1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/Utils/Local.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/GenericDomTree.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Cloning.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ValueMapper.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <numeric> 54 #include <utility> 55 56 #define DEBUG_TYPE "simple-loop-unswitch" 57 58 using namespace llvm; 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 63 64 static cl::opt<bool> EnableNonTrivialUnswitch( 65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 66 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 67 "following the configuration passed into the pass.")); 68 69 static cl::opt<int> 70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 71 cl::desc("The cost threshold for unswitching a loop.")); 72 73 /// Collect all of the loop invariant input values transitively used by the 74 /// homogeneous instruction graph from a given root. 75 /// 76 /// This essentially walks from a root recursively through loop variant operands 77 /// which have the exact same opcode and finds all inputs which are loop 78 /// invariant. For some operations these can be re-associated and unswitched out 79 /// of the loop entirely. 80 static TinyPtrVector<Value *> 81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 82 LoopInfo &LI) { 83 assert(!L.isLoopInvariant(&Root) && 84 "Only need to walk the graph if root itself is not invariant."); 85 TinyPtrVector<Value *> Invariants; 86 87 // Build a worklist and recurse through operators collecting invariants. 88 SmallVector<Instruction *, 4> Worklist; 89 SmallPtrSet<Instruction *, 8> Visited; 90 Worklist.push_back(&Root); 91 Visited.insert(&Root); 92 do { 93 Instruction &I = *Worklist.pop_back_val(); 94 for (Value *OpV : I.operand_values()) { 95 // Skip constants as unswitching isn't interesting for them. 96 if (isa<Constant>(OpV)) 97 continue; 98 99 // Add it to our result if loop invariant. 100 if (L.isLoopInvariant(OpV)) { 101 Invariants.push_back(OpV); 102 continue; 103 } 104 105 // If not an instruction with the same opcode, nothing we can do. 106 Instruction *OpI = dyn_cast<Instruction>(OpV); 107 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 108 continue; 109 110 // Visit this operand. 111 if (Visited.insert(OpI).second) 112 Worklist.push_back(OpI); 113 } 114 } while (!Worklist.empty()); 115 116 return Invariants; 117 } 118 119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 120 Constant &Replacement) { 121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 122 123 // Replace uses of LIC in the loop with the given constant. 124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 125 // Grab the use and walk past it so we can clobber it in the use list. 126 Use *U = &*UI++; 127 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 128 129 // Replace this use within the loop body. 130 if (UserI && L.contains(UserI)) 131 U->set(&Replacement); 132 } 133 } 134 135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 136 /// incoming values along this edge. 137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 138 BasicBlock &ExitBB) { 139 for (Instruction &I : ExitBB) { 140 auto *PN = dyn_cast<PHINode>(&I); 141 if (!PN) 142 // No more PHIs to check. 143 return true; 144 145 // If the incoming value for this edge isn't loop invariant the unswitch 146 // won't be trivial. 147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 148 return false; 149 } 150 llvm_unreachable("Basic blocks should never be empty!"); 151 } 152 153 /// Insert code to test a set of loop invariant values, and conditionally branch 154 /// on them. 155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 156 ArrayRef<Value *> Invariants, 157 bool Direction, 158 BasicBlock &UnswitchedSucc, 159 BasicBlock &NormalSucc) { 160 IRBuilder<> IRB(&BB); 161 Value *Cond = Invariants.front(); 162 for (Value *Invariant : 163 make_range(std::next(Invariants.begin()), Invariants.end())) 164 if (Direction) 165 Cond = IRB.CreateOr(Cond, Invariant); 166 else 167 Cond = IRB.CreateAnd(Cond, Invariant); 168 169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 170 Direction ? &NormalSucc : &UnswitchedSucc); 171 } 172 173 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 174 /// 175 /// Requires that the loop exit and unswitched basic block are the same, and 176 /// that the exiting block was a unique predecessor of that block. Rewrites the 177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 178 /// PHI nodes from the old preheader that now contains the unswitched 179 /// terminator. 180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 181 BasicBlock &OldExitingBB, 182 BasicBlock &OldPH) { 183 for (PHINode &PN : UnswitchedBB.phis()) { 184 // When the loop exit is directly unswitched we just need to update the 185 // incoming basic block. We loop to handle weird cases with repeated 186 // incoming blocks, but expect to typically only have one operand here. 187 for (auto i : seq<int>(0, PN.getNumOperands())) { 188 assert(PN.getIncomingBlock(i) == &OldExitingBB && 189 "Found incoming block different from unique predecessor!"); 190 PN.setIncomingBlock(i, &OldPH); 191 } 192 } 193 } 194 195 /// Rewrite the PHI nodes in the loop exit basic block and the split off 196 /// unswitched block. 197 /// 198 /// Because the exit block remains an exit from the loop, this rewrites the 199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 200 /// nodes into the unswitched basic block to select between the value in the 201 /// old preheader and the loop exit. 202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 203 BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH, 206 bool FullUnswitch) { 207 assert(&ExitBB != &UnswitchedBB && 208 "Must have different loop exit and unswitched blocks!"); 209 Instruction *InsertPt = &*UnswitchedBB.begin(); 210 for (PHINode &PN : ExitBB.phis()) { 211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 212 PN.getName() + ".split", InsertPt); 213 214 // Walk backwards over the old PHI node's inputs to minimize the cost of 215 // removing each one. We have to do this weird loop manually so that we 216 // create the same number of new incoming edges in the new PHI as we expect 217 // each case-based edge to be included in the unswitched switch in some 218 // cases. 219 // FIXME: This is really, really gross. It would be much cleaner if LLVM 220 // allowed us to create a single entry for a predecessor block without 221 // having separate entries for each "edge" even though these edges are 222 // required to produce identical results. 223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 224 if (PN.getIncomingBlock(i) != &OldExitingBB) 225 continue; 226 227 Value *Incoming = PN.getIncomingValue(i); 228 if (FullUnswitch) 229 // No more edge from the old exiting block to the exit block. 230 PN.removeIncomingValue(i); 231 232 NewPN->addIncoming(Incoming, &OldPH); 233 } 234 235 // Now replace the old PHI with the new one and wire the old one in as an 236 // input to the new one. 237 PN.replaceAllUsesWith(NewPN); 238 NewPN->addIncoming(&PN, &ExitBB); 239 } 240 } 241 242 /// Hoist the current loop up to the innermost loop containing a remaining exit. 243 /// 244 /// Because we've removed an exit from the loop, we may have changed the set of 245 /// loops reachable and need to move the current loop up the loop nest or even 246 /// to an entirely separate nest. 247 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 248 DominatorTree &DT, LoopInfo &LI) { 249 // If the loop is already at the top level, we can't hoist it anywhere. 250 Loop *OldParentL = L.getParentLoop(); 251 if (!OldParentL) 252 return; 253 254 SmallVector<BasicBlock *, 4> Exits; 255 L.getExitBlocks(Exits); 256 Loop *NewParentL = nullptr; 257 for (auto *ExitBB : Exits) 258 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 259 if (!NewParentL || NewParentL->contains(ExitL)) 260 NewParentL = ExitL; 261 262 if (NewParentL == OldParentL) 263 return; 264 265 // The new parent loop (if different) should always contain the old one. 266 if (NewParentL) 267 assert(NewParentL->contains(OldParentL) && 268 "Can only hoist this loop up the nest!"); 269 270 // The preheader will need to move with the body of this loop. However, 271 // because it isn't in this loop we also need to update the primary loop map. 272 assert(OldParentL == LI.getLoopFor(&Preheader) && 273 "Parent loop of this loop should contain this loop's preheader!"); 274 LI.changeLoopFor(&Preheader, NewParentL); 275 276 // Remove this loop from its old parent. 277 OldParentL->removeChildLoop(&L); 278 279 // Add the loop either to the new parent or as a top-level loop. 280 if (NewParentL) 281 NewParentL->addChildLoop(&L); 282 else 283 LI.addTopLevelLoop(&L); 284 285 // Remove this loops blocks from the old parent and every other loop up the 286 // nest until reaching the new parent. Also update all of these 287 // no-longer-containing loops to reflect the nesting change. 288 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 289 OldContainingL = OldContainingL->getParentLoop()) { 290 llvm::erase_if(OldContainingL->getBlocksVector(), 291 [&](const BasicBlock *BB) { 292 return BB == &Preheader || L.contains(BB); 293 }); 294 295 OldContainingL->getBlocksSet().erase(&Preheader); 296 for (BasicBlock *BB : L.blocks()) 297 OldContainingL->getBlocksSet().erase(BB); 298 299 // Because we just hoisted a loop out of this one, we have essentially 300 // created new exit paths from it. That means we need to form LCSSA PHI 301 // nodes for values used in the no-longer-nested loop. 302 formLCSSA(*OldContainingL, DT, &LI, nullptr); 303 304 // We shouldn't need to form dedicated exits because the exit introduced 305 // here is the (just split by unswitching) preheader. As such, it is 306 // necessarily dedicated. 307 assert(OldContainingL->hasDedicatedExits() && 308 "Unexpected predecessor of hoisted loop preheader!"); 309 } 310 } 311 312 /// Unswitch a trivial branch if the condition is loop invariant. 313 /// 314 /// This routine should only be called when loop code leading to the branch has 315 /// been validated as trivial (no side effects). This routine checks if the 316 /// condition is invariant and one of the successors is a loop exit. This 317 /// allows us to unswitch without duplicating the loop, making it trivial. 318 /// 319 /// If this routine fails to unswitch the branch it returns false. 320 /// 321 /// If the branch can be unswitched, this routine splits the preheader and 322 /// hoists the branch above that split. Preserves loop simplified form 323 /// (splitting the exit block as necessary). It simplifies the branch within 324 /// the loop to an unconditional branch but doesn't remove it entirely. Further 325 /// cleanup can be done with some simplify-cfg like pass. 326 /// 327 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 328 /// invalidated by this. 329 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 330 LoopInfo &LI, ScalarEvolution *SE) { 331 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 332 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 333 334 // The loop invariant values that we want to unswitch. 335 TinyPtrVector<Value *> Invariants; 336 337 // When true, we're fully unswitching the branch rather than just unswitching 338 // some input conditions to the branch. 339 bool FullUnswitch = false; 340 341 if (L.isLoopInvariant(BI.getCondition())) { 342 Invariants.push_back(BI.getCondition()); 343 FullUnswitch = true; 344 } else { 345 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 346 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 347 if (Invariants.empty()) 348 // Couldn't find invariant inputs! 349 return false; 350 } 351 352 // Check that one of the branch's successors exits, and which one. 353 bool ExitDirection = true; 354 int LoopExitSuccIdx = 0; 355 auto *LoopExitBB = BI.getSuccessor(0); 356 if (L.contains(LoopExitBB)) { 357 ExitDirection = false; 358 LoopExitSuccIdx = 1; 359 LoopExitBB = BI.getSuccessor(1); 360 if (L.contains(LoopExitBB)) 361 return false; 362 } 363 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 364 auto *ParentBB = BI.getParent(); 365 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 366 return false; 367 368 // When unswitching only part of the branch's condition, we need the exit 369 // block to be reached directly from the partially unswitched input. This can 370 // be done when the exit block is along the true edge and the branch condition 371 // is a graph of `or` operations, or the exit block is along the false edge 372 // and the condition is a graph of `and` operations. 