xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision d4097b4a93a2bb303b9131d8293992bc6b63b2f9)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/Utils/Local.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ValueMapper.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <numeric>
56 #include <utility>
57 
58 #define DEBUG_TYPE "simple-loop-unswitch"
59 
60 using namespace llvm;
61 
62 STATISTIC(NumBranches, "Number of branches unswitched");
63 STATISTIC(NumSwitches, "Number of switches unswitched");
64 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
65 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
66 STATISTIC(
67     NumCostMultiplierSkipped,
68     "Number of unswitch candidates that had their cost multiplier skipped");
69 
70 static cl::opt<bool> EnableNonTrivialUnswitch(
71     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
72     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
73              "following the configuration passed into the pass."));
74 
75 static cl::opt<int>
76     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
77                       cl::desc("The cost threshold for unswitching a loop."));
78 
79 static cl::opt<bool> EnableUnswitchCostMultiplier(
80     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
81     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
82              "explosion in nontrivial unswitch."));
83 static cl::opt<int> UnswitchSiblingsToplevelDiv(
84     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
85     cl::desc("Toplevel siblings divisor for cost multiplier."));
86 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
87     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
88     cl::desc("Number of unswitch candidates that are ignored when calculating "
89              "cost multiplier."));
90 static cl::opt<bool> UnswitchGuards(
91     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
92     cl::desc("If enabled, simple loop unswitching will also consider "
93              "llvm.experimental.guard intrinsics as unswitch candidates."));
94 
95 /// Collect all of the loop invariant input values transitively used by the
96 /// homogeneous instruction graph from a given root.
97 ///
98 /// This essentially walks from a root recursively through loop variant operands
99 /// which have the exact same opcode and finds all inputs which are loop
100 /// invariant. For some operations these can be re-associated and unswitched out
101 /// of the loop entirely.
102 static TinyPtrVector<Value *>
103 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
104                                          LoopInfo &LI) {
105   assert(!L.isLoopInvariant(&Root) &&
106          "Only need to walk the graph if root itself is not invariant.");
107   TinyPtrVector<Value *> Invariants;
108 
109   // Build a worklist and recurse through operators collecting invariants.
110   SmallVector<Instruction *, 4> Worklist;
111   SmallPtrSet<Instruction *, 8> Visited;
112   Worklist.push_back(&Root);
113   Visited.insert(&Root);
114   do {
115     Instruction &I = *Worklist.pop_back_val();
116     for (Value *OpV : I.operand_values()) {
117       // Skip constants as unswitching isn't interesting for them.
118       if (isa<Constant>(OpV))
119         continue;
120 
121       // Add it to our result if loop invariant.
122       if (L.isLoopInvariant(OpV)) {
123         Invariants.push_back(OpV);
124         continue;
125       }
126 
127       // If not an instruction with the same opcode, nothing we can do.
128       Instruction *OpI = dyn_cast<Instruction>(OpV);
129       if (!OpI || OpI->getOpcode() != Root.getOpcode())
130         continue;
131 
132       // Visit this operand.
133       if (Visited.insert(OpI).second)
134         Worklist.push_back(OpI);
135     }
136   } while (!Worklist.empty());
137 
138   return Invariants;
139 }
140 
141 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
142                                      Constant &Replacement) {
143   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
144 
145   // Replace uses of LIC in the loop with the given constant.
146   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
147     // Grab the use and walk past it so we can clobber it in the use list.
148     Use *U = &*UI++;
149     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
150 
151     // Replace this use within the loop body.
152     if (UserI && L.contains(UserI))
153       U->set(&Replacement);
154   }
155 }
156 
157 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
158 /// incoming values along this edge.
159 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
160                                          BasicBlock &ExitBB) {
161   for (Instruction &I : ExitBB) {
162     auto *PN = dyn_cast<PHINode>(&I);
163     if (!PN)
164       // No more PHIs to check.
165       return true;
166 
167     // If the incoming value for this edge isn't loop invariant the unswitch
168     // won't be trivial.
169     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
170       return false;
171   }
172   llvm_unreachable("Basic blocks should never be empty!");
173 }
174 
175 /// Insert code to test a set of loop invariant values, and conditionally branch
176 /// on them.
177 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
178                                                   ArrayRef<Value *> Invariants,
179                                                   bool Direction,
180                                                   BasicBlock &UnswitchedSucc,
181                                                   BasicBlock &NormalSucc) {
182   IRBuilder<> IRB(&BB);
183   Value *Cond = Invariants.front();
184   for (Value *Invariant :
185        make_range(std::next(Invariants.begin()), Invariants.end()))
186     if (Direction)
187       Cond = IRB.CreateOr(Cond, Invariant);
188     else
189       Cond = IRB.CreateAnd(Cond, Invariant);
190 
191   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
192                    Direction ? &NormalSucc : &UnswitchedSucc);
193 }
194 
195 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
196 ///
197 /// Requires that the loop exit and unswitched basic block are the same, and
198 /// that the exiting block was a unique predecessor of that block. Rewrites the
199 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
200 /// PHI nodes from the old preheader that now contains the unswitched
201 /// terminator.
202 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
203                                                   BasicBlock &OldExitingBB,
204                                                   BasicBlock &OldPH) {
205   for (PHINode &PN : UnswitchedBB.phis()) {
206     // When the loop exit is directly unswitched we just need to update the
207     // incoming basic block. We loop to handle weird cases with repeated
208     // incoming blocks, but expect to typically only have one operand here.
209     for (auto i : seq<int>(0, PN.getNumOperands())) {
210       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
211              "Found incoming block different from unique predecessor!");
212       PN.setIncomingBlock(i, &OldPH);
213     }
214   }
215 }
216 
217 /// Rewrite the PHI nodes in the loop exit basic block and the split off
218 /// unswitched block.
219 ///
220 /// Because the exit block remains an exit from the loop, this rewrites the
221 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
222 /// nodes into the unswitched basic block to select between the value in the
223 /// old preheader and the loop exit.
224 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
225                                                       BasicBlock &UnswitchedBB,
226                                                       BasicBlock &OldExitingBB,
227                                                       BasicBlock &OldPH,
228                                                       bool FullUnswitch) {
229   assert(&ExitBB != &UnswitchedBB &&
230          "Must have different loop exit and unswitched blocks!");
231   Instruction *InsertPt = &*UnswitchedBB.begin();
232   for (PHINode &PN : ExitBB.phis()) {
233     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
234                                   PN.getName() + ".split", InsertPt);
235 
236     // Walk backwards over the old PHI node's inputs to minimize the cost of
237     // removing each one. We have to do this weird loop manually so that we
238     // create the same number of new incoming edges in the new PHI as we expect
239     // each case-based edge to be included in the unswitched switch in some
240     // cases.
241     // FIXME: This is really, really gross. It would be much cleaner if LLVM
242     // allowed us to create a single entry for a predecessor block without
243     // having separate entries for each "edge" even though these edges are
244     // required to produce identical results.
245     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
246       if (PN.getIncomingBlock(i) != &OldExitingBB)
247         continue;
248 
249       Value *Incoming = PN.getIncomingValue(i);
250       if (FullUnswitch)
251         // No more edge from the old exiting block to the exit block.
252         PN.removeIncomingValue(i);
253 
254       NewPN->addIncoming(Incoming, &OldPH);
255     }
256 
257     // Now replace the old PHI with the new one and wire the old one in as an
258     // input to the new one.
259     PN.replaceAllUsesWith(NewPN);
260     NewPN->addIncoming(&PN, &ExitBB);
261   }
262 }
263 
264 /// Hoist the current loop up to the innermost loop containing a remaining exit.
265 ///
266 /// Because we've removed an exit from the loop, we may have changed the set of
267 /// loops reachable and need to move the current loop up the loop nest or even
268 /// to an entirely separate nest.
269 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
270                                  DominatorTree &DT, LoopInfo &LI,
271                                  MemorySSAUpdater *MSSAU) {
272   // If the loop is already at the top level, we can't hoist it anywhere.
273   Loop *OldParentL = L.getParentLoop();
274   if (!OldParentL)
275     return;
276 
277   SmallVector<BasicBlock *, 4> Exits;
278   L.getExitBlocks(Exits);
279   Loop *NewParentL = nullptr;
280   for (auto *ExitBB : Exits)
281     if (Loop *ExitL = LI.getLoopFor(ExitBB))
282       if (!NewParentL || NewParentL->contains(ExitL))
283         NewParentL = ExitL;
284 
285   if (NewParentL == OldParentL)
286     return;
287 
288   // The new parent loop (if different) should always contain the old one.
289   if (NewParentL)
290     assert(NewParentL->contains(OldParentL) &&
291            "Can only hoist this loop up the nest!");
292 
293   // The preheader will need to move with the body of this loop. However,
294   // because it isn't in this loop we also need to update the primary loop map.
295   assert(OldParentL == LI.getLoopFor(&Preheader) &&
296          "Parent loop of this loop should contain this loop's preheader!");
297   LI.changeLoopFor(&Preheader, NewParentL);
298 
299   // Remove this loop from its old parent.
300   OldParentL->removeChildLoop(&L);
301 
302   // Add the loop either to the new parent or as a top-level loop.
303   if (NewParentL)
304     NewParentL->addChildLoop(&L);
305   else
306     LI.addTopLevelLoop(&L);
307 
308   // Remove this loops blocks from the old parent and every other loop up the
309   // nest until reaching the new parent. Also update all of these
310   // no-longer-containing loops to reflect the nesting change.
311   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
312        OldContainingL = OldContainingL->getParentLoop()) {
313     llvm::erase_if(OldContainingL->getBlocksVector(),
314                    [&](const BasicBlock *BB) {
315                      return BB == &Preheader || L.contains(BB);
316                    });
317 
318     OldContainingL->getBlocksSet().erase(&Preheader);
319     for (BasicBlock *BB : L.blocks())
320       OldContainingL->getBlocksSet().erase(BB);
321 
322     // Because we just hoisted a loop out of this one, we have essentially
323     // created new exit paths from it. That means we need to form LCSSA PHI
324     // nodes for values used in the no-longer-nested loop.
325     formLCSSA(*OldContainingL, DT, &LI, nullptr);
326 
327     // We shouldn't need to form dedicated exits because the exit introduced
328     // here is the (just split by unswitching) preheader. However, after trivial
329     // unswitching it is possible to get new non-dedicated exits out of parent
330     // loop so let's conservatively form dedicated exit blocks and figure out
331     // if we can optimize later.
332     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
333                             /*PreserveLCSSA*/ true);
334   }
335 }
336 
337 /// Unswitch a trivial branch if the condition is loop invariant.
338 ///
339 /// This routine should only be called when loop code leading to the branch has
340 /// been validated as trivial (no side effects). This routine checks if the
341 /// condition is invariant and one of the successors is a loop exit. This
342 /// allows us to unswitch without duplicating the loop, making it trivial.
343 ///
344 /// If this routine fails to unswitch the branch it returns false.
345 ///
346 /// If the branch can be unswitched, this routine splits the preheader and
347 /// hoists the branch above that split. Preserves loop simplified form
348 /// (splitting the exit block as necessary). It simplifies the branch within
349 /// the loop to an unconditional branch but doesn't remove it entirely. Further
350 /// cleanup can be done with some simplify-cfg like pass.
351 ///
352 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
353 /// invalidated by this.
354 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
355                                   LoopInfo &LI, ScalarEvolution *SE,
356                                   MemorySSAUpdater *MSSAU) {
357   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
358   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
359 
360   // The loop invariant values that we want to unswitch.
361   TinyPtrVector<Value *> Invariants;
362 
363   // When true, we're fully unswitching the branch rather than just unswitching
364   // some input conditions to the branch.
365   bool FullUnswitch = false;
366 
367   if (L.isLoopInvariant(BI.getCondition())) {
368     Invariants.push_back(BI.getCondition());
369     FullUnswitch = true;
370   } else {
371     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
372       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
373     if (Invariants.empty())
374       // Couldn't find invariant inputs!
375       return false;
376   }
377 
378   // Check that one of the branch's successors exits, and which one.
379   bool ExitDirection = true;
380   int LoopExitSuccIdx = 0;
381   auto *LoopExitBB = BI.getSuccessor(0);
382   if (L.contains(LoopExitBB)) {
383     ExitDirection = false;
384     LoopExitSuccIdx = 1;
385     LoopExitBB = BI.getSuccessor(1);
386     if (L.contains(LoopExitBB))
387       return false;
388   }
389   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
390   auto *ParentBB = BI.getParent();
391   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
392     return false;
393 
394   // When unswitching only part of the branch's condition, we need the exit
395   // block to be reached directly from the partially unswitched input. This can
396   // be done when the exit block is along the true edge and the branch condition
397   // is a graph of `or` operations, or the exit block is along the false edge
398   // and the condition is a graph of `and` operations.
399   if (!FullUnswitch) {
400     if (ExitDirection) {
401       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
402         return false;
403     } else {
404       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
405         return false;
406     }
407   }
408 
409   LLVM_DEBUG({
410     dbgs() << "    unswitching trivial invariant conditions for: " << BI
411            << "\n";
412     for (Value *Invariant : Invariants) {
413       dbgs() << "      " << *Invariant << " == true";
414       if (Invariant != Invariants.back())
415         dbgs() << " ||";
416       dbgs() << "\n";
417     }
418   });
419 
420   // If we have scalar evolutions, we need to invalidate them including this
421   // loop and the loop containing the exit block.
