1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/GenericDomTree.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Cloning.h" 52 #include "llvm/Transforms/Utils/LoopUtils.h" 53 #include "llvm/Transforms/Utils/ValueMapper.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <iterator> 57 #include <numeric> 58 #include <utility> 59 60 #define DEBUG_TYPE "simple-loop-unswitch" 61 62 using namespace llvm; 63 64 STATISTIC(NumBranches, "Number of branches unswitched"); 65 STATISTIC(NumSwitches, "Number of switches unswitched"); 66 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 67 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 68 STATISTIC( 69 NumCostMultiplierSkipped, 70 "Number of unswitch candidates that had their cost multiplier skipped"); 71 72 static cl::opt<bool> EnableNonTrivialUnswitch( 73 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 74 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 75 "following the configuration passed into the pass.")); 76 77 static cl::opt<int> 78 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 79 cl::desc("The cost threshold for unswitching a loop.")); 80 81 static cl::opt<bool> EnableUnswitchCostMultiplier( 82 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 83 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 84 "explosion in nontrivial unswitch.")); 85 static cl::opt<int> UnswitchSiblingsToplevelDiv( 86 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 87 cl::desc("Toplevel siblings divisor for cost multiplier.")); 88 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 89 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 90 cl::desc("Number of unswitch candidates that are ignored when calculating " 91 "cost multiplier.")); 92 static cl::opt<bool> UnswitchGuards( 93 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 94 cl::desc("If enabled, simple loop unswitching will also consider " 95 "llvm.experimental.guard intrinsics as unswitch candidates.")); 96 97 /// Collect all of the loop invariant input values transitively used by the 98 /// homogeneous instruction graph from a given root. 99 /// 100 /// This essentially walks from a root recursively through loop variant operands 101 /// which have the exact same opcode and finds all inputs which are loop 102 /// invariant. For some operations these can be re-associated and unswitched out 103 /// of the loop entirely. 104 static TinyPtrVector<Value *> 105 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 106 LoopInfo &LI) { 107 assert(!L.isLoopInvariant(&Root) && 108 "Only need to walk the graph if root itself is not invariant."); 109 TinyPtrVector<Value *> Invariants; 110 111 // Build a worklist and recurse through operators collecting invariants. 112 SmallVector<Instruction *, 4> Worklist; 113 SmallPtrSet<Instruction *, 8> Visited; 114 Worklist.push_back(&Root); 115 Visited.insert(&Root); 116 do { 117 Instruction &I = *Worklist.pop_back_val(); 118 for (Value *OpV : I.operand_values()) { 119 // Skip constants as unswitching isn't interesting for them. 120 if (isa<Constant>(OpV)) 121 continue; 122 123 // Add it to our result if loop invariant. 124 if (L.isLoopInvariant(OpV)) { 125 Invariants.push_back(OpV); 126 continue; 127 } 128 129 // If not an instruction with the same opcode, nothing we can do. 130 Instruction *OpI = dyn_cast<Instruction>(OpV); 131 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 132 continue; 133 134 // Visit this operand. 135 if (Visited.insert(OpI).second) 136 Worklist.push_back(OpI); 137 } 138 } while (!Worklist.empty()); 139 140 return Invariants; 141 } 142 143 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 144 Constant &Replacement) { 145 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 146 147 // Replace uses of LIC in the loop with the given constant. 148 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 149 // Grab the use and walk past it so we can clobber it in the use list. 150 Use *U = &*UI++; 151 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 152 153 // Replace this use within the loop body. 154 if (UserI && L.contains(UserI)) 155 U->set(&Replacement); 156 } 157 } 158 159 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 160 /// incoming values along this edge. 161 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 162 BasicBlock &ExitBB) { 163 for (Instruction &I : ExitBB) { 164 auto *PN = dyn_cast<PHINode>(&I); 165 if (!PN) 166 // No more PHIs to check. 167 return true; 168 169 // If the incoming value for this edge isn't loop invariant the unswitch 170 // won't be trivial. 171 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 172 return false; 173 } 174 llvm_unreachable("Basic blocks should never be empty!"); 175 } 176 177 /// Insert code to test a set of loop invariant values, and conditionally branch 178 /// on them. 179 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 180 ArrayRef<Value *> Invariants, 181 bool Direction, 182 BasicBlock &UnswitchedSucc, 183 BasicBlock &NormalSucc) { 184 IRBuilder<> IRB(&BB); 185 186 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 187 IRB.CreateAnd(Invariants); 188 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 189 Direction ? &NormalSucc : &UnswitchedSucc); 190 } 191 192 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 193 /// 194 /// Requires that the loop exit and unswitched basic block are the same, and 195 /// that the exiting block was a unique predecessor of that block. Rewrites the 196 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 197 /// PHI nodes from the old preheader that now contains the unswitched 198 /// terminator. 199 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 200 BasicBlock &OldExitingBB, 201 BasicBlock &OldPH) { 202 for (PHINode &PN : UnswitchedBB.phis()) { 203 // When the loop exit is directly unswitched we just need to update the 204 // incoming basic block. We loop to handle weird cases with repeated 205 // incoming blocks, but expect to typically only have one operand here. 206 for (auto i : seq<int>(0, PN.getNumOperands())) { 207 assert(PN.getIncomingBlock(i) == &OldExitingBB && 208 "Found incoming block different from unique predecessor!"); 209 PN.setIncomingBlock(i, &OldPH); 210 } 211 } 212 } 213 214 /// Rewrite the PHI nodes in the loop exit basic block and the split off 215 /// unswitched block. 216 /// 217 /// Because the exit block remains an exit from the loop, this rewrites the 218 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 219 /// nodes into the unswitched basic block to select between the value in the 220 /// old preheader and the loop exit. 221 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 222 BasicBlock &UnswitchedBB, 223 BasicBlock &OldExitingBB, 224 BasicBlock &OldPH, 225 bool FullUnswitch) { 226 assert(&ExitBB != &UnswitchedBB && 227 "Must have different loop exit and unswitched blocks!"); 228 Instruction *InsertPt = &*UnswitchedBB.begin(); 229 for (PHINode &PN : ExitBB.phis()) { 230 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 231 PN.getName() + ".split", InsertPt); 232 233 // Walk backwards over the old PHI node's inputs to minimize the cost of 234 // removing each one. We have to do this weird loop manually so that we 235 // create the same number of new incoming edges in the new PHI as we expect 236 // each case-based edge to be included in the unswitched switch in some 237 // cases. 238 // FIXME: This is really, really gross. It would be much cleaner if LLVM 239 // allowed us to create a single entry for a predecessor block without 240 // having separate entries for each "edge" even though these edges are 241 // required to produce identical results. 242 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 243 if (PN.getIncomingBlock(i) != &OldExitingBB) 244 continue; 245 246 Value *Incoming = PN.getIncomingValue(i); 247 if (FullUnswitch) 248 // No more edge from the old exiting block to the exit block. 249 PN.removeIncomingValue(i); 250 251 NewPN->addIncoming(Incoming, &OldPH); 252 } 253 254 // Now replace the old PHI with the new one and wire the old one in as an 255 // input to the new one. 256 PN.replaceAllUsesWith(NewPN); 257 NewPN->addIncoming(&PN, &ExitBB); 258 } 259 } 260 261 /// Hoist the current loop up to the innermost loop containing a remaining exit. 262 /// 263 /// Because we've removed an exit from the loop, we may have changed the set of 264 /// loops reachable and need to move the current loop up the loop nest or even 265 /// to an entirely separate nest. 266 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 267 DominatorTree &DT, LoopInfo &LI, 268 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 269 // If the loop is already at the top level, we can't hoist it anywhere. 270 Loop *OldParentL = L.getParentLoop(); 271 if (!OldParentL) 272 return; 273 274 SmallVector<BasicBlock *, 4> Exits; 275 L.getExitBlocks(Exits); 276 Loop *NewParentL = nullptr; 277 for (auto *ExitBB : Exits) 278 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 279 if (!NewParentL || NewParentL->contains(ExitL)) 280 NewParentL = ExitL; 281 282 if (NewParentL == OldParentL) 283 return; 284 285 // The new parent loop (if different) should always contain the old one. 286 if (NewParentL) 287 assert(NewParentL->contains(OldParentL) && 288 "Can only hoist this loop up the nest!"); 289 290 // The preheader will need to move with the body of this loop. However, 291 // because it isn't in this loop we also need to update the primary loop map. 292 assert(OldParentL == LI.getLoopFor(&Preheader) && 293 "Parent loop of this loop should contain this loop's preheader!"); 294 LI.changeLoopFor(&Preheader, NewParentL); 295 296 // Remove this loop from its old parent. 297 OldParentL->removeChildLoop(&L); 298 299 // Add the loop either to the new parent or as a top-level loop. 300 if (NewParentL) 301 NewParentL->addChildLoop(&L); 302 else 303 LI.addTopLevelLoop(&L); 304 305 // Remove this loops blocks from the old parent and every other loop up the 306 // nest until reaching the new parent. Also update all of these 307 // no-longer-containing loops to reflect the nesting change. 308 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 309 OldContainingL = OldContainingL->getParentLoop()) { 310 llvm::erase_if(OldContainingL->getBlocksVector(), 311 [&](const BasicBlock *BB) { 312 return BB == &Preheader || L.contains(BB); 313 }); 314 315 OldContainingL->getBlocksSet().erase(&Preheader); 316 for (BasicBlock *BB : L.blocks()) 317 OldContainingL->getBlocksSet().erase(BB); 318 319 // Because we just hoisted a loop out of this one, we have essentially 320 // created new exit paths from it. That means we need to form LCSSA PHI 321 // nodes for values used in the no-longer-nested loop. 322 formLCSSA(*OldContainingL, DT, &LI, SE); 323 324 // We shouldn't need to form dedicated exits because the exit introduced 325 // here is the (just split by unswitching) preheader. However, after trivial 326 // unswitching it is possible to get new non-dedicated exits out of parent 327 // loop so let's conservatively form dedicated exit blocks and figure out 328 // if we can optimize later. 329 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 330 /*PreserveLCSSA*/ true); 331 } 332 } 333 334 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 335 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 336 // as exiting block. 337 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 338 Loop *TopMost = LI.getLoopFor(ExitBB); 339 Loop *Current = TopMost; 340 while (Current) { 341 if (Current->isLoopExiting(ExitBB)) 342 TopMost = Current; 343 Current = Current->getParentLoop(); 344 } 345 return TopMost; 346 } 347 348 /// Unswitch a trivial branch if the condition is loop invariant. 349 /// 350 /// This routine should only be called when loop code leading to the branch has 351 /// been validated as trivial (no side effects). This routine checks if the 352 /// condition is invariant and one of the successors is a loop exit. This 353 /// allows us to unswitch without duplicating the loop, making it trivial. 354 /// 355 /// If this routine fails to unswitch the branch it returns false. 356 /// 357 /// If the branch can be unswitched, this routine splits the preheader and 358 /// hoists the branch above that split. Preserves loop simplified form 359 /// (splitting the exit block as necessary). It simplifies the branch within 360 /// the loop to an unconditional branch but doesn't remove it entirely. Further 361 /// cleanup can be done with some simplify-cfg like pass. 362 /// 363 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 364 /// invalidated by this. 365 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 366 LoopInfo &LI, ScalarEvolution *SE, 367 MemorySSAUpdater *MSSAU) { 368 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 369 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 370 371 // The loop invariant values that we want to unswitch. 372 TinyPtrVector<Value *> Invariants; 373 374 // When true, we're fully unswitching the branch rather than just unswitching 375 // some input conditions to the branch. 376 bool FullUnswitch = false; 377 378 if (L.isLoopInvariant(BI.getCondition())) { 379 Invariants.push_back(BI.getCondition()); 380 FullUnswitch = true; 381 } else { 382 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 383 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 384 if (Invariants.empty()) 385 // Couldn't find invariant inputs! 386 return false; 387 } 388 389 // Check that one of the branch's successors exits, and which one. 390 bool ExitDirection = true; 391 int LoopExitSuccIdx = 0; 392 auto *LoopExitBB = BI.getSuccessor(0); 393 if (L.contains(LoopExitBB)) { 394 ExitDirection = false; 395 LoopExitSuccIdx = 1; 396 LoopExitBB = BI.getSuccessor(1); 397 if (L.contains(LoopExitBB)) 398 return false; 399 } 400 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 401 auto *ParentBB = BI.getParent(); 402 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 403 return false; 404 405 // When unswitching only part of the branch's condition, we need the exit 406 // block to be reached directly from the partially unswitched input. This can 407 // be done when the exit block is along the true edge and the branch condition 408 // is a graph of `or` operations, or the exit block is along the false edge 409 // and the condition is a graph of `and` operations. 410 if (!FullUnswitch) { 411 if (ExitDirection) { 412 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 413 return false; 414 } else { 415 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 416 return false; 417 } 418 } 419 420 LLVM_DEBUG({ 421 dbgs() << " unswitching trivial invariant conditions for: " << BI 422 << "\n"; 423 for (Value *Invariant : Invariants) { 424 dbgs() << " " << *Invariant << " == true"; 425 if (Invariant != Invariants.back()) 426 dbgs() << " ||"; 427 dbgs() << "\n"; 428 } 429 }); 430 431 // If we have scalar evolutions, we need to invalidate them including this 432 // loop, the loop containing the exit block and the topmost parent loop 433 // exiting via LoopExitBB. 