373 if (!FullUnswitch) { 374 if (ExitDirection) { 375 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 376 return false; 377 } else { 378 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 379 return false; 380 } 381 } 382 383 LLVM_DEBUG({ 384 dbgs() << " unswitching trivial invariant conditions for: " << BI 385 << "\n"; 386 for (Value *Invariant : Invariants) { 387 dbgs() << " " << *Invariant << " == true"; 388 if (Invariant != Invariants.back()) 389 dbgs() << " ||"; 390 dbgs() << "\n"; 391 } 392 }); 393 394 // If we have scalar evolutions, we need to invalidate them including this 395 // loop and the loop containing the exit block. 396 if (SE) { 397 if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 398 SE->forgetLoop(ExitL); 399 else 400 // Forget the entire nest as this exits the entire nest. 401 SE->forgetTopmostLoop(&L); 402 } 403 404 // Split the preheader, so that we know that there is a safe place to insert 405 // the conditional branch. We will change the preheader to have a conditional 406 // branch on LoopCond. 407 BasicBlock *OldPH = L.getLoopPreheader(); 408 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 409 410 // Now that we have a place to insert the conditional branch, create a place 411 // to branch to: this is the exit block out of the loop that we are 412 // unswitching. We need to split this if there are other loop predecessors. 413 // Because the loop is in simplified form, *any* other predecessor is enough. 414 BasicBlock *UnswitchedBB; 415 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 416 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 417 "A branch's parent isn't a predecessor!"); 418 UnswitchedBB = LoopExitBB; 419 } else { 420 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 421 } 422 423 // Actually move the invariant uses into the unswitched position. If possible, 424 // we do this by moving the instructions, but when doing partial unswitching 425 // we do it by building a new merge of the values in the unswitched position. 426 OldPH->getTerminator()->eraseFromParent(); 427 if (FullUnswitch) { 428 // If fully unswitching, we can use the existing branch instruction. 429 // Splice it into the old PH to gate reaching the new preheader and re-point 430 // its successors. 431 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 432 BI); 433 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 434 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 435 436 // Create a new unconditional branch that will continue the loop as a new 437 // terminator. 438 BranchInst::Create(ContinueBB, ParentBB); 439 } else { 440 // Only unswitching a subset of inputs to the condition, so we will need to 441 // build a new branch that merges the invariant inputs. 442 if (ExitDirection) 443 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 444 Instruction::Or && 445 "Must have an `or` of `i1`s for the condition!"); 446 else 447 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 448 Instruction::And && 449 "Must have an `and` of `i1`s for the condition!"); 450 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 451 *UnswitchedBB, *NewPH); 452 } 453 454 // Rewrite the relevant PHI nodes. 455 if (UnswitchedBB == LoopExitBB) 456 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 457 else 458 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 459 *ParentBB, *OldPH, FullUnswitch); 460 461 // Now we need to update the dominator tree. 462 DT.insertEdge(OldPH, UnswitchedBB); 463 if (FullUnswitch) 464 DT.deleteEdge(ParentBB, UnswitchedBB); 465 466 // The constant we can replace all of our invariants with inside the loop 467 // body. If any of the invariants have a value other than this the loop won't 468 // be entered. 469 ConstantInt *Replacement = ExitDirection 470 ? ConstantInt::getFalse(BI.getContext()) 471 : ConstantInt::getTrue(BI.getContext()); 472 473 // Since this is an i1 condition we can also trivially replace uses of it 474 // within the loop with a constant. 475 for (Value *Invariant : Invariants) 476 replaceLoopInvariantUses(L, Invariant, *Replacement); 477 478 // If this was full unswitching, we may have changed the nesting relationship 479 // for this loop so hoist it to its correct parent if needed. 480 if (FullUnswitch) 481 hoistLoopToNewParent(L, *NewPH, DT, LI); 482 483 ++NumTrivial; 484 ++NumBranches; 485 return true; 486 } 487 488 /// Unswitch a trivial switch if the condition is loop invariant. 489 /// 490 /// This routine should only be called when loop code leading to the switch has 491 /// been validated as trivial (no side effects). This routine checks if the 492 /// condition is invariant and that at least one of the successors is a loop 493 /// exit. This allows us to unswitch without duplicating the loop, making it 494 /// trivial. 495 /// 496 /// If this routine fails to unswitch the switch it returns false. 497 /// 498 /// If the switch can be unswitched, this routine splits the preheader and 499 /// copies the switch above that split. If the default case is one of the 500 /// exiting cases, it copies the non-exiting cases and points them at the new 501 /// preheader. If the default case is not exiting, it copies the exiting cases 502 /// and points the default at the preheader. It preserves loop simplified form 503 /// (splitting the exit blocks as necessary). It simplifies the switch within 504 /// the loop by removing now-dead cases. If the default case is one of those 505 /// unswitched, it replaces its destination with a new basic block containing 506 /// only unreachable. Such basic blocks, while technically loop exits, are not 507 /// considered for unswitching so this is a stable transform and the same 508 /// switch will not be revisited. If after unswitching there is only a single 509 /// in-loop successor, the switch is further simplified to an unconditional 510 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 511 /// 512 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 513 /// invalidated by this. 514 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 515 LoopInfo &LI, ScalarEvolution *SE) { 516 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 517 Value *LoopCond = SI.getCondition(); 518 519 // If this isn't switching on an invariant condition, we can't unswitch it. 520 if (!L.isLoopInvariant(LoopCond)) 521 return false; 522 523 auto *ParentBB = SI.getParent(); 524 525 SmallVector<int, 4> ExitCaseIndices; 526 for (auto Case : SI.cases()) { 527 auto *SuccBB = Case.getCaseSuccessor(); 528 if (!L.contains(SuccBB) && 529 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 530 ExitCaseIndices.push_back(Case.getCaseIndex()); 531 } 532 BasicBlock *DefaultExitBB = nullptr; 533 if (!L.contains(SI.getDefaultDest()) && 534 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 535 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 536 DefaultExitBB = SI.getDefaultDest(); 537 else if (ExitCaseIndices.empty()) 538 return false; 539 540 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 541 542 // We may need to invalidate SCEVs for the outermost loop reached by any of 543 // the exits. 544 Loop *OuterL = &L; 545 546 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 547 ExitCases.reserve(ExitCaseIndices.size()); 548 // We walk the case indices backwards so that we remove the last case first 549 // and don't disrupt the earlier indices. 550 for (unsigned Index : reverse(ExitCaseIndices)) { 551 auto CaseI = SI.case_begin() + Index; 552 // Compute the outer loop from this exit. 553 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 554 if (!ExitL || ExitL->contains(OuterL)) 555 OuterL = ExitL; 556 // Save the value of this case. 557 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 558 // Delete the unswitched cases. 559 SI.removeCase(CaseI); 560 } 561 562 if (SE) { 563 if (OuterL) 564 SE->forgetLoop(OuterL); 565 else 566 SE->forgetTopmostLoop(&L); 567 } 568 569 // Check if after this all of the remaining cases point at the same 570 // successor. 571 BasicBlock *CommonSuccBB = nullptr; 572 if (SI.getNumCases() > 0 && 573 std::all_of(std::next(SI.case_begin()), SI.case_end(), 574 [&SI](const SwitchInst::CaseHandle &Case) { 575 return Case.getCaseSuccessor() == 576 SI.case_begin()->getCaseSuccessor(); 577 })) 578 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 579 580 if (DefaultExitBB) { 581 // We can't remove the default edge so replace it with an edge to either 582 // the single common remaining successor (if we have one) or an unreachable 583 // block. 584 if (CommonSuccBB) { 585 SI.setDefaultDest(CommonSuccBB); 586 } else { 587 BasicBlock *UnreachableBB = BasicBlock::Create( 588 ParentBB->getContext(), 589 Twine(ParentBB->getName()) + ".unreachable_default", 590 ParentBB->getParent()); 591 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 592 SI.setDefaultDest(UnreachableBB); 593 DT.addNewBlock(UnreachableBB, ParentBB); 594 } 595 } else { 596 // If we're not unswitching the default, we need it to match any cases to 597 // have a common successor or if we have no cases it is the common 598 // successor. 599 if (SI.getNumCases() == 0) 600 CommonSuccBB = SI.getDefaultDest(); 601 else if (SI.getDefaultDest() != CommonSuccBB) 602 CommonSuccBB = nullptr; 603 } 604 605 // Split the preheader, so that we know that there is a safe place to insert 606 // the switch. 607 BasicBlock *OldPH = L.getLoopPreheader(); 608 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 609 OldPH->getTerminator()->eraseFromParent(); 610 611 // Now add the unswitched switch. 612 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 613 614 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 615 // First, we split any exit blocks with remaining in-loop predecessors. Then 616 // we update the PHIs in one of two ways depending on if there was a split. 617 // We walk in reverse so that we split in the same order as the cases 618 // appeared. This is purely for convenience of reading the resulting IR, but 619 // it doesn't cost anything really. 620 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 621 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 622 // Handle the default exit if necessary. 623 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 624 // ranges aren't quite powerful enough yet. 625 if (DefaultExitBB) { 626 if (pred_empty(DefaultExitBB)) { 627 UnswitchedExitBBs.insert(DefaultExitBB); 628 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 629 } else { 630 auto *SplitBB = 631 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 632 rewritePHINodesForExitAndUnswitchedBlocks( 633 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 634 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 635 } 636 } 637 // Note that we must use a reference in the for loop so that we update the 638 // container. 639 for (auto &CasePair : reverse(ExitCases)) { 640 // Grab a reference to the exit block in the pair so that we can update it. 641 BasicBlock *ExitBB = CasePair.second; 642 643 // If this case is the last edge into the exit block, we can simply reuse it 644 // as it will no longer be a loop exit. No mapping necessary. 645 if (pred_empty(ExitBB)) { 646 // Only rewrite once. 647 if (UnswitchedExitBBs.insert(ExitBB).second) 648 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 649 continue; 650 } 651 652 // Otherwise we need to split the exit block so that we retain an exit 653 // block from the loop and a target for the unswitched condition. 654 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 655 if (!SplitExitBB) { 656 // If this is the first time we see this, do the split and remember it. 657 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 658 rewritePHINodesForExitAndUnswitchedBlocks( 659 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 660 } 661 // Update the case pair to point to the split block. 662 CasePair.second = SplitExitBB; 663 } 664 665 // Now add the unswitched cases. We do this in reverse order as we built them 666 // in reverse order. 667 for (auto CasePair : reverse(ExitCases)) { 668 ConstantInt *CaseVal = CasePair.first; 669 BasicBlock *UnswitchedBB = CasePair.second; 670 671 NewSI->addCase(CaseVal, UnswitchedBB); 672 } 673 674 // If the default was unswitched, re-point it and add explicit cases for 675 // entering the loop. 676 if (DefaultExitBB) { 677 NewSI->setDefaultDest(DefaultExitBB); 678 679 // We removed all the exit cases, so we just copy the cases to the 680 // unswitched switch. 