422   if (SE) {
423     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
424       SE->forgetLoop(ExitL);
425     else
426       // Forget the entire nest as this exits the entire nest.
427       SE->forgetTopmostLoop(&L);
428   }
429 
430   if (MSSAU && VerifyMemorySSA)
431     MSSAU->getMemorySSA()->verifyMemorySSA();
432 
433   // Split the preheader, so that we know that there is a safe place to insert
434   // the conditional branch. We will change the preheader to have a conditional
435   // branch on LoopCond.
436   BasicBlock *OldPH = L.getLoopPreheader();
437   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
438 
439   // Now that we have a place to insert the conditional branch, create a place
440   // to branch to: this is the exit block out of the loop that we are
441   // unswitching. We need to split this if there are other loop predecessors.
442   // Because the loop is in simplified form, *any* other predecessor is enough.
443   BasicBlock *UnswitchedBB;
444   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
445     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
446            "A branch's parent isn't a predecessor!");
447     UnswitchedBB = LoopExitBB;
448   } else {
449     UnswitchedBB =
450         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
451   }
452 
453   if (MSSAU && VerifyMemorySSA)
454     MSSAU->getMemorySSA()->verifyMemorySSA();
455 
456   // Actually move the invariant uses into the unswitched position. If possible,
457   // we do this by moving the instructions, but when doing partial unswitching
458   // we do it by building a new merge of the values in the unswitched position.
459   OldPH->getTerminator()->eraseFromParent();
460   if (FullUnswitch) {
461     // If fully unswitching, we can use the existing branch instruction.
462     // Splice it into the old PH to gate reaching the new preheader and re-point
463     // its successors.
464     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
465                                 BI);
466     if (MSSAU) {
467       // Temporarily clone the terminator, to make MSSA update cheaper by
468       // separating "insert edge" updates from "remove edge" ones.
469       ParentBB->getInstList().push_back(BI.clone());
470     } else {
471       // Create a new unconditional branch that will continue the loop as a new
472       // terminator.
473       BranchInst::Create(ContinueBB, ParentBB);
474     }
475     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
476     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
477   } else {
478     // Only unswitching a subset of inputs to the condition, so we will need to
479     // build a new branch that merges the invariant inputs.
480     if (ExitDirection)
481       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
482                  Instruction::Or &&
483              "Must have an `or` of `i1`s for the condition!");
484     else
485       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
486                  Instruction::And &&
487              "Must have an `and` of `i1`s for the condition!");
488     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
489                                           *UnswitchedBB, *NewPH);
490   }
491 
492   // Update the dominator tree with the added edge.
493   DT.insertEdge(OldPH, UnswitchedBB);
494 
495   // After the dominator tree was updated with the added edge, update MemorySSA
496   // if available.
497   if (MSSAU) {
498     SmallVector<CFGUpdate, 1> Updates;
499     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
500     MSSAU->applyInsertUpdates(Updates, DT);
501   }
502 
503   // Finish updating dominator tree and memory ssa for full unswitch.
504   if (FullUnswitch) {
505     if (MSSAU) {
506       // Remove the cloned branch instruction.
507       ParentBB->getTerminator()->eraseFromParent();
508       // Create unconditional branch now.
509       BranchInst::Create(ContinueBB, ParentBB);
510       MSSAU->removeEdge(ParentBB, LoopExitBB);
511     }
512     DT.deleteEdge(ParentBB, LoopExitBB);
513   }
514 
515   if (MSSAU && VerifyMemorySSA)
516     MSSAU->getMemorySSA()->verifyMemorySSA();
517 
518   // Rewrite the relevant PHI nodes.
519   if (UnswitchedBB == LoopExitBB)
520     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
521   else
522     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
523                                               *ParentBB, *OldPH, FullUnswitch);
524 
525   // The constant we can replace all of our invariants with inside the loop
526   // body. If any of the invariants have a value other than this the loop won't
527   // be entered.
528   ConstantInt *Replacement = ExitDirection
529                                  ? ConstantInt::getFalse(BI.getContext())
530                                  : ConstantInt::getTrue(BI.getContext());
531 
532   // Since this is an i1 condition we can also trivially replace uses of it
533   // within the loop with a constant.
534   for (Value *Invariant : Invariants)
535     replaceLoopInvariantUses(L, Invariant, *Replacement);
536 
537   // If this was full unswitching, we may have changed the nesting relationship
538   // for this loop so hoist it to its correct parent if needed.
539   if (FullUnswitch)
540     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
541 
542   if (MSSAU && VerifyMemorySSA)
543     MSSAU->getMemorySSA()->verifyMemorySSA();
544 
545   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
546   ++NumTrivial;
547   ++NumBranches;
548   return true;
549 }
550 
551 /// Unswitch a trivial switch if the condition is loop invariant.
552 ///
553 /// This routine should only be called when loop code leading to the switch has
554 /// been validated as trivial (no side effects). This routine checks if the
555 /// condition is invariant and that at least one of the successors is a loop
556 /// exit. This allows us to unswitch without duplicating the loop, making it
557 /// trivial.
558 ///
559 /// If this routine fails to unswitch the switch it returns false.
560 ///
561 /// If the switch can be unswitched, this routine splits the preheader and
562 /// copies the switch above that split. If the default case is one of the
563 /// exiting cases, it copies the non-exiting cases and points them at the new
564 /// preheader. If the default case is not exiting, it copies the exiting cases
565 /// and points the default at the preheader. It preserves loop simplified form
566 /// (splitting the exit blocks as necessary). It simplifies the switch within
567 /// the loop by removing now-dead cases. If the default case is one of those
568 /// unswitched, it replaces its destination with a new basic block containing
569 /// only unreachable. Such basic blocks, while technically loop exits, are not
570 /// considered for unswitching so this is a stable transform and the same
571 /// switch will not be revisited. If after unswitching there is only a single
572 /// in-loop successor, the switch is further simplified to an unconditional
573 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
574 ///
575 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
576 /// invalidated by this.
577 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
578                                   LoopInfo &LI, ScalarEvolution *SE,
579                                   MemorySSAUpdater *MSSAU) {
580   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
581   Value *LoopCond = SI.getCondition();
582 
583   // If this isn't switching on an invariant condition, we can't unswitch it.
584   if (!L.isLoopInvariant(LoopCond))
585     return false;
586 
587   auto *ParentBB = SI.getParent();
588 
589   SmallVector<int, 4> ExitCaseIndices;
590   for (auto Case : SI.cases()) {
591     auto *SuccBB = Case.getCaseSuccessor();
592     if (!L.contains(SuccBB) &&
593         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
594       ExitCaseIndices.push_back(Case.getCaseIndex());
595   }
596   BasicBlock *DefaultExitBB = nullptr;
597   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
598       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
599   if (!L.contains(SI.getDefaultDest()) &&
600       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
601       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
602     DefaultExitBB = SI.getDefaultDest();
603   } else if (ExitCaseIndices.empty())
604     return false;
605 
606   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
607 
608   if (MSSAU && VerifyMemorySSA)
609     MSSAU->getMemorySSA()->verifyMemorySSA();
610 
611   // We may need to invalidate SCEVs for the outermost loop reached by any of
612   // the exits.
613   Loop *OuterL = &L;
614 
615   if (DefaultExitBB) {
616     // Clear out the default destination temporarily to allow accurate
617     // predecessor lists to be examined below.
618     SI.setDefaultDest(nullptr);
619     // Check the loop containing this exit.
620     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
621     if (!ExitL || ExitL->contains(OuterL))
622       OuterL = ExitL;
623   }
624 
625   // Store the exit cases into a separate data structure and remove them from
626   // the switch.
627   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
628                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
629               4> ExitCases;
630   ExitCases.reserve(ExitCaseIndices.size());
631   SwitchInstProfUpdateWrapper SIW(SI);
632   // We walk the case indices backwards so that we remove the last case first
633   // and don't disrupt the earlier indices.
634   for (unsigned Index : reverse(ExitCaseIndices)) {
635     auto CaseI = SI.case_begin() + Index;
636     // Compute the outer loop from this exit.
637     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
638     if (!ExitL || ExitL->contains(OuterL))
639       OuterL = ExitL;
640     // Save the value of this case.
641     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
642     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
643     // Delete the unswitched cases.
644     SIW.removeCase(CaseI);
645   }
646 
647   if (SE) {
648     if (OuterL)
649       SE->forgetLoop(OuterL);
650     else
651       SE->forgetTopmostLoop(&L);
652   }
653 
654   // Check if after this all of the remaining cases point at the same
655   // successor.
656   BasicBlock *CommonSuccBB = nullptr;
657   if (SI.getNumCases() > 0 &&
658       std::all_of(std::next(SI.case_begin()), SI.case_end(),
659                   [&SI](const SwitchInst::CaseHandle &Case) {
660                     return Case.getCaseSuccessor() ==
661                            SI.case_begin()->getCaseSuccessor();
662                   }))
663     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
664   if (!DefaultExitBB) {
665     // If we're not unswitching the default, we need it to match any cases to
666     // have a common successor or if we have no cases it is the common
667     // successor.
668     if (SI.getNumCases() == 0)
669       CommonSuccBB = SI.getDefaultDest();
670     else if (SI.getDefaultDest() != CommonSuccBB)
671       CommonSuccBB = nullptr;
672   }
673 
674   // Split the preheader, so that we know that there is a safe place to insert
675   // the switch.
676   BasicBlock *OldPH = L.getLoopPreheader();
677   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
678   OldPH->getTerminator()->eraseFromParent();
679 
680   // Now add the unswitched switch.
681   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
682   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
683 
684   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
685   // First, we split any exit blocks with remaining in-loop predecessors. Then
686   // we update the PHIs in one of two ways depending on if there was a split.
687   // We walk in reverse so that we split in the same order as the cases
688   // appeared. This is purely for convenience of reading the resulting IR, but
689   // it doesn't cost anything really.
690   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
691   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
692   // Handle the default exit if necessary.
693   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
694   // ranges aren't quite powerful enough yet.
695   if (DefaultExitBB) {
696     if (pred_empty(DefaultExitBB)) {
697       UnswitchedExitBBs.insert(DefaultExitBB);
698       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
699     } else {
700       auto *SplitBB =
701           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
702       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
703                                                 *ParentBB, *OldPH,
704                                                 /*FullUnswitch*/ true);
705       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
706     }
707   }
708   // Note that we must use a reference in the for loop so that we update the
709   // container.
710   for (auto &ExitCase : reverse(ExitCases)) {
711     // Grab a reference to the exit block in the pair so that we can update it.
712     BasicBlock *ExitBB = std::get<1>(ExitCase);
713 
714     // If this case is the last edge into the exit block, we can simply reuse it
715     // as it will no longer be a loop exit. No mapping necessary.
716     if (pred_empty(ExitBB)) {
717       // Only rewrite once.
718       if (UnswitchedExitBBs.insert(ExitBB).second)
719         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
720       continue;
721     }
722 
723     // Otherwise we need to split the exit block so that we retain an exit
724     // block from the loop and a target for the unswitched condition.
725     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
726     if (!SplitExitBB) {
727       // If this is the first time we see this, do the split and remember it.
728       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
729       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
730                                                 *ParentBB, *OldPH,
731                                                 /*FullUnswitch*/ true);
732     }
733     // Update the case pair to point to the split block.
734     std::get<1>(ExitCase) = SplitExitBB;
735   }
736 
737   // Now add the unswitched cases. We do this in reverse order as we built them
738   // in reverse order.
739   for (auto &ExitCase : reverse(ExitCases)) {
740     ConstantInt *CaseVal = std::get<0>(ExitCase);
741     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
742 
743     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
744   }
745 
746   // If the default was unswitched, re-point it and add explicit cases for
747   // entering the loop.
748   if (DefaultExitBB) {
749     NewSIW->setDefaultDest(DefaultExitBB);
750     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
751 
752     // We removed all the exit cases, so we just copy the cases to the
753     // unswitched switch.
754     for (const auto &Case : SI.cases())
755       NewSIW.addCase(Case.getCaseValue(), NewPH,
756                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
757   } else if (DefaultCaseWeight) {
758     // We have to set branch weight of the default case.
759     uint64_t SW = *DefaultCaseWeight;
760     for (const auto &Case : SI.cases()) {
761       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
762       assert(W &&
763              "case weight must be defined as default case weight is defined");
764       SW += *W;
765     }
766     NewSIW.setSuccessorWeight(0, SW);
767   }
768 
769   // If we ended up with a common successor for every path through the switch
770   // after unswitching, rewrite it to an unconditional branch to make it easy
771   // to recognize. Otherwise we potentially have to recognize the default case
772   // pointing at unreachable and other complexity.
773   if (CommonSuccBB) {
774     BasicBlock *BB = SI.getParent();
775     // We may have had multiple edges to this common successor block, so remove
776     // them as predecessors. We skip the first one, either the default or the
777     // actual first case.