434 if (SE) { 435 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 436 SE->forgetLoop(ExitL); 437 else 438 // Forget the entire nest as this exits the entire nest. 439 SE->forgetTopmostLoop(&L); 440 } 441 442 if (MSSAU && VerifyMemorySSA) 443 MSSAU->getMemorySSA()->verifyMemorySSA(); 444 445 // Split the preheader, so that we know that there is a safe place to insert 446 // the conditional branch. We will change the preheader to have a conditional 447 // branch on LoopCond. 448 BasicBlock *OldPH = L.getLoopPreheader(); 449 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 450 451 // Now that we have a place to insert the conditional branch, create a place 452 // to branch to: this is the exit block out of the loop that we are 453 // unswitching. We need to split this if there are other loop predecessors. 454 // Because the loop is in simplified form, *any* other predecessor is enough. 455 BasicBlock *UnswitchedBB; 456 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 457 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 458 "A branch's parent isn't a predecessor!"); 459 UnswitchedBB = LoopExitBB; 460 } else { 461 UnswitchedBB = 462 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 463 } 464 465 if (MSSAU && VerifyMemorySSA) 466 MSSAU->getMemorySSA()->verifyMemorySSA(); 467 468 // Actually move the invariant uses into the unswitched position. If possible, 469 // we do this by moving the instructions, but when doing partial unswitching 470 // we do it by building a new merge of the values in the unswitched position. 471 OldPH->getTerminator()->eraseFromParent(); 472 if (FullUnswitch) { 473 // If fully unswitching, we can use the existing branch instruction. 474 // Splice it into the old PH to gate reaching the new preheader and re-point 475 // its successors. 476 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 477 BI); 478 if (MSSAU) { 479 // Temporarily clone the terminator, to make MSSA update cheaper by 480 // separating "insert edge" updates from "remove edge" ones. 481 ParentBB->getInstList().push_back(BI.clone()); 482 } else { 483 // Create a new unconditional branch that will continue the loop as a new 484 // terminator. 485 BranchInst::Create(ContinueBB, ParentBB); 486 } 487 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 488 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 489 } else { 490 // Only unswitching a subset of inputs to the condition, so we will need to 491 // build a new branch that merges the invariant inputs. 492 if (ExitDirection) 493 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 494 Instruction::Or && 495 "Must have an `or` of `i1`s for the condition!"); 496 else 497 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 498 Instruction::And && 499 "Must have an `and` of `i1`s for the condition!"); 500 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 501 *UnswitchedBB, *NewPH); 502 } 503 504 // Update the dominator tree with the added edge. 505 DT.insertEdge(OldPH, UnswitchedBB); 506 507 // After the dominator tree was updated with the added edge, update MemorySSA 508 // if available. 509 if (MSSAU) { 510 SmallVector<CFGUpdate, 1> Updates; 511 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 512 MSSAU->applyInsertUpdates(Updates, DT); 513 } 514 515 // Finish updating dominator tree and memory ssa for full unswitch. 516 if (FullUnswitch) { 517 if (MSSAU) { 518 // Remove the cloned branch instruction. 519 ParentBB->getTerminator()->eraseFromParent(); 520 // Create unconditional branch now. 521 BranchInst::Create(ContinueBB, ParentBB); 522 MSSAU->removeEdge(ParentBB, LoopExitBB); 523 } 524 DT.deleteEdge(ParentBB, LoopExitBB); 525 } 526 527 if (MSSAU && VerifyMemorySSA) 528 MSSAU->getMemorySSA()->verifyMemorySSA(); 529 530 // Rewrite the relevant PHI nodes. 531 if (UnswitchedBB == LoopExitBB) 532 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 533 else 534 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 535 *ParentBB, *OldPH, FullUnswitch); 536 537 // The constant we can replace all of our invariants with inside the loop 538 // body. If any of the invariants have a value other than this the loop won't 539 // be entered. 540 ConstantInt *Replacement = ExitDirection 541 ? ConstantInt::getFalse(BI.getContext()) 542 : ConstantInt::getTrue(BI.getContext()); 543 544 // Since this is an i1 condition we can also trivially replace uses of it 545 // within the loop with a constant. 546 for (Value *Invariant : Invariants) 547 replaceLoopInvariantUses(L, Invariant, *Replacement); 548 549 // If this was full unswitching, we may have changed the nesting relationship 550 // for this loop so hoist it to its correct parent if needed. 551 if (FullUnswitch) 552 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 553 554 if (MSSAU && VerifyMemorySSA) 555 MSSAU->getMemorySSA()->verifyMemorySSA(); 556 557 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 558 ++NumTrivial; 559 ++NumBranches; 560 return true; 561 } 562 563 /// Unswitch a trivial switch if the condition is loop invariant. 564 /// 565 /// This routine should only be called when loop code leading to the switch has 566 /// been validated as trivial (no side effects). This routine checks if the 567 /// condition is invariant and that at least one of the successors is a loop 568 /// exit. This allows us to unswitch without duplicating the loop, making it 569 /// trivial. 570 /// 571 /// If this routine fails to unswitch the switch it returns false. 572 /// 573 /// If the switch can be unswitched, this routine splits the preheader and 574 /// copies the switch above that split. If the default case is one of the 575 /// exiting cases, it copies the non-exiting cases and points them at the new 576 /// preheader. If the default case is not exiting, it copies the exiting cases 577 /// and points the default at the preheader. It preserves loop simplified form 578 /// (splitting the exit blocks as necessary). It simplifies the switch within 579 /// the loop by removing now-dead cases. If the default case is one of those 580 /// unswitched, it replaces its destination with a new basic block containing 581 /// only unreachable. Such basic blocks, while technically loop exits, are not 582 /// considered for unswitching so this is a stable transform and the same 583 /// switch will not be revisited. If after unswitching there is only a single 584 /// in-loop successor, the switch is further simplified to an unconditional 585 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 586 /// 587 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 588 /// invalidated by this. 589 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 590 LoopInfo &LI, ScalarEvolution *SE, 591 MemorySSAUpdater *MSSAU) { 592 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 593 Value *LoopCond = SI.getCondition(); 594 595 // If this isn't switching on an invariant condition, we can't unswitch it. 596 if (!L.isLoopInvariant(LoopCond)) 597 return false; 598 599 auto *ParentBB = SI.getParent(); 600 601 // The same check must be used both for the default and the exit cases. We 602 // should never leave edges from the switch instruction to a basic block that 603 // we are unswitching, hence the condition used to determine the default case 604 // needs to also be used to populate ExitCaseIndices, which is then used to 605 // remove cases from the switch. 606 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 607 // BBToCheck is not an exit block if it is inside loop L. 608 if (L.contains(&BBToCheck)) 609 return false; 610 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 611 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 612 return false; 613 // We do not unswitch a block that only has an unreachable statement, as 614 // it's possible this is a previously unswitched block. Only unswitch if 615 // either the terminator is not unreachable, or, if it is, it's not the only 616 // instruction in the block. 617 auto *TI = BBToCheck.getTerminator(); 618 bool isUnreachable = isa<UnreachableInst>(TI); 619 return !isUnreachable || 620 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 621 }; 622 623 SmallVector<int, 4> ExitCaseIndices; 624 for (auto Case : SI.cases()) 625 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 626 ExitCaseIndices.push_back(Case.getCaseIndex()); 627 BasicBlock *DefaultExitBB = nullptr; 628 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 629 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 630 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 631 DefaultExitBB = SI.getDefaultDest(); 632 } else if (ExitCaseIndices.empty()) 633 return false; 634 635 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 636 637 if (MSSAU && VerifyMemorySSA) 638 MSSAU->getMemorySSA()->verifyMemorySSA(); 639 640 // We may need to invalidate SCEVs for the outermost loop reached by any of 641 // the exits. 642 Loop *OuterL = &L; 643 644 if (DefaultExitBB) { 645 // Clear out the default destination temporarily to allow accurate 646 // predecessor lists to be examined below. 647 SI.setDefaultDest(nullptr); 648 // Check the loop containing this exit. 649 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 650 if (!ExitL || ExitL->contains(OuterL)) 651 OuterL = ExitL; 652 } 653 654 // Store the exit cases into a separate data structure and remove them from 655 // the switch. 656 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 657 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 658 4> ExitCases; 659 ExitCases.reserve(ExitCaseIndices.size()); 660 SwitchInstProfUpdateWrapper SIW(SI); 661 // We walk the case indices backwards so that we remove the last case first 662 // and don't disrupt the earlier indices. 663 for (unsigned Index : reverse(ExitCaseIndices)) { 664 auto CaseI = SI.case_begin() + Index; 665 // Compute the outer loop from this exit. 666 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 667 if (!ExitL || ExitL->contains(OuterL)) 668 OuterL = ExitL; 669 // Save the value of this case. 670 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 671 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 672 // Delete the unswitched cases. 673 SIW.removeCase(CaseI); 674 } 675 676 if (SE) { 677 if (OuterL) 678 SE->forgetLoop(OuterL); 679 else 680 SE->forgetTopmostLoop(&L); 681 } 682 683 // Check if after this all of the remaining cases point at the same 684 // successor. 685 BasicBlock *CommonSuccBB = nullptr; 686 if (SI.getNumCases() > 0 && 687 std::all_of(std::next(SI.case_begin()), SI.case_end(), 688 [&SI](const SwitchInst::CaseHandle &Case) { 689 return Case.getCaseSuccessor() == 690 SI.case_begin()->getCaseSuccessor(); 691 })) 692 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 693 if (!DefaultExitBB) { 694 // If we're not unswitching the default, we need it to match any cases to 695 // have a common successor or if we have no cases it is the common 696 // successor. 697 if (SI.getNumCases() == 0) 698 CommonSuccBB = SI.getDefaultDest(); 699 else if (SI.getDefaultDest() != CommonSuccBB) 700 CommonSuccBB = nullptr; 701 } 702 703 // Split the preheader, so that we know that there is a safe place to insert 704 // the switch. 705 BasicBlock *OldPH = L.getLoopPreheader(); 706 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 707 OldPH->getTerminator()->eraseFromParent(); 708 709 // Now add the unswitched switch. 710 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 711 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 712 713 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 714 // First, we split any exit blocks with remaining in-loop predecessors. Then 715 // we update the PHIs in one of two ways depending on if there was a split. 716 // We walk in reverse so that we split in the same order as the cases 717 // appeared. This is purely for convenience of reading the resulting IR, but 718 // it doesn't cost anything really. 719 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 720 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 721 // Handle the default exit if necessary. 722 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 723 // ranges aren't quite powerful enough yet. 724 if (DefaultExitBB) { 725 if (pred_empty(DefaultExitBB)) { 726 UnswitchedExitBBs.insert(DefaultExitBB); 727 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 728 } else { 729 auto *SplitBB = 730 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 731 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 732 *ParentBB, *OldPH, 733 /*FullUnswitch*/ true); 734 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 735 } 736 } 737 // Note that we must use a reference in the for loop so that we update the 738 // container. 739 for (auto &ExitCase : reverse(ExitCases)) { 740 // Grab a reference to the exit block in the pair so that we can update it. 741 BasicBlock *ExitBB = std::get<1>(ExitCase); 742 743 // If this case is the last edge into the exit block, we can simply reuse it 744 // as it will no longer be a loop exit. No mapping necessary. 745 if (pred_empty(ExitBB)) { 746 // Only rewrite once. 747 if (UnswitchedExitBBs.insert(ExitBB).second) 748 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 749 continue; 750 } 751 752 // Otherwise we need to split the exit block so that we retain an exit 753 // block from the loop and a target for the unswitched condition. 754 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 755 if (!SplitExitBB) { 756 // If this is the first time we see this, do the split and remember it. 757 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 758 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 759 *ParentBB, *OldPH, 760 /*FullUnswitch*/ true); 761 } 762 // Update the case pair to point to the split block. 763 std::get<1>(ExitCase) = SplitExitBB; 764 } 765 766 // Now add the unswitched cases. We do this in reverse order as we built them 767 // in reverse order. 768 for (auto &ExitCase : reverse(ExitCases)) { 769 ConstantInt *CaseVal = std::get<0>(ExitCase); 770 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 771 772 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 773 } 774 775 // If the default was unswitched, re-point it and add explicit cases for 776 // entering the loop. 777 if (DefaultExitBB) { 778 NewSIW->setDefaultDest(DefaultExitBB); 779 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 780 781 // We removed all the exit cases, so we just copy the cases to the 782 // unswitched switch. 783 for (const auto &Case : SI.cases()) 784 NewSIW.addCase(Case.getCaseValue(), NewPH, 785 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 786 } else if (DefaultCaseWeight) { 787 // We have to set branch weight of the default case. 788 uint64_t SW = *DefaultCaseWeight; 789 for (const auto &Case : SI.cases()) { 790 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 791 assert(W && 792 "case weight must be defined as default case weight is defined"); 793 SW += *W; 794 } 795 NewSIW.setSuccessorWeight(0, SW); 796 } 797 798 // If we ended up with a common successor for every path through the switch 799 // after unswitching, rewrite it to an unconditional branch to make it easy 800 // to recognize. Otherwise we potentially have to recognize the default case 801 // pointing at unreachable and other complexity. 