681 for (auto Case : SI.cases()) 682 NewSI->addCase(Case.getCaseValue(), NewPH); 683 } 684 685 // If we ended up with a common successor for every path through the switch 686 // after unswitching, rewrite it to an unconditional branch to make it easy 687 // to recognize. Otherwise we potentially have to recognize the default case 688 // pointing at unreachable and other complexity. 689 if (CommonSuccBB) { 690 BasicBlock *BB = SI.getParent(); 691 SI.eraseFromParent(); 692 BranchInst::Create(CommonSuccBB, BB); 693 } 694 695 // Walk the unswitched exit blocks and the unswitched split blocks and update 696 // the dominator tree based on the CFG edits. While we are walking unordered 697 // containers here, the API for applyUpdates takes an unordered list of 698 // updates and requires them to not contain duplicates. 699 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 700 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 701 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 702 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 703 } 704 for (auto SplitUnswitchedPair : SplitExitBBMap) { 705 auto *UnswitchedBB = SplitUnswitchedPair.second; 706 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 707 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 708 } 709 DT.applyUpdates(DTUpdates); 710 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 711 712 // We may have changed the nesting relationship for this loop so hoist it to 713 // its correct parent if needed. 714 hoistLoopToNewParent(L, *NewPH, DT, LI); 715 716 ++NumTrivial; 717 ++NumSwitches; 718 return true; 719 } 720 721 /// This routine scans the loop to find a branch or switch which occurs before 722 /// any side effects occur. These can potentially be unswitched without 723 /// duplicating the loop. If a branch or switch is successfully unswitched the 724 /// scanning continues to see if subsequent branches or switches have become 725 /// trivial. Once all trivial candidates have been unswitched, this routine 726 /// returns. 727 /// 728 /// The return value indicates whether anything was unswitched (and therefore 729 /// changed). 730 /// 731 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 732 /// invalidated by this. 733 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 734 LoopInfo &LI, ScalarEvolution *SE) { 735 bool Changed = false; 736 737 // If loop header has only one reachable successor we should keep looking for 738 // trivial condition candidates in the successor as well. An alternative is 739 // to constant fold conditions and merge successors into loop header (then we 740 // only need to check header's terminator). The reason for not doing this in 741 // LoopUnswitch pass is that it could potentially break LoopPassManager's 742 // invariants. Folding dead branches could either eliminate the current loop 743 // or make other loops unreachable. LCSSA form might also not be preserved 744 // after deleting branches. The following code keeps traversing loop header's 745 // successors until it finds the trivial condition candidate (condition that 746 // is not a constant). Since unswitching generates branches with constant 747 // conditions, this scenario could be very common in practice. 748 BasicBlock *CurrentBB = L.getHeader(); 749 SmallPtrSet<BasicBlock *, 8> Visited; 750 Visited.insert(CurrentBB); 751 do { 752 // Check if there are any side-effecting instructions (e.g. stores, calls, 753 // volatile loads) in the part of the loop that the code *would* execute 754 // without unswitching. 755 if (llvm::any_of(*CurrentBB, 756 [](Instruction &I) { return I.mayHaveSideEffects(); })) 757 return Changed; 758 759 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 760 761 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 762 // Don't bother trying to unswitch past a switch with a constant 763 // condition. This should be removed prior to running this pass by 764 // simplify-cfg. 765 if (isa<Constant>(SI->getCondition())) 766 return Changed; 767 768 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE)) 769 // Couldn't unswitch this one so we're done. 770 return Changed; 771 772 // Mark that we managed to unswitch something. 773 Changed = true; 774 775 // If unswitching turned the terminator into an unconditional branch then 776 // we can continue. The unswitching logic specifically works to fold any 777 // cases it can into an unconditional branch to make it easier to 778 // recognize here. 779 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 780 if (!BI || BI->isConditional()) 781 return Changed; 782 783 CurrentBB = BI->getSuccessor(0); 784 continue; 785 } 786 787 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 788 if (!BI) 789 // We do not understand other terminator instructions. 790 return Changed; 791 792 // Don't bother trying to unswitch past an unconditional branch or a branch 793 // with a constant value. These should be removed by simplify-cfg prior to 794 // running this pass. 795 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 796 return Changed; 797 798 // Found a trivial condition candidate: non-foldable conditional branch. If 799 // we fail to unswitch this, we can't do anything else that is trivial. 800 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE)) 801 return Changed; 802 803 // Mark that we managed to unswitch something. 804 Changed = true; 805 806 // If we only unswitched some of the conditions feeding the branch, we won't 807 // have collapsed it to a single successor. 808 BI = cast<BranchInst>(CurrentBB->getTerminator()); 809 if (BI->isConditional()) 810 return Changed; 811 812 // Follow the newly unconditional branch into its successor. 813 CurrentBB = BI->getSuccessor(0); 814 815 // When continuing, if we exit the loop or reach a previous visited block, 816 // then we can not reach any trivial condition candidates (unfoldable 817 // branch instructions or switch instructions) and no unswitch can happen. 818 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 819 820 return Changed; 821 } 822 823 /// Build the cloned blocks for an unswitched copy of the given loop. 824 /// 825 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 826 /// after the split block (`SplitBB`) that will be used to select between the 827 /// cloned and original loop. 828 /// 829 /// This routine handles cloning all of the necessary loop blocks and exit 830 /// blocks including rewriting their instructions and the relevant PHI nodes. 831 /// Any loop blocks or exit blocks which are dominated by a different successor 832 /// than the one for this clone of the loop blocks can be trivially skipped. We 833 /// use the `DominatingSucc` map to determine whether a block satisfies that 834 /// property with a simple map lookup. 835 /// 836 /// It also correctly creates the unconditional branch in the cloned 837 /// unswitched parent block to only point at the unswitched successor. 838 /// 839 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 840 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 841 /// the cloned blocks (and their loops) are left without full `LoopInfo` 842 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 843 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 844 /// instead the caller must recompute an accurate DT. It *does* correctly 845 /// update the `AssumptionCache` provided in `AC`. 846 static BasicBlock *buildClonedLoopBlocks( 847 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 848 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 849 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 850 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 851 ValueToValueMapTy &VMap, 852 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 853 DominatorTree &DT, LoopInfo &LI) { 854 SmallVector<BasicBlock *, 4> NewBlocks; 855 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 856 857 // We will need to clone a bunch of blocks, wrap up the clone operation in 858 // a helper. 859 auto CloneBlock = [&](BasicBlock *OldBB) { 860 // Clone the basic block and insert it before the new preheader. 861 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 862 NewBB->moveBefore(LoopPH); 863 864 // Record this block and the mapping. 865 NewBlocks.push_back(NewBB); 866 VMap[OldBB] = NewBB; 867 868 return NewBB; 869 }; 870 871 // We skip cloning blocks when they have a dominating succ that is not the 872 // succ we are cloning for. 873 auto SkipBlock = [&](BasicBlock *BB) { 874 auto It = DominatingSucc.find(BB); 875 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 876 }; 877 878 // First, clone the preheader. 879 auto *ClonedPH = CloneBlock(LoopPH); 880 881 // Then clone all the loop blocks, skipping the ones that aren't necessary. 882 for (auto *LoopBB : L.blocks()) 883 if (!SkipBlock(LoopBB)) 884 CloneBlock(LoopBB); 885 886 // Split all the loop exit edges so that when we clone the exit blocks, if 887 // any of the exit blocks are *also* a preheader for some other loop, we 888 // don't create multiple predecessors entering the loop header. 889 for (auto *ExitBB : ExitBlocks) { 890 if (SkipBlock(ExitBB)) 891 continue; 892 893 // When we are going to clone an exit, we don't need to clone all the 894 // instructions in the exit block and we want to ensure we have an easy 895 // place to merge the CFG, so split the exit first. This is always safe to 896 // do because there cannot be any non-loop predecessors of a loop exit in 897 // loop simplified form. 898 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 899 900 // Rearrange the names to make it easier to write test cases by having the 901 // exit block carry the suffix rather than the merge block carrying the 902 // suffix. 903 MergeBB->takeName(ExitBB); 904 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 905 906 // Now clone the original exit block. 907 auto *ClonedExitBB = CloneBlock(ExitBB); 908 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 909 "Exit block should have been split to have one successor!"); 910 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 911 "Cloned exit block has the wrong successor!"); 912 913 // Remap any cloned instructions and create a merge phi node for them. 914 for (auto ZippedInsts : llvm::zip_first( 915 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 916 llvm::make_range(ClonedExitBB->begin(), 917 std::prev(ClonedExitBB->end())))) { 918 Instruction &I = std::get<0>(ZippedInsts); 919 Instruction &ClonedI = std::get<1>(ZippedInsts); 920 921 // The only instructions in the exit block should be PHI nodes and 922 // potentially a landing pad. 923 assert( 924 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 925 "Bad instruction in exit block!"); 926 // We should have a value map between the instruction and its clone. 927 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 928 929 auto *MergePN = 930 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 931 &*MergeBB->getFirstInsertionPt()); 932 I.replaceAllUsesWith(MergePN); 933 MergePN->addIncoming(&I, ExitBB); 934 MergePN->addIncoming(&ClonedI, ClonedExitBB); 935 } 936 } 937 938 // Rewrite the instructions in the cloned blocks to refer to the instructions 939 // in the cloned blocks. We have to do this as a second pass so that we have 940 // everything available. Also, we have inserted new instructions which may 941 // include assume intrinsics, so we update the assumption cache while 942 // processing this. 943 for (auto *ClonedBB : NewBlocks) 944 for (Instruction &I : *ClonedBB) { 945 RemapInstruction(&I, VMap, 946 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 947 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 948 if (II->getIntrinsicID() == Intrinsic::assume) 949 AC.registerAssumption(II); 950 } 951 952 // Remove the cloned parent as a predecessor of the cloned continue successor 953 // if we did in fact clone it. 954 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 955 if (auto *ClonedContinueSuccBB = 956 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 957 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 958 /*DontDeleteUselessPHIs*/ true); 959 // Replace the cloned branch with an unconditional branch to the cloned 960 // unswitched successor. 