778     bool SkippedFirst = DefaultExitBB == nullptr;
779     for (auto Case : SI.cases()) {
780       assert(Case.getCaseSuccessor() == CommonSuccBB &&
781              "Non-common successor!");
782       (void)Case;
783       if (!SkippedFirst) {
784         SkippedFirst = true;
785         continue;
786       }
787       CommonSuccBB->removePredecessor(BB,
788                                       /*KeepOneInputPHIs*/ true);
789     }
790     // Now nuke the switch and replace it with a direct branch.
791     SIW.eraseFromParent();
792     BranchInst::Create(CommonSuccBB, BB);
793   } else if (DefaultExitBB) {
794     assert(SI.getNumCases() > 0 &&
795            "If we had no cases we'd have a common successor!");
796     // Move the last case to the default successor. This is valid as if the
797     // default got unswitched it cannot be reached. This has the advantage of
798     // being simple and keeping the number of edges from this switch to
799     // successors the same, and avoiding any PHI update complexity.
800     auto LastCaseI = std::prev(SI.case_end());
801 
802     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
803     SIW.setSuccessorWeight(
804         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
805     SIW.removeCase(LastCaseI);
806   }
807 
808   // Walk the unswitched exit blocks and the unswitched split blocks and update
809   // the dominator tree based on the CFG edits. While we are walking unordered
810   // containers here, the API for applyUpdates takes an unordered list of
811   // updates and requires them to not contain duplicates.
812   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
813   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
814     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
815     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
816   }
817   for (auto SplitUnswitchedPair : SplitExitBBMap) {
818     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
819     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
820   }
821   DT.applyUpdates(DTUpdates);
822 
823   if (MSSAU) {
824     MSSAU->applyUpdates(DTUpdates, DT);
825     if (VerifyMemorySSA)
826       MSSAU->getMemorySSA()->verifyMemorySSA();
827   }
828 
829   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
830 
831   // We may have changed the nesting relationship for this loop so hoist it to
832   // its correct parent if needed.
833   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
834 
835   if (MSSAU && VerifyMemorySSA)
836     MSSAU->getMemorySSA()->verifyMemorySSA();
837 
838   ++NumTrivial;
839   ++NumSwitches;
840   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
841   return true;
842 }
843 
844 /// This routine scans the loop to find a branch or switch which occurs before
845 /// any side effects occur. These can potentially be unswitched without
846 /// duplicating the loop. If a branch or switch is successfully unswitched the
847 /// scanning continues to see if subsequent branches or switches have become
848 /// trivial. Once all trivial candidates have been unswitched, this routine
849 /// returns.
850 ///
851 /// The return value indicates whether anything was unswitched (and therefore
852 /// changed).
853 ///
854 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
855 /// invalidated by this.
856 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
857                                          LoopInfo &LI, ScalarEvolution *SE,
858                                          MemorySSAUpdater *MSSAU) {
859   bool Changed = false;
860 
861   // If loop header has only one reachable successor we should keep looking for
862   // trivial condition candidates in the successor as well. An alternative is
863   // to constant fold conditions and merge successors into loop header (then we
864   // only need to check header's terminator). The reason for not doing this in
865   // LoopUnswitch pass is that it could potentially break LoopPassManager's
866   // invariants. Folding dead branches could either eliminate the current loop
867   // or make other loops unreachable. LCSSA form might also not be preserved
868   // after deleting branches. The following code keeps traversing loop header's
869   // successors until it finds the trivial condition candidate (condition that
870   // is not a constant). Since unswitching generates branches with constant
871   // conditions, this scenario could be very common in practice.
872   BasicBlock *CurrentBB = L.getHeader();
873   SmallPtrSet<BasicBlock *, 8> Visited;
874   Visited.insert(CurrentBB);
875   do {
876     // Check if there are any side-effecting instructions (e.g. stores, calls,
877     // volatile loads) in the part of the loop that the code *would* execute
878     // without unswitching.
879     if (MSSAU) // Possible early exit with MSSA
880       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
881         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
882           return Changed;
883     if (llvm::any_of(*CurrentBB,
884                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
885       return Changed;
886 
887     Instruction *CurrentTerm = CurrentBB->getTerminator();
888 
889     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
890       // Don't bother trying to unswitch past a switch with a constant
891       // condition. This should be removed prior to running this pass by
892       // simplify-cfg.
893       if (isa<Constant>(SI->getCondition()))
894         return Changed;
895 
896       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
897         // Couldn't unswitch this one so we're done.
898         return Changed;
899 
900       // Mark that we managed to unswitch something.
901       Changed = true;
902 
903       // If unswitching turned the terminator into an unconditional branch then
904       // we can continue. The unswitching logic specifically works to fold any
905       // cases it can into an unconditional branch to make it easier to
906       // recognize here.
907       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
908       if (!BI || BI->isConditional())
909         return Changed;
910 
911       CurrentBB = BI->getSuccessor(0);
912       continue;
913     }
914 
915     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
916     if (!BI)
917       // We do not understand other terminator instructions.
918       return Changed;
919 
920     // Don't bother trying to unswitch past an unconditional branch or a branch
921     // with a constant value. These should be removed by simplify-cfg prior to
922     // running this pass.
923     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
924       return Changed;
925 
926     // Found a trivial condition candidate: non-foldable conditional branch. If
927     // we fail to unswitch this, we can't do anything else that is trivial.
928     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
929       return Changed;
930 
931     // Mark that we managed to unswitch something.
932     Changed = true;
933 
934     // If we only unswitched some of the conditions feeding the branch, we won't
935     // have collapsed it to a single successor.
936     BI = cast<BranchInst>(CurrentBB->getTerminator());
937     if (BI->isConditional())
938       return Changed;
939 
940     // Follow the newly unconditional branch into its successor.
941     CurrentBB = BI->getSuccessor(0);
942 
943     // When continuing, if we exit the loop or reach a previous visited block,
944     // then we can not reach any trivial condition candidates (unfoldable
945     // branch instructions or switch instructions) and no unswitch can happen.
946   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
947 
948   return Changed;
949 }
950 
951 /// Build the cloned blocks for an unswitched copy of the given loop.
952 ///
953 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
954 /// after the split block (`SplitBB`) that will be used to select between the
955 /// cloned and original loop.
956 ///
957 /// This routine handles cloning all of the necessary loop blocks and exit
958 /// blocks including rewriting their instructions and the relevant PHI nodes.
959 /// Any loop blocks or exit blocks which are dominated by a different successor
960 /// than the one for this clone of the loop blocks can be trivially skipped. We
961 /// use the `DominatingSucc` map to determine whether a block satisfies that
962 /// property with a simple map lookup.
963 ///
964 /// It also correctly creates the unconditional branch in the cloned
965 /// unswitched parent block to only point at the unswitched successor.
966 ///
967 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
968 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
969 /// the cloned blocks (and their loops) are left without full `LoopInfo`
970 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
971 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
972 /// instead the caller must recompute an accurate DT. It *does* correctly
973 /// update the `AssumptionCache` provided in `AC`.
974 static BasicBlock *buildClonedLoopBlocks(
975     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
976     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
977     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
978     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
979     ValueToValueMapTy &VMap,
980     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
981     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
982   SmallVector<BasicBlock *, 4> NewBlocks;
983   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
984 
985   // We will need to clone a bunch of blocks, wrap up the clone operation in
986   // a helper.
987   auto CloneBlock = [&](BasicBlock *OldBB) {
988     // Clone the basic block and insert it before the new preheader.
989     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
990     NewBB->moveBefore(LoopPH);
991 
992     // Record this block and the mapping.
993     NewBlocks.push_back(NewBB);
994     VMap[OldBB] = NewBB;
995 
996     return NewBB;
997   };
998 
999   // We skip cloning blocks when they have a dominating succ that is not the
1000   // succ we are cloning for.
1001   auto SkipBlock = [&](BasicBlock *BB) {
1002     auto It = DominatingSucc.find(BB);
1003     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1004   };
1005 
1006   // First, clone the preheader.
1007   auto *ClonedPH = CloneBlock(LoopPH);
1008 
1009   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1010   for (auto *LoopBB : L.blocks())
1011     if (!SkipBlock(LoopBB))
1012       CloneBlock(LoopBB);
1013 
1014   // Split all the loop exit edges so that when we clone the exit blocks, if
1015   // any of the exit blocks are *also* a preheader for some other loop, we
1016   // don't create multiple predecessors entering the loop header.
1017   for (auto *ExitBB : ExitBlocks) {
1018     if (SkipBlock(ExitBB))
1019       continue;
1020 
1021     // When we are going to clone an exit, we don't need to clone all the
1022     // instructions in the exit block and we want to ensure we have an easy
1023     // place to merge the CFG, so split the exit first. This is always safe to
1024     // do because there cannot be any non-loop predecessors of a loop exit in
1025     // loop simplified form.
1026     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1027 
1028     // Rearrange the names to make it easier to write test cases by having the
1029     // exit block carry the suffix rather than the merge block carrying the
1030     // suffix.
1031     MergeBB->takeName(ExitBB);
1032     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1033 
1034     // Now clone the original exit block.
1035     auto *ClonedExitBB = CloneBlock(ExitBB);
1036     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1037            "Exit block should have been split to have one successor!");
1038     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1039            "Cloned exit block has the wrong successor!");
1040 
1041     // Remap any cloned instructions and create a merge phi node for them.
1042     for (auto ZippedInsts : llvm::zip_first(
1043              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1044              llvm::make_range(ClonedExitBB->begin(),
1045                               std::prev(ClonedExitBB->end())))) {
1046       Instruction &I = std::get<0>(ZippedInsts);
1047       Instruction &ClonedI = std::get<1>(ZippedInsts);
1048 
1049       // The only instructions in the exit block should be PHI nodes and
1050       // potentially a landing pad.
1051       assert(
1052           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1053           "Bad instruction in exit block!");
1054       // We should have a value map between the instruction and its clone.
1055       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1056 
1057       auto *MergePN =
1058           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1059                           &*MergeBB->getFirstInsertionPt());
1060       I.replaceAllUsesWith(MergePN);
1061       MergePN->addIncoming(&I, ExitBB);
1062       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1063     }
1064   }
1065 
1066   // Rewrite the instructions in the cloned blocks to refer to the instructions
1067   // in the cloned blocks. We have to do this as a second pass so that we have
1068   // everything available. Also, we have inserted new instructions which may
1069   // include assume intrinsics, so we update the assumption cache while
1070   // processing this.
1071   for (auto *ClonedBB : NewBlocks)
1072     for (Instruction &I : *ClonedBB) {
1073       RemapInstruction(&I, VMap,
1074                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1075       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1076         if (II->getIntrinsicID() == Intrinsic::assume)
1077           AC.registerAssumption(II);
1078     }
1079 
1080   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1081   // have spurious incoming values.
1082   for (auto *LoopBB : L.blocks())
1083     if (SkipBlock(LoopBB))
1084       for (auto *SuccBB : successors(LoopBB))
1085         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1086           for (PHINode &PN : ClonedSuccBB->phis())
1087             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1088 
1089   // Remove the cloned parent as a predecessor of any successor we ended up
1090   // cloning other than the unswitched one.
1091   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1092   for (auto *SuccBB : successors(ParentBB)) {
1093     if (SuccBB == UnswitchedSuccBB)
1094       continue;
1095 
1096     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1097     if (!ClonedSuccBB)
1098       continue;
1099 
1100     ClonedSuccBB->removePredecessor(ClonedParentBB,
1101                                     /*KeepOneInputPHIs*/ true);
1102   }
1103 
1104   // Replace the cloned branch with an unconditional branch to the cloned
1105   // unswitched successor.
1106   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1107   ClonedParentBB->getTerminator()->eraseFromParent();
1108   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1109 
1110   // If there are duplicate entries in the PHI nodes because of multiple edges
1111   // to the unswitched successor, we need to nuke all but one as we replaced it
1112   // with a direct branch.
1113   for (PHINode &PN : ClonedSuccBB->phis()) {
1114     bool Found = false;
1115     // Loop over the incoming operands backwards so we can easily delete as we
1116     // go without invalidating the index.
1117     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1118       if (PN.getIncomingBlock(i) != ClonedParentBB)
1119         continue;
1120       if (!Found) {
1121         Found = true;
1122         continue;
1123       }
1124       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1125     }
1126   }
1127 
1128   // Record the domtree updates for the new blocks.
1129   SmallPtrSet<BasicBlock *, 4> SuccSet;
1130   for (auto *ClonedBB : NewBlocks) {
1131     for (auto *SuccBB : successors(ClonedBB))
1132       if (SuccSet.insert(SuccBB).second)
1133         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1134     SuccSet.clear();
1135   }
1136 
1137   return ClonedPH;
1138 }
1139 
1140 /// Recursively clone the specified loop and all of its children.
1141 ///
1142 /// The target parent loop for the clone should be provided, or can be null if
1143 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1144 /// with the provided value map. The entire original loop must be present in
1145 /// the value map. The cloned loop is returned.