802 if (CommonSuccBB) { 803 BasicBlock *BB = SI.getParent(); 804 // We may have had multiple edges to this common successor block, so remove 805 // them as predecessors. We skip the first one, either the default or the 806 // actual first case. 807 bool SkippedFirst = DefaultExitBB == nullptr; 808 for (auto Case : SI.cases()) { 809 assert(Case.getCaseSuccessor() == CommonSuccBB && 810 "Non-common successor!"); 811 (void)Case; 812 if (!SkippedFirst) { 813 SkippedFirst = true; 814 continue; 815 } 816 CommonSuccBB->removePredecessor(BB, 817 /*KeepOneInputPHIs*/ true); 818 } 819 // Now nuke the switch and replace it with a direct branch. 820 SIW.eraseFromParent(); 821 BranchInst::Create(CommonSuccBB, BB); 822 } else if (DefaultExitBB) { 823 assert(SI.getNumCases() > 0 && 824 "If we had no cases we'd have a common successor!"); 825 // Move the last case to the default successor. This is valid as if the 826 // default got unswitched it cannot be reached. This has the advantage of 827 // being simple and keeping the number of edges from this switch to 828 // successors the same, and avoiding any PHI update complexity. 829 auto LastCaseI = std::prev(SI.case_end()); 830 831 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 832 SIW.setSuccessorWeight( 833 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 834 SIW.removeCase(LastCaseI); 835 } 836 837 // Walk the unswitched exit blocks and the unswitched split blocks and update 838 // the dominator tree based on the CFG edits. While we are walking unordered 839 // containers here, the API for applyUpdates takes an unordered list of 840 // updates and requires them to not contain duplicates. 841 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 842 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 843 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 844 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 845 } 846 for (auto SplitUnswitchedPair : SplitExitBBMap) { 847 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 848 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 849 } 850 DT.applyUpdates(DTUpdates); 851 852 if (MSSAU) { 853 MSSAU->applyUpdates(DTUpdates, DT); 854 if (VerifyMemorySSA) 855 MSSAU->getMemorySSA()->verifyMemorySSA(); 856 } 857 858 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 859 860 // We may have changed the nesting relationship for this loop so hoist it to 861 // its correct parent if needed. 862 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 863 864 if (MSSAU && VerifyMemorySSA) 865 MSSAU->getMemorySSA()->verifyMemorySSA(); 866 867 ++NumTrivial; 868 ++NumSwitches; 869 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 870 return true; 871 } 872 873 /// This routine scans the loop to find a branch or switch which occurs before 874 /// any side effects occur. These can potentially be unswitched without 875 /// duplicating the loop. If a branch or switch is successfully unswitched the 876 /// scanning continues to see if subsequent branches or switches have become 877 /// trivial. Once all trivial candidates have been unswitched, this routine 878 /// returns. 879 /// 880 /// The return value indicates whether anything was unswitched (and therefore 881 /// changed). 882 /// 883 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 884 /// invalidated by this. 885 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 886 LoopInfo &LI, ScalarEvolution *SE, 887 MemorySSAUpdater *MSSAU) { 888 bool Changed = false; 889 890 // If loop header has only one reachable successor we should keep looking for 891 // trivial condition candidates in the successor as well. An alternative is 892 // to constant fold conditions and merge successors into loop header (then we 893 // only need to check header's terminator). The reason for not doing this in 894 // LoopUnswitch pass is that it could potentially break LoopPassManager's 895 // invariants. Folding dead branches could either eliminate the current loop 896 // or make other loops unreachable. LCSSA form might also not be preserved 897 // after deleting branches. The following code keeps traversing loop header's 898 // successors until it finds the trivial condition candidate (condition that 899 // is not a constant). Since unswitching generates branches with constant 900 // conditions, this scenario could be very common in practice. 901 BasicBlock *CurrentBB = L.getHeader(); 902 SmallPtrSet<BasicBlock *, 8> Visited; 903 Visited.insert(CurrentBB); 904 do { 905 // Check if there are any side-effecting instructions (e.g. stores, calls, 906 // volatile loads) in the part of the loop that the code *would* execute 907 // without unswitching. 908 if (MSSAU) // Possible early exit with MSSA 909 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 910 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 911 return Changed; 912 if (llvm::any_of(*CurrentBB, 913 [](Instruction &I) { return I.mayHaveSideEffects(); })) 914 return Changed; 915 916 Instruction *CurrentTerm = CurrentBB->getTerminator(); 917 918 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 919 // Don't bother trying to unswitch past a switch with a constant 920 // condition. This should be removed prior to running this pass by 921 // simplify-cfg. 922 if (isa<Constant>(SI->getCondition())) 923 return Changed; 924 925 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 926 // Couldn't unswitch this one so we're done. 927 return Changed; 928 929 // Mark that we managed to unswitch something. 930 Changed = true; 931 932 // If unswitching turned the terminator into an unconditional branch then 933 // we can continue. The unswitching logic specifically works to fold any 934 // cases it can into an unconditional branch to make it easier to 935 // recognize here. 936 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 937 if (!BI || BI->isConditional()) 938 return Changed; 939 940 CurrentBB = BI->getSuccessor(0); 941 continue; 942 } 943 944 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 945 if (!BI) 946 // We do not understand other terminator instructions. 947 return Changed; 948 949 // Don't bother trying to unswitch past an unconditional branch or a branch 950 // with a constant value. These should be removed by simplify-cfg prior to 951 // running this pass. 952 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 953 return Changed; 954 955 // Found a trivial condition candidate: non-foldable conditional branch. If 956 // we fail to unswitch this, we can't do anything else that is trivial. 957 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 958 return Changed; 959 960 // Mark that we managed to unswitch something. 961 Changed = true; 962 963 // If we only unswitched some of the conditions feeding the branch, we won't 964 // have collapsed it to a single successor. 965 BI = cast<BranchInst>(CurrentBB->getTerminator()); 966 if (BI->isConditional()) 967 return Changed; 968 969 // Follow the newly unconditional branch into its successor. 970 CurrentBB = BI->getSuccessor(0); 971 972 // When continuing, if we exit the loop or reach a previous visited block, 973 // then we can not reach any trivial condition candidates (unfoldable 974 // branch instructions or switch instructions) and no unswitch can happen. 975 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 976 977 return Changed; 978 } 979 980 /// Build the cloned blocks for an unswitched copy of the given loop. 981 /// 982 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 983 /// after the split block (`SplitBB`) that will be used to select between the 984 /// cloned and original loop. 985 /// 986 /// This routine handles cloning all of the necessary loop blocks and exit 987 /// blocks including rewriting their instructions and the relevant PHI nodes. 988 /// Any loop blocks or exit blocks which are dominated by a different successor 989 /// than the one for this clone of the loop blocks can be trivially skipped. We 990 /// use the `DominatingSucc` map to determine whether a block satisfies that 991 /// property with a simple map lookup. 992 /// 993 /// It also correctly creates the unconditional branch in the cloned 994 /// unswitched parent block to only point at the unswitched successor. 995 /// 996 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 997 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 998 /// the cloned blocks (and their loops) are left without full `LoopInfo` 999 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1000 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1001 /// instead the caller must recompute an accurate DT. It *does* correctly 1002 /// update the `AssumptionCache` provided in `AC`. 1003 static BasicBlock *buildClonedLoopBlocks( 1004 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1005 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1006 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1007 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1008 ValueToValueMapTy &VMap, 1009 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1010 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1011 SmallVector<BasicBlock *, 4> NewBlocks; 1012 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1013 1014 // We will need to clone a bunch of blocks, wrap up the clone operation in 1015 // a helper. 1016 auto CloneBlock = [&](BasicBlock *OldBB) { 1017 // Clone the basic block and insert it before the new preheader. 1018 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1019 NewBB->moveBefore(LoopPH); 1020 1021 // Record this block and the mapping. 1022 NewBlocks.push_back(NewBB); 1023 VMap[OldBB] = NewBB; 1024 1025 return NewBB; 1026 }; 1027 1028 // We skip cloning blocks when they have a dominating succ that is not the 1029 // succ we are cloning for. 1030 auto SkipBlock = [&](BasicBlock *BB) { 1031 auto It = DominatingSucc.find(BB); 1032 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1033 }; 1034 1035 // First, clone the preheader. 1036 auto *ClonedPH = CloneBlock(LoopPH); 1037 1038 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1039 for (auto *LoopBB : L.blocks()) 1040 if (!SkipBlock(LoopBB)) 1041 CloneBlock(LoopBB); 1042 1043 // Split all the loop exit edges so that when we clone the exit blocks, if 1044 // any of the exit blocks are *also* a preheader for some other loop, we 1045 // don't create multiple predecessors entering the loop header. 1046 for (auto *ExitBB : ExitBlocks) { 1047 if (SkipBlock(ExitBB)) 1048 continue; 1049 1050 // When we are going to clone an exit, we don't need to clone all the 1051 // instructions in the exit block and we want to ensure we have an easy 1052 // place to merge the CFG, so split the exit first. This is always safe to 1053 // do because there cannot be any non-loop predecessors of a loop exit in 1054 // loop simplified form. 1055 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1056 1057 // Rearrange the names to make it easier to write test cases by having the 1058 // exit block carry the suffix rather than the merge block carrying the 1059 // suffix. 1060 MergeBB->takeName(ExitBB); 1061 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1062 1063 // Now clone the original exit block. 1064 auto *ClonedExitBB = CloneBlock(ExitBB); 1065 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1066 "Exit block should have been split to have one successor!"); 1067 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1068 "Cloned exit block has the wrong successor!"); 1069 1070 // Remap any cloned instructions and create a merge phi node for them. 1071 for (auto ZippedInsts : llvm::zip_first( 1072 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1073 llvm::make_range(ClonedExitBB->begin(), 1074 std::prev(ClonedExitBB->end())))) { 1075 Instruction &I = std::get<0>(ZippedInsts); 1076 Instruction &ClonedI = std::get<1>(ZippedInsts); 1077 1078 // The only instructions in the exit block should be PHI nodes and 1079 // potentially a landing pad. 1080 assert( 1081 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1082 "Bad instruction in exit block!"); 1083 // We should have a value map between the instruction and its clone. 1084 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1085 1086 auto *MergePN = 1087 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1088 &*MergeBB->getFirstInsertionPt()); 1089 I.replaceAllUsesWith(MergePN); 1090 MergePN->addIncoming(&I, ExitBB); 1091 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1092 } 1093 } 1094 1095 // Rewrite the instructions in the cloned blocks to refer to the instructions 1096 // in the cloned blocks. We have to do this as a second pass so that we have 1097 // everything available. Also, we have inserted new instructions which may 1098 // include assume intrinsics, so we update the assumption cache while 1099 // processing this. 1100 for (auto *ClonedBB : NewBlocks) 1101 for (Instruction &I : *ClonedBB) { 1102 RemapInstruction(&I, VMap, 1103 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1104 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1105 if (II->getIntrinsicID() == Intrinsic::assume) 1106 AC.registerAssumption(II); 1107 } 1108 1109 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1110 // have spurious incoming values. 1111 for (auto *LoopBB : L.blocks()) 1112 if (SkipBlock(LoopBB)) 1113 for (auto *SuccBB : successors(LoopBB)) 1114 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1115 for (PHINode &PN : ClonedSuccBB->phis()) 1116 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1117 1118 // Remove the cloned parent as a predecessor of any successor we ended up 1119 // cloning other than the unswitched one. 1120 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1121 for (auto *SuccBB : successors(ParentBB)) { 1122 if (SuccBB == UnswitchedSuccBB) 1123 continue; 1124 1125 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1126 if (!ClonedSuccBB) 1127 continue; 1128 1129 ClonedSuccBB->removePredecessor(ClonedParentBB, 1130 /*KeepOneInputPHIs*/ true); 1131 } 1132 1133 // Replace the cloned branch with an unconditional branch to the cloned 1134 // unswitched successor. 1135 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1136 ClonedParentBB->getTerminator()->eraseFromParent(); 1137 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1138 1139 // If there are duplicate entries in the PHI nodes because of multiple edges 1140 // to the unswitched successor, we need to nuke all but one as we replaced it 1141 // with a direct branch. 1142 for (PHINode &PN : ClonedSuccBB->phis()) { 1143 bool Found = false; 1144 // Loop over the incoming operands backwards so we can easily delete as we 1145 // go without invalidating the index. 1146 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1147 if (PN.getIncomingBlock(i) != ClonedParentBB) 1148 continue; 1149 if (!Found) { 1150 Found = true; 1151 continue; 1152 } 1153 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1154 } 1155 } 1156 1157 // Record the domtree updates for the new blocks. 1158 SmallPtrSet<BasicBlock *, 4> SuccSet; 1159 for (auto *ClonedBB : NewBlocks) { 1160 for (auto *SuccBB : successors(ClonedBB)) 1161 if (SuccSet.insert(SuccBB).second) 1162 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1163 SuccSet.clear(); 1164 } 1165 1166 return ClonedPH; 1167 } 1168 1169 /// Recursively clone the specified loop and all of its children. 