961 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 962 ClonedParentBB->getTerminator()->eraseFromParent(); 963 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 964 965 // Update any PHI nodes in the cloned successors of the skipped blocks to not 966 // have spurious incoming values. 967 for (auto *LoopBB : L.blocks()) 968 if (SkipBlock(LoopBB)) 969 for (auto *SuccBB : successors(LoopBB)) 970 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 971 for (PHINode &PN : ClonedSuccBB->phis()) 972 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 973 974 // Record the domtree updates for the new blocks. 975 SmallPtrSet<BasicBlock *, 4> SuccSet; 976 for (auto *ClonedBB : NewBlocks) { 977 for (auto *SuccBB : successors(ClonedBB)) 978 if (SuccSet.insert(SuccBB).second) 979 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 980 SuccSet.clear(); 981 } 982 983 return ClonedPH; 984 } 985 986 /// Recursively clone the specified loop and all of its children. 987 /// 988 /// The target parent loop for the clone should be provided, or can be null if 989 /// the clone is a top-level loop. While cloning, all the blocks are mapped 990 /// with the provided value map. The entire original loop must be present in 991 /// the value map. The cloned loop is returned. 992 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 993 const ValueToValueMapTy &VMap, LoopInfo &LI) { 994 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 995 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 996 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 997 for (auto *BB : OrigL.blocks()) { 998 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 999 ClonedL.addBlockEntry(ClonedBB); 1000 if (LI.getLoopFor(BB) == &OrigL) 1001 LI.changeLoopFor(ClonedBB, &ClonedL); 1002 } 1003 }; 1004 1005 // We specially handle the first loop because it may get cloned into 1006 // a different parent and because we most commonly are cloning leaf loops. 1007 Loop *ClonedRootL = LI.AllocateLoop(); 1008 if (RootParentL) 1009 RootParentL->addChildLoop(ClonedRootL); 1010 else 1011 LI.addTopLevelLoop(ClonedRootL); 1012 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1013 1014 if (OrigRootL.empty()) 1015 return ClonedRootL; 1016 1017 // If we have a nest, we can quickly clone the entire loop nest using an 1018 // iterative approach because it is a tree. We keep the cloned parent in the 1019 // data structure to avoid repeatedly querying through a map to find it. 1020 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1021 // Build up the loops to clone in reverse order as we'll clone them from the 1022 // back. 1023 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1024 LoopsToClone.push_back({ClonedRootL, ChildL}); 1025 do { 1026 Loop *ClonedParentL, *L; 1027 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1028 Loop *ClonedL = LI.AllocateLoop(); 1029 ClonedParentL->addChildLoop(ClonedL); 1030 AddClonedBlocksToLoop(*L, *ClonedL); 1031 for (Loop *ChildL : llvm::reverse(*L)) 1032 LoopsToClone.push_back({ClonedL, ChildL}); 1033 } while (!LoopsToClone.empty()); 1034 1035 return ClonedRootL; 1036 } 1037 1038 /// Build the cloned loops of an original loop from unswitching. 1039 /// 1040 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1041 /// operation. We need to re-verify that there even is a loop (as the backedge 1042 /// may not have been cloned), and even if there are remaining backedges the 1043 /// backedge set may be different. However, we know that each child loop is 1044 /// undisturbed, we only need to find where to place each child loop within 1045 /// either any parent loop or within a cloned version of the original loop. 1046 /// 1047 /// Because child loops may end up cloned outside of any cloned version of the 1048 /// original loop, multiple cloned sibling loops may be created. All of them 1049 /// are returned so that the newly introduced loop nest roots can be 1050 /// identified. 1051 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1052 const ValueToValueMapTy &VMap, LoopInfo &LI, 1053 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1054 Loop *ClonedL = nullptr; 1055 1056 auto *OrigPH = OrigL.getLoopPreheader(); 1057 auto *OrigHeader = OrigL.getHeader(); 1058 1059 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1060 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1061 1062 // We need to know the loops of the cloned exit blocks to even compute the 1063 // accurate parent loop. If we only clone exits to some parent of the 1064 // original parent, we want to clone into that outer loop. We also keep track 1065 // of the loops that our cloned exit blocks participate in. 1066 Loop *ParentL = nullptr; 1067 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1068 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1069 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1070 for (auto *ExitBB : ExitBlocks) 1071 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1072 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1073 ExitLoopMap[ClonedExitBB] = ExitL; 1074 ClonedExitsInLoops.push_back(ClonedExitBB); 1075 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1076 ParentL = ExitL; 1077 } 1078 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1079 ParentL->contains(OrigL.getParentLoop())) && 1080 "The computed parent loop should always contain (or be) the parent of " 1081 "the original loop."); 1082 1083 // We build the set of blocks dominated by the cloned header from the set of 1084 // cloned blocks out of the original loop. While not all of these will 1085 // necessarily be in the cloned loop, it is enough to establish that they 1086 // aren't in unreachable cycles, etc. 1087 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1088 for (auto *BB : OrigL.blocks()) 1089 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1090 ClonedLoopBlocks.insert(ClonedBB); 1091 1092 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1093 // skipped cloning some region of this loop which can in turn skip some of 1094 // the backedges so we have to rebuild the blocks in the loop based on the 1095 // backedges that remain after cloning. 1096 SmallVector<BasicBlock *, 16> Worklist; 1097 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1098 for (auto *Pred : predecessors(ClonedHeader)) { 1099 // The only possible non-loop header predecessor is the preheader because 1100 // we know we cloned the loop in simplified form. 1101 if (Pred == ClonedPH) 1102 continue; 1103 1104 // Because the loop was in simplified form, the only non-loop predecessor 1105 // should be the preheader. 1106 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1107 "header other than the preheader " 1108 "that is not part of the loop!"); 1109 1110 // Insert this block into the loop set and on the first visit (and if it 1111 // isn't the header we're currently walking) put it into the worklist to 1112 // recurse through. 1113 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1114 Worklist.push_back(Pred); 1115 } 1116 1117 // If we had any backedges then there *is* a cloned loop. Put the header into 1118 // the loop set and then walk the worklist backwards to find all the blocks 1119 // that remain within the loop after cloning. 1120 if (!BlocksInClonedLoop.empty()) { 1121 BlocksInClonedLoop.insert(ClonedHeader); 1122 1123 while (!Worklist.empty()) { 1124 BasicBlock *BB = Worklist.pop_back_val(); 1125 assert(BlocksInClonedLoop.count(BB) && 1126 "Didn't put block into the loop set!"); 1127 1128 // Insert any predecessors that are in the possible set into the cloned 1129 // set, and if the insert is successful, add them to the worklist. Note 1130 // that we filter on the blocks that are definitely reachable via the 1131 // backedge to the loop header so we may prune out dead code within the 1132 // cloned loop. 1133 for (auto *Pred : predecessors(BB)) 1134 if (ClonedLoopBlocks.count(Pred) && 1135 BlocksInClonedLoop.insert(Pred).second) 1136 Worklist.push_back(Pred); 1137 } 1138 1139 ClonedL = LI.AllocateLoop(); 1140 if (ParentL) { 1141 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1142 ParentL->addChildLoop(ClonedL); 1143 } else { 1144 LI.addTopLevelLoop(ClonedL); 1145 } 1146 NonChildClonedLoops.push_back(ClonedL); 1147 1148 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1149 // We don't want to just add the cloned loop blocks based on how we 1150 // discovered them. The original order of blocks was carefully built in 1151 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1152 // that logic, we just re-walk the original blocks (and those of the child 1153 // loops) and filter them as we add them into the cloned loop. 1154 for (auto *BB : OrigL.blocks()) { 1155 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1156 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1157 continue; 1158 1159 // Directly add the blocks that are only in this loop. 1160 if (LI.getLoopFor(BB) == &OrigL) { 1161 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1162 continue; 1163 } 1164 1165 // We want to manually add it to this loop and parents. 1166 // Registering it with LoopInfo will happen when we clone the top 1167 // loop for this block. 1168 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1169 PL->addBlockEntry(ClonedBB); 1170 } 1171 1172 // Now add each child loop whose header remains within the cloned loop. All 1173 // of the blocks within the loop must satisfy the same constraints as the 1174 // header so once we pass the header checks we can just clone the entire 1175 // child loop nest. 1176 for (Loop *ChildL : OrigL) { 1177 auto *ClonedChildHeader = 1178 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1179 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1180 continue; 1181 1182 #ifndef NDEBUG 1183 // We should never have a cloned child loop header but fail to have 1184 // all of the blocks for that child loop. 1185 for (auto *ChildLoopBB : ChildL->blocks()) 1186 assert(BlocksInClonedLoop.count( 1187 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1188 "Child cloned loop has a header within the cloned outer " 1189 "loop but not all of its blocks!"); 1190 #endif 1191 1192 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1193 } 1194 } 1195 1196 // Now that we've handled all the components of the original loop that were 1197 // cloned into a new loop, we still need to handle anything from the original 1198 // loop that wasn't in a cloned loop. 1199 1200 // Figure out what blocks are left to place within any loop nest containing 1201 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1202 // them. 1203 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1204 if (BlocksInClonedLoop.empty()) 1205 UnloopedBlockSet.insert(ClonedPH); 1206 for (auto *ClonedBB : ClonedLoopBlocks) 1207 if (!BlocksInClonedLoop.count(ClonedBB)) 1208 UnloopedBlockSet.insert(ClonedBB); 1209 1210 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1211 // backwards across these to process them inside out. The order shouldn't 1212 // matter as we're just trying to build up the map from inside-out; we use 1213 // the map in a more stably ordered way below. 1214 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1215 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1216 [&](BasicBlock *LHS, BasicBlock *RHS) { 1217 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1218 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1219 }); 1220 1221 // Populate the existing ExitLoopMap with everything reachable from each 1222 // exit, starting from the inner most exit. 1223 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1224 assert(Worklist.empty() && "Didn't clear worklist!"); 1225 1226 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1227 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1228 1229 // Walk the CFG back until we hit the cloned PH adding everything reachable 1230 // and in the unlooped set to this exit block's loop. 1231 Worklist.push_back(ExitBB); 1232 do { 1233 BasicBlock *BB = Worklist.pop_back_val(); 1234 // We can stop recursing at the cloned preheader (if we get there). 1235 if (BB == ClonedPH) 1236 continue; 1237 1238 for (BasicBlock *PredBB : predecessors(BB)) { 1239 // If this pred has already been moved to our set or is part of some 1240 // (inner) loop, no update needed. 1241 if (!UnloopedBlockSet.erase(PredBB)) { 1242 assert( 1243 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1244 "Predecessor not mapped to a loop!"); 1245 continue; 1246 } 1247 1248 // We just insert into the loop set here. We'll add these blocks to the 1249 // exit loop after we build up the set in an order that doesn't rely on 1250 // predecessor order (which in turn relies on use list order). 