1146 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1147                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1148   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1149     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1150     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1151     for (auto *BB : OrigL.blocks()) {
1152       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1153       ClonedL.addBlockEntry(ClonedBB);
1154       if (LI.getLoopFor(BB) == &OrigL)
1155         LI.changeLoopFor(ClonedBB, &ClonedL);
1156     }
1157   };
1158 
1159   // We specially handle the first loop because it may get cloned into
1160   // a different parent and because we most commonly are cloning leaf loops.
1161   Loop *ClonedRootL = LI.AllocateLoop();
1162   if (RootParentL)
1163     RootParentL->addChildLoop(ClonedRootL);
1164   else
1165     LI.addTopLevelLoop(ClonedRootL);
1166   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1167 
1168   if (OrigRootL.empty())
1169     return ClonedRootL;
1170 
1171   // If we have a nest, we can quickly clone the entire loop nest using an
1172   // iterative approach because it is a tree. We keep the cloned parent in the
1173   // data structure to avoid repeatedly querying through a map to find it.
1174   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1175   // Build up the loops to clone in reverse order as we'll clone them from the
1176   // back.
1177   for (Loop *ChildL : llvm::reverse(OrigRootL))
1178     LoopsToClone.push_back({ClonedRootL, ChildL});
1179   do {
1180     Loop *ClonedParentL, *L;
1181     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1182     Loop *ClonedL = LI.AllocateLoop();
1183     ClonedParentL->addChildLoop(ClonedL);
1184     AddClonedBlocksToLoop(*L, *ClonedL);
1185     for (Loop *ChildL : llvm::reverse(*L))
1186       LoopsToClone.push_back({ClonedL, ChildL});
1187   } while (!LoopsToClone.empty());
1188 
1189   return ClonedRootL;
1190 }
1191 
1192 /// Build the cloned loops of an original loop from unswitching.
1193 ///
1194 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1195 /// operation. We need to re-verify that there even is a loop (as the backedge
1196 /// may not have been cloned), and even if there are remaining backedges the
1197 /// backedge set may be different. However, we know that each child loop is
1198 /// undisturbed, we only need to find where to place each child loop within
1199 /// either any parent loop or within a cloned version of the original loop.
1200 ///
1201 /// Because child loops may end up cloned outside of any cloned version of the
1202 /// original loop, multiple cloned sibling loops may be created. All of them
1203 /// are returned so that the newly introduced loop nest roots can be
1204 /// identified.
1205 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1206                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1207                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1208   Loop *ClonedL = nullptr;
1209 
1210   auto *OrigPH = OrigL.getLoopPreheader();
1211   auto *OrigHeader = OrigL.getHeader();
1212 
1213   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1214   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1215 
1216   // We need to know the loops of the cloned exit blocks to even compute the
1217   // accurate parent loop. If we only clone exits to some parent of the
1218   // original parent, we want to clone into that outer loop. We also keep track
1219   // of the loops that our cloned exit blocks participate in.
1220   Loop *ParentL = nullptr;
1221   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1222   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1223   ClonedExitsInLoops.reserve(ExitBlocks.size());
1224   for (auto *ExitBB : ExitBlocks)
1225     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1226       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1227         ExitLoopMap[ClonedExitBB] = ExitL;
1228         ClonedExitsInLoops.push_back(ClonedExitBB);
1229         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1230           ParentL = ExitL;
1231       }
1232   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1233           ParentL->contains(OrigL.getParentLoop())) &&
1234          "The computed parent loop should always contain (or be) the parent of "
1235          "the original loop.");
1236 
1237   // We build the set of blocks dominated by the cloned header from the set of
1238   // cloned blocks out of the original loop. While not all of these will
1239   // necessarily be in the cloned loop, it is enough to establish that they
1240   // aren't in unreachable cycles, etc.
1241   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1242   for (auto *BB : OrigL.blocks())
1243     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1244       ClonedLoopBlocks.insert(ClonedBB);
1245 
1246   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1247   // skipped cloning some region of this loop which can in turn skip some of
1248   // the backedges so we have to rebuild the blocks in the loop based on the
1249   // backedges that remain after cloning.
1250   SmallVector<BasicBlock *, 16> Worklist;
1251   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1252   for (auto *Pred : predecessors(ClonedHeader)) {
1253     // The only possible non-loop header predecessor is the preheader because
1254     // we know we cloned the loop in simplified form.
1255     if (Pred == ClonedPH)
1256       continue;
1257 
1258     // Because the loop was in simplified form, the only non-loop predecessor
1259     // should be the preheader.
1260     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1261                                            "header other than the preheader "
1262                                            "that is not part of the loop!");
1263 
1264     // Insert this block into the loop set and on the first visit (and if it
1265     // isn't the header we're currently walking) put it into the worklist to
1266     // recurse through.
1267     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1268       Worklist.push_back(Pred);
1269   }
1270 
1271   // If we had any backedges then there *is* a cloned loop. Put the header into
1272   // the loop set and then walk the worklist backwards to find all the blocks
1273   // that remain within the loop after cloning.
1274   if (!BlocksInClonedLoop.empty()) {
1275     BlocksInClonedLoop.insert(ClonedHeader);
1276 
1277     while (!Worklist.empty()) {
1278       BasicBlock *BB = Worklist.pop_back_val();
1279       assert(BlocksInClonedLoop.count(BB) &&
1280              "Didn't put block into the loop set!");
1281 
1282       // Insert any predecessors that are in the possible set into the cloned
1283       // set, and if the insert is successful, add them to the worklist. Note
1284       // that we filter on the blocks that are definitely reachable via the
1285       // backedge to the loop header so we may prune out dead code within the
1286       // cloned loop.
1287       for (auto *Pred : predecessors(BB))
1288         if (ClonedLoopBlocks.count(Pred) &&
1289             BlocksInClonedLoop.insert(Pred).second)
1290           Worklist.push_back(Pred);
1291     }
1292 
1293     ClonedL = LI.AllocateLoop();
1294     if (ParentL) {
1295       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1296       ParentL->addChildLoop(ClonedL);
1297     } else {
1298       LI.addTopLevelLoop(ClonedL);
1299     }
1300     NonChildClonedLoops.push_back(ClonedL);
1301 
1302     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1303     // We don't want to just add the cloned loop blocks based on how we
1304     // discovered them. The original order of blocks was carefully built in
1305     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1306     // that logic, we just re-walk the original blocks (and those of the child
1307     // loops) and filter them as we add them into the cloned loop.
1308     for (auto *BB : OrigL.blocks()) {
1309       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1310       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1311         continue;
1312 
1313       // Directly add the blocks that are only in this loop.
1314       if (LI.getLoopFor(BB) == &OrigL) {
1315         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1316         continue;
1317       }
1318 
1319       // We want to manually add it to this loop and parents.
1320       // Registering it with LoopInfo will happen when we clone the top
1321       // loop for this block.
1322       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1323         PL->addBlockEntry(ClonedBB);
1324     }
1325 
1326     // Now add each child loop whose header remains within the cloned loop. All
1327     // of the blocks within the loop must satisfy the same constraints as the
1328     // header so once we pass the header checks we can just clone the entire
1329     // child loop nest.
1330     for (Loop *ChildL : OrigL) {
1331       auto *ClonedChildHeader =
1332           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1333       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1334         continue;
1335 
1336 #ifndef NDEBUG
1337       // We should never have a cloned child loop header but fail to have
1338       // all of the blocks for that child loop.
1339       for (auto *ChildLoopBB : ChildL->blocks())
1340         assert(BlocksInClonedLoop.count(
1341                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1342                "Child cloned loop has a header within the cloned outer "
1343                "loop but not all of its blocks!");
1344 #endif
1345 
1346       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1347     }
1348   }
1349 
1350   // Now that we've handled all the components of the original loop that were
1351   // cloned into a new loop, we still need to handle anything from the original
1352   // loop that wasn't in a cloned loop.
1353 
1354   // Figure out what blocks are left to place within any loop nest containing
1355   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1356   // them.
1357   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1358   if (BlocksInClonedLoop.empty())
1359     UnloopedBlockSet.insert(ClonedPH);
1360   for (auto *ClonedBB : ClonedLoopBlocks)
1361     if (!BlocksInClonedLoop.count(ClonedBB))
1362       UnloopedBlockSet.insert(ClonedBB);
1363 
1364   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1365   // backwards across these to process them inside out. The order shouldn't
1366   // matter as we're just trying to build up the map from inside-out; we use
1367   // the map in a more stably ordered way below.
1368   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1369   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1370     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1371            ExitLoopMap.lookup(RHS)->getLoopDepth();
1372   });
1373 
1374   // Populate the existing ExitLoopMap with everything reachable from each
1375   // exit, starting from the inner most exit.
1376   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1377     assert(Worklist.empty() && "Didn't clear worklist!");
1378 
1379     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1380     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1381 
1382     // Walk the CFG back until we hit the cloned PH adding everything reachable
1383     // and in the unlooped set to this exit block's loop.
1384     Worklist.push_back(ExitBB);
1385     do {
1386       BasicBlock *BB = Worklist.pop_back_val();
1387       // We can stop recursing at the cloned preheader (if we get there).
1388       if (BB == ClonedPH)
1389         continue;
1390 
1391       for (BasicBlock *PredBB : predecessors(BB)) {
1392         // If this pred has already been moved to our set or is part of some
1393         // (inner) loop, no update needed.
1394         if (!UnloopedBlockSet.erase(PredBB)) {
1395           assert(
1396               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1397               "Predecessor not mapped to a loop!");
1398           continue;
1399         }
1400 
1401         // We just insert into the loop set here. We'll add these blocks to the
1402         // exit loop after we build up the set in an order that doesn't rely on
1403         // predecessor order (which in turn relies on use list order).
1404         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1405         (void)Inserted;
1406         assert(Inserted && "Should only visit an unlooped block once!");
1407 
1408         // And recurse through to its predecessors.
1409         Worklist.push_back(PredBB);
1410       }
1411     } while (!Worklist.empty());
1412   }
1413 
1414   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1415   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1416   // in their original order adding them to the correct loop.
1417 
1418   // We need a stable insertion order. We use the order of the original loop
1419   // order and map into the correct parent loop.
1420   for (auto *BB : llvm::concat<BasicBlock *const>(
1421            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1422     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1423       OuterL->addBasicBlockToLoop(BB, LI);
1424 
1425 #ifndef NDEBUG
1426   for (auto &BBAndL : ExitLoopMap) {
1427     auto *BB = BBAndL.first;
1428     auto *OuterL = BBAndL.second;
1429     assert(LI.getLoopFor(BB) == OuterL &&
1430            "Failed to put all blocks into outer loops!");
1431   }
1432 #endif
1433 
1434   // Now that all the blocks are placed into the correct containing loop in the
1435   // absence of child loops, find all the potentially cloned child loops and
1436   // clone them into whatever outer loop we placed their header into.
1437   for (Loop *ChildL : OrigL) {
1438     auto *ClonedChildHeader =
1439         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1440     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1441       continue;
1442 
1443 #ifndef NDEBUG
1444     for (auto *ChildLoopBB : ChildL->blocks())
1445       assert(VMap.count(ChildLoopBB) &&
1446              "Cloned a child loop header but not all of that loops blocks!");
1447 #endif
1448 
1449     NonChildClonedLoops.push_back(cloneLoopNest(
1450         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1451   }
1452 }
1453 
1454 static void
1455 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1456                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1457                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1458   // Find all the dead clones, and remove them from their successors.
1459   SmallVector<BasicBlock *, 16> DeadBlocks;
1460   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1461     for (auto &VMap : VMaps)
1462       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1463         if (!DT.isReachableFromEntry(ClonedBB)) {
1464           for (BasicBlock *SuccBB : successors(ClonedBB))
1465             SuccBB->removePredecessor(ClonedBB);
1466           DeadBlocks.push_back(ClonedBB);
1467         }
1468 
1469   // Remove all MemorySSA in the dead blocks
1470   if (MSSAU) {
1471     SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1472                                                DeadBlocks.end());
1473     MSSAU->removeBlocks(DeadBlockSet);
1474   }
1475 
1476   // Drop any remaining references to break cycles.
1477   for (BasicBlock *BB : DeadBlocks)
1478     BB->dropAllReferences();
1479   // Erase them from the IR.
1480   for (BasicBlock *BB : DeadBlocks)
1481     BB->eraseFromParent();
1482 }
1483 
1484 static void deleteDeadBlocksFromLoop(Loop &L,
1485                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1486                                      DominatorTree &DT, LoopInfo &LI,
1487                                      MemorySSAUpdater *MSSAU) {
1488   // Find all the dead blocks tied to this loop, and remove them from their
1489   // successors.
1490   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
1491 
1492   // Start with loop/exit blocks and get a transitive closure of reachable dead
1493   // blocks.
1494   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1495                                                 ExitBlocks.end());
1496   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1497   while (!DeathCandidates.empty()) {
1498     auto *BB = DeathCandidates.pop_back_val();
1499     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1500       for (BasicBlock *SuccBB : successors(BB)) {
1501         SuccBB->removePredecessor(BB);
1502         DeathCandidates.push_back(SuccBB);
1503       }
1504       DeadBlockSet.insert(BB);
1505     }
1506   }
1507 
1508   // Remove all MemorySSA in the dead blocks
1509   if (MSSAU)
1510     MSSAU->removeBlocks(DeadBlockSet);
1511 
1512   // Filter out the dead blocks from the exit blocks list so that it can be
1513   // used in the caller.
