1 //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/Sequence.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/Utils/Local.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Use.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/GenericDomTree.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Cloning.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ValueMapper.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <numeric> 54 #include <utility> 55 56 #define DEBUG_TYPE "simple-loop-unswitch" 57 58 using namespace llvm; 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 63 64 static cl::opt<bool> EnableNonTrivialUnswitch( 65 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 66 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 67 "following the configuration passed into the pass.")); 68 69 static cl::opt<int> 70 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 71 cl::desc("The cost threshold for unswitching a loop.")); 72 73 /// Collect all of the loop invariant input values transitively used by the 74 /// homogeneous instruction graph from a given root. 75 /// 76 /// This essentially walks from a root recursively through loop variant operands 77 /// which have the exact same opcode and finds all inputs which are loop 78 /// invariant. For some operations these can be re-associated and unswitched out 79 /// of the loop entirely. 80 static TinyPtrVector<Value *> 81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 82 LoopInfo &LI) { 83 assert(!L.isLoopInvariant(&Root) && 84 "Only need to walk the graph if root itself is not invariant."); 85 TinyPtrVector<Value *> Invariants; 86 87 // Build a worklist and recurse through operators collecting invariants. 88 SmallVector<Instruction *, 4> Worklist; 89 SmallPtrSet<Instruction *, 8> Visited; 90 Worklist.push_back(&Root); 91 Visited.insert(&Root); 92 do { 93 Instruction &I = *Worklist.pop_back_val(); 94 for (Value *OpV : I.operand_values()) { 95 // Skip constants as unswitching isn't interesting for them. 96 if (isa<Constant>(OpV)) 97 continue; 98 99 // Add it to our result if loop invariant. 100 if (L.isLoopInvariant(OpV)) { 101 Invariants.push_back(OpV); 102 continue; 103 } 104 105 // If not an instruction with the same opcode, nothing we can do. 106 Instruction *OpI = dyn_cast<Instruction>(OpV); 107 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 108 continue; 109 110 // Visit this operand. 111 if (Visited.insert(OpI).second) 112 Worklist.push_back(OpI); 113 } 114 } while (!Worklist.empty()); 115 116 return Invariants; 117 } 118 119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 120 Constant &Replacement) { 121 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 122 123 // Replace uses of LIC in the loop with the given constant. 124 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 125 // Grab the use and walk past it so we can clobber it in the use list. 126 Use *U = &*UI++; 127 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 128 129 // Replace this use within the loop body. 130 if (UserI && L.contains(UserI)) 131 U->set(&Replacement); 132 } 133 } 134 135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 136 /// incoming values along this edge. 137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 138 BasicBlock &ExitBB) { 139 for (Instruction &I : ExitBB) { 140 auto *PN = dyn_cast<PHINode>(&I); 141 if (!PN) 142 // No more PHIs to check. 143 return true; 144 145 // If the incoming value for this edge isn't loop invariant the unswitch 146 // won't be trivial. 147 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 148 return false; 149 } 150 llvm_unreachable("Basic blocks should never be empty!"); 151 } 152 153 /// Insert code to test a set of loop invariant values, and conditionally branch 154 /// on them. 155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 156 ArrayRef<Value *> Invariants, 157 bool Direction, 158 BasicBlock &UnswitchedSucc, 159 BasicBlock &NormalSucc) { 160 IRBuilder<> IRB(&BB); 161 Value *Cond = Invariants.front(); 162 for (Value *Invariant : 163 make_range(std::next(Invariants.begin()), Invariants.end())) 164 if (Direction) 165 Cond = IRB.CreateOr(Cond, Invariant); 166 else 167 Cond = IRB.CreateAnd(Cond, Invariant); 168 169 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 170 Direction ? &NormalSucc : &UnswitchedSucc); 171 } 172 173 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 174 /// 175 /// Requires that the loop exit and unswitched basic block are the same, and 176 /// that the exiting block was a unique predecessor of that block. Rewrites the 177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 178 /// PHI nodes from the old preheader that now contains the unswitched 179 /// terminator. 180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 181 BasicBlock &OldExitingBB, 182 BasicBlock &OldPH) { 183 for (PHINode &PN : UnswitchedBB.phis()) { 184 // When the loop exit is directly unswitched we just need to update the 185 // incoming basic block. We loop to handle weird cases with repeated 186 // incoming blocks, but expect to typically only have one operand here. 187 for (auto i : seq<int>(0, PN.getNumOperands())) { 188 assert(PN.getIncomingBlock(i) == &OldExitingBB && 189 "Found incoming block different from unique predecessor!"); 190 PN.setIncomingBlock(i, &OldPH); 191 } 192 } 193 } 194 195 /// Rewrite the PHI nodes in the loop exit basic block and the split off 196 /// unswitched block. 