1251 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1252 (void)Inserted; 1253 assert(Inserted && "Should only visit an unlooped block once!"); 1254 1255 // And recurse through to its predecessors. 1256 Worklist.push_back(PredBB); 1257 } 1258 } while (!Worklist.empty()); 1259 } 1260 1261 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1262 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1263 // in their original order adding them to the correct loop. 1264 1265 // We need a stable insertion order. We use the order of the original loop 1266 // order and map into the correct parent loop. 1267 for (auto *BB : llvm::concat<BasicBlock *const>( 1268 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1269 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1270 OuterL->addBasicBlockToLoop(BB, LI); 1271 1272 #ifndef NDEBUG 1273 for (auto &BBAndL : ExitLoopMap) { 1274 auto *BB = BBAndL.first; 1275 auto *OuterL = BBAndL.second; 1276 assert(LI.getLoopFor(BB) == OuterL && 1277 "Failed to put all blocks into outer loops!"); 1278 } 1279 #endif 1280 1281 // Now that all the blocks are placed into the correct containing loop in the 1282 // absence of child loops, find all the potentially cloned child loops and 1283 // clone them into whatever outer loop we placed their header into. 1284 for (Loop *ChildL : OrigL) { 1285 auto *ClonedChildHeader = 1286 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1287 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1288 continue; 1289 1290 #ifndef NDEBUG 1291 for (auto *ChildLoopBB : ChildL->blocks()) 1292 assert(VMap.count(ChildLoopBB) && 1293 "Cloned a child loop header but not all of that loops blocks!"); 1294 #endif 1295 1296 NonChildClonedLoops.push_back(cloneLoopNest( 1297 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1298 } 1299 } 1300 1301 static void 1302 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1303 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1304 DominatorTree &DT) { 1305 // Find all the dead clones, and remove them from their successors. 1306 SmallVector<BasicBlock *, 16> DeadBlocks; 1307 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1308 for (auto &VMap : VMaps) 1309 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1310 if (!DT.isReachableFromEntry(ClonedBB)) { 1311 for (BasicBlock *SuccBB : successors(ClonedBB)) 1312 SuccBB->removePredecessor(ClonedBB); 1313 DeadBlocks.push_back(ClonedBB); 1314 } 1315 1316 // Drop any remaining references to break cycles. 1317 for (BasicBlock *BB : DeadBlocks) 1318 BB->dropAllReferences(); 1319 // Erase them from the IR. 1320 for (BasicBlock *BB : DeadBlocks) 1321 BB->eraseFromParent(); 1322 } 1323 1324 static void 1325 deleteDeadBlocksFromLoop(Loop &L, 1326 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1327 DominatorTree &DT, LoopInfo &LI) { 1328 // Find all the dead blocks, and remove them from their successors. 1329 SmallVector<BasicBlock *, 16> DeadBlocks; 1330 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1331 if (!DT.isReachableFromEntry(BB)) { 1332 for (BasicBlock *SuccBB : successors(BB)) 1333 SuccBB->removePredecessor(BB); 1334 DeadBlocks.push_back(BB); 1335 } 1336 1337 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1338 DeadBlocks.end()); 1339 1340 // Filter out the dead blocks from the exit blocks list so that it can be 1341 // used in the caller. 1342 llvm::erase_if(ExitBlocks, 1343 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1344 1345 // Walk from this loop up through its parents removing all of the dead blocks. 1346 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1347 for (auto *BB : DeadBlocks) 1348 ParentL->getBlocksSet().erase(BB); 1349 llvm::erase_if(ParentL->getBlocksVector(), 1350 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1351 } 1352 1353 // Now delete the dead child loops. This raw delete will clear them 1354 // recursively. 1355 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1356 if (!DeadBlockSet.count(ChildL->getHeader())) 1357 return false; 1358 1359 assert(llvm::all_of(ChildL->blocks(), 1360 [&](BasicBlock *ChildBB) { 1361 return DeadBlockSet.count(ChildBB); 1362 }) && 1363 "If the child loop header is dead all blocks in the child loop must " 1364 "be dead as well!"); 1365 LI.destroy(ChildL); 1366 return true; 1367 }); 1368 1369 // Remove the loop mappings for the dead blocks and drop all the references 1370 // from these blocks to others to handle cyclic references as we start 1371 // deleting the blocks themselves. 1372 for (auto *BB : DeadBlocks) { 1373 // Check that the dominator tree has already been updated. 1374 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1375 LI.changeLoopFor(BB, nullptr); 1376 BB->dropAllReferences(); 1377 } 1378 1379 // Actually delete the blocks now that they've been fully unhooked from the 1380 // IR. 1381 for (auto *BB : DeadBlocks) 1382 BB->eraseFromParent(); 1383 } 1384 1385 /// Recompute the set of blocks in a loop after unswitching. 1386 /// 1387 /// This walks from the original headers predecessors to rebuild the loop. We 1388 /// take advantage of the fact that new blocks can't have been added, and so we 1389 /// filter by the original loop's blocks. This also handles potentially 1390 /// unreachable code that we don't want to explore but might be found examining 1391 /// the predecessors of the header. 1392 /// 1393 /// If the original loop is no longer a loop, this will return an empty set. If 1394 /// it remains a loop, all the blocks within it will be added to the set 1395 /// (including those blocks in inner loops). 1396 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1397 LoopInfo &LI) { 1398 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1399 1400 auto *PH = L.getLoopPreheader(); 1401 auto *Header = L.getHeader(); 1402 1403 // A worklist to use while walking backwards from the header. 1404 SmallVector<BasicBlock *, 16> Worklist; 1405 1406 // First walk the predecessors of the header to find the backedges. This will 1407 // form the basis of our walk. 1408 for (auto *Pred : predecessors(Header)) { 1409 // Skip the preheader. 1410 if (Pred == PH) 1411 continue; 1412 1413 // Because the loop was in simplified form, the only non-loop predecessor 1414 // is the preheader. 1415 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1416 "than the preheader that is not part of the " 1417 "loop!"); 1418 1419 // Insert this block into the loop set and on the first visit and, if it 1420 // isn't the header we're currently walking, put it into the worklist to 1421 // recurse through. 1422 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1423 Worklist.push_back(Pred); 1424 } 1425 1426 // If no backedges were found, we're done. 1427 if (LoopBlockSet.empty()) 1428 return LoopBlockSet; 1429 1430 // We found backedges, recurse through them to identify the loop blocks. 1431 while (!Worklist.empty()) { 1432 BasicBlock *BB = Worklist.pop_back_val(); 1433 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1434 1435 // No need to walk past the header. 1436 if (BB == Header) 1437 continue; 1438 1439 // Because we know the inner loop structure remains valid we can use the 1440 // loop structure to jump immediately across the entire nested loop. 1441 // Further, because it is in loop simplified form, we can directly jump 1442 // to its preheader afterward. 1443 if (Loop *InnerL = LI.getLoopFor(BB)) 1444 if (InnerL != &L) { 1445 assert(L.contains(InnerL) && 1446 "Should not reach a loop *outside* this loop!"); 1447 // The preheader is the only possible predecessor of the loop so 1448 // insert it into the set and check whether it was already handled. 1449 auto *InnerPH = InnerL->getLoopPreheader(); 1450 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1451 "but not contain the inner loop " 1452 "preheader!"); 1453 if (!LoopBlockSet.insert(InnerPH).second) 1454 // The only way to reach the preheader is through the loop body 1455 // itself so if it has been visited the loop is already handled. 1456 continue; 1457 1458 // Insert all of the blocks (other than those already present) into 1459 // the loop set. We expect at least the block that led us to find the 1460 // inner loop to be in the block set, but we may also have other loop 1461 // blocks if they were already enqueued as predecessors of some other 1462 // outer loop block. 1463 for (auto *InnerBB : InnerL->blocks()) { 1464 if (InnerBB == BB) { 1465 assert(LoopBlockSet.count(InnerBB) && 1466 "Block should already be in the set!"); 1467 continue; 1468 } 1469 1470 LoopBlockSet.insert(InnerBB); 1471 } 1472 1473 // Add the preheader to the worklist so we will continue past the 1474 // loop body. 1475 Worklist.push_back(InnerPH); 1476 continue; 1477 } 1478 1479 // Insert any predecessors that were in the original loop into the new 1480 // set, and if the insert is successful, add them to the worklist. 1481 for (auto *Pred : predecessors(BB)) 1482 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1483 Worklist.push_back(Pred); 1484 } 1485 1486 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1487 1488 // We've found all the blocks participating in the loop, return our completed 1489 // set. 1490 return LoopBlockSet; 1491 } 1492 1493 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1494 /// 1495 /// The removal may have removed some child loops entirely but cannot have 1496 /// disturbed any remaining child loops. However, they may need to be hoisted 1497 /// to the parent loop (or to be top-level loops). The original loop may be 1498 /// completely removed. 1499 /// 1500 /// The sibling loops resulting from this update are returned. If the original 1501 /// loop remains a valid loop, it will be the first entry in this list with all 1502 /// of the newly sibling loops following it. 1503 /// 1504 /// Returns true if the loop remains a loop after unswitching, and false if it 1505 /// is no longer a loop after unswitching (and should not continue to be 1506 /// referenced). 1507 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1508 LoopInfo &LI, 1509 SmallVectorImpl<Loop *> &HoistedLoops) { 1510 auto *PH = L.getLoopPreheader(); 1511 1512 // Compute the actual parent loop from the exit blocks. Because we may have 1513 // pruned some exits the loop may be different from the original parent. 1514 Loop *ParentL = nullptr; 1515 SmallVector<Loop *, 4> ExitLoops; 1516 SmallVector<BasicBlock *, 4> ExitsInLoops; 1517 ExitsInLoops.reserve(ExitBlocks.size()); 1518 for (auto *ExitBB : ExitBlocks) 1519 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1520 ExitLoops.push_back(ExitL); 1521 ExitsInLoops.push_back(ExitBB); 1522 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1523 ParentL = ExitL; 1524 } 1525 1526 // Recompute the blocks participating in this loop. This may be empty if it 1527 // is no longer a loop. 1528 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1529 1530 // If we still have a loop, we need to re-set the loop's parent as the exit 1531 // block set changing may have moved it within the loop nest. Note that this 1532 // can only happen when this loop has a parent as it can only hoist the loop 1533 // *up* the nest. 1534 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1535 // Remove this loop's (original) blocks from all of the intervening loops. 1536 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1537 IL = IL->getParentLoop()) { 1538 IL->getBlocksSet().erase(PH); 1539 for (auto *BB : L.blocks()) 1540 IL->getBlocksSet().erase(BB); 1541 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1542 return BB == PH || L.contains(BB); 1543 }); 1544 } 1545 1546 LI.changeLoopFor(PH, ParentL); 1547 L.getParentLoop()->removeChildLoop(&L); 1548 if (ParentL) 1549 ParentL->addChildLoop(&L); 1550 else 1551 LI.addTopLevelLoop(&L); 1552 } 1553 1554 // Now we update all the blocks which are no longer within the loop. 1555 auto &Blocks = L.getBlocksVector(); 1556 auto BlocksSplitI = 1557 LoopBlockSet.empty() 1558 ? Blocks.begin() 1559 : std::stable_partition( 1560 Blocks.begin(), Blocks.end(), 1561 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1562 1563 // Before we erase the list of unlooped blocks, build a set of them. 1564 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1565 if (LoopBlockSet.empty()) 1566 UnloopedBlocks.insert(PH); 1567 1568 // Now erase these blocks from the loop. 1569 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1570 L.getBlocksSet().erase(BB); 1571 Blocks.erase(BlocksSplitI, Blocks.end()); 1572 1573 // Sort the exits in ascending loop depth, we'll work backwards across these 1574 // to process them inside out. 1575 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1576 [&](BasicBlock *LHS, BasicBlock *RHS) { 1577 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1578 }); 1579 1580 // We'll build up a set for each exit loop. 1581 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1582 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1583 1584 auto RemoveUnloopedBlocksFromLoop = 1585 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1586 for (auto *BB : UnloopedBlocks) 1587 L.getBlocksSet().erase(BB); 1588 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1589 return UnloopedBlocks.count(BB); 1590 }); 1591 }; 1592 1593 SmallVector<BasicBlock *, 16> Worklist; 1594 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1595 assert(Worklist.empty() && "Didn't clear worklist!"); 1596 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1597 1598 // Grab the next exit block, in decreasing loop depth order. 