1514   llvm::erase_if(ExitBlocks,
1515                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1516 
1517   // Walk from this loop up through its parents removing all of the dead blocks.
1518   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1519     for (auto *BB : DeadBlockSet)
1520       ParentL->getBlocksSet().erase(BB);
1521     llvm::erase_if(ParentL->getBlocksVector(),
1522                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1523   }
1524 
1525   // Now delete the dead child loops. This raw delete will clear them
1526   // recursively.
1527   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1528     if (!DeadBlockSet.count(ChildL->getHeader()))
1529       return false;
1530 
1531     assert(llvm::all_of(ChildL->blocks(),
1532                         [&](BasicBlock *ChildBB) {
1533                           return DeadBlockSet.count(ChildBB);
1534                         }) &&
1535            "If the child loop header is dead all blocks in the child loop must "
1536            "be dead as well!");
1537     LI.destroy(ChildL);
1538     return true;
1539   });
1540 
1541   // Remove the loop mappings for the dead blocks and drop all the references
1542   // from these blocks to others to handle cyclic references as we start
1543   // deleting the blocks themselves.
1544   for (auto *BB : DeadBlockSet) {
1545     // Check that the dominator tree has already been updated.
1546     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1547     LI.changeLoopFor(BB, nullptr);
1548     BB->dropAllReferences();
1549   }
1550 
1551   // Actually delete the blocks now that they've been fully unhooked from the
1552   // IR.
1553   for (auto *BB : DeadBlockSet)
1554     BB->eraseFromParent();
1555 }
1556 
1557 /// Recompute the set of blocks in a loop after unswitching.
1558 ///
1559 /// This walks from the original headers predecessors to rebuild the loop. We
1560 /// take advantage of the fact that new blocks can't have been added, and so we
1561 /// filter by the original loop's blocks. This also handles potentially
1562 /// unreachable code that we don't want to explore but might be found examining
1563 /// the predecessors of the header.
1564 ///
1565 /// If the original loop is no longer a loop, this will return an empty set. If
1566 /// it remains a loop, all the blocks within it will be added to the set
1567 /// (including those blocks in inner loops).
1568 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1569                                                                  LoopInfo &LI) {
1570   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1571 
1572   auto *PH = L.getLoopPreheader();
1573   auto *Header = L.getHeader();
1574 
1575   // A worklist to use while walking backwards from the header.
1576   SmallVector<BasicBlock *, 16> Worklist;
1577 
1578   // First walk the predecessors of the header to find the backedges. This will
1579   // form the basis of our walk.
1580   for (auto *Pred : predecessors(Header)) {
1581     // Skip the preheader.
1582     if (Pred == PH)
1583       continue;
1584 
1585     // Because the loop was in simplified form, the only non-loop predecessor
1586     // is the preheader.
1587     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1588                                "than the preheader that is not part of the "
1589                                "loop!");
1590 
1591     // Insert this block into the loop set and on the first visit and, if it
1592     // isn't the header we're currently walking, put it into the worklist to
1593     // recurse through.
1594     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1595       Worklist.push_back(Pred);
1596   }
1597 
1598   // If no backedges were found, we're done.
1599   if (LoopBlockSet.empty())
1600     return LoopBlockSet;
1601 
1602   // We found backedges, recurse through them to identify the loop blocks.
1603   while (!Worklist.empty()) {
1604     BasicBlock *BB = Worklist.pop_back_val();
1605     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1606 
1607     // No need to walk past the header.
1608     if (BB == Header)
1609       continue;
1610 
1611     // Because we know the inner loop structure remains valid we can use the
1612     // loop structure to jump immediately across the entire nested loop.
1613     // Further, because it is in loop simplified form, we can directly jump
1614     // to its preheader afterward.
1615     if (Loop *InnerL = LI.getLoopFor(BB))
1616       if (InnerL != &L) {
1617         assert(L.contains(InnerL) &&
1618                "Should not reach a loop *outside* this loop!");
1619         // The preheader is the only possible predecessor of the loop so
1620         // insert it into the set and check whether it was already handled.
1621         auto *InnerPH = InnerL->getLoopPreheader();
1622         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1623                                       "but not contain the inner loop "
1624                                       "preheader!");
1625         if (!LoopBlockSet.insert(InnerPH).second)
1626           // The only way to reach the preheader is through the loop body
1627           // itself so if it has been visited the loop is already handled.
1628           continue;
1629 
1630         // Insert all of the blocks (other than those already present) into
1631         // the loop set. We expect at least the block that led us to find the
1632         // inner loop to be in the block set, but we may also have other loop
1633         // blocks if they were already enqueued as predecessors of some other
1634         // outer loop block.
1635         for (auto *InnerBB : InnerL->blocks()) {
1636           if (InnerBB == BB) {
1637             assert(LoopBlockSet.count(InnerBB) &&
1638                    "Block should already be in the set!");
1639             continue;
1640           }
1641 
1642           LoopBlockSet.insert(InnerBB);
1643         }
1644 
1645         // Add the preheader to the worklist so we will continue past the
1646         // loop body.
1647         Worklist.push_back(InnerPH);
1648         continue;
1649       }
1650 
1651     // Insert any predecessors that were in the original loop into the new
1652     // set, and if the insert is successful, add them to the worklist.
1653     for (auto *Pred : predecessors(BB))
1654       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1655         Worklist.push_back(Pred);
1656   }
1657 
1658   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1659 
1660   // We've found all the blocks participating in the loop, return our completed
1661   // set.
1662   return LoopBlockSet;
1663 }
1664 
1665 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1666 ///
1667 /// The removal may have removed some child loops entirely but cannot have
1668 /// disturbed any remaining child loops. However, they may need to be hoisted
1669 /// to the parent loop (or to be top-level loops). The original loop may be
1670 /// completely removed.
1671 ///
1672 /// The sibling loops resulting from this update are returned. If the original
1673 /// loop remains a valid loop, it will be the first entry in this list with all
1674 /// of the newly sibling loops following it.
1675 ///
1676 /// Returns true if the loop remains a loop after unswitching, and false if it
1677 /// is no longer a loop after unswitching (and should not continue to be
1678 /// referenced).
1679 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1680                                      LoopInfo &LI,
1681                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1682   auto *PH = L.getLoopPreheader();
1683 
1684   // Compute the actual parent loop from the exit blocks. Because we may have
1685   // pruned some exits the loop may be different from the original parent.
1686   Loop *ParentL = nullptr;
1687   SmallVector<Loop *, 4> ExitLoops;
1688   SmallVector<BasicBlock *, 4> ExitsInLoops;
1689   ExitsInLoops.reserve(ExitBlocks.size());
1690   for (auto *ExitBB : ExitBlocks)
1691     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1692       ExitLoops.push_back(ExitL);
1693       ExitsInLoops.push_back(ExitBB);
1694       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1695         ParentL = ExitL;
1696     }
1697 
1698   // Recompute the blocks participating in this loop. This may be empty if it
1699   // is no longer a loop.
1700   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1701 
1702   // If we still have a loop, we need to re-set the loop's parent as the exit
1703   // block set changing may have moved it within the loop nest. Note that this
1704   // can only happen when this loop has a parent as it can only hoist the loop
1705   // *up* the nest.
1706   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1707     // Remove this loop's (original) blocks from all of the intervening loops.
1708     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1709          IL = IL->getParentLoop()) {
1710       IL->getBlocksSet().erase(PH);
1711       for (auto *BB : L.blocks())
1712         IL->getBlocksSet().erase(BB);
1713       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1714         return BB == PH || L.contains(BB);
1715       });
1716     }
1717 
1718     LI.changeLoopFor(PH, ParentL);
1719     L.getParentLoop()->removeChildLoop(&L);
1720     if (ParentL)
1721       ParentL->addChildLoop(&L);
1722     else
1723       LI.addTopLevelLoop(&L);
1724   }
1725 
1726   // Now we update all the blocks which are no longer within the loop.
1727   auto &Blocks = L.getBlocksVector();
1728   auto BlocksSplitI =
1729       LoopBlockSet.empty()
1730           ? Blocks.begin()
1731           : std::stable_partition(
1732                 Blocks.begin(), Blocks.end(),
1733                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1734 
1735   // Before we erase the list of unlooped blocks, build a set of them.
1736   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1737   if (LoopBlockSet.empty())
1738     UnloopedBlocks.insert(PH);
1739 
1740   // Now erase these blocks from the loop.
1741   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1742     L.getBlocksSet().erase(BB);
1743   Blocks.erase(BlocksSplitI, Blocks.end());
1744 
1745   // Sort the exits in ascending loop depth, we'll work backwards across these
1746   // to process them inside out.
1747   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1748     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1749   });
1750 
1751   // We'll build up a set for each exit loop.
1752   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1753   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1754 
1755   auto RemoveUnloopedBlocksFromLoop =
1756       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1757         for (auto *BB : UnloopedBlocks)
1758           L.getBlocksSet().erase(BB);
1759         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1760           return UnloopedBlocks.count(BB);
1761         });
1762       };
1763 
1764   SmallVector<BasicBlock *, 16> Worklist;
1765   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1766     assert(Worklist.empty() && "Didn't clear worklist!");
1767     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1768 
1769     // Grab the next exit block, in decreasing loop depth order.
1770     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1771     Loop &ExitL = *LI.getLoopFor(ExitBB);
1772     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1773 
1774     // Erase all of the unlooped blocks from the loops between the previous
1775     // exit loop and this exit loop. This works because the ExitInLoops list is
1776     // sorted in increasing order of loop depth and thus we visit loops in
1777     // decreasing order of loop depth.
1778     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1779       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1780 
1781     // Walk the CFG back until we hit the cloned PH adding everything reachable
1782     // and in the unlooped set to this exit block's loop.
1783     Worklist.push_back(ExitBB);
1784     do {
1785       BasicBlock *BB = Worklist.pop_back_val();
1786       // We can stop recursing at the cloned preheader (if we get there).
1787       if (BB == PH)
1788         continue;
1789 
1790       for (BasicBlock *PredBB : predecessors(BB)) {
1791         // If this pred has already been moved to our set or is part of some
1792         // (inner) loop, no update needed.
1793         if (!UnloopedBlocks.erase(PredBB)) {
1794           assert((NewExitLoopBlocks.count(PredBB) ||
1795                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1796                  "Predecessor not in a nested loop (or already visited)!");
1797           continue;
1798         }
1799 
1800         // We just insert into the loop set here. We'll add these blocks to the
1801         // exit loop after we build up the set in a deterministic order rather
1802         // than the predecessor-influenced visit order.
1803         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1804         (void)Inserted;
1805         assert(Inserted && "Should only visit an unlooped block once!");
1806 
1807         // And recurse through to its predecessors.
1808         Worklist.push_back(PredBB);
1809       }
1810     } while (!Worklist.empty());
1811 
1812     // If blocks in this exit loop were directly part of the original loop (as
1813     // opposed to a child loop) update the map to point to this exit loop. This
1814     // just updates a map and so the fact that the order is unstable is fine.
1815     for (auto *BB : NewExitLoopBlocks)
1816       if (Loop *BBL = LI.getLoopFor(BB))
1817         if (BBL == &L || !L.contains(BBL))
1818           LI.changeLoopFor(BB, &ExitL);
1819 
1820     // We will remove the remaining unlooped blocks from this loop in the next
1821     // iteration or below.
1822     NewExitLoopBlocks.clear();
1823   }
1824 
1825   // Any remaining unlooped blocks are no longer part of any loop unless they
1826   // are part of some child loop.
1827   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1828     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1829   for (auto *BB : UnloopedBlocks)
1830     if (Loop *BBL = LI.getLoopFor(BB))
1831       if (BBL == &L || !L.contains(BBL))
1832         LI.changeLoopFor(BB, nullptr);
1833 
1834   // Sink all the child loops whose headers are no longer in the loop set to
1835   // the parent (or to be top level loops). We reach into the loop and directly
1836   // update its subloop vector to make this batch update efficient.
1837   auto &SubLoops = L.getSubLoopsVector();
1838   auto SubLoopsSplitI =
1839       LoopBlockSet.empty()
1840           ? SubLoops.begin()
1841           : std::stable_partition(
1842                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1843                   return LoopBlockSet.count(SubL->getHeader());
1844                 });
1845   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1846     HoistedLoops.push_back(HoistedL);
1847     HoistedL->setParentLoop(nullptr);
1848 
1849     // To compute the new parent of this hoisted loop we look at where we
1850     // placed the preheader above. We can't lookup the header itself because we
1851     // retained the mapping from the header to the hoisted loop. But the
1852     // preheader and header should have the exact same new parent computed
1853     // based on the set of exit blocks from the original loop as the preheader
1854     // is a predecessor of the header and so reached in the reverse walk. And
1855     // because the loops were all in simplified form the preheader of the
1856     // hoisted loop can't be part of some *other* loop.
1857     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1858       NewParentL->addChildLoop(HoistedL);
1859     else
1860       LI.addTopLevelLoop(HoistedL);
1861   }
1862   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1863 
1864   // Actually delete the loop if nothing remained within it.
