructions. In that case, one of
2918       // the successors is necessarily duplicated, so don't even try to remove
2919       // its cost.
2920       if (!FullUnswitch) {
2921         auto &BI = cast<BranchInst>(TI);
2922         Value *Cond = skipTrivialSelect(BI.getCondition());
2923         if (match(Cond, m_LogicalAnd())) {
2924           if (SuccBB == BI.getSuccessor(1))
2925             continue;
2926         } else if (match(Cond, m_LogicalOr())) {
2927           if (SuccBB == BI.getSuccessor(0))
2928             continue;
2929         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2930                     SuccBB == BI.getSuccessor(0)) ||
2931                    (!PartialIVInfo.KnownValue->isOneValue() &&
2932                     SuccBB == BI.getSuccessor(1)))
2933           continue;
2934       }
2935 
2936       // This successor's domtree will not need to be duplicated after
2937       // unswitching if the edge to the successor dominates it (and thus the
2938       // entire tree). This essentially means there is no other path into this
2939       // subtree and so it will end up live in only one clone of the loop.
2940       if (SuccBB->getUniquePredecessor() ||
2941           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2942             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2943           })) {
2944         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2945         assert(Cost <= LoopCost &&
2946                "Non-duplicated cost should never exceed total loop cost!");
2947       }
2948     }
2949 
2950     // Now scale the cost by the number of unique successors minus one. We
2951     // subtract one because there is already at least one copy of the entire
2952     // loop. This is computing the new cost of unswitching a condition.
2953     // Note that guards always have 2 unique successors that are implicit and
2954     // will be materialized if we decide to unswitch it.
2955     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2956     assert(SuccessorsCount > 1 &&
2957            "Cannot unswitch a condition without multiple distinct successors!");
2958     return (LoopCost - Cost) * (SuccessorsCount - 1);
2959   };
2960   Instruction *BestUnswitchTI = nullptr;
2961   InstructionCost BestUnswitchCost = 0;
2962   ArrayRef<Value *> BestUnswitchInvariants;
2963   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2964     Instruction &TI = *TerminatorAndInvariants.first;
2965     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2966     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2967     InstructionCost CandidateCost = ComputeUnswitchedCost(
2968         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2969                                      Invariants[0] == BI->getCondition()));
2970     // Calculate cost multiplier which is a tool to limit potentially
2971     // exponential behavior of loop-unswitch.
2972     if (EnableUnswitchCostMultiplier) {
2973       int CostMultiplier =
2974           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2975       assert(
2976           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2977           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2978       CandidateCost *= CostMultiplier;
2979       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2980                         << " (multiplier: " << CostMultiplier << ")"
2981                         << " for unswitch candidate: " << TI << "\n");
2982     } else {
2983       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2984                         << " for unswitch candidate: " << TI << "\n");
2985     }
2986 
2987     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2988       BestUnswitchTI = &TI;
2989       BestUnswitchCost = CandidateCost;
2990       BestUnswitchInvariants = Invariants;
2991     }
2992   }
2993   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2994 
2995   if (BestUnswitchCost >= UnswitchThreshold) {
2996     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2997                       << BestUnswitchCost << "\n");
2998     return false;
2999   }
3000 
3001   if (BestUnswitchTI != PartialIVCondBranch)
3002     PartialIVInfo.InstToDuplicate.clear();
3003 
3004   // If the best candidate is a guard, turn it into a branch.
3005   if (isGuard(BestUnswitchTI))
3006     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
3007                                          ExitBlocks, DT, LI, MSSAU);
3008 
3009   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
3010                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
3011                     << "\n");
3012   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
3013                                ExitBlocks, PartialIVInfo, DT, LI, AC,
3014                                UnswitchCB, SE, MSSAU, DestroyLoopCB);
3015   return true;
3016 }
3017 
3018 /// Unswitch control flow predicated on loop invariant conditions.
3019 ///
3020 /// This first hoists all branches or switches which are trivial (IE, do not
3021 /// require duplicating any part of the loop) out of the loop body. It then
3022 /// looks at other loop invariant control flows and tries to unswitch those as
3023 /// well by cloning the loop if the result is small enough.