1170 /// 1171 /// The target parent loop for the clone should be provided, or can be null if 1172 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1173 /// with the provided value map. The entire original loop must be present in 1174 /// the value map. The cloned loop is returned. 1175 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1176 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1177 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1178 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1179 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1180 for (auto *BB : OrigL.blocks()) { 1181 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1182 ClonedL.addBlockEntry(ClonedBB); 1183 if (LI.getLoopFor(BB) == &OrigL) 1184 LI.changeLoopFor(ClonedBB, &ClonedL); 1185 } 1186 }; 1187 1188 // We specially handle the first loop because it may get cloned into 1189 // a different parent and because we most commonly are cloning leaf loops. 1190 Loop *ClonedRootL = LI.AllocateLoop(); 1191 if (RootParentL) 1192 RootParentL->addChildLoop(ClonedRootL); 1193 else 1194 LI.addTopLevelLoop(ClonedRootL); 1195 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1196 1197 if (OrigRootL.empty()) 1198 return ClonedRootL; 1199 1200 // If we have a nest, we can quickly clone the entire loop nest using an 1201 // iterative approach because it is a tree. We keep the cloned parent in the 1202 // data structure to avoid repeatedly querying through a map to find it. 1203 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1204 // Build up the loops to clone in reverse order as we'll clone them from the 1205 // back. 1206 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1207 LoopsToClone.push_back({ClonedRootL, ChildL}); 1208 do { 1209 Loop *ClonedParentL, *L; 1210 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1211 Loop *ClonedL = LI.AllocateLoop(); 1212 ClonedParentL->addChildLoop(ClonedL); 1213 AddClonedBlocksToLoop(*L, *ClonedL); 1214 for (Loop *ChildL : llvm::reverse(*L)) 1215 LoopsToClone.push_back({ClonedL, ChildL}); 1216 } while (!LoopsToClone.empty()); 1217 1218 return ClonedRootL; 1219 } 1220 1221 /// Build the cloned loops of an original loop from unswitching. 1222 /// 1223 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1224 /// operation. We need to re-verify that there even is a loop (as the backedge 1225 /// may not have been cloned), and even if there are remaining backedges the 1226 /// backedge set may be different. However, we know that each child loop is 1227 /// undisturbed, we only need to find where to place each child loop within 1228 /// either any parent loop or within a cloned version of the original loop. 1229 /// 1230 /// Because child loops may end up cloned outside of any cloned version of the 1231 /// original loop, multiple cloned sibling loops may be created. All of them 1232 /// are returned so that the newly introduced loop nest roots can be 1233 /// identified. 1234 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1235 const ValueToValueMapTy &VMap, LoopInfo &LI, 1236 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1237 Loop *ClonedL = nullptr; 1238 1239 auto *OrigPH = OrigL.getLoopPreheader(); 1240 auto *OrigHeader = OrigL.getHeader(); 1241 1242 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1243 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1244 1245 // We need to know the loops of the cloned exit blocks to even compute the 1246 // accurate parent loop. If we only clone exits to some parent of the 1247 // original parent, we want to clone into that outer loop. We also keep track 1248 // of the loops that our cloned exit blocks participate in. 1249 Loop *ParentL = nullptr; 1250 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1251 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1252 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1253 for (auto *ExitBB : ExitBlocks) 1254 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1255 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1256 ExitLoopMap[ClonedExitBB] = ExitL; 1257 ClonedExitsInLoops.push_back(ClonedExitBB); 1258 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1259 ParentL = ExitL; 1260 } 1261 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1262 ParentL->contains(OrigL.getParentLoop())) && 1263 "The computed parent loop should always contain (or be) the parent of " 1264 "the original loop."); 1265 1266 // We build the set of blocks dominated by the cloned header from the set of 1267 // cloned blocks out of the original loop. While not all of these will 1268 // necessarily be in the cloned loop, it is enough to establish that they 1269 // aren't in unreachable cycles, etc. 1270 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1271 for (auto *BB : OrigL.blocks()) 1272 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1273 ClonedLoopBlocks.insert(ClonedBB); 1274 1275 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1276 // skipped cloning some region of this loop which can in turn skip some of 1277 // the backedges so we have to rebuild the blocks in the loop based on the 1278 // backedges that remain after cloning. 1279 SmallVector<BasicBlock *, 16> Worklist; 1280 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1281 for (auto *Pred : predecessors(ClonedHeader)) { 1282 // The only possible non-loop header predecessor is the preheader because 1283 // we know we cloned the loop in simplified form. 1284 if (Pred == ClonedPH) 1285 continue; 1286 1287 // Because the loop was in simplified form, the only non-loop predecessor 1288 // should be the preheader. 1289 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1290 "header other than the preheader " 1291 "that is not part of the loop!"); 1292 1293 // Insert this block into the loop set and on the first visit (and if it 1294 // isn't the header we're currently walking) put it into the worklist to 1295 // recurse through. 1296 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1297 Worklist.push_back(Pred); 1298 } 1299 1300 // If we had any backedges then there *is* a cloned loop. Put the header into 1301 // the loop set and then walk the worklist backwards to find all the blocks 1302 // that remain within the loop after cloning. 1303 if (!BlocksInClonedLoop.empty()) { 1304 BlocksInClonedLoop.insert(ClonedHeader); 1305 1306 while (!Worklist.empty()) { 1307 BasicBlock *BB = Worklist.pop_back_val(); 1308 assert(BlocksInClonedLoop.count(BB) && 1309 "Didn't put block into the loop set!"); 1310 1311 // Insert any predecessors that are in the possible set into the cloned 1312 // set, and if the insert is successful, add them to the worklist. Note 1313 // that we filter on the blocks that are definitely reachable via the 1314 // backedge to the loop header so we may prune out dead code within the 1315 // cloned loop. 1316 for (auto *Pred : predecessors(BB)) 1317 if (ClonedLoopBlocks.count(Pred) && 1318 BlocksInClonedLoop.insert(Pred).second) 1319 Worklist.push_back(Pred); 1320 } 1321 1322 ClonedL = LI.AllocateLoop(); 1323 if (ParentL) { 1324 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1325 ParentL->addChildLoop(ClonedL); 1326 } else { 1327 LI.addTopLevelLoop(ClonedL); 1328 } 1329 NonChildClonedLoops.push_back(ClonedL); 1330 1331 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1332 // We don't want to just add the cloned loop blocks based on how we 1333 // discovered them. The original order of blocks was carefully built in 1334 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1335 // that logic, we just re-walk the original blocks (and those of the child 1336 // loops) and filter them as we add them into the cloned loop. 1337 for (auto *BB : OrigL.blocks()) { 1338 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1339 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1340 continue; 1341 1342 // Directly add the blocks that are only in this loop. 1343 if (LI.getLoopFor(BB) == &OrigL) { 1344 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1345 continue; 1346 } 1347 1348 // We want to manually add it to this loop and parents. 1349 // Registering it with LoopInfo will happen when we clone the top 1350 // loop for this block. 1351 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1352 PL->addBlockEntry(ClonedBB); 1353 } 1354 1355 // Now add each child loop whose header remains within the cloned loop. All 1356 // of the blocks within the loop must satisfy the same constraints as the 1357 // header so once we pass the header checks we can just clone the entire 1358 // child loop nest. 1359 for (Loop *ChildL : OrigL) { 1360 auto *ClonedChildHeader = 1361 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1362 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1363 continue; 1364 1365 #ifndef NDEBUG 1366 // We should never have a cloned child loop header but fail to have 1367 // all of the blocks for that child loop. 1368 for (auto *ChildLoopBB : ChildL->blocks()) 1369 assert(BlocksInClonedLoop.count( 1370 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1371 "Child cloned loop has a header within the cloned outer " 1372 "loop but not all of its blocks!"); 1373 #endif 1374 1375 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1376 } 1377 } 1378 1379 // Now that we've handled all the components of the original loop that were 1380 // cloned into a new loop, we still need to handle anything from the original 1381 // loop that wasn't in a cloned loop. 1382 1383 // Figure out what blocks are left to place within any loop nest containing 1384 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1385 // them. 1386 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1387 if (BlocksInClonedLoop.empty()) 1388 UnloopedBlockSet.insert(ClonedPH); 1389 for (auto *ClonedBB : ClonedLoopBlocks) 1390 if (!BlocksInClonedLoop.count(ClonedBB)) 1391 UnloopedBlockSet.insert(ClonedBB); 1392 1393 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1394 // backwards across these to process them inside out. The order shouldn't 1395 // matter as we're just trying to build up the map from inside-out; we use 1396 // the map in a more stably ordered way below. 1397 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1398 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1399 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1400 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1401 }); 1402 1403 // Populate the existing ExitLoopMap with everything reachable from each 1404 // exit, starting from the inner most exit. 1405 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1406 assert(Worklist.empty() && "Didn't clear worklist!"); 1407 1408 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1409 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1410 1411 // Walk the CFG back until we hit the cloned PH adding everything reachable 1412 // and in the unlooped set to this exit block's loop. 1413 Worklist.push_back(ExitBB); 1414 do { 1415 BasicBlock *BB = Worklist.pop_back_val(); 1416 // We can stop recursing at the cloned preheader (if we get there). 1417 if (BB == ClonedPH) 1418 continue; 1419 1420 for (BasicBlock *PredBB : predecessors(BB)) { 1421 // If this pred has already been moved to our set or is part of some 1422 // (inner) loop, no update needed. 1423 if (!UnloopedBlockSet.erase(PredBB)) { 1424 assert( 1425 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1426 "Predecessor not mapped to a loop!"); 1427 continue; 1428 } 1429 1430 // We just insert into the loop set here. We'll add these blocks to the 1431 // exit loop after we build up the set in an order that doesn't rely on 1432 // predecessor order (which in turn relies on use list order). 1433 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1434 (void)Inserted; 1435 assert(Inserted && "Should only visit an unlooped block once!"); 1436 1437 // And recurse through to its predecessors. 1438 Worklist.push_back(PredBB); 1439 } 1440 } while (!Worklist.empty()); 1441 } 1442 1443 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1444 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1445 // in their original order adding them to the correct loop. 1446 1447 // We need a stable insertion order. We use the order of the original loop 1448 // order and map into the correct parent loop. 1449 for (auto *BB : llvm::concat<BasicBlock *const>( 1450 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1451 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1452 OuterL->addBasicBlockToLoop(BB, LI); 1453 1454 #ifndef NDEBUG 1455 for (auto &BBAndL : ExitLoopMap) { 1456 auto *BB = BBAndL.first; 1457 auto *OuterL = BBAndL.second; 1458 assert(LI.getLoopFor(BB) == OuterL && 1459 "Failed to put all blocks into outer loops!"); 1460 } 1461 #endif 1462 1463 // Now that all the blocks are placed into the correct containing loop in the 1464 // absence of child loops, find all the potentially cloned child loops and 1465 // clone them into whatever outer loop we placed their header into. 1466 for (Loop *ChildL : OrigL) { 1467 auto *ClonedChildHeader = 1468 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1469 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1470 continue; 1471 1472 #ifndef NDEBUG 1473 for (auto *ChildLoopBB : ChildL->blocks()) 1474 assert(VMap.count(ChildLoopBB) && 1475 "Cloned a child loop header but not all of that loops blocks!"); 1476 #endif 1477 1478 NonChildClonedLoops.push_back(cloneLoopNest( 1479 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1480 } 1481 } 1482 1483 static void 1484 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1485 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1486 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1487 // Find all the dead clones, and remove them from their successors. 1488 SmallVector<BasicBlock *, 16> DeadBlocks; 1489 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1490 for (auto &VMap : VMaps) 1491 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1492 if (!DT.isReachableFromEntry(ClonedBB)) { 1493 for (BasicBlock *SuccBB : successors(ClonedBB)) 1494 SuccBB->removePredecessor(ClonedBB); 1495 DeadBlocks.push_back(ClonedBB); 1496 } 1497 1498 // Remove all MemorySSA in the dead blocks 1499 if (MSSAU) { 1500 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1501 DeadBlocks.end()); 1502 MSSAU->removeBlocks(DeadBlockSet); 1503 } 1504 1505 // Drop any remaining references to break cycles. 1506 for (BasicBlock *BB : DeadBlocks) 1507 BB->dropAllReferences(); 1508 // Erase them from the IR. 1509 for (BasicBlock *BB : DeadBlocks) 1510 BB->eraseFromParent(); 1511 } 1512 1513 static void deleteDeadBlocksFromLoop(Loop &L, 1514 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1515 DominatorTree &DT, LoopInfo &LI, 1516 MemorySSAUpdater *MSSAU) { 1517 // Find all the dead blocks tied to this loop, and remove them from their 1518 // successors. 1519 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1520 1521 // Start with loop/exit blocks and get a transitive closure of reachable dead 1522 // blocks. 