1865   if (Blocks.empty()) {
1866     assert(SubLoops.empty() &&
1867            "Failed to remove all subloops from the original loop!");
1868     if (Loop *ParentL = L.getParentLoop())
1869       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1870     else
1871       LI.removeLoop(llvm::find(LI, &L));
1872     LI.destroy(&L);
1873     return false;
1874   }
1875 
1876   return true;
1877 }
1878 
1879 /// Helper to visit a dominator subtree, invoking a callable on each node.
1880 ///
1881 /// Returning false at any point will stop walking past that node of the tree.
1882 template <typename CallableT>
1883 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1884   SmallVector<DomTreeNode *, 4> DomWorklist;
1885   DomWorklist.push_back(DT[BB]);
1886 #ifndef NDEBUG
1887   SmallPtrSet<DomTreeNode *, 4> Visited;
1888   Visited.insert(DT[BB]);
1889 #endif
1890   do {
1891     DomTreeNode *N = DomWorklist.pop_back_val();
1892 
1893     // Visit this node.
1894     if (!Callable(N->getBlock()))
1895       continue;
1896 
1897     // Accumulate the child nodes.
1898     for (DomTreeNode *ChildN : *N) {
1899       assert(Visited.insert(ChildN).second &&
1900              "Cannot visit a node twice when walking a tree!");
1901       DomWorklist.push_back(ChildN);
1902     }
1903   } while (!DomWorklist.empty());
1904 }
1905 
1906 static void unswitchNontrivialInvariants(
1907     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1908     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1909     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1910     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1911   auto *ParentBB = TI.getParent();
1912   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1913   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1914 
1915   // We can only unswitch switches, conditional branches with an invariant
1916   // condition, or combining invariant conditions with an instruction.
1917   assert((SI || BI->isConditional()) &&
1918          "Can only unswitch switches and conditional branch!");
1919   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1920   if (FullUnswitch)
1921     assert(Invariants.size() == 1 &&
1922            "Cannot have other invariants with full unswitching!");
1923   else
1924     assert(isa<Instruction>(BI->getCondition()) &&
1925            "Partial unswitching requires an instruction as the condition!");
1926 
1927   if (MSSAU && VerifyMemorySSA)
1928     MSSAU->getMemorySSA()->verifyMemorySSA();
1929 
1930   // Constant and BBs tracking the cloned and continuing successor. When we are
1931   // unswitching the entire condition, this can just be trivially chosen to
1932   // unswitch towards `true`. However, when we are unswitching a set of
1933   // invariants combined with `and` or `or`, the combining operation determines
1934   // the best direction to unswitch: we want to unswitch the direction that will
1935   // collapse the branch.
1936   bool Direction = true;
1937   int ClonedSucc = 0;
1938   if (!FullUnswitch) {
1939     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1940       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1941                  Instruction::And &&
1942              "Only `or` and `and` instructions can combine invariants being "
1943              "unswitched.");
1944       Direction = false;
1945       ClonedSucc = 1;
1946     }
1947   }
1948 
1949   BasicBlock *RetainedSuccBB =
1950       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1951   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1952   if (BI)
1953     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1954   else
1955     for (auto Case : SI->cases())
1956       if (Case.getCaseSuccessor() != RetainedSuccBB)
1957         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1958 
1959   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1960          "Should not unswitch the same successor we are retaining!");
1961 
1962   // The branch should be in this exact loop. Any inner loop's invariant branch
1963   // should be handled by unswitching that inner loop. The caller of this
1964   // routine should filter out any candidates that remain (but were skipped for
1965   // whatever reason).
1966   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1967 
1968   // Compute the parent loop now before we start hacking on things.
1969   Loop *ParentL = L.getParentLoop();
1970   // Get blocks in RPO order for MSSA update, before changing the CFG.
1971   LoopBlocksRPO LBRPO(&L);
1972   if (MSSAU)
1973     LBRPO.perform(&LI);
1974 
1975   // Compute the outer-most loop containing one of our exit blocks. This is the
1976   // furthest up our loopnest which can be mutated, which we will use below to
1977   // update things.
1978   Loop *OuterExitL = &L;
1979   for (auto *ExitBB : ExitBlocks) {
1980     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1981     if (!NewOuterExitL) {
1982       // We exited the entire nest with this block, so we're done.
1983       OuterExitL = nullptr;
1984       break;
1985     }
1986     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1987       OuterExitL = NewOuterExitL;
1988   }
1989 
1990   // At this point, we're definitely going to unswitch something so invalidate
1991   // any cached information in ScalarEvolution for the outer most loop
1992   // containing an exit block and all nested loops.
1993   if (SE) {
1994     if (OuterExitL)
1995       SE->forgetLoop(OuterExitL);
1996     else
1997       SE->forgetTopmostLoop(&L);
1998   }
1999 
2000   // If the edge from this terminator to a successor dominates that successor,
2001   // store a map from each block in its dominator subtree to it. This lets us
2002   // tell when cloning for a particular successor if a block is dominated by
2003   // some *other* successor with a single data structure. We use this to
2004   // significantly reduce cloning.
2005   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2006   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2007            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2008     if (SuccBB->getUniquePredecessor() ||
2009         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2010           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2011         }))
2012       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2013         DominatingSucc[BB] = SuccBB;
2014         return true;
2015       });
2016 
2017   // Split the preheader, so that we know that there is a safe place to insert
2018   // the conditional branch. We will change the preheader to have a conditional
2019   // branch on LoopCond. The original preheader will become the split point
2020   // between the unswitched versions, and we will have a new preheader for the
2021   // original loop.
2022   BasicBlock *SplitBB = L.getLoopPreheader();
2023   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2024 
2025   // Keep track of the dominator tree updates needed.
2026   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2027 
2028   // Clone the loop for each unswitched successor.
2029   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2030   VMaps.reserve(UnswitchedSuccBBs.size());
2031   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2032   for (auto *SuccBB : UnswitchedSuccBBs) {
2033     VMaps.emplace_back(new ValueToValueMapTy());
2034     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2035         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2036         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2037   }
2038 
2039   // The stitching of the branched code back together depends on whether we're
2040   // doing full unswitching or not with the exception that we always want to
2041   // nuke the initial terminator placed in the split block.
2042   SplitBB->getTerminator()->eraseFromParent();
2043   if (FullUnswitch) {
2044     // Splice the terminator from the original loop and rewrite its
2045     // successors.
2046     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2047 
2048     // Keep a clone of the terminator for MSSA updates.
2049     Instruction *NewTI = TI.clone();
2050     ParentBB->getInstList().push_back(NewTI);
2051 
2052     // First wire up the moved terminator to the preheaders.
2053     if (BI) {
2054       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2055       BI->setSuccessor(ClonedSucc, ClonedPH);
2056       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2057       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2058     } else {
2059       assert(SI && "Must either be a branch or switch!");
2060 
2061       // Walk the cases and directly update their successors.
2062       assert(SI->getDefaultDest() == RetainedSuccBB &&
2063              "Not retaining default successor!");
2064       SI->setDefaultDest(LoopPH);
2065       for (auto &Case : SI->cases())
2066         if (Case.getCaseSuccessor() == RetainedSuccBB)
2067           Case.setSuccessor(LoopPH);
2068         else
2069           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2070 
2071       // We need to use the set to populate domtree updates as even when there
2072       // are multiple cases pointing at the same successor we only want to
2073       // remove and insert one edge in the domtree.
2074       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2075         DTUpdates.push_back(
2076             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2077     }
2078 
2079     if (MSSAU) {
2080       DT.applyUpdates(DTUpdates);
2081       DTUpdates.clear();
2082 
2083       // Remove all but one edge to the retained block and all unswitched
2084       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2085       // when we know we only keep a single edge for each case.
2086       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2087       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2088         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2089 
2090       for (auto &VMap : VMaps)
2091         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2092                                    /*IgnoreIncomingWithNoClones=*/true);
2093       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2094 
2095       // Remove all edges to unswitched blocks.
2096       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2097         MSSAU->removeEdge(ParentBB, SuccBB);
2098     }
2099 
2100     // Now unhook the successor relationship as we'll be replacing
2101     // the terminator with a direct branch. This is much simpler for branches
2102     // than switches so we handle those first.
2103     if (BI) {
2104       // Remove the parent as a predecessor of the unswitched successor.
2105       assert(UnswitchedSuccBBs.size() == 1 &&
2106              "Only one possible unswitched block for a branch!");
2107       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2108       UnswitchedSuccBB->removePredecessor(ParentBB,
2109                                           /*KeepOneInputPHIs*/ true);
2110       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2111     } else {
2112       // Note that we actually want to remove the parent block as a predecessor
2113       // of *every* case successor. The case successor is either unswitched,
2114       // completely eliminating an edge from the parent to that successor, or it
2115       // is a duplicate edge to the retained successor as the retained successor
2116       // is always the default successor and as we'll replace this with a direct
2117       // branch we no longer need the duplicate entries in the PHI nodes.
2118       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2119       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2120              "Not retaining default successor!");
2121       for (auto &Case : NewSI->cases())
2122         Case.getCaseSuccessor()->removePredecessor(
2123             ParentBB,
2124             /*KeepOneInputPHIs*/ true);
2125 
2126       // We need to use the set to populate domtree updates as even when there
2127       // are multiple cases pointing at the same successor we only want to
2128       // remove and insert one edge in the domtree.
2129       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2130         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2131     }
2132 
2133     // After MSSAU update, remove the cloned terminator instruction NewTI.
2134     ParentBB->getTerminator()->eraseFromParent();
2135 
2136     // Create a new unconditional branch to the continuing block (as opposed to
2137     // the one cloned).
2138     BranchInst::Create(RetainedSuccBB, ParentBB);
2139   } else {
2140     assert(BI && "Only branches have partial unswitching.");
2141     assert(UnswitchedSuccBBs.size() == 1 &&
2142            "Only one possible unswitched block for a branch!");
2143     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2144     // When doing a partial unswitch, we have to do a bit more work to build up
2145     // the branch in the split block.
2146     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2147                                           *ClonedPH, *LoopPH);
2148     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2149   }
2150 
2151   // Apply the updates accumulated above to get an up-to-date dominator tree.
2152   DT.applyUpdates(DTUpdates);
2153   if (!FullUnswitch && MSSAU) {
2154     // Update MSSA for partial unswitch, after DT update.
2155     SmallVector<CFGUpdate, 1> Updates;
2156     Updates.push_back(
2157         {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second});
2158     MSSAU->applyInsertUpdates(Updates, DT);
2159   }
2160 
2161   // Now that we have an accurate dominator tree, first delete the dead cloned
2162   // blocks so that we can accurately build any cloned loops. It is important to
2163   // not delete the blocks from the original loop yet because we still want to
2164   // reference the original loop to understand the cloned loop's structure.
2165   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2166 
2167   // Build the cloned loop structure itself. This may be substantially
2168   // different from the original structure due to the simplified CFG. This also
2169   // handles inserting all the cloned blocks into the correct loops.
2170   SmallVector<Loop *, 4> NonChildClonedLoops;
2171   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2172     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2173 
2174   // Now that our cloned loops have been built, we can update the original loop.
2175   // First we delete the dead blocks from it and then we rebuild the loop
2176   // structure taking these deletions into account.
2177   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2178 
2179   if (MSSAU && VerifyMemorySSA)
2180     MSSAU->getMemorySSA()->verifyMemorySSA();
2181 
2182   SmallVector<Loop *, 4> HoistedLoops;
2183   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2184 
2185   if (MSSAU && VerifyMemorySSA)
2186     MSSAU->getMemorySSA()->verifyMemorySSA();
2187 
2188   // This transformation has a high risk of corrupting the dominator tree, and
2189   // the below steps to rebuild loop structures will result in hard to debug
2190   // errors in that case so verify that the dominator tree is sane first.
2191   // FIXME: Remove this when the bugs stop showing up and rely on existing
2192   // verification steps.
2193   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2194 
2195   if (BI) {
2196     // If we unswitched a branch which collapses the condition to a known
2197     // constant we want to replace all the uses of the invariants within both
2198     // the original and cloned blocks. We do this here so that we can use the
2199     // now updated dominator tree to identify which side the users are on.
2200     assert(UnswitchedSuccBBs.size() == 1 &&
2201            "Only one possible unswitched block for a branch!");
2202     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2203 
2204     // When considering multiple partially-unswitched invariants
2205     // we cant just go replace them with constants in both branches.
2206     //
2207     // For 'AND' we infer that true branch ("continue") means true
2208     // for each invariant operand.
2209     // For 'OR' we can infer that false branch ("continue") means false
2210     // for each invariant operand.
2211     // So it happens that for multiple-partial case we dont replace
2212     // in the unswitched branch.
2213     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2214 
2215     ConstantInt *UnswitchedReplacement =
2216         Direction ? ConstantInt::getTrue(BI->getContext())
2217                   : ConstantInt::getFalse(BI->getContext());
2218     ConstantInt *ContinueReplacement =
2219         Direction ? ConstantInt::getFalse(BI->getContext())
2220                   : ConstantInt::getTrue(BI->getContext());
2221     for (Value *Invariant : Invariants)
2222       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2223            UI != UE;) {
2224         // Grab the use and walk past it so we can clobber it in the use list.