3024 ///
3025 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3026 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3027 /// valid (i.e. its use is enabled).
3028 ///
3029 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3030 /// true, we will attempt to do non-trivial unswitching as well as trivial
3031 /// unswitching.
3032 ///
3033 /// The `UnswitchCB` callback provided will be run after unswitching is
3034 /// complete, with the first parameter set to `true` if the provided loop
3035 /// remains a loop, and a list of new sibling loops created.
3036 ///
3037 /// If `SE` is non-null, we will update that analysis based on the unswitching
3038 /// done.
3039 static bool
3040 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3041              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3042              bool NonTrivial,
3043              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3044              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3045              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3046   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3047          "Loops must be in LCSSA form before unswitching.");
3048 
3049   // Must be in loop simplified form: we need a preheader and dedicated exits.
3050   if (!L.isLoopSimplifyForm())
3051     return false;
3052 
3053   // Try trivial unswitch first before loop over other basic blocks in the loop.
3054   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3055     // If we unswitched successfully we will want to clean up the loop before
3056     // processing it further so just mark it as unswitched and return.
3057     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3058     return true;
3059   }
3060 
3061   // Check whether we should continue with non-trivial conditions.
3062   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3063   //                           unswitching for testing and debugging.
3064   // NonTrivial: Parameter that enables non-trivial unswitching for this
3065   //             invocation of the transform. But this should be allowed only
3066   //             for targets without branch divergence.
3067   //
3068   // FIXME: If divergence analysis becomes available to a loop
3069   // transform, we should allow unswitching for non-trivial uniform
3070   // branches even on targets that have divergence.
3071   // https://bugs.llvm.org/show_bug.cgi?id=48819
3072   bool ContinueWithNonTrivial =
3073       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3074   if (!ContinueWithNonTrivial)
3075     return false;
3076 
3077   // Skip non-trivial unswitching for optsize functions.
3078   if (L.getHeader()->getParent()->hasOptSize())
3079     return false;
3080 
3081   // Skip non-trivial unswitching for loops that cannot be cloned.
3082   if (!L.isSafeToClone())
3083     return false;
3084 
3085   // For non-trivial unswitching, because it often creates new loops, we rely on
3086   // the pass manager to iterate on the loops rather than trying to immediately
3087   // reach a fixed point. There is no substantial advantage to iterating
3088   // internally, and if any of the new loops are simplified enough to contain
3089   // trivial unswitching we want to prefer those.
3090 
3091   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3092   // a partial unswitch when possible below the threshold.
3093   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3094                             DestroyLoopCB))
3095     return true;
3096 
3097   // No other opportunities to unswitch.
3098   return false;
3099 }
3100 
3101 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3102                                               LoopStandardAnalysisResults &AR,
3103                                               LPMUpdater &U) {
3104   Function &F = *L.getHeader()->getParent();
3105   (void)F;
3106 
3107   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3108                     << "\n");
3109 
3110   // Save the current loop name in a variable so that we can report it even
3111   // after it has been deleted.
3112   std::string LoopName = std::string(L.getName());
3113 
3114   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3115                                         bool PartiallyInvariant,
3116                                         ArrayRef<Loop *> NewLoops) {
3117     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3118     if (!NewLoops.empty())
3119       U.addSiblingLoops(NewLoops);
3120 
3121     // If the current loop remains valid, we should revisit it to catch any
3122     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3123     if (CurrentLoopValid) {
3124       if (PartiallyInvariant) {
3125         // Mark the new loop as partially unswitched, to avoid unswitching on
3126         // the same condition again.