197 /// 198 /// Because the exit block remains an exit from the loop, this rewrites the 199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 200 /// nodes into the unswitched basic block to select between the value in the 201 /// old preheader and the loop exit. 202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 203 BasicBlock &UnswitchedBB, 204 BasicBlock &OldExitingBB, 205 BasicBlock &OldPH, 206 bool FullUnswitch) { 207 assert(&ExitBB != &UnswitchedBB && 208 "Must have different loop exit and unswitched blocks!"); 209 Instruction *InsertPt = &*UnswitchedBB.begin(); 210 for (PHINode &PN : ExitBB.phis()) { 211 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 212 PN.getName() + ".split", InsertPt); 213 214 // Walk backwards over the old PHI node's inputs to minimize the cost of 215 // removing each one. We have to do this weird loop manually so that we 216 // create the same number of new incoming edges in the new PHI as we expect 217 // each case-based edge to be included in the unswitched switch in some 218 // cases. 219 // FIXME: This is really, really gross. It would be much cleaner if LLVM 220 // allowed us to create a single entry for a predecessor block without 221 // having separate entries for each "edge" even though these edges are 222 // required to produce identical results. 223 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 224 if (PN.getIncomingBlock(i) != &OldExitingBB) 225 continue; 226 227 Value *Incoming = PN.getIncomingValue(i); 228 if (FullUnswitch) 229 // No more edge from the old exiting block to the exit block. 230 PN.removeIncomingValue(i); 231 232 NewPN->addIncoming(Incoming, &OldPH); 233 } 234 235 // Now replace the old PHI with the new one and wire the old one in as an 236 // input to the new one. 237 PN.replaceAllUsesWith(NewPN); 238 NewPN->addIncoming(&PN, &ExitBB); 239 } 240 } 241 242 /// Unswitch a trivial branch if the condition is loop invariant. 243 /// 244 /// This routine should only be called when loop code leading to the branch has 245 /// been validated as trivial (no side effects). This routine checks if the 246 /// condition is invariant and one of the successors is a loop exit. This 247 /// allows us to unswitch without duplicating the loop, making it trivial. 248 /// 249 /// If this routine fails to unswitch the branch it returns false. 250 /// 251 /// If the branch can be unswitched, this routine splits the preheader and 252 /// hoists the branch above that split. Preserves loop simplified form 253 /// (splitting the exit block as necessary). It simplifies the branch within 254 /// the loop to an unconditional branch but doesn't remove it entirely. Further 255 /// cleanup can be done with some simplify-cfg like pass. 256 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 257 LoopInfo &LI) { 258 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 259 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 260 261 // The loop invariant values that we want to unswitch. 262 TinyPtrVector<Value *> Invariants; 263 264 // When true, we're fully unswitching the branch rather than just unswitching 265 // some input conditions to the branch. 266 bool FullUnswitch = false; 267 268 if (L.isLoopInvariant(BI.getCondition())) { 269 Invariants.push_back(BI.getCondition()); 270 FullUnswitch = true; 271 } else { 272 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 273 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 274 if (Invariants.empty()) 275 // Couldn't find invariant inputs! 276 return false; 277 } 278 279 // Check that one of the branch's successors exits, and which one. 280 bool ExitDirection = true; 281 int LoopExitSuccIdx = 0; 282 auto *LoopExitBB = BI.getSuccessor(0); 283 if (L.contains(LoopExitBB)) { 284 ExitDirection = false; 285 LoopExitSuccIdx = 1; 286 LoopExitBB = BI.getSuccessor(1); 287 if (L.contains(LoopExitBB)) 288 return false; 289 } 290 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 291 auto *ParentBB = BI.getParent(); 292 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 293 return false; 294 295 // When unswitching only part of the branch's condition, we need the exit 296 // block to be reached directly from the partially unswitched input. This can 297 // be done when the exit block is along the true edge and the branch condition 298 // is a graph of `or` operations, or the exit block is along the false edge 299 // and the condition is a graph of `and` operations. 300 if (!FullUnswitch) { 301 if (ExitDirection) { 302 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 303 return false; 304 } else { 305 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 306 return false; 307 } 308 } 309 310 LLVM_DEBUG({ 311 dbgs() << " unswitching trivial invariant conditions for: " << BI 312 << "\n"; 313 for (Value *Invariant : Invariants) { 314 dbgs() << " " << *Invariant << " == true"; 315 if (Invariant != Invariants.back()) 316 dbgs() << " ||"; 317 dbgs() << "\n"; 318 } 319 }); 320 321 // Split the preheader, so that we know that there is a safe place to insert 322 // the conditional branch. We will change the preheader to have a conditional 323 // branch on LoopCond. 