2225         Use *U = &*UI++;
2226         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2227         if (!UserI)
2228           continue;
2229 
2230         // Replace it with the 'continue' side if in the main loop body, and the
2231         // unswitched if in the cloned blocks.
2232         if (DT.dominates(LoopPH, UserI->getParent()))
2233           U->set(ContinueReplacement);
2234         else if (ReplaceUnswitched &&
2235                  DT.dominates(ClonedPH, UserI->getParent()))
2236           U->set(UnswitchedReplacement);
2237       }
2238   }
2239 
2240   // We can change which blocks are exit blocks of all the cloned sibling
2241   // loops, the current loop, and any parent loops which shared exit blocks
2242   // with the current loop. As a consequence, we need to re-form LCSSA for
2243   // them. But we shouldn't need to re-form LCSSA for any child loops.
2244   // FIXME: This could be made more efficient by tracking which exit blocks are
2245   // new, and focusing on them, but that isn't likely to be necessary.
2246   //
2247   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2248   // loop nest and update every loop that could have had its exits changed. We
2249   // also need to cover any intervening loops. We add all of these loops to
2250   // a list and sort them by loop depth to achieve this without updating
2251   // unnecessary loops.
2252   auto UpdateLoop = [&](Loop &UpdateL) {
2253 #ifndef NDEBUG
2254     UpdateL.verifyLoop();
2255     for (Loop *ChildL : UpdateL) {
2256       ChildL->verifyLoop();
2257       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2258              "Perturbed a child loop's LCSSA form!");
2259     }
2260 #endif
2261     // First build LCSSA for this loop so that we can preserve it when
2262     // forming dedicated exits. We don't want to perturb some other loop's
2263     // LCSSA while doing that CFG edit.
2264     formLCSSA(UpdateL, DT, &LI, nullptr);
2265 
2266     // For loops reached by this loop's original exit blocks we may
2267     // introduced new, non-dedicated exits. At least try to re-form dedicated
2268     // exits for these loops. This may fail if they couldn't have dedicated
2269     // exits to start with.
2270     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2271   };
2272 
2273   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2274   // and we can do it in any order as they don't nest relative to each other.
2275   //
2276   // Also check if any of the loops we have updated have become top-level loops
2277   // as that will necessitate widening the outer loop scope.
2278   for (Loop *UpdatedL :
2279        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2280     UpdateLoop(*UpdatedL);
2281     if (!UpdatedL->getParentLoop())
2282       OuterExitL = nullptr;
2283   }
2284   if (IsStillLoop) {
2285     UpdateLoop(L);
2286     if (!L.getParentLoop())
2287       OuterExitL = nullptr;
2288   }
2289 
2290   // If the original loop had exit blocks, walk up through the outer most loop
2291   // of those exit blocks to update LCSSA and form updated dedicated exits.
2292   if (OuterExitL != &L)
2293     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2294          OuterL = OuterL->getParentLoop())
2295       UpdateLoop(*OuterL);
2296 
2297 #ifndef NDEBUG
2298   // Verify the entire loop structure to catch any incorrect updates before we
2299   // progress in the pass pipeline.
2300   LI.verify(DT);
2301 #endif
2302 
2303   // Now that we've unswitched something, make callbacks to report the changes.
2304   // For that we need to merge together the updated loops and the cloned loops
2305   // and check whether the original loop survived.
2306   SmallVector<Loop *, 4> SibLoops;
2307   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2308     if (UpdatedL->getParentLoop() == ParentL)
2309       SibLoops.push_back(UpdatedL);
2310   UnswitchCB(IsStillLoop, SibLoops);
2311 
2312   if (MSSAU && VerifyMemorySSA)
2313     MSSAU->getMemorySSA()->verifyMemorySSA();
2314 
2315   if (BI)
2316     ++NumBranches;
2317   else
2318     ++NumSwitches;
2319 }
2320 
2321 /// Recursively compute the cost of a dominator subtree based on the per-block
2322 /// cost map provided.
2323 ///
2324 /// The recursive computation is memozied into the provided DT-indexed cost map
2325 /// to allow querying it for most nodes in the domtree without it becoming
2326 /// quadratic.
2327 static int
2328 computeDomSubtreeCost(DomTreeNode &N,
2329                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2330                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2331   // Don't accumulate cost (or recurse through) blocks not in our block cost
2332   // map and thus not part of the duplication cost being considered.
2333   auto BBCostIt = BBCostMap.find(N.getBlock());
2334   if (BBCostIt == BBCostMap.end())
2335     return 0;
2336 
2337   // Lookup this node to see if we already computed its cost.
2338   auto DTCostIt = DTCostMap.find(&N);
2339   if (DTCostIt != DTCostMap.end())
2340     return DTCostIt->second;
2341 
2342   // If not, we have to compute it. We can't use insert above and update
2343   // because computing the cost may insert more things into the map.
2344   int Cost = std::accumulate(
2345       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2346         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2347       });
2348   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2349   (void)Inserted;
2350   assert(Inserted && "Should not insert a node while visiting children!");
2351   return Cost;
2352 }
2353 
2354 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2355 /// making the following replacement:
2356 ///
2357 ///   --code before guard--
2358 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2359 ///   --code after guard--
2360 ///
2361 /// into
2362 ///
2363 ///   --code before guard--
2364 ///   br i1 %cond, label %guarded, label %deopt
2365 ///
2366 /// guarded:
2367 ///   --code after guard--
2368 ///
2369 /// deopt:
2370 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2371 ///   unreachable
2372 ///
2373 /// It also makes all relevant DT and LI updates, so that all structures are in
2374 /// valid state after this transform.
2375 static BranchInst *
2376 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2377                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2378                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2379   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2380   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2381   BasicBlock *CheckBB = GI->getParent();
2382 
2383   if (MSSAU && VerifyMemorySSA)
2384      MSSAU->getMemorySSA()->verifyMemorySSA();
2385 
2386   // Remove all CheckBB's successors from DomTree. A block can be seen among
2387   // successors more than once, but for DomTree it should be added only once.
2388   SmallPtrSet<BasicBlock *, 4> Successors;
2389   for (auto *Succ : successors(CheckBB))
2390     if (Successors.insert(Succ).second)
2391       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2392 
2393   Instruction *DeoptBlockTerm =
2394       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2395   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2396   // SplitBlockAndInsertIfThen inserts control flow that branches to
2397   // DeoptBlockTerm if the condition is true.  We want the opposite.
2398   CheckBI->swapSuccessors();
2399 
2400   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2401   GuardedBlock->setName("guarded");
2402   CheckBI->getSuccessor(1)->setName("deopt");
2403   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2404 
2405   // We now have a new exit block.
2406   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2407 
2408   if (MSSAU)
2409     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2410 
2411   GI->moveBefore(DeoptBlockTerm);
2412   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2413 
2414   // Add new successors of CheckBB into DomTree.
2415   for (auto *Succ : successors(CheckBB))
2416     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2417 
2418   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2419   // successors.
2420   for (auto *Succ : Successors)
2421     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2422 
2423   // Make proper changes to DT.
2424   DT.applyUpdates(DTUpdates);
2425   // Inform LI of a new loop block.
2426   L.addBasicBlockToLoop(GuardedBlock, LI);
2427 
2428   if (MSSAU) {
2429     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2430     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
2431     if (VerifyMemorySSA)
2432       MSSAU->getMemorySSA()->verifyMemorySSA();
2433   }
2434 
2435   ++NumGuards;
2436   return CheckBI;
2437 }
2438 
2439 /// Cost multiplier is a way to limit potentially exponential behavior
2440 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2441 /// candidates available. Also accounting for the number of "sibling" loops with
2442 /// the idea to account for previous unswitches that already happened on this
2443 /// cluster of loops. There was an attempt to keep this formula simple,
2444 /// just enough to limit the worst case behavior. Even if it is not that simple
2445 /// now it is still not an attempt to provide a detailed heuristic size
2446 /// prediction.
2447 ///
2448 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2449 /// unswitch candidates, making adequate predictions instead of wild guesses.
2450 /// That requires knowing not just the number of "remaining" candidates but
2451 /// also costs of unswitching for each of these candidates.
2452 static int calculateUnswitchCostMultiplier(
2453     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2454     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2455         UnswitchCandidates) {
2456 
2457   // Guards and other exiting conditions do not contribute to exponential
2458   // explosion as soon as they dominate the latch (otherwise there might be
2459   // another path to the latch remaining that does not allow to eliminate the
2460   // loop copy on unswitch).
2461   BasicBlock *Latch = L.getLoopLatch();
2462   BasicBlock *CondBlock = TI.getParent();
2463   if (DT.dominates(CondBlock, Latch) &&
2464       (isGuard(&TI) ||
2465        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2466          return L.contains(SuccBB);
2467        }) <= 1)) {
2468     NumCostMultiplierSkipped++;
2469     return 1;
2470   }
2471 
2472   auto *ParentL = L.getParentLoop();
2473   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2474                                : std::distance(LI.begin(), LI.end()));
2475   // Count amount of clones that all the candidates might cause during
2476   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2477   int UnswitchedClones = 0;
2478   for (auto Candidate : UnswitchCandidates) {
2479     Instruction *CI = Candidate.first;
2480     BasicBlock *CondBlock = CI->getParent();
2481     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2482     if (isGuard(CI)) {
2483       if (!SkipExitingSuccessors)
2484         UnswitchedClones++;
2485       continue;
2486     }
2487     int NonExitingSuccessors = llvm::count_if(
2488         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2489           return !SkipExitingSuccessors || L.contains(SuccBB);
2490         });
2491     UnswitchedClones += Log2_32(NonExitingSuccessors);
2492   }
2493 
2494   // Ignore up to the "unscaled candidates" number of unswitch candidates
2495   // when calculating the power-of-two scaling of the cost. The main idea
2496   // with this control is to allow a small number of unswitches to happen
2497   // and rely more on siblings multiplier (see below) when the number
2498   // of candidates is small.
2499   unsigned ClonesPower =
2500       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2501 
2502   // Allowing top-level loops to spread a bit more than nested ones.
2503   int SiblingsMultiplier =
2504       std::max((ParentL ? SiblingsCount
2505                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2506                1);
2507   // Compute the cost multiplier in a way that won't overflow by saturating
2508   // at an upper bound.
2509   int CostMultiplier;
2510   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2511       SiblingsMultiplier > UnswitchThreshold)
2512     CostMultiplier = UnswitchThreshold;
2513   else
2514     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2515                               (int)UnswitchThreshold);
2516 
2517   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2518                     << " (siblings " << SiblingsMultiplier << " * clones "
2519                     << (1 << ClonesPower) << ")"
2520                     << " for unswitch candidate: " << TI << "\n");
2521   return CostMultiplier;
2522 }
2523 
2524 static bool
2525 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2526                       AssumptionCache &AC, TargetTransformInfo &TTI,
2527                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2528                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2529   // Collect all invariant conditions within this loop (as opposed to an inner
2530   // loop which would be handled when visiting that inner loop).
2531   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2532       UnswitchCandidates;
2533 
2534   // Whether or not we should also collect guards in the loop.
2535   bool CollectGuards = false;
2536   if (UnswitchGuards) {
2537     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2538         Intrinsic::getName(Intrinsic::experimental_guard));
2539     if (GuardDecl && !GuardDecl->use_empty())
2540       CollectGuards = true;
2541   }
2542 
2543   for (auto *BB : L.blocks()) {
2544     if (LI.getLoopFor(BB) != &L)
2545       continue;
2546 
2547     if (CollectGuards)
2548       for (auto &I : *BB)
2549         if (isGuard(&I)) {
2550           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2551           // TODO: Support AND, OR conditions and partial unswitching.
2552           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2553             UnswitchCandidates.push_back({&I, {Cond}});
2554         }
2555 
2556     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2557       // We can only consider fully loop-invariant switch conditions as we need
2558       // to completely eliminate the switch after unswitching.
2559       if (!isa<Constant>(SI->getCondition()) &&
2560           L.isLoopInvariant(SI->getCondition()))
2561         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2562       continue;
2563     }
2564 
2565     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2566     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2567         BI->getSuccessor(0) == BI->getSuccessor(1))
2568       continue;
2569 
2570     if (L.isLoopInvariant(BI->getCondition())) {
2571       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2572       continue;
2573     }
2574 
2575     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2576     if (CondI.getOpcode() != Instruction::And &&
2577       CondI.getOpcode() != Instruction::Or)
2578       continue;
2579 
2580     TinyPtrVector<Value *> Invariants =
2581         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2582     if (Invariants.empty())
2583       continue;
2584 
2585     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2586   }
2587 
2588   // If we didn't find any candidates, we're done.
2589   if (UnswitchCandidates.empty())
2590     return false;
2591 
2592   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2593   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2594   // irreducible control flow into reducible control flow and introduce new
2595   // loops "out of thin air". If we ever discover important use cases for doing
2596   // this, we can add support to loop unswitch, but it is a lot of complexity
2597   // for what seems little or no real world benefit.