1523 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1524 ExitBlocks.end()); 1525 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1526 while (!DeathCandidates.empty()) { 1527 auto *BB = DeathCandidates.pop_back_val(); 1528 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1529 for (BasicBlock *SuccBB : successors(BB)) { 1530 SuccBB->removePredecessor(BB); 1531 DeathCandidates.push_back(SuccBB); 1532 } 1533 DeadBlockSet.insert(BB); 1534 } 1535 } 1536 1537 // Remove all MemorySSA in the dead blocks 1538 if (MSSAU) 1539 MSSAU->removeBlocks(DeadBlockSet); 1540 1541 // Filter out the dead blocks from the exit blocks list so that it can be 1542 // used in the caller. 1543 llvm::erase_if(ExitBlocks, 1544 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1545 1546 // Walk from this loop up through its parents removing all of the dead blocks. 1547 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1548 for (auto *BB : DeadBlockSet) 1549 ParentL->getBlocksSet().erase(BB); 1550 llvm::erase_if(ParentL->getBlocksVector(), 1551 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1552 } 1553 1554 // Now delete the dead child loops. This raw delete will clear them 1555 // recursively. 1556 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1557 if (!DeadBlockSet.count(ChildL->getHeader())) 1558 return false; 1559 1560 assert(llvm::all_of(ChildL->blocks(), 1561 [&](BasicBlock *ChildBB) { 1562 return DeadBlockSet.count(ChildBB); 1563 }) && 1564 "If the child loop header is dead all blocks in the child loop must " 1565 "be dead as well!"); 1566 LI.destroy(ChildL); 1567 return true; 1568 }); 1569 1570 // Remove the loop mappings for the dead blocks and drop all the references 1571 // from these blocks to others to handle cyclic references as we start 1572 // deleting the blocks themselves. 1573 for (auto *BB : DeadBlockSet) { 1574 // Check that the dominator tree has already been updated. 1575 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1576 LI.changeLoopFor(BB, nullptr); 1577 BB->dropAllReferences(); 1578 } 1579 1580 // Actually delete the blocks now that they've been fully unhooked from the 1581 // IR. 1582 for (auto *BB : DeadBlockSet) 1583 BB->eraseFromParent(); 1584 } 1585 1586 /// Recompute the set of blocks in a loop after unswitching. 1587 /// 1588 /// This walks from the original headers predecessors to rebuild the loop. We 1589 /// take advantage of the fact that new blocks can't have been added, and so we 1590 /// filter by the original loop's blocks. This also handles potentially 1591 /// unreachable code that we don't want to explore but might be found examining 1592 /// the predecessors of the header. 1593 /// 1594 /// If the original loop is no longer a loop, this will return an empty set. If 1595 /// it remains a loop, all the blocks within it will be added to the set 1596 /// (including those blocks in inner loops). 1597 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1598 LoopInfo &LI) { 1599 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1600 1601 auto *PH = L.getLoopPreheader(); 1602 auto *Header = L.getHeader(); 1603 1604 // A worklist to use while walking backwards from the header. 1605 SmallVector<BasicBlock *, 16> Worklist; 1606 1607 // First walk the predecessors of the header to find the backedges. This will 1608 // form the basis of our walk. 1609 for (auto *Pred : predecessors(Header)) { 1610 // Skip the preheader. 1611 if (Pred == PH) 1612 continue; 1613 1614 // Because the loop was in simplified form, the only non-loop predecessor 1615 // is the preheader. 1616 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1617 "than the preheader that is not part of the " 1618 "loop!"); 1619 1620 // Insert this block into the loop set and on the first visit and, if it 1621 // isn't the header we're currently walking, put it into the worklist to 1622 // recurse through. 1623 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1624 Worklist.push_back(Pred); 1625 } 1626 1627 // If no backedges were found, we're done. 1628 if (LoopBlockSet.empty()) 1629 return LoopBlockSet; 1630 1631 // We found backedges, recurse through them to identify the loop blocks. 1632 while (!Worklist.empty()) { 1633 BasicBlock *BB = Worklist.pop_back_val(); 1634 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1635 1636 // No need to walk past the header. 1637 if (BB == Header) 1638 continue; 1639 1640 // Because we know the inner loop structure remains valid we can use the 1641 // loop structure to jump immediately across the entire nested loop. 1642 // Further, because it is in loop simplified form, we can directly jump 1643 // to its preheader afterward. 1644 if (Loop *InnerL = LI.getLoopFor(BB)) 1645 if (InnerL != &L) { 1646 assert(L.contains(InnerL) && 1647 "Should not reach a loop *outside* this loop!"); 1648 // The preheader is the only possible predecessor of the loop so 1649 // insert it into the set and check whether it was already handled. 1650 auto *InnerPH = InnerL->getLoopPreheader(); 1651 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1652 "but not contain the inner loop " 1653 "preheader!"); 1654 if (!LoopBlockSet.insert(InnerPH).second) 1655 // The only way to reach the preheader is through the loop body 1656 // itself so if it has been visited the loop is already handled. 1657 continue; 1658 1659 // Insert all of the blocks (other than those already present) into 1660 // the loop set. We expect at least the block that led us to find the 1661 // inner loop to be in the block set, but we may also have other loop 1662 // blocks if they were already enqueued as predecessors of some other 1663 // outer loop block. 1664 for (auto *InnerBB : InnerL->blocks()) { 1665 if (InnerBB == BB) { 1666 assert(LoopBlockSet.count(InnerBB) && 1667 "Block should already be in the set!"); 1668 continue; 1669 } 1670 1671 LoopBlockSet.insert(InnerBB); 1672 } 1673 1674 // Add the preheader to the worklist so we will continue past the 1675 // loop body. 1676 Worklist.push_back(InnerPH); 1677 continue; 1678 } 1679 1680 // Insert any predecessors that were in the original loop into the new 1681 // set, and if the insert is successful, add them to the worklist. 1682 for (auto *Pred : predecessors(BB)) 1683 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1684 Worklist.push_back(Pred); 1685 } 1686 1687 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1688 1689 // We've found all the blocks participating in the loop, return our completed 1690 // set. 1691 return LoopBlockSet; 1692 } 1693 1694 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1695 /// 1696 /// The removal may have removed some child loops entirely but cannot have 1697 /// disturbed any remaining child loops. However, they may need to be hoisted 1698 /// to the parent loop (or to be top-level loops). The original loop may be 1699 /// completely removed. 1700 /// 1701 /// The sibling loops resulting from this update are returned. If the original 1702 /// loop remains a valid loop, it will be the first entry in this list with all 1703 /// of the newly sibling loops following it. 1704 /// 1705 /// Returns true if the loop remains a loop after unswitching, and false if it 1706 /// is no longer a loop after unswitching (and should not continue to be 1707 /// referenced). 1708 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1709 LoopInfo &LI, 1710 SmallVectorImpl<Loop *> &HoistedLoops) { 1711 auto *PH = L.getLoopPreheader(); 1712 1713 // Compute the actual parent loop from the exit blocks. Because we may have 1714 // pruned some exits the loop may be different from the original parent. 1715 Loop *ParentL = nullptr; 1716 SmallVector<Loop *, 4> ExitLoops; 1717 SmallVector<BasicBlock *, 4> ExitsInLoops; 1718 ExitsInLoops.reserve(ExitBlocks.size()); 1719 for (auto *ExitBB : ExitBlocks) 1720 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1721 ExitLoops.push_back(ExitL); 1722 ExitsInLoops.push_back(ExitBB); 1723 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1724 ParentL = ExitL; 1725 } 1726 1727 // Recompute the blocks participating in this loop. This may be empty if it 1728 // is no longer a loop. 1729 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1730 1731 // If we still have a loop, we need to re-set the loop's parent as the exit 1732 // block set changing may have moved it within the loop nest. Note that this 1733 // can only happen when this loop has a parent as it can only hoist the loop 1734 // *up* the nest. 1735 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1736 // Remove this loop's (original) blocks from all of the intervening loops. 1737 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1738 IL = IL->getParentLoop()) { 1739 IL->getBlocksSet().erase(PH); 1740 for (auto *BB : L.blocks()) 1741 IL->getBlocksSet().erase(BB); 1742 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1743 return BB == PH || L.contains(BB); 1744 }); 1745 } 1746 1747 LI.changeLoopFor(PH, ParentL); 1748 L.getParentLoop()->removeChildLoop(&L); 1749 if (ParentL) 1750 ParentL->addChildLoop(&L); 1751 else 1752 LI.addTopLevelLoop(&L); 1753 } 1754 1755 // Now we update all the blocks which are no longer within the loop. 1756 auto &Blocks = L.getBlocksVector(); 1757 auto BlocksSplitI = 1758 LoopBlockSet.empty() 1759 ? Blocks.begin() 1760 : std::stable_partition( 1761 Blocks.begin(), Blocks.end(), 1762 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1763 1764 // Before we erase the list of unlooped blocks, build a set of them. 1765 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1766 if (LoopBlockSet.empty()) 1767 UnloopedBlocks.insert(PH); 1768 1769 // Now erase these blocks from the loop. 1770 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1771 L.getBlocksSet().erase(BB); 1772 Blocks.erase(BlocksSplitI, Blocks.end()); 1773 1774 // Sort the exits in ascending loop depth, we'll work backwards across these 1775 // to process them inside out. 1776 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1777 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1778 }); 1779 1780 // We'll build up a set for each exit loop. 1781 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1782 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1783 1784 auto RemoveUnloopedBlocksFromLoop = 1785 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1786 for (auto *BB : UnloopedBlocks) 1787 L.getBlocksSet().erase(BB); 1788 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1789 return UnloopedBlocks.count(BB); 1790 }); 1791 }; 1792 1793 SmallVector<BasicBlock *, 16> Worklist; 1794 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1795 assert(Worklist.empty() && "Didn't clear worklist!"); 1796 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1797 1798 // Grab the next exit block, in decreasing loop depth order. 1799 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1800 Loop &ExitL = *LI.getLoopFor(ExitBB); 1801 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1802 1803 // Erase all of the unlooped blocks from the loops between the previous 1804 // exit loop and this exit loop. This works because the ExitInLoops list is 1805 // sorted in increasing order of loop depth and thus we visit loops in 1806 // decreasing order of loop depth. 1807 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1808 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1809 1810 // Walk the CFG back until we hit the cloned PH adding everything reachable 1811 // and in the unlooped set to this exit block's loop. 1812 Worklist.push_back(ExitBB); 1813 do { 1814 BasicBlock *BB = Worklist.pop_back_val(); 1815 // We can stop recursing at the cloned preheader (if we get there). 1816 if (BB == PH) 1817 continue; 1818 1819 for (BasicBlock *PredBB : predecessors(BB)) { 1820 // If this pred has already been moved to our set or is part of some 1821 // (inner) loop, no update needed. 1822 if (!UnloopedBlocks.erase(PredBB)) { 1823 assert((NewExitLoopBlocks.count(PredBB) || 1824 ExitL.contains(LI.getLoopFor(PredBB))) && 1825 "Predecessor not in a nested loop (or already visited)!"); 1826 continue; 1827 } 1828 1829 // We just insert into the loop set here. We'll add these blocks to the 1830 // exit loop after we build up the set in a deterministic order rather 1831 // than the predecessor-influenced visit order. 1832 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1833 (void)Inserted; 1834 assert(Inserted && "Should only visit an unlooped block once!"); 1835 1836 // And recurse through to its predecessors. 1837 Worklist.push_back(PredBB); 1838 } 1839 } while (!Worklist.empty()); 1840 1841 // If blocks in this exit loop were directly part of the original loop (as 1842 // opposed to a child loop) update the map to point to this exit loop. This 1843 // just updates a map and so the fact that the order is unstable is fine. 1844 for (auto *BB : NewExitLoopBlocks) 1845 if (Loop *BBL = LI.getLoopFor(BB)) 1846 if (BBL == &L || !L.contains(BBL)) 1847 LI.changeLoopFor(BB, &ExitL); 1848 1849 // We will remove the remaining unlooped blocks from this loop in the next 1850 // iteration or below. 1851 NewExitLoopBlocks.clear(); 1852 } 1853 1854 // Any remaining unlooped blocks are no longer part of any loop unless they 1855 // are part of some child loop. 1856 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1857 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1858 for (auto *BB : UnloopedBlocks) 1859 if (Loop *BBL = LI.getLoopFor(BB)) 1860 if (BBL == &L || !L.contains(BBL)) 1861 LI.changeLoopFor(BB, nullptr); 1862 1863 // Sink all the child loops whose headers are no longer in the loop set to 1864 // the parent (or to be top level loops). We reach into the loop and directly 1865 // update its subloop vector to make this batch update efficient. 1866 auto &SubLoops = L.getSubLoopsVector(); 1867 auto SubLoopsSplitI = 1868 LoopBlockSet.empty() 1869 ? SubLoops.begin() 1870 : std::stable_partition( 1871 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1872 return LoopBlockSet.count(SubL->getHeader()); 1873 }); 1874 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1875 HoistedLoops.push_back(HoistedL); 1876 HoistedL->setParentLoop(nullptr); 1877 1878 // To compute the new parent of this hoisted loop we look at where we 1879 // placed the preheader above. We can't lookup the header itself because we 1880 // retained the mapping from the header to the hoisted loop. But the 1881 // preheader and header should have the exact same new parent computed 1882 // based on the set of exit blocks from the original loop as the preheader 1883 // is a predecessor of the header and so reached in the reverse walk. And 1884 // because the loops were all in simplified form the preheader of the 1885 // hoisted loop can't be part of some *other* loop. 1886 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1887 NewParentL->addChildLoop(HoistedL); 1888 else 1889 LI.addTopLevelLoop(HoistedL); 1890 } 1891 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1892 1893 // Actually delete the loop if nothing remained within it. 1894 if (Blocks.empty()) { 1895 assert(SubLoops.empty() && 1896 "Failed to remove all subloops from the original loop!"); 1897 if (Loop *ParentL = L.getParentLoop()) 1898 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1899 else 1900 LI.removeLoop(llvm::find(LI, &L)); 1901 LI.destroy(&L); 1902 return false; 1903 } 1904 1905 return true; 1906 } 1907 1908 /// Helper to visit a dominator subtree, invoking a callable on each node. 1909 /// 1910 /// Returning false at any point will stop walking past that node of the tree. 1911 template <typename CallableT> 1912 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1913 SmallVector<DomTreeNode *, 4> DomWorklist; 1914 DomWorklist.push_back(DT[BB]); 1915 #ifndef NDEBUG 1916 SmallPtrSet<DomTreeNode *, 4> Visited; 1917 Visited.insert(DT[BB]); 1918 #endif 1919 do { 1920 DomTreeNode *N = DomWorklist.pop_back_val(); 1921 1922 // Visit this node. 1923 if (!Callable(N->getBlock())) 1924 continue; 1925 1926 // Accumulate the child nodes. 