1599 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1600 Loop &ExitL = *LI.getLoopFor(ExitBB); 1601 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1602 1603 // Erase all of the unlooped blocks from the loops between the previous 1604 // exit loop and this exit loop. This works because the ExitInLoops list is 1605 // sorted in increasing order of loop depth and thus we visit loops in 1606 // decreasing order of loop depth. 1607 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1608 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1609 1610 // Walk the CFG back until we hit the cloned PH adding everything reachable 1611 // and in the unlooped set to this exit block's loop. 1612 Worklist.push_back(ExitBB); 1613 do { 1614 BasicBlock *BB = Worklist.pop_back_val(); 1615 // We can stop recursing at the cloned preheader (if we get there). 1616 if (BB == PH) 1617 continue; 1618 1619 for (BasicBlock *PredBB : predecessors(BB)) { 1620 // If this pred has already been moved to our set or is part of some 1621 // (inner) loop, no update needed. 1622 if (!UnloopedBlocks.erase(PredBB)) { 1623 assert((NewExitLoopBlocks.count(PredBB) || 1624 ExitL.contains(LI.getLoopFor(PredBB))) && 1625 "Predecessor not in a nested loop (or already visited)!"); 1626 continue; 1627 } 1628 1629 // We just insert into the loop set here. We'll add these blocks to the 1630 // exit loop after we build up the set in a deterministic order rather 1631 // than the predecessor-influenced visit order. 1632 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1633 (void)Inserted; 1634 assert(Inserted && "Should only visit an unlooped block once!"); 1635 1636 // And recurse through to its predecessors. 1637 Worklist.push_back(PredBB); 1638 } 1639 } while (!Worklist.empty()); 1640 1641 // If blocks in this exit loop were directly part of the original loop (as 1642 // opposed to a child loop) update the map to point to this exit loop. This 1643 // just updates a map and so the fact that the order is unstable is fine. 1644 for (auto *BB : NewExitLoopBlocks) 1645 if (Loop *BBL = LI.getLoopFor(BB)) 1646 if (BBL == &L || !L.contains(BBL)) 1647 LI.changeLoopFor(BB, &ExitL); 1648 1649 // We will remove the remaining unlooped blocks from this loop in the next 1650 // iteration or below. 1651 NewExitLoopBlocks.clear(); 1652 } 1653 1654 // Any remaining unlooped blocks are no longer part of any loop unless they 1655 // are part of some child loop. 1656 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1657 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1658 for (auto *BB : UnloopedBlocks) 1659 if (Loop *BBL = LI.getLoopFor(BB)) 1660 if (BBL == &L || !L.contains(BBL)) 1661 LI.changeLoopFor(BB, nullptr); 1662 1663 // Sink all the child loops whose headers are no longer in the loop set to 1664 // the parent (or to be top level loops). We reach into the loop and directly 1665 // update its subloop vector to make this batch update efficient. 1666 auto &SubLoops = L.getSubLoopsVector(); 1667 auto SubLoopsSplitI = 1668 LoopBlockSet.empty() 1669 ? SubLoops.begin() 1670 : std::stable_partition( 1671 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1672 return LoopBlockSet.count(SubL->getHeader()); 1673 }); 1674 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1675 HoistedLoops.push_back(HoistedL); 1676 HoistedL->setParentLoop(nullptr); 1677 1678 // To compute the new parent of this hoisted loop we look at where we 1679 // placed the preheader above. We can't lookup the header itself because we 1680 // retained the mapping from the header to the hoisted loop. But the 1681 // preheader and header should have the exact same new parent computed 1682 // based on the set of exit blocks from the original loop as the preheader 1683 // is a predecessor of the header and so reached in the reverse walk. And 1684 // because the loops were all in simplified form the preheader of the 1685 // hoisted loop can't be part of some *other* loop. 1686 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1687 NewParentL->addChildLoop(HoistedL); 1688 else 1689 LI.addTopLevelLoop(HoistedL); 1690 } 1691 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1692 1693 // Actually delete the loop if nothing remained within it. 1694 if (Blocks.empty()) { 1695 assert(SubLoops.empty() && 1696 "Failed to remove all subloops from the original loop!"); 1697 if (Loop *ParentL = L.getParentLoop()) 1698 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1699 else 1700 LI.removeLoop(llvm::find(LI, &L)); 1701 LI.destroy(&L); 1702 return false; 1703 } 1704 1705 return true; 1706 } 1707 1708 /// Helper to visit a dominator subtree, invoking a callable on each node. 1709 /// 1710 /// Returning false at any point will stop walking past that node of the tree. 1711 template <typename CallableT> 1712 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1713 SmallVector<DomTreeNode *, 4> DomWorklist; 1714 DomWorklist.push_back(DT[BB]); 1715 #ifndef NDEBUG 1716 SmallPtrSet<DomTreeNode *, 4> Visited; 1717 Visited.insert(DT[BB]); 1718 #endif 1719 do { 1720 DomTreeNode *N = DomWorklist.pop_back_val(); 1721 1722 // Visit this node. 1723 if (!Callable(N->getBlock())) 1724 continue; 1725 1726 // Accumulate the child nodes. 1727 for (DomTreeNode *ChildN : *N) { 1728 assert(Visited.insert(ChildN).second && 1729 "Cannot visit a node twice when walking a tree!"); 1730 DomWorklist.push_back(ChildN); 1731 } 1732 } while (!DomWorklist.empty()); 1733 } 1734 1735 static bool unswitchNontrivialInvariants( 1736 Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants, 1737 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1738 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1739 ScalarEvolution *SE) { 1740 auto *ParentBB = TI.getParent(); 1741 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1742 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1743 1744 // We can only unswitch switches, conditional branches with an invariant 1745 // condition, or combining invariant conditions with an instruction. 1746 assert((SI || BI->isConditional()) && 1747 "Can only unswitch switches and conditional branch!"); 1748 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1749 if (FullUnswitch) 1750 assert(Invariants.size() == 1 && 1751 "Cannot have other invariants with full unswitching!"); 1752 else 1753 assert(isa<Instruction>(BI->getCondition()) && 1754 "Partial unswitching requires an instruction as the condition!"); 1755 1756 // Constant and BBs tracking the cloned and continuing successor. When we are 1757 // unswitching the entire condition, this can just be trivially chosen to 1758 // unswitch towards `true`. However, when we are unswitching a set of 1759 // invariants combined with `and` or `or`, the combining operation determines 1760 // the best direction to unswitch: we want to unswitch the direction that will 1761 // collapse the branch. 1762 bool Direction = true; 1763 int ClonedSucc = 0; 1764 if (!FullUnswitch) { 1765 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1766 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1767 Instruction::And && 1768 "Only `or` and `and` instructions can combine invariants being " 1769 "unswitched."); 1770 Direction = false; 1771 ClonedSucc = 1; 1772 } 1773 } 1774 1775 BasicBlock *RetainedSuccBB = 1776 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1777 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1778 if (BI) 1779 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1780 else 1781 for (auto Case : SI->cases()) 1782 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1783 1784 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1785 "Should not unswitch the same successor we are retaining!"); 1786 1787 // The branch should be in this exact loop. Any inner loop's invariant branch 1788 // should be handled by unswitching that inner loop. The caller of this 1789 // routine should filter out any candidates that remain (but were skipped for 1790 // whatever reason). 1791 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1792 1793 SmallVector<BasicBlock *, 4> ExitBlocks; 1794 L.getUniqueExitBlocks(ExitBlocks); 1795 1796 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1797 // don't know how to split those exit blocks. 1798 // FIXME: We should teach SplitBlock to handle this and remove this 1799 // restriction. 1800 for (auto *ExitBB : ExitBlocks) 1801 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1802 return false; 1803 1804 // Compute the parent loop now before we start hacking on things. 1805 Loop *ParentL = L.getParentLoop(); 1806 1807 // Compute the outer-most loop containing one of our exit blocks. This is the 1808 // furthest up our loopnest which can be mutated, which we will use below to 1809 // update things. 1810 Loop *OuterExitL = &L; 1811 for (auto *ExitBB : ExitBlocks) { 1812 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1813 if (!NewOuterExitL) { 1814 // We exited the entire nest with this block, so we're done. 1815 OuterExitL = nullptr; 1816 break; 1817 } 1818 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1819 OuterExitL = NewOuterExitL; 1820 } 1821 1822 // At this point, we're definitely going to unswitch something so invalidate 1823 // any cached information in ScalarEvolution for the outer most loop 1824 // containing an exit block and all nested loops. 1825 if (SE) { 1826 if (OuterExitL) 1827 SE->forgetLoop(OuterExitL); 1828 else 1829 SE->forgetTopmostLoop(&L); 1830 } 1831 1832 // If the edge from this terminator to a successor dominates that successor, 1833 // store a map from each block in its dominator subtree to it. This lets us 1834 // tell when cloning for a particular successor if a block is dominated by 1835 // some *other* successor with a single data structure. We use this to 1836 // significantly reduce cloning. 1837 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 1838 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 1839 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 1840 if (SuccBB->getUniquePredecessor() || 1841 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 1842 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 1843 })) 1844 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 1845 DominatingSucc[BB] = SuccBB; 1846 return true; 1847 }); 1848 1849 // Split the preheader, so that we know that there is a safe place to insert 1850 // the conditional branch. We will change the preheader to have a conditional 1851 // branch on LoopCond. The original preheader will become the split point 1852 // between the unswitched versions, and we will have a new preheader for the 1853 // original loop. 1854 BasicBlock *SplitBB = L.getLoopPreheader(); 1855 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1856 1857 // Keep track of the dominator tree updates needed. 1858 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1859 1860 // Clone the loop for each unswitched successor. 1861 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 1862 VMaps.reserve(UnswitchedSuccBBs.size()); 1863 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 1864 for (auto *SuccBB : UnswitchedSuccBBs) { 1865 VMaps.emplace_back(new ValueToValueMapTy()); 1866 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 1867 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 1868 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); 1869 } 1870 1871 // The stitching of the branched code back together depends on whether we're 1872 // doing full unswitching or not with the exception that we always want to 1873 // nuke the initial terminator placed in the split block. 