3127         auto &Context = L.getHeader()->getContext();
3128         MDNode *DisableUnswitchMD = MDNode::get(
3129             Context,
3130             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3131         MDNode *NewLoopID = makePostTransformationMetadata(
3132             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3133             {DisableUnswitchMD});
3134         L.setLoopID(NewLoopID);
3135       } else
3136         U.revisitCurrentLoop();
3137     } else
3138       U.markLoopAsDeleted(L, LoopName);
3139   };
3140 
3141   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3142     U.markLoopAsDeleted(L, Name);
3143   };
3144 
3145   Optional<MemorySSAUpdater> MSSAU;
3146   if (AR.MSSA) {
3147     MSSAU = MemorySSAUpdater(AR.MSSA);
3148     if (VerifyMemorySSA)
3149       AR.MSSA->verifyMemorySSA();
3150   }
3151   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3152                     UnswitchCB, &AR.SE,
3153                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
3154                     DestroyLoopCB))
3155     return PreservedAnalyses::all();
3156 
3157   if (AR.MSSA && VerifyMemorySSA)
3158     AR.MSSA->verifyMemorySSA();
3159 
3160   // Historically this pass has had issues with the dominator tree so verify it
3161   // in asserts builds.
3162   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3163 
3164   auto PA = getLoopPassPreservedAnalyses();
3165   if (AR.MSSA)
3166     PA.preserve<MemorySSAAnalysis>();
3167   return PA;
3168 }
3169 
3170 void SimpleLoopUnswitchPass::printPipeline(
3171     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3172   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3173       OS, MapClassName2PassName);
3174 
3175   OS << "<";
3176   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3177   OS << (Trivial ? "" : "no-") << "trivial";
3178   OS << ">";
3179 }
3180 
3181 namespace {
3182 
3183 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3184   bool NonTrivial;
3185 
3186 public:
3187   static char ID; // Pass ID, replacement for typeid
3188 
3189   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3190       : LoopPass(ID), NonTrivial(NonTrivial) {
3191     initializeSimpleLoopUnswitchLegacyPassPass(
3192         *PassRegistry::getPassRegistry());
3193   }
3194 
3195   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3196 
3197   void getAnalysisUsage(AnalysisUsage &AU) const override {
3198     AU.addRequired<AssumptionCacheTracker>();
3199     AU.addRequired<TargetTransformInfoWrapperPass>();
3200     AU.addRequired<MemorySSAWrapperPass>();
3201     AU.addPreserved<MemorySSAWrapperPass>();
3202     getLoopAnalysisUsage(AU);
3203   }
3204 };
3205 
3206 } // end anonymous namespace
3207 
3208 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3209   if (skipLoop(L))
3210     return false;
3211 
3212   Function &F = *L->getHeader()->getParent();
3213 
3214   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3215                     << "\n");
3216 
3217   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3218   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3219   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3220   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3221   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3222   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3223   MemorySSAUpdater MSSAU(MSSA);
3224 
3225   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3226   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3227 
3228   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3229                                ArrayRef<Loop *> NewLoops) {
3230     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3231     for (auto *NewL : NewLoops)
3232       LPM.addLoop(*NewL);
3233 
3234     // If the current loop remains valid, re-add it to the queue. This is
3235     // a little wasteful as we'll finish processing the current loop as well,
3236     // but it is the best we can do in the old PM.
3237     if (CurrentLoopValid) {
3238       // If the current loop has been unswitched using a partially invariant
3239       // condition, we should not re-add the current loop to avoid unswitching
3240       // on the same condition again.
3241       if (!PartiallyInvariant)
3242         LPM.addLoop(*L);
3243     } else
3244       LPM.markLoopAsDeleted(*L);
3245   };
3246 
3247   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3248     LPM.markLoopAsDeleted(L);
3249   };
3250 
3251   if (VerifyMemorySSA)
3252     MSSA->verifyMemorySSA();
3253 
3254   bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial,
3255                               UnswitchCB, SE, &MSSAU, DestroyLoopCB);
3256 
3257   if (VerifyMemorySSA)
3258     MSSA->verifyMemorySSA();
3259 
3260   // Historically this pass has had issues with the dominator tree so verify it
3261   // in asserts builds.
3262   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3263 
3264   return Changed;
3265 }
3266 
3267 char SimpleLoopUnswitchLegacyPass::ID = 0;
3268 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3269                       "Simple unswitch loops", false, false)
3270 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3271 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3272 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3273 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3274 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3275 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3276 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3277                     "Simple unswitch loops", false, false)
3278 
3279 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3280   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3281 }
3282