1927 for (DomTreeNode *ChildN : *N) { 1928 assert(Visited.insert(ChildN).second && 1929 "Cannot visit a node twice when walking a tree!"); 1930 DomWorklist.push_back(ChildN); 1931 } 1932 } while (!DomWorklist.empty()); 1933 } 1934 1935 static void unswitchNontrivialInvariants( 1936 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1937 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1938 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1939 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1940 auto *ParentBB = TI.getParent(); 1941 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1942 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1943 1944 // We can only unswitch switches, conditional branches with an invariant 1945 // condition, or combining invariant conditions with an instruction. 1946 assert((SI || (BI && BI->isConditional())) && 1947 "Can only unswitch switches and conditional branch!"); 1948 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1949 if (FullUnswitch) 1950 assert(Invariants.size() == 1 && 1951 "Cannot have other invariants with full unswitching!"); 1952 else 1953 assert(isa<Instruction>(BI->getCondition()) && 1954 "Partial unswitching requires an instruction as the condition!"); 1955 1956 if (MSSAU && VerifyMemorySSA) 1957 MSSAU->getMemorySSA()->verifyMemorySSA(); 1958 1959 // Constant and BBs tracking the cloned and continuing successor. When we are 1960 // unswitching the entire condition, this can just be trivially chosen to 1961 // unswitch towards `true`. However, when we are unswitching a set of 1962 // invariants combined with `and` or `or`, the combining operation determines 1963 // the best direction to unswitch: we want to unswitch the direction that will 1964 // collapse the branch. 1965 bool Direction = true; 1966 int ClonedSucc = 0; 1967 if (!FullUnswitch) { 1968 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1969 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1970 Instruction::And && 1971 "Only `or` and `and` instructions can combine invariants being " 1972 "unswitched."); 1973 Direction = false; 1974 ClonedSucc = 1; 1975 } 1976 } 1977 1978 BasicBlock *RetainedSuccBB = 1979 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1980 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1981 if (BI) 1982 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1983 else 1984 for (auto Case : SI->cases()) 1985 if (Case.getCaseSuccessor() != RetainedSuccBB) 1986 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1987 1988 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1989 "Should not unswitch the same successor we are retaining!"); 1990 1991 // The branch should be in this exact loop. Any inner loop's invariant branch 1992 // should be handled by unswitching that inner loop. The caller of this 1993 // routine should filter out any candidates that remain (but were skipped for 1994 // whatever reason). 1995 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1996 1997 // Compute the parent loop now before we start hacking on things. 1998 Loop *ParentL = L.getParentLoop(); 1999 // Get blocks in RPO order for MSSA update, before changing the CFG. 2000 LoopBlocksRPO LBRPO(&L); 2001 if (MSSAU) 2002 LBRPO.perform(&LI); 2003 2004 // Compute the outer-most loop containing one of our exit blocks. This is the 2005 // furthest up our loopnest which can be mutated, which we will use below to 2006 // update things. 2007 Loop *OuterExitL = &L; 2008 for (auto *ExitBB : ExitBlocks) { 2009 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2010 if (!NewOuterExitL) { 2011 // We exited the entire nest with this block, so we're done. 2012 OuterExitL = nullptr; 2013 break; 2014 } 2015 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2016 OuterExitL = NewOuterExitL; 2017 } 2018 2019 // At this point, we're definitely going to unswitch something so invalidate 2020 // any cached information in ScalarEvolution for the outer most loop 2021 // containing an exit block and all nested loops. 2022 if (SE) { 2023 if (OuterExitL) 2024 SE->forgetLoop(OuterExitL); 2025 else 2026 SE->forgetTopmostLoop(&L); 2027 } 2028 2029 // If the edge from this terminator to a successor dominates that successor, 2030 // store a map from each block in its dominator subtree to it. This lets us 2031 // tell when cloning for a particular successor if a block is dominated by 2032 // some *other* successor with a single data structure. We use this to 2033 // significantly reduce cloning. 2034 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2035 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2036 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2037 if (SuccBB->getUniquePredecessor() || 2038 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2039 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2040 })) 2041 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2042 DominatingSucc[BB] = SuccBB; 2043 return true; 2044 }); 2045 2046 // Split the preheader, so that we know that there is a safe place to insert 2047 // the conditional branch. We will change the preheader to have a conditional 2048 // branch on LoopCond. The original preheader will become the split point 2049 // between the unswitched versions, and we will have a new preheader for the 2050 // original loop. 2051 BasicBlock *SplitBB = L.getLoopPreheader(); 2052 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2053 2054 // Keep track of the dominator tree updates needed. 2055 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2056 2057 // Clone the loop for each unswitched successor. 2058 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2059 VMaps.reserve(UnswitchedSuccBBs.size()); 2060 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2061 for (auto *SuccBB : UnswitchedSuccBBs) { 2062 VMaps.emplace_back(new ValueToValueMapTy()); 2063 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2064 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2065 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2066 } 2067 2068 // The stitching of the branched code back together depends on whether we're 2069 // doing full unswitching or not with the exception that we always want to 2070 // nuke the initial terminator placed in the split block. 2071 SplitBB->getTerminator()->eraseFromParent(); 2072 if (FullUnswitch) { 2073 // Splice the terminator from the original loop and rewrite its 2074 // successors. 2075 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2076 2077 // Keep a clone of the terminator for MSSA updates. 2078 Instruction *NewTI = TI.clone(); 2079 ParentBB->getInstList().push_back(NewTI); 2080 2081 // First wire up the moved terminator to the preheaders. 2082 if (BI) { 2083 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2084 BI->setSuccessor(ClonedSucc, ClonedPH); 2085 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2086 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2087 } else { 2088 assert(SI && "Must either be a branch or switch!"); 2089 2090 // Walk the cases and directly update their successors. 2091 assert(SI->getDefaultDest() == RetainedSuccBB && 2092 "Not retaining default successor!"); 2093 SI->setDefaultDest(LoopPH); 2094 for (auto &Case : SI->cases()) 2095 if (Case.getCaseSuccessor() == RetainedSuccBB) 2096 Case.setSuccessor(LoopPH); 2097 else 2098 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2099 2100 // We need to use the set to populate domtree updates as even when there 2101 // are multiple cases pointing at the same successor we only want to 2102 // remove and insert one edge in the domtree. 2103 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2104 DTUpdates.push_back( 2105 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2106 } 2107 2108 if (MSSAU) { 2109 DT.applyUpdates(DTUpdates); 2110 DTUpdates.clear(); 2111 2112 // Remove all but one edge to the retained block and all unswitched 2113 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2114 // when we know we only keep a single edge for each case. 2115 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2116 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2117 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2118 2119 for (auto &VMap : VMaps) 2120 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2121 /*IgnoreIncomingWithNoClones=*/true); 2122 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2123 2124 // Remove all edges to unswitched blocks. 2125 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2126 MSSAU->removeEdge(ParentBB, SuccBB); 2127 } 2128 2129 // Now unhook the successor relationship as we'll be replacing 2130 // the terminator with a direct branch. This is much simpler for branches 2131 // than switches so we handle those first. 2132 if (BI) { 2133 // Remove the parent as a predecessor of the unswitched successor. 2134 assert(UnswitchedSuccBBs.size() == 1 && 2135 "Only one possible unswitched block for a branch!"); 2136 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2137 UnswitchedSuccBB->removePredecessor(ParentBB, 2138 /*KeepOneInputPHIs*/ true); 2139 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2140 } else { 2141 // Note that we actually want to remove the parent block as a predecessor 2142 // of *every* case successor. The case successor is either unswitched, 2143 // completely eliminating an edge from the parent to that successor, or it 2144 // is a duplicate edge to the retained successor as the retained successor 2145 // is always the default successor and as we'll replace this with a direct 2146 // branch we no longer need the duplicate entries in the PHI nodes. 2147 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2148 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2149 "Not retaining default successor!"); 2150 for (auto &Case : NewSI->cases()) 2151 Case.getCaseSuccessor()->removePredecessor( 2152 ParentBB, 2153 /*KeepOneInputPHIs*/ true); 2154 2155 // We need to use the set to populate domtree updates as even when there 2156 // are multiple cases pointing at the same successor we only want to 2157 // remove and insert one edge in the domtree. 2158 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2159 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2160 } 2161 2162 // After MSSAU update, remove the cloned terminator instruction NewTI. 2163 ParentBB->getTerminator()->eraseFromParent(); 2164 2165 // Create a new unconditional branch to the continuing block (as opposed to 2166 // the one cloned). 2167 BranchInst::Create(RetainedSuccBB, ParentBB); 2168 } else { 2169 assert(BI && "Only branches have partial unswitching."); 2170 assert(UnswitchedSuccBBs.size() == 1 && 2171 "Only one possible unswitched block for a branch!"); 2172 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2173 // When doing a partial unswitch, we have to do a bit more work to build up 2174 // the branch in the split block. 2175 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2176 *ClonedPH, *LoopPH); 2177 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2178 2179 if (MSSAU) { 2180 DT.applyUpdates(DTUpdates); 2181 DTUpdates.clear(); 2182 2183 // Perform MSSA cloning updates. 2184 for (auto &VMap : VMaps) 2185 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2186 /*IgnoreIncomingWithNoClones=*/true); 2187 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2188 } 2189 } 2190 2191 // Apply the updates accumulated above to get an up-to-date dominator tree. 2192 DT.applyUpdates(DTUpdates); 2193 2194 // Now that we have an accurate dominator tree, first delete the dead cloned 2195 // blocks so that we can accurately build any cloned loops. It is important to 2196 // not delete the blocks from the original loop yet because we still want to 2197 // reference the original loop to understand the cloned loop's structure. 2198 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2199 2200 // Build the cloned loop structure itself. This may be substantially 2201 // different from the original structure due to the simplified CFG. This also 2202 // handles inserting all the cloned blocks into the correct loops. 2203 SmallVector<Loop *, 4> NonChildClonedLoops; 2204 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2205 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2206 2207 // Now that our cloned loops have been built, we can update the original loop. 2208 // First we delete the dead blocks from it and then we rebuild the loop 2209 // structure taking these deletions into account. 2210 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2211 2212 if (MSSAU && VerifyMemorySSA) 2213 MSSAU->getMemorySSA()->verifyMemorySSA(); 2214 2215 SmallVector<Loop *, 4> HoistedLoops; 2216 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2217 2218 if (MSSAU && VerifyMemorySSA) 2219 MSSAU->getMemorySSA()->verifyMemorySSA(); 2220 2221 // This transformation has a high risk of corrupting the dominator tree, and 2222 // the below steps to rebuild loop structures will result in hard to debug 2223 // errors in that case so verify that the dominator tree is sane first. 2224 // FIXME: Remove this when the bugs stop showing up and rely on existing 2225 // verification steps. 2226 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2227 2228 if (BI) { 2229 // If we unswitched a branch which collapses the condition to a known 2230 // constant we want to replace all the uses of the invariants within both 2231 // the original and cloned blocks. We do this here so that we can use the 2232 // now updated dominator tree to identify which side the users are on. 2233 assert(UnswitchedSuccBBs.size() == 1 && 2234 "Only one possible unswitched block for a branch!"); 2235 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2236 2237 // When considering multiple partially-unswitched invariants 2238 // we cant just go replace them with constants in both branches. 2239 // 2240 // For 'AND' we infer that true branch ("continue") means true 2241 // for each invariant operand. 2242 // For 'OR' we can infer that false branch ("continue") means false 2243 // for each invariant operand. 2244 // So it happens that for multiple-partial case we dont replace 2245 // in the unswitched branch. 