1874 SplitBB->getTerminator()->eraseFromParent(); 1875 if (FullUnswitch) { 1876 for (BasicBlock *SuccBB : UnswitchedSuccBBs) { 1877 // Remove the parent as a predecessor of the unswitched successor. 1878 SuccBB->removePredecessor(ParentBB, 1879 /*DontDeleteUselessPHIs*/ true); 1880 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 1881 } 1882 1883 // Now splice the terminator from the original loop and rewrite its 1884 // successors. 1885 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 1886 if (BI) { 1887 assert(UnswitchedSuccBBs.size() == 1 && 1888 "Only one possible unswitched block for a branch!"); 1889 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1890 BI->setSuccessor(ClonedSucc, ClonedPH); 1891 BI->setSuccessor(1 - ClonedSucc, LoopPH); 1892 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1893 } else { 1894 assert(SI && "Must either be a branch or switch!"); 1895 1896 // Walk the cases and directly update their successors. 1897 for (auto &Case : SI->cases()) 1898 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 1899 // We need to use the set to populate domtree updates as even when there 1900 // are multiple cases pointing at the same successor we only want to 1901 // insert one edge in the domtree. 1902 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 1903 DTUpdates.push_back( 1904 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 1905 1906 SI->setDefaultDest(LoopPH); 1907 } 1908 1909 // Create a new unconditional branch to the continuing block (as opposed to 1910 // the one cloned). 1911 BranchInst::Create(RetainedSuccBB, ParentBB); 1912 } else { 1913 assert(BI && "Only branches have partial unswitching."); 1914 assert(UnswitchedSuccBBs.size() == 1 && 1915 "Only one possible unswitched block for a branch!"); 1916 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1917 // When doing a partial unswitch, we have to do a bit more work to build up 1918 // the branch in the split block. 1919 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 1920 *ClonedPH, *LoopPH); 1921 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1922 } 1923 1924 // Apply the updates accumulated above to get an up-to-date dominator tree. 1925 DT.applyUpdates(DTUpdates); 1926 1927 // Now that we have an accurate dominator tree, first delete the dead cloned 1928 // blocks so that we can accurately build any cloned loops. It is important to 1929 // not delete the blocks from the original loop yet because we still want to 1930 // reference the original loop to understand the cloned loop's structure. 1931 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); 1932 1933 // Build the cloned loop structure itself. This may be substantially 1934 // different from the original structure due to the simplified CFG. This also 1935 // handles inserting all the cloned blocks into the correct loops. 1936 SmallVector<Loop *, 4> NonChildClonedLoops; 1937 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 1938 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 1939 1940 // Now that our cloned loops have been built, we can update the original loop. 1941 // First we delete the dead blocks from it and then we rebuild the loop 1942 // structure taking these deletions into account. 1943 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); 1944 SmallVector<Loop *, 4> HoistedLoops; 1945 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1946 1947 // This transformation has a high risk of corrupting the dominator tree, and 1948 // the below steps to rebuild loop structures will result in hard to debug 1949 // errors in that case so verify that the dominator tree is sane first. 1950 // FIXME: Remove this when the bugs stop showing up and rely on existing 1951 // verification steps. 1952 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1953 1954 if (BI) { 1955 // If we unswitched a branch which collapses the condition to a known 1956 // constant we want to replace all the uses of the invariants within both 1957 // the original and cloned blocks. We do this here so that we can use the 1958 // now updated dominator tree to identify which side the users are on. 1959 assert(UnswitchedSuccBBs.size() == 1 && 1960 "Only one possible unswitched block for a branch!"); 1961 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 1962 ConstantInt *UnswitchedReplacement = 1963 Direction ? ConstantInt::getTrue(BI->getContext()) 1964 : ConstantInt::getFalse(BI->getContext()); 1965 ConstantInt *ContinueReplacement = 1966 Direction ? ConstantInt::getFalse(BI->getContext()) 1967 : ConstantInt::getTrue(BI->getContext()); 1968 for (Value *Invariant : Invariants) 1969 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 1970 UI != UE;) { 1971 // Grab the use and walk past it so we can clobber it in the use list. 1972 Use *U = &*UI++; 1973 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1974 if (!UserI) 1975 continue; 1976 1977 // Replace it with the 'continue' side if in the main loop body, and the 1978 // unswitched if in the cloned blocks. 1979 if (DT.dominates(LoopPH, UserI->getParent())) 1980 U->set(ContinueReplacement); 1981 else if (DT.dominates(ClonedPH, UserI->getParent())) 1982 U->set(UnswitchedReplacement); 1983 } 1984 } 1985 1986 // We can change which blocks are exit blocks of all the cloned sibling 1987 // loops, the current loop, and any parent loops which shared exit blocks 1988 // with the current loop. As a consequence, we need to re-form LCSSA for 1989 // them. But we shouldn't need to re-form LCSSA for any child loops. 1990 // FIXME: This could be made more efficient by tracking which exit blocks are 1991 // new, and focusing on them, but that isn't likely to be necessary. 1992 // 1993 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1994 // loop nest and update every loop that could have had its exits changed. We 1995 // also need to cover any intervening loops. We add all of these loops to 1996 // a list and sort them by loop depth to achieve this without updating 1997 // unnecessary loops. 1998 auto UpdateLoop = [&](Loop &UpdateL) { 1999 #ifndef NDEBUG 2000 UpdateL.verifyLoop(); 2001 for (Loop *ChildL : UpdateL) { 2002 ChildL->verifyLoop(); 2003 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2004 "Perturbed a child loop's LCSSA form!"); 2005 } 2006 #endif 2007 // First build LCSSA for this loop so that we can preserve it when 2008 // forming dedicated exits. We don't want to perturb some other loop's 2009 // LCSSA while doing that CFG edit. 2010 formLCSSA(UpdateL, DT, &LI, nullptr); 2011 2012 // For loops reached by this loop's original exit blocks we may 2013 // introduced new, non-dedicated exits. At least try to re-form dedicated 2014 // exits for these loops. This may fail if they couldn't have dedicated 2015 // exits to start with. 2016 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 2017 }; 2018 2019 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2020 // and we can do it in any order as they don't nest relative to each other. 2021 // 2022 // Also check if any of the loops we have updated have become top-level loops 2023 // as that will necessitate widening the outer loop scope. 2024 for (Loop *UpdatedL : 2025 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2026 UpdateLoop(*UpdatedL); 2027 if (!UpdatedL->getParentLoop()) 2028 OuterExitL = nullptr; 2029 } 2030 if (IsStillLoop) { 2031 UpdateLoop(L); 2032 if (!L.getParentLoop()) 2033 OuterExitL = nullptr; 2034 } 2035 2036 // If the original loop had exit blocks, walk up through the outer most loop 2037 // of those exit blocks to update LCSSA and form updated dedicated exits. 2038 if (OuterExitL != &L) 2039 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2040 OuterL = OuterL->getParentLoop()) 2041 UpdateLoop(*OuterL); 2042 2043 #ifndef NDEBUG 2044 // Verify the entire loop structure to catch any incorrect updates before we 2045 // progress in the pass pipeline. 2046 LI.verify(DT); 2047 #endif 2048 2049 // Now that we've unswitched something, make callbacks to report the changes. 2050 // For that we need to merge together the updated loops and the cloned loops 2051 // and check whether the original loop survived. 2052 SmallVector<Loop *, 4> SibLoops; 2053 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2054 if (UpdatedL->getParentLoop() == ParentL) 2055 SibLoops.push_back(UpdatedL); 2056 UnswitchCB(IsStillLoop, SibLoops); 2057 2058 ++NumBranches; 2059 return true; 2060 } 2061 2062 /// Recursively compute the cost of a dominator subtree based on the per-block 2063 /// cost map provided. 2064 /// 2065 /// The recursive computation is memozied into the provided DT-indexed cost map 2066 /// to allow querying it for most nodes in the domtree without it becoming 2067 /// quadratic. 2068 static int 2069 computeDomSubtreeCost(DomTreeNode &N, 2070 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2071 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2072 // Don't accumulate cost (or recurse through) blocks not in our block cost 2073 // map and thus not part of the duplication cost being considered. 2074 auto BBCostIt = BBCostMap.find(N.getBlock()); 2075 if (BBCostIt == BBCostMap.end()) 2076 return 0; 2077 2078 // Lookup this node to see if we already computed its cost. 2079 auto DTCostIt = DTCostMap.find(&N); 2080 if (DTCostIt != DTCostMap.end()) 2081 return DTCostIt->second; 2082 2083 // If not, we have to compute it. We can't use insert above and update 2084 // because computing the cost may insert more things into the map. 2085 int Cost = std::accumulate( 2086 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2087 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2088 }); 2089 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2090 (void)Inserted; 2091 assert(Inserted && "Should not insert a node while visiting children!"); 2092 return Cost; 2093 } 2094 2095 static bool 2096 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2097 AssumptionCache &AC, TargetTransformInfo &TTI, 2098 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2099 ScalarEvolution *SE) { 2100 // Collect all invariant conditions within this loop (as opposed to an inner 2101 // loop which would be handled when visiting that inner loop). 2102 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4> 2103 UnswitchCandidates; 2104 for (auto *BB : L.blocks()) { 2105 if (LI.getLoopFor(BB) != &L) 2106 continue; 2107 2108 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2109 // We can only consider fully loop-invariant switch conditions as we need 2110 // to completely eliminate the switch after unswitching. 2111 if (!isa<Constant>(SI->getCondition()) && 2112 L.isLoopInvariant(SI->getCondition())) 2113 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2114 continue; 2115 } 2116 2117 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2118 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2119 BI->getSuccessor(0) == BI->getSuccessor(1)) 2120 continue; 2121 2122 if (L.isLoopInvariant(BI->getCondition())) { 2123 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2124 continue; 2125 } 2126 2127 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2128 if (CondI.getOpcode() != Instruction::And && 2129 CondI.getOpcode() != Instruction::Or) 2130 continue; 2131 2132 TinyPtrVector<Value *> Invariants = 2133 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2134 if (Invariants.empty()) 2135 continue; 2136 2137 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2138 } 2139 2140 // If we didn't find any candidates, we're done. 2141 if (UnswitchCandidates.empty()) 2142 return false; 2143 2144 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2145 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2146 // irreducible control flow into reducible control flow and introduce new 2147 // loops "out of thin air". If we ever discover important use cases for doing 2148 // this, we can add support to loop unswitch, but it is a lot of complexity 2149 // for what seems little or no real world benefit. 2150 LoopBlocksRPO RPOT(&L); 2151 RPOT.perform(&LI); 2152 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2153 return false; 2154 2155 LLVM_DEBUG( 2156 dbgs() << "Considering " << UnswitchCandidates.size() 2157 << " non-trivial loop invariant conditions for unswitching.