2598   LoopBlocksRPO RPOT(&L);
2599   RPOT.perform(&LI);
2600   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2601     return false;
2602 
2603   SmallVector<BasicBlock *, 4> ExitBlocks;
2604   L.getUniqueExitBlocks(ExitBlocks);
2605 
2606   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2607   // don't know how to split those exit blocks.
2608   // FIXME: We should teach SplitBlock to handle this and remove this
2609   // restriction.
2610   for (auto *ExitBB : ExitBlocks)
2611     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2612       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2613       return false;
2614     }
2615 
2616   LLVM_DEBUG(
2617       dbgs() << "Considering " << UnswitchCandidates.size()
2618              << " non-trivial loop invariant conditions for unswitching.\n");
2619 
2620   // Given that unswitching these terminators will require duplicating parts of
2621   // the loop, so we need to be able to model that cost. Compute the ephemeral
2622   // values and set up a data structure to hold per-BB costs. We cache each
2623   // block's cost so that we don't recompute this when considering different
2624   // subsets of the loop for duplication during unswitching.
2625   SmallPtrSet<const Value *, 4> EphValues;
2626   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2627   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2628 
2629   // Compute the cost of each block, as well as the total loop cost. Also, bail
2630   // out if we see instructions which are incompatible with loop unswitching
2631   // (convergent, noduplicate, or cross-basic-block tokens).
2632   // FIXME: We might be able to safely handle some of these in non-duplicated
2633   // regions.
2634   int LoopCost = 0;
2635   for (auto *BB : L.blocks()) {
2636     int Cost = 0;
2637     for (auto &I : *BB) {
2638       if (EphValues.count(&I))
2639         continue;
2640 
2641       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2642         return false;
2643       if (auto CS = CallSite(&I))
2644         if (CS.isConvergent() || CS.cannotDuplicate())
2645           return false;
2646 
2647       Cost += TTI.getUserCost(&I);
2648     }
2649     assert(Cost >= 0 && "Must not have negative costs!");
2650     LoopCost += Cost;
2651     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2652     BBCostMap[BB] = Cost;
2653   }
2654   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2655 
2656   // Now we find the best candidate by searching for the one with the following
2657   // properties in order:
2658   //
2659   // 1) An unswitching cost below the threshold
2660   // 2) The smallest number of duplicated unswitch candidates (to avoid
2661   //    creating redundant subsequent unswitching)
2662   // 3) The smallest cost after unswitching.
2663   //
2664   // We prioritize reducing fanout of unswitch candidates provided the cost
2665   // remains below the threshold because this has a multiplicative effect.
2666   //
2667   // This requires memoizing each dominator subtree to avoid redundant work.
2668   //
2669   // FIXME: Need to actually do the number of candidates part above.
2670   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2671   // Given a terminator which might be unswitched, computes the non-duplicated
2672   // cost for that terminator.
2673   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2674     BasicBlock &BB = *TI.getParent();
2675     SmallPtrSet<BasicBlock *, 4> Visited;
2676 
2677     int Cost = LoopCost;
2678     for (BasicBlock *SuccBB : successors(&BB)) {
2679       // Don't count successors more than once.
2680       if (!Visited.insert(SuccBB).second)
2681         continue;
2682 
2683       // If this is a partial unswitch candidate, then it must be a conditional
2684       // branch with a condition of either `or` or `and`. In that case, one of
2685       // the successors is necessarily duplicated, so don't even try to remove
2686       // its cost.
2687       if (!FullUnswitch) {
2688         auto &BI = cast<BranchInst>(TI);
2689         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2690             Instruction::And) {
2691           if (SuccBB == BI.getSuccessor(1))
2692             continue;
2693         } else {
2694           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2695                      Instruction::Or &&
2696                  "Only `and` and `or` conditions can result in a partial "
2697                  "unswitch!");
2698           if (SuccBB == BI.getSuccessor(0))
2699             continue;
2700         }
2701       }
2702 
2703       // This successor's domtree will not need to be duplicated after
2704       // unswitching if the edge to the successor dominates it (and thus the
2705       // entire tree). This essentially means there is no other path into this
2706       // subtree and so it will end up live in only one clone of the loop.
2707       if (SuccBB->getUniquePredecessor() ||
2708           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2709             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2710           })) {
2711         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2712         assert(Cost >= 0 &&
2713                "Non-duplicated cost should never exceed total loop cost!");
2714       }
2715     }
2716 
2717     // Now scale the cost by the number of unique successors minus one. We
2718     // subtract one because there is already at least one copy of the entire
2719     // loop. This is computing the new cost of unswitching a condition.
2720     // Note that guards always have 2 unique successors that are implicit and
2721     // will be materialized if we decide to unswitch it.
2722     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2723     assert(SuccessorsCount > 1 &&
2724            "Cannot unswitch a condition without multiple distinct successors!");
2725     return Cost * (SuccessorsCount - 1);
2726   };
2727   Instruction *BestUnswitchTI = nullptr;
2728   int BestUnswitchCost;
2729   ArrayRef<Value *> BestUnswitchInvariants;
2730   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2731     Instruction &TI = *TerminatorAndInvariants.first;
2732     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2733     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2734     int CandidateCost = ComputeUnswitchedCost(
2735         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2736                                      Invariants[0] == BI->getCondition()));
2737     // Calculate cost multiplier which is a tool to limit potentially
2738     // exponential behavior of loop-unswitch.
2739     if (EnableUnswitchCostMultiplier) {
2740       int CostMultiplier =
2741           calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2742       assert(
2743           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2744           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2745       CandidateCost *= CostMultiplier;
2746       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2747                         << " (multiplier: " << CostMultiplier << ")"
2748                         << " for unswitch candidate: " << TI << "\n");
2749     } else {
2750       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2751                         << " for unswitch candidate: " << TI << "\n");
2752     }
2753 
2754     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2755       BestUnswitchTI = &TI;
2756       BestUnswitchCost = CandidateCost;
2757       BestUnswitchInvariants = Invariants;
2758     }
2759   }
2760 
2761   if (BestUnswitchCost >= UnswitchThreshold) {
2762     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2763                       << BestUnswitchCost << "\n");
2764     return false;
2765   }
2766 
2767   // If the best candidate is a guard, turn it into a branch.
2768   if (isGuard(BestUnswitchTI))
2769     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2770                                          ExitBlocks, DT, LI, MSSAU);
2771 
2772   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2773                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2774                     << "\n");
2775   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2776                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2777   return true;
2778 }
2779 
2780 /// Unswitch control flow predicated on loop invariant conditions.
2781 ///
2782 /// This first hoists all branches or switches which are trivial (IE, do not
2783 /// require duplicating any part of the loop) out of the loop body. It then
2784 /// looks at other loop invariant control flows and tries to unswitch those as
2785 /// well by cloning the loop if the result is small enough.
2786 ///
2787 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2788 /// updated based on the unswitch.
2789 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2790 ///
2791 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2792 /// true, we will attempt to do non-trivial unswitching as well as trivial
2793 /// unswitching.
2794 ///
2795 /// The `UnswitchCB` callback provided will be run after unswitching is
2796 /// complete, with the first parameter set to `true` if the provided loop
2797 /// remains a loop, and a list of new sibling loops created.
2798 ///
2799 /// If `SE` is non-null, we will update that analysis based on the unswitching
2800 /// done.
2801 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2802                          AssumptionCache &AC, TargetTransformInfo &TTI,
2803                          bool NonTrivial,
2804                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2805                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2806   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2807          "Loops must be in LCSSA form before unswitching.");
2808   bool Changed = false;
2809 
2810   // Must be in loop simplified form: we need a preheader and dedicated exits.
2811   if (!L.isLoopSimplifyForm())
2812     return false;
2813 
2814   // Try trivial unswitch first before loop over other basic blocks in the loop.
2815   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2816     // If we unswitched successfully we will want to clean up the loop before
2817     // processing it further so just mark it as unswitched and return.
2818     UnswitchCB(/*CurrentLoopValid*/ true, {});
2819     return true;
2820   }
2821 
2822   // If we're not doing non-trivial unswitching, we're done. We both accept
2823   // a parameter but also check a local flag that can be used for testing
2824   // a debugging.
2825   if (!NonTrivial && !EnableNonTrivialUnswitch)
2826     return false;
2827 
2828   // For non-trivial unswitching, because it often creates new loops, we rely on
2829   // the pass manager to iterate on the loops rather than trying to immediately
2830   // reach a fixed point. There is no substantial advantage to iterating
2831   // internally, and if any of the new loops are simplified enough to contain
2832   // trivial unswitching we want to prefer those.
2833 
2834   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2835   // a partial unswitch when possible below the threshold.
2836   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2837     return true;
2838 
2839   // No other opportunities to unswitch.
2840   return Changed;
2841 }
2842 
2843 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2844                                               LoopStandardAnalysisResults &AR,
2845                                               LPMUpdater &U) {
2846   Function &F = *L.getHeader()->getParent();
2847   (void)F;
2848 
2849   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2850                     << "\n");
2851 
2852   // Save the current loop name in a variable so that we can report it even
2853   // after it has been deleted.
2854   std::string LoopName = L.getName();
2855 
2856   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2857                                         ArrayRef<Loop *> NewLoops) {
2858     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2859     if (!NewLoops.empty())
2860       U.addSiblingLoops(NewLoops);
2861 
2862     // If the current loop remains valid, we should revisit it to catch any
2863     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2864     if (CurrentLoopValid)
2865       U.revisitCurrentLoop();
2866     else
2867       U.markLoopAsDeleted(L, LoopName);
2868   };
2869 
2870   Optional<MemorySSAUpdater> MSSAU;
2871   if (AR.MSSA) {
2872     MSSAU = MemorySSAUpdater(AR.MSSA);
2873     if (VerifyMemorySSA)
2874       AR.MSSA->verifyMemorySSA();
2875   }
2876   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2877                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2878     return PreservedAnalyses::all();
2879 
2880   if (AR.MSSA && VerifyMemorySSA)
2881     AR.MSSA->verifyMemorySSA();
2882 
2883   // Historically this pass has had issues with the dominator tree so verify it
2884   // in asserts builds.
2885   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2886 
2887   auto PA = getLoopPassPreservedAnalyses();
2888   if (EnableMSSALoopDependency)
2889     PA.preserve<MemorySSAAnalysis>();
2890   return PA;
2891 }
2892 
2893 namespace {
2894 
2895 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2896   bool NonTrivial;
2897 
2898 public:
2899   static char ID; // Pass ID, replacement for typeid
2900 
2901   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2902       : LoopPass(ID), NonTrivial(NonTrivial) {
2903     initializeSimpleLoopUnswitchLegacyPassPass(
2904         *PassRegistry::getPassRegistry());
2905   }
2906 
2907   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2908 
2909   void getAnalysisUsage(AnalysisUsage &AU) const override {
2910     AU.addRequired<AssumptionCacheTracker>();
2911     AU.addRequired<TargetTransformInfoWrapperPass>();
2912     if (EnableMSSALoopDependency) {
2913       AU.addRequired<MemorySSAWrapperPass>();
2914       AU.addPreserved<MemorySSAWrapperPass>();
2915     }
2916     getLoopAnalysisUsage(AU);
2917   }
2918 };
2919 
2920 } // end anonymous namespace
2921 
2922 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2923   if (skipLoop(L))
2924     return false;
2925 
2926   Function &F = *L->getHeader()->getParent();
2927 
2928   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2929                     << "\n");
2930 
2931   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2932   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2933   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2934   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2935   MemorySSA *MSSA = nullptr;
2936   Optional<MemorySSAUpdater> MSSAU;
2937   if (EnableMSSALoopDependency) {
2938     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2939     MSSAU = MemorySSAUpdater(MSSA);
2940   }
2941 
2942   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2943   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2944 
2945   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2946                                ArrayRef<Loop *> NewLoops) {
2947     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2948     for (auto *NewL : NewLoops)
2949       LPM.addLoop(*NewL);
2950 
2951     // If the current loop remains valid, re-add it to the queue. This is
2952     // a little wasteful as we'll finish processing the current loop as well,
2953     // but it is the best we can do in the old PM.
2954     if (CurrentLoopValid)
2955       LPM.addLoop(*L);
2956     else
2957       LPM.markLoopAsDeleted(*L);
2958   };
2959 
2960   if (MSSA && VerifyMemorySSA)
2961     MSSA->verifyMemorySSA();
2962 
2963   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2964                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2965 
2966   if (MSSA && VerifyMemorySSA)
2967     MSSA->verifyMemorySSA();
2968 
2969   // If anything was unswitched, also clear any cached information about this
2970   // loop.
2971   LPM.deleteSimpleAnalysisLoop(L);
2972 
2973   // Historically this pass has had issues with the dominator tree so verify it
2974   // in asserts builds.
2975   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2976 
2977   return Changed;
2978 }
2979 
2980 char SimpleLoopUnswitchLegacyPass::ID = 0;
2981 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2982                       "Simple unswitch loops", false, false)
2983 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2984 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2985 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2986 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2987 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2988 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2989 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2990                     "Simple unswitch loops", false, false)
2991 
2992 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2993   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2994 }
2995