2246 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2247 2248 ConstantInt *UnswitchedReplacement = 2249 Direction ? ConstantInt::getTrue(BI->getContext()) 2250 : ConstantInt::getFalse(BI->getContext()); 2251 ConstantInt *ContinueReplacement = 2252 Direction ? ConstantInt::getFalse(BI->getContext()) 2253 : ConstantInt::getTrue(BI->getContext()); 2254 for (Value *Invariant : Invariants) 2255 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2256 UI != UE;) { 2257 // Grab the use and walk past it so we can clobber it in the use list. 2258 Use *U = &*UI++; 2259 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2260 if (!UserI) 2261 continue; 2262 2263 // Replace it with the 'continue' side if in the main loop body, and the 2264 // unswitched if in the cloned blocks. 2265 if (DT.dominates(LoopPH, UserI->getParent())) 2266 U->set(ContinueReplacement); 2267 else if (ReplaceUnswitched && 2268 DT.dominates(ClonedPH, UserI->getParent())) 2269 U->set(UnswitchedReplacement); 2270 } 2271 } 2272 2273 // We can change which blocks are exit blocks of all the cloned sibling 2274 // loops, the current loop, and any parent loops which shared exit blocks 2275 // with the current loop. As a consequence, we need to re-form LCSSA for 2276 // them. But we shouldn't need to re-form LCSSA for any child loops. 2277 // FIXME: This could be made more efficient by tracking which exit blocks are 2278 // new, and focusing on them, but that isn't likely to be necessary. 2279 // 2280 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2281 // loop nest and update every loop that could have had its exits changed. We 2282 // also need to cover any intervening loops. We add all of these loops to 2283 // a list and sort them by loop depth to achieve this without updating 2284 // unnecessary loops. 2285 auto UpdateLoop = [&](Loop &UpdateL) { 2286 #ifndef NDEBUG 2287 UpdateL.verifyLoop(); 2288 for (Loop *ChildL : UpdateL) { 2289 ChildL->verifyLoop(); 2290 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2291 "Perturbed a child loop's LCSSA form!"); 2292 } 2293 #endif 2294 // First build LCSSA for this loop so that we can preserve it when 2295 // forming dedicated exits. We don't want to perturb some other loop's 2296 // LCSSA while doing that CFG edit. 2297 formLCSSA(UpdateL, DT, &LI, SE); 2298 2299 // For loops reached by this loop's original exit blocks we may 2300 // introduced new, non-dedicated exits. At least try to re-form dedicated 2301 // exits for these loops. This may fail if they couldn't have dedicated 2302 // exits to start with. 2303 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2304 }; 2305 2306 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2307 // and we can do it in any order as they don't nest relative to each other. 2308 // 2309 // Also check if any of the loops we have updated have become top-level loops 2310 // as that will necessitate widening the outer loop scope. 2311 for (Loop *UpdatedL : 2312 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2313 UpdateLoop(*UpdatedL); 2314 if (!UpdatedL->getParentLoop()) 2315 OuterExitL = nullptr; 2316 } 2317 if (IsStillLoop) { 2318 UpdateLoop(L); 2319 if (!L.getParentLoop()) 2320 OuterExitL = nullptr; 2321 } 2322 2323 // If the original loop had exit blocks, walk up through the outer most loop 2324 // of those exit blocks to update LCSSA and form updated dedicated exits. 2325 if (OuterExitL != &L) 2326 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2327 OuterL = OuterL->getParentLoop()) 2328 UpdateLoop(*OuterL); 2329 2330 #ifndef NDEBUG 2331 // Verify the entire loop structure to catch any incorrect updates before we 2332 // progress in the pass pipeline. 2333 LI.verify(DT); 2334 #endif 2335 2336 // Now that we've unswitched something, make callbacks to report the changes. 2337 // For that we need to merge together the updated loops and the cloned loops 2338 // and check whether the original loop survived. 2339 SmallVector<Loop *, 4> SibLoops; 2340 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2341 if (UpdatedL->getParentLoop() == ParentL) 2342 SibLoops.push_back(UpdatedL); 2343 UnswitchCB(IsStillLoop, SibLoops); 2344 2345 if (MSSAU && VerifyMemorySSA) 2346 MSSAU->getMemorySSA()->verifyMemorySSA(); 2347 2348 if (BI) 2349 ++NumBranches; 2350 else 2351 ++NumSwitches; 2352 } 2353 2354 /// Recursively compute the cost of a dominator subtree based on the per-block 2355 /// cost map provided. 2356 /// 2357 /// The recursive computation is memozied into the provided DT-indexed cost map 2358 /// to allow querying it for most nodes in the domtree without it becoming 2359 /// quadratic. 2360 static int 2361 computeDomSubtreeCost(DomTreeNode &N, 2362 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2363 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2364 // Don't accumulate cost (or recurse through) blocks not in our block cost 2365 // map and thus not part of the duplication cost being considered. 2366 auto BBCostIt = BBCostMap.find(N.getBlock()); 2367 if (BBCostIt == BBCostMap.end()) 2368 return 0; 2369 2370 // Lookup this node to see if we already computed its cost. 2371 auto DTCostIt = DTCostMap.find(&N); 2372 if (DTCostIt != DTCostMap.end()) 2373 return DTCostIt->second; 2374 2375 // If not, we have to compute it. We can't use insert above and update 2376 // because computing the cost may insert more things into the map. 2377 int Cost = std::accumulate( 2378 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2379 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2380 }); 2381 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2382 (void)Inserted; 2383 assert(Inserted && "Should not insert a node while visiting children!"); 2384 return Cost; 2385 } 2386 2387 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2388 /// making the following replacement: 2389 /// 2390 /// --code before guard-- 2391 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2392 /// --code after guard-- 2393 /// 2394 /// into 2395 /// 2396 /// --code before guard-- 2397 /// br i1 %cond, label %guarded, label %deopt 2398 /// 2399 /// guarded: 2400 /// --code after guard-- 2401 /// 2402 /// deopt: 2403 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2404 /// unreachable 2405 /// 2406 /// It also makes all relevant DT and LI updates, so that all structures are in 2407 /// valid state after this transform. 2408 static BranchInst * 2409 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2410 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2411 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2412 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2413 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2414 BasicBlock *CheckBB = GI->getParent(); 2415 2416 if (MSSAU && VerifyMemorySSA) 2417 MSSAU->getMemorySSA()->verifyMemorySSA(); 2418 2419 // Remove all CheckBB's successors from DomTree. A block can be seen among 2420 // successors more than once, but for DomTree it should be added only once. 2421 SmallPtrSet<BasicBlock *, 4> Successors; 2422 for (auto *Succ : successors(CheckBB)) 2423 if (Successors.insert(Succ).second) 2424 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2425 2426 Instruction *DeoptBlockTerm = 2427 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2428 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2429 // SplitBlockAndInsertIfThen inserts control flow that branches to 2430 // DeoptBlockTerm if the condition is true. We want the opposite. 2431 CheckBI->swapSuccessors(); 2432 2433 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2434 GuardedBlock->setName("guarded"); 2435 CheckBI->getSuccessor(1)->setName("deopt"); 2436 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2437 2438 // We now have a new exit block. 2439 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2440 2441 if (MSSAU) 2442 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2443 2444 GI->moveBefore(DeoptBlockTerm); 2445 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2446 2447 // Add new successors of CheckBB into DomTree. 2448 for (auto *Succ : successors(CheckBB)) 2449 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2450 2451 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2452 // successors. 2453 for (auto *Succ : Successors) 2454 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2455 2456 // Make proper changes to DT. 2457 DT.applyUpdates(DTUpdates); 2458 // Inform LI of a new loop block. 2459 L.addBasicBlockToLoop(GuardedBlock, LI); 2460 2461 if (MSSAU) { 2462 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2463 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2464 if (VerifyMemorySSA) 2465 MSSAU->getMemorySSA()->verifyMemorySSA(); 2466 } 2467 2468 ++NumGuards; 2469 return CheckBI; 2470 } 2471 2472 /// Cost multiplier is a way to limit potentially exponential behavior 2473 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2474 /// candidates available. Also accounting for the number of "sibling" loops with 2475 /// the idea to account for previous unswitches that already happened on this 2476 /// cluster of loops. There was an attempt to keep this formula simple, 2477 /// just enough to limit the worst case behavior. Even if it is not that simple 2478 /// now it is still not an attempt to provide a detailed heuristic size 2479 /// prediction. 2480 /// 2481 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2482 /// unswitch candidates, making adequate predictions instead of wild guesses. 2483 /// That requires knowing not just the number of "remaining" candidates but 2484 /// also costs of unswitching for each of these candidates. 2485 static int CalculateUnswitchCostMultiplier( 2486 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2487 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2488 UnswitchCandidates) { 2489 2490 // Guards and other exiting conditions do not contribute to exponential 2491 // explosion as soon as they dominate the latch (otherwise there might be 2492 // another path to the latch remaining that does not allow to eliminate the 2493 // loop copy on unswitch). 2494 BasicBlock *Latch = L.getLoopLatch(); 2495 BasicBlock *CondBlock = TI.getParent(); 2496 if (DT.dominates(CondBlock, Latch) && 2497 (isGuard(&TI) || 2498 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2499 return L.contains(SuccBB); 2500 }) <= 1)) { 2501 NumCostMultiplierSkipped++; 2502 return 1; 2503 } 2504 2505 auto *ParentL = L.getParentLoop(); 2506 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2507 : std::distance(LI.begin(), LI.end())); 2508 // Count amount of clones that all the candidates might cause during 2509 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2510 int UnswitchedClones = 0; 2511 for (auto Candidate : UnswitchCandidates) { 2512 Instruction *CI = Candidate.first; 2513 BasicBlock *CondBlock = CI->getParent(); 2514 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2515 if (isGuard(CI)) { 2516 if (!SkipExitingSuccessors) 2517 UnswitchedClones++; 2518 continue; 2519 } 2520 int NonExitingSuccessors = llvm::count_if( 2521 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2522 return !SkipExitingSuccessors || L.contains(SuccBB); 2523 }); 2524 UnswitchedClones += Log2_32(NonExitingSuccessors); 2525 } 2526 2527 // Ignore up to the "unscaled candidates" number of unswitch candidates 2528 // when calculating the power-of-two scaling of the cost. The main idea 2529 // with this control is to allow a small number of unswitches to happen 2530 // and rely more on siblings multiplier (see below) when the number 2531 // of candidates is small. 2532 unsigned ClonesPower = 2533 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2534 2535 // Allowing top-level loops to spread a bit more than nested ones. 2536 int SiblingsMultiplier = 2537 std::max((ParentL ? SiblingsCount 2538 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2539 1); 2540 // Compute the cost multiplier in a way that won't overflow by saturating 2541 // at an upper bound. 2542 int CostMultiplier; 2543 if (ClonesPower > Log2_32(UnswitchThreshold) || 2544 SiblingsMultiplier > UnswitchThreshold) 2545 CostMultiplier = UnswitchThreshold; 2546 else 2547 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2548 (int)UnswitchThreshold); 2549 2550 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2551 << " (siblings " << SiblingsMultiplier << " * clones " 2552 << (1 << ClonesPower) << ")" 2553 << " for unswitch candidate: " << TI << "\n"); 2554 return CostMultiplier; 2555 } 2556 2557 static bool 2558 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2559 AssumptionCache &AC, TargetTransformInfo &TTI, 2560 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2561 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2562 // Collect all invariant conditions within this loop (as opposed to an inner 2563 // loop which would be handled when visiting that inner loop). 2564 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2565 UnswitchCandidates; 2566 2567 // Whether or not we should also collect guards in the loop. 2568 bool CollectGuards = false; 2569 if (UnswitchGuards) { 2570 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2571 Intrinsic::getName(Intrinsic::experimental_guard)); 2572 if (GuardDecl && !GuardDecl->use_empty()) 2573 CollectGuards = true; 2574 } 2575 2576 for (auto *BB : L.blocks()) { 2577 if (LI.getLoopFor(BB) != &L) 2578 continue; 2579 2580 if (CollectGuards) 2581 for (auto &I : *BB) 2582 if (isGuard(&I)) { 2583 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2584 // TODO: Support AND, OR conditions and partial unswitching. 2585 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2586 UnswitchCandidates.push_back({&I, {Cond}}); 2587 } 2588 2589 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2590 // We can only consider fully loop-invariant switch conditions as we need 2591 // to completely eliminate the switch after unswitching. 2592 if (!isa<Constant>(SI->getCondition()) && 2593 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2594 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2595 continue; 2596 } 2597 2598 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2599 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2600 BI->getSuccessor(0) == BI->getSuccessor(1)) 2601 continue; 2602 2603 if (L.isLoopInvariant(BI->getCondition())) { 2604 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2605 continue; 2606 } 2607 2608 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2609 if (CondI.getOpcode() != Instruction::And && 2610 CondI.getOpcode() != Instruction::Or) 2611 continue; 2612 2613 TinyPtrVector<Value *> Invariants = 2614 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2615 if (Invariants.empty()) 2616 continue; 2617 2618 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2619 } 2620 2621 // If we didn't find any candidates, we're done. 2622 if (UnswitchCandidates.empty()) 2623 return false; 2624 2625 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2626 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2627 // irreducible control flow into reducible control flow and introduce new 2628 // loops "out of thin air". If we ever discover important use cases for doing 2629 // this, we can add support to loop unswitch, but it is a lot of complexity 2630 // for what seems little or no real world benefit. 