\n"); 2158 2159 // Given that unswitching these terminators will require duplicating parts of 2160 // the loop, so we need to be able to model that cost. Compute the ephemeral 2161 // values and set up a data structure to hold per-BB costs. We cache each 2162 // block's cost so that we don't recompute this when considering different 2163 // subsets of the loop for duplication during unswitching. 2164 SmallPtrSet<const Value *, 4> EphValues; 2165 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2166 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2167 2168 // Compute the cost of each block, as well as the total loop cost. Also, bail 2169 // out if we see instructions which are incompatible with loop unswitching 2170 // (convergent, noduplicate, or cross-basic-block tokens). 2171 // FIXME: We might be able to safely handle some of these in non-duplicated 2172 // regions. 2173 int LoopCost = 0; 2174 for (auto *BB : L.blocks()) { 2175 int Cost = 0; 2176 for (auto &I : *BB) { 2177 if (EphValues.count(&I)) 2178 continue; 2179 2180 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2181 return false; 2182 if (auto CS = CallSite(&I)) 2183 if (CS.isConvergent() || CS.cannotDuplicate()) 2184 return false; 2185 2186 Cost += TTI.getUserCost(&I); 2187 } 2188 assert(Cost >= 0 && "Must not have negative costs!"); 2189 LoopCost += Cost; 2190 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2191 BBCostMap[BB] = Cost; 2192 } 2193 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2194 2195 // Now we find the best candidate by searching for the one with the following 2196 // properties in order: 2197 // 2198 // 1) An unswitching cost below the threshold 2199 // 2) The smallest number of duplicated unswitch candidates (to avoid 2200 // creating redundant subsequent unswitching) 2201 // 3) The smallest cost after unswitching. 2202 // 2203 // We prioritize reducing fanout of unswitch candidates provided the cost 2204 // remains below the threshold because this has a multiplicative effect. 2205 // 2206 // This requires memoizing each dominator subtree to avoid redundant work. 2207 // 2208 // FIXME: Need to actually do the number of candidates part above. 2209 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2210 // Given a terminator which might be unswitched, computes the non-duplicated 2211 // cost for that terminator. 2212 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) { 2213 BasicBlock &BB = *TI.getParent(); 2214 SmallPtrSet<BasicBlock *, 4> Visited; 2215 2216 int Cost = LoopCost; 2217 for (BasicBlock *SuccBB : successors(&BB)) { 2218 // Don't count successors more than once. 2219 if (!Visited.insert(SuccBB).second) 2220 continue; 2221 2222 // If this is a partial unswitch candidate, then it must be a conditional 2223 // branch with a condition of either `or` or `and`. In that case, one of 2224 // the successors is necessarily duplicated, so don't even try to remove 2225 // its cost. 2226 if (!FullUnswitch) { 2227 auto &BI = cast<BranchInst>(TI); 2228 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2229 Instruction::And) { 2230 if (SuccBB == BI.getSuccessor(1)) 2231 continue; 2232 } else { 2233 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2234 Instruction::Or && 2235 "Only `and` and `or` conditions can result in a partial " 2236 "unswitch!"); 2237 if (SuccBB == BI.getSuccessor(0)) 2238 continue; 2239 } 2240 } 2241 2242 // This successor's domtree will not need to be duplicated after 2243 // unswitching if the edge to the successor dominates it (and thus the 2244 // entire tree). This essentially means there is no other path into this 2245 // subtree and so it will end up live in only one clone of the loop. 2246 if (SuccBB->getUniquePredecessor() || 2247 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2248 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2249 })) { 2250 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2251 assert(Cost >= 0 && 2252 "Non-duplicated cost should never exceed total loop cost!"); 2253 } 2254 } 2255 2256 // Now scale the cost by the number of unique successors minus one. We 2257 // subtract one because there is already at least one copy of the entire 2258 // loop. This is computing the new cost of unswitching a condition. 2259 assert(Visited.size() > 1 && 2260 "Cannot unswitch a condition without multiple distinct successors!"); 2261 return Cost * (Visited.size() - 1); 2262 }; 2263 TerminatorInst *BestUnswitchTI = nullptr; 2264 int BestUnswitchCost; 2265 ArrayRef<Value *> BestUnswitchInvariants; 2266 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2267 TerminatorInst &TI = *TerminatorAndInvariants.first; 2268 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2269 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2270 int CandidateCost = ComputeUnswitchedCost( 2271 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2272 Invariants[0] == BI->getCondition())); 2273 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2274 << " for unswitch candidate: " << TI << "\n"); 2275 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2276 BestUnswitchTI = &TI; 2277 BestUnswitchCost = CandidateCost; 2278 BestUnswitchInvariants = Invariants; 2279 } 2280 } 2281 2282 if (BestUnswitchCost >= UnswitchThreshold) { 2283 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2284 << BestUnswitchCost << "\n"); 2285 return false; 2286 } 2287 2288 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2289 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2290 << "\n"); 2291 return unswitchNontrivialInvariants( 2292 L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE); 2293 } 2294 2295 /// Unswitch control flow predicated on loop invariant conditions. 2296 /// 2297 /// This first hoists all branches or switches which are trivial (IE, do not 2298 /// require duplicating any part of the loop) out of the loop body. It then 2299 /// looks at other loop invariant control flows and tries to unswitch those as 2300 /// well by cloning the loop if the result is small enough. 2301 /// 2302 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2303 /// updated based on the unswitch. 2304 /// 2305 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2306 /// true, we will attempt to do non-trivial unswitching as well as trivial 2307 /// unswitching. 2308 /// 2309 /// The `UnswitchCB` callback provided will be run after unswitching is 2310 /// complete, with the first parameter set to `true` if the provided loop 2311 /// remains a loop, and a list of new sibling loops created. 2312 /// 2313 /// If `SE` is non-null, we will update that analysis based on the unswitching 2314 /// done. 2315 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2316 AssumptionCache &AC, TargetTransformInfo &TTI, 2317 bool NonTrivial, 2318 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2319 ScalarEvolution *SE) { 2320 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2321 "Loops must be in LCSSA form before unswitching."); 2322 bool Changed = false; 2323 2324 // Must be in loop simplified form: we need a preheader and dedicated exits. 2325 if (!L.isLoopSimplifyForm()) 2326 return false; 2327 2328 // Try trivial unswitch first before loop over other basic blocks in the loop. 2329 if (unswitchAllTrivialConditions(L, DT, LI, SE)) { 2330 // If we unswitched successfully we will want to clean up the loop before 2331 // processing it further so just mark it as unswitched and return. 2332 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2333 return true; 2334 } 2335 2336 // If we're not doing non-trivial unswitching, we're done. We both accept 2337 // a parameter but also check a local flag that can be used for testing 2338 // a debugging. 2339 if (!NonTrivial && !EnableNonTrivialUnswitch) 2340 return false; 2341 2342 // For non-trivial unswitching, because it often creates new loops, we rely on 2343 // the pass manager to iterate on the loops rather than trying to immediately 2344 // reach a fixed point. There is no substantial advantage to iterating 2345 // internally, and if any of the new loops are simplified enough to contain 2346 // trivial unswitching we want to prefer those. 2347 2348 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2349 // a partial unswitch when possible below the threshold. 2350 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE)) 2351 return true; 2352 2353 // No other opportunities to unswitch. 2354 return Changed; 2355 } 2356 2357 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2358 LoopStandardAnalysisResults &AR, 2359 LPMUpdater &U) { 2360 Function &F = *L.getHeader()->getParent(); 2361 (void)F; 2362 2363 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2364 << "\n"); 2365 2366 // Save the current loop name in a variable so that we can report it even 2367 // after it has been deleted. 2368 std::string LoopName = L.getName(); 2369 2370 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2371 ArrayRef<Loop *> NewLoops) { 2372 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2373 if (!NewLoops.empty()) 2374 U.addSiblingLoops(NewLoops); 2375 2376 // If the current loop remains valid, we should revisit it to catch any 2377 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2378 if (CurrentLoopValid) 2379 U.revisitCurrentLoop(); 2380 else 2381 U.markLoopAsDeleted(L, LoopName); 2382 }; 2383 2384 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2385 &AR.SE)) 2386 return PreservedAnalyses::all(); 2387 2388 // Historically this pass has had issues with the dominator tree so verify it 2389 // in asserts builds. 2390 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2391 return getLoopPassPreservedAnalyses(); 2392 } 2393 2394 namespace { 2395 2396 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2397 bool NonTrivial; 2398 2399 public: 2400 static char ID; // Pass ID, replacement for typeid 2401 2402 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2403 : LoopPass(ID), NonTrivial(NonTrivial) { 2404 initializeSimpleLoopUnswitchLegacyPassPass( 2405 *PassRegistry::getPassRegistry()); 2406 } 2407 2408 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2409 2410 void getAnalysisUsage(AnalysisUsage &AU) const override { 2411 AU.addRequired<AssumptionCacheTracker>(); 2412 AU.addRequired<TargetTransformInfoWrapperPass>(); 2413 getLoopAnalysisUsage(AU); 2414 } 2415 }; 2416 2417 } // end anonymous namespace 2418 2419 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2420 if (skipLoop(L)) 2421 return false; 2422 2423 Function &F = *L->getHeader()->getParent(); 2424 2425 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2426 << "\n"); 2427 2428 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2429 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2430 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2431 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2432 2433 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2434 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2435 2436 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2437 ArrayRef<Loop *> NewLoops) { 2438 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2439 for (auto *NewL : NewLoops) 2440 LPM.addLoop(*NewL); 2441 2442 // If the current loop remains valid, re-add it to the queue. This is 2443 // a little wasteful as we'll finish processing the current loop as well, 2444 // but it is the best we can do in the old PM. 2445 if (CurrentLoopValid) 2446 LPM.addLoop(*L); 2447 else 2448 LPM.markLoopAsDeleted(*L); 2449 }; 2450 2451 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE); 2452 2453 // If anything was unswitched, also clear any cached information about this 2454 // loop. 2455 LPM.deleteSimpleAnalysisLoop(L); 2456 2457 // Historically this pass has had issues with the dominator tree so verify it 2458 // in asserts builds. 2459 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2460 2461 return Changed; 2462 } 2463 2464 char SimpleLoopUnswitchLegacyPass::ID = 0; 2465 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2466 "Simple unswitch loops", false, false) 2467 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2468 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2469 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2470 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2472 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2473 "Simple unswitch loops", false, false) 2474 2475 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2476 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2477 } 2478