2631 LoopBlocksRPO RPOT(&L); 2632 RPOT.perform(&LI); 2633 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2634 return false; 2635 2636 SmallVector<BasicBlock *, 4> ExitBlocks; 2637 L.getUniqueExitBlocks(ExitBlocks); 2638 2639 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2640 // don't know how to split those exit blocks. 2641 // FIXME: We should teach SplitBlock to handle this and remove this 2642 // restriction. 2643 for (auto *ExitBB : ExitBlocks) 2644 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2645 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2646 return false; 2647 } 2648 2649 LLVM_DEBUG( 2650 dbgs() << "Considering " << UnswitchCandidates.size() 2651 << " non-trivial loop invariant conditions for unswitching.\n"); 2652 2653 // Given that unswitching these terminators will require duplicating parts of 2654 // the loop, so we need to be able to model that cost. Compute the ephemeral 2655 // values and set up a data structure to hold per-BB costs. We cache each 2656 // block's cost so that we don't recompute this when considering different 2657 // subsets of the loop for duplication during unswitching. 2658 SmallPtrSet<const Value *, 4> EphValues; 2659 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2660 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2661 2662 // Compute the cost of each block, as well as the total loop cost. Also, bail 2663 // out if we see instructions which are incompatible with loop unswitching 2664 // (convergent, noduplicate, or cross-basic-block tokens). 2665 // FIXME: We might be able to safely handle some of these in non-duplicated 2666 // regions. 2667 int LoopCost = 0; 2668 for (auto *BB : L.blocks()) { 2669 int Cost = 0; 2670 for (auto &I : *BB) { 2671 if (EphValues.count(&I)) 2672 continue; 2673 2674 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2675 return false; 2676 if (auto *CB = dyn_cast<CallBase>(&I)) 2677 if (CB->isConvergent() || CB->cannotDuplicate()) 2678 return false; 2679 2680 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize); 2681 } 2682 assert(Cost >= 0 && "Must not have negative costs!"); 2683 LoopCost += Cost; 2684 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2685 BBCostMap[BB] = Cost; 2686 } 2687 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2688 2689 // Now we find the best candidate by searching for the one with the following 2690 // properties in order: 2691 // 2692 // 1) An unswitching cost below the threshold 2693 // 2) The smallest number of duplicated unswitch candidates (to avoid 2694 // creating redundant subsequent unswitching) 2695 // 3) The smallest cost after unswitching. 2696 // 2697 // We prioritize reducing fanout of unswitch candidates provided the cost 2698 // remains below the threshold because this has a multiplicative effect. 2699 // 2700 // This requires memoizing each dominator subtree to avoid redundant work. 2701 // 2702 // FIXME: Need to actually do the number of candidates part above. 2703 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2704 // Given a terminator which might be unswitched, computes the non-duplicated 2705 // cost for that terminator. 2706 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2707 BasicBlock &BB = *TI.getParent(); 2708 SmallPtrSet<BasicBlock *, 4> Visited; 2709 2710 int Cost = LoopCost; 2711 for (BasicBlock *SuccBB : successors(&BB)) { 2712 // Don't count successors more than once. 2713 if (!Visited.insert(SuccBB).second) 2714 continue; 2715 2716 // If this is a partial unswitch candidate, then it must be a conditional 2717 // branch with a condition of either `or` or `and`. In that case, one of 2718 // the successors is necessarily duplicated, so don't even try to remove 2719 // its cost. 2720 if (!FullUnswitch) { 2721 auto &BI = cast<BranchInst>(TI); 2722 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2723 Instruction::And) { 2724 if (SuccBB == BI.getSuccessor(1)) 2725 continue; 2726 } else { 2727 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2728 Instruction::Or && 2729 "Only `and` and `or` conditions can result in a partial " 2730 "unswitch!"); 2731 if (SuccBB == BI.getSuccessor(0)) 2732 continue; 2733 } 2734 } 2735 2736 // This successor's domtree will not need to be duplicated after 2737 // unswitching if the edge to the successor dominates it (and thus the 2738 // entire tree). This essentially means there is no other path into this 2739 // subtree and so it will end up live in only one clone of the loop. 2740 if (SuccBB->getUniquePredecessor() || 2741 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2742 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2743 })) { 2744 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2745 assert(Cost >= 0 && 2746 "Non-duplicated cost should never exceed total loop cost!"); 2747 } 2748 } 2749 2750 // Now scale the cost by the number of unique successors minus one. We 2751 // subtract one because there is already at least one copy of the entire 2752 // loop. This is computing the new cost of unswitching a condition. 2753 // Note that guards always have 2 unique successors that are implicit and 2754 // will be materialized if we decide to unswitch it. 2755 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2756 assert(SuccessorsCount > 1 && 2757 "Cannot unswitch a condition without multiple distinct successors!"); 2758 return Cost * (SuccessorsCount - 1); 2759 }; 2760 Instruction *BestUnswitchTI = nullptr; 2761 int BestUnswitchCost = 0; 2762 ArrayRef<Value *> BestUnswitchInvariants; 2763 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2764 Instruction &TI = *TerminatorAndInvariants.first; 2765 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2766 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2767 int CandidateCost = ComputeUnswitchedCost( 2768 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2769 Invariants[0] == BI->getCondition())); 2770 // Calculate cost multiplier which is a tool to limit potentially 2771 // exponential behavior of loop-unswitch. 2772 if (EnableUnswitchCostMultiplier) { 2773 int CostMultiplier = 2774 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2775 assert( 2776 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2777 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2778 CandidateCost *= CostMultiplier; 2779 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2780 << " (multiplier: " << CostMultiplier << ")" 2781 << " for unswitch candidate: " << TI << "\n"); 2782 } else { 2783 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2784 << " for unswitch candidate: " << TI << "\n"); 2785 } 2786 2787 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2788 BestUnswitchTI = &TI; 2789 BestUnswitchCost = CandidateCost; 2790 BestUnswitchInvariants = Invariants; 2791 } 2792 } 2793 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2794 2795 if (BestUnswitchCost >= UnswitchThreshold) { 2796 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2797 << BestUnswitchCost << "\n"); 2798 return false; 2799 } 2800 2801 // If the best candidate is a guard, turn it into a branch. 2802 if (isGuard(BestUnswitchTI)) 2803 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2804 ExitBlocks, DT, LI, MSSAU); 2805 2806 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2807 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2808 << "\n"); 2809 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2810 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2811 return true; 2812 } 2813 2814 /// Unswitch control flow predicated on loop invariant conditions. 2815 /// 2816 /// This first hoists all branches or switches which are trivial (IE, do not 2817 /// require duplicating any part of the loop) out of the loop body. It then 2818 /// looks at other loop invariant control flows and tries to unswitch those as 2819 /// well by cloning the loop if the result is small enough. 2820 /// 2821 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2822 /// updated based on the unswitch. 2823 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2824 /// 2825 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2826 /// true, we will attempt to do non-trivial unswitching as well as trivial 2827 /// unswitching. 2828 /// 2829 /// The `UnswitchCB` callback provided will be run after unswitching is 2830 /// complete, with the first parameter set to `true` if the provided loop 2831 /// remains a loop, and a list of new sibling loops created. 2832 /// 2833 /// If `SE` is non-null, we will update that analysis based on the unswitching 2834 /// done. 2835 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2836 AssumptionCache &AC, TargetTransformInfo &TTI, 2837 bool NonTrivial, 2838 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2839 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2840 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2841 "Loops must be in LCSSA form before unswitching."); 2842 bool Changed = false; 2843 2844 // Must be in loop simplified form: we need a preheader and dedicated exits. 2845 if (!L.isLoopSimplifyForm()) 2846 return false; 2847 2848 // Try trivial unswitch first before loop over other basic blocks in the loop. 2849 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2850 // If we unswitched successfully we will want to clean up the loop before 2851 // processing it further so just mark it as unswitched and return. 2852 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2853 return true; 2854 } 2855 2856 // If we're not doing non-trivial unswitching, we're done. We both accept 2857 // a parameter but also check a local flag that can be used for testing 2858 // a debugging. 2859 if (!NonTrivial && !EnableNonTrivialUnswitch) 2860 return false; 2861 2862 // For non-trivial unswitching, because it often creates new loops, we rely on 2863 // the pass manager to iterate on the loops rather than trying to immediately 2864 // reach a fixed point. There is no substantial advantage to iterating 2865 // internally, and if any of the new loops are simplified enough to contain 2866 // trivial unswitching we want to prefer those. 2867 2868 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2869 // a partial unswitch when possible below the threshold. 2870 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2871 return true; 2872 2873 // No other opportunities to unswitch. 2874 return Changed; 2875 } 2876 2877 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2878 LoopStandardAnalysisResults &AR, 2879 LPMUpdater &U) { 2880 Function &F = *L.getHeader()->getParent(); 2881 (void)F; 2882 2883 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2884 << "\n"); 2885 2886 // Save the current loop name in a variable so that we can report it even 2887 // after it has been deleted. 2888 std::string LoopName = std::string(L.getName()); 2889 2890 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2891 ArrayRef<Loop *> NewLoops) { 2892 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2893 if (!NewLoops.empty()) 2894 U.addSiblingLoops(NewLoops); 2895 2896 // If the current loop remains valid, we should revisit it to catch any 2897 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2898 if (CurrentLoopValid) 2899 U.revisitCurrentLoop(); 2900 else 2901 U.markLoopAsDeleted(L, LoopName); 2902 }; 2903 2904 Optional<MemorySSAUpdater> MSSAU; 2905 if (AR.MSSA) { 2906 MSSAU = MemorySSAUpdater(AR.MSSA); 2907 if (VerifyMemorySSA) 2908 AR.MSSA->verifyMemorySSA(); 2909 } 2910 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2911 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2912 return PreservedAnalyses::all(); 2913 2914 if (AR.MSSA && VerifyMemorySSA) 2915 AR.MSSA->verifyMemorySSA(); 2916 2917 // Historically this pass has had issues with the dominator tree so verify it 2918 // in asserts builds. 2919 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2920 2921 auto PA = getLoopPassPreservedAnalyses(); 2922 if (AR.MSSA) 2923 PA.preserve<MemorySSAAnalysis>(); 2924 return PA; 2925 } 2926 2927 namespace { 2928 2929 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2930 bool NonTrivial; 2931 2932 public: 2933 static char ID; // Pass ID, replacement for typeid 2934 2935 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2936 : LoopPass(ID), NonTrivial(NonTrivial) { 2937 initializeSimpleLoopUnswitchLegacyPassPass( 2938 *PassRegistry::getPassRegistry()); 2939 } 2940 2941 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2942 2943 void getAnalysisUsage(AnalysisUsage &AU) const override { 2944 AU.addRequired<AssumptionCacheTracker>(); 2945 AU.addRequired<TargetTransformInfoWrapperPass>(); 2946 if (EnableMSSALoopDependency) { 2947 AU.addRequired<MemorySSAWrapperPass>(); 2948 AU.addPreserved<MemorySSAWrapperPass>(); 2949 } 2950 getLoopAnalysisUsage(AU); 2951 } 2952 }; 2953 2954 } // end anonymous namespace 2955 2956 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2957 if (skipLoop(L)) 2958 return false; 2959 2960 Function &F = *L->getHeader()->getParent(); 2961 2962 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2963 << "\n"); 2964 2965 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2966 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2967 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2968 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2969 MemorySSA *MSSA = nullptr; 2970 Optional<MemorySSAUpdater> MSSAU; 2971 if (EnableMSSALoopDependency) { 2972 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2973 MSSAU = MemorySSAUpdater(MSSA); 2974 } 2975 2976 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2977 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2978 2979 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2980 ArrayRef<Loop *> NewLoops) { 2981 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2982 for (auto *NewL : NewLoops) 2983 LPM.addLoop(*NewL); 2984 2985 // If the current loop remains valid, re-add it to the queue. This is 2986 // a little wasteful as we'll finish processing the current loop as well, 2987 // but it is the best we can do in the old PM. 2988 if (CurrentLoopValid) 2989 LPM.addLoop(*L); 2990 else 2991 LPM.markLoopAsDeleted(*L); 2992 }; 2993 2994 if (MSSA && VerifyMemorySSA) 2995 MSSA->verifyMemorySSA(); 2996 2997 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2998 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2999 3000 if (MSSA && VerifyMemorySSA) 3001 MSSA->verifyMemorySSA(); 3002 3003 // Historically this pass has had issues with the dominator tree so verify it 3004 // in asserts builds. 3005 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3006 3007 return Changed; 3008 } 3009 3010 char SimpleLoopUnswitchLegacyPass::ID = 0; 3011 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3012 "Simple unswitch loops", false, false) 3013 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3014 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3015 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3016 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3017 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3018 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3019 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3020 "Simple unswitch loops", false, false) 3021 3022 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3023 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3024 } 3025