324 BasicBlock *OldPH = L.getLoopPreheader(); 325 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 326 327 // Now that we have a place to insert the conditional branch, create a place 328 // to branch to: this is the exit block out of the loop that we are 329 // unswitching. We need to split this if there are other loop predecessors. 330 // Because the loop is in simplified form, *any* other predecessor is enough. 331 BasicBlock *UnswitchedBB; 332 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 333 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 334 "A branch's parent isn't a predecessor!"); 335 UnswitchedBB = LoopExitBB; 336 } else { 337 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 338 } 339 340 // Actually move the invariant uses into the unswitched position. If possible, 341 // we do this by moving the instructions, but when doing partial unswitching 342 // we do it by building a new merge of the values in the unswitched position. 343 OldPH->getTerminator()->eraseFromParent(); 344 if (FullUnswitch) { 345 // If fully unswitching, we can use the existing branch instruction. 346 // Splice it into the old PH to gate reaching the new preheader and re-point 347 // its successors. 348 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 349 BI); 350 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 351 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 352 353 // Create a new unconditional branch that will continue the loop as a new 354 // terminator. 355 BranchInst::Create(ContinueBB, ParentBB); 356 } else { 357 // Only unswitching a subset of inputs to the condition, so we will need to 358 // build a new branch that merges the invariant inputs. 359 if (ExitDirection) 360 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 361 Instruction::Or && 362 "Must have an `or` of `i1`s for the condition!"); 363 else 364 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 365 Instruction::And && 366 "Must have an `and` of `i1`s for the condition!"); 367 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 368 *UnswitchedBB, *NewPH); 369 } 370 371 // Rewrite the relevant PHI nodes. 372 if (UnswitchedBB == LoopExitBB) 373 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 374 else 375 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 376 *ParentBB, *OldPH, FullUnswitch); 377 378 // Now we need to update the dominator tree. 379 DT.insertEdge(OldPH, UnswitchedBB); 380 if (FullUnswitch) 381 DT.deleteEdge(ParentBB, UnswitchedBB); 382 383 // The constant we can replace all of our invariants with inside the loop 384 // body. If any of the invariants have a value other than this the loop won't 385 // be entered. 386 ConstantInt *Replacement = ExitDirection 387 ? ConstantInt::getFalse(BI.getContext()) 388 : ConstantInt::getTrue(BI.getContext()); 389 390 // Since this is an i1 condition we can also trivially replace uses of it 391 // within the loop with a constant. 392 for (Value *Invariant : Invariants) 393 replaceLoopInvariantUses(L, Invariant, *Replacement); 394 395 ++NumTrivial; 396 ++NumBranches; 397 return true; 398 } 399 400 /// Unswitch a trivial switch if the condition is loop invariant. 401 /// 402 /// This routine should only be called when loop code leading to the switch has 403 /// been validated as trivial (no side effects). This routine checks if the 404 /// condition is invariant and that at least one of the successors is a loop 405 /// exit. This allows us to unswitch without duplicating the loop, making it 406 /// trivial. 407 /// 408 /// If this routine fails to unswitch the switch it returns false. 409 /// 410 /// If the switch can be unswitched, this routine splits the preheader and 411 /// copies the switch above that split. If the default case is one of the 412 /// exiting cases, it copies the non-exiting cases and points them at the new 413 /// preheader. If the default case is not exiting, it copies the exiting cases 414 /// and points the default at the preheader. It preserves loop simplified form 415 /// (splitting the exit blocks as necessary). It simplifies the switch within 416 /// the loop by removing now-dead cases. If the default case is one of those 417 /// unswitched, it replaces its destination with a new basic block containing 418 /// only unreachable. Such basic blocks, while technically loop exits, are not 419 /// considered for unswitching so this is a stable transform and the same 420 /// switch will not be revisited. If after unswitching there is only a single 421 /// in-loop successor, the switch is further simplified to an unconditional 422 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 423 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 424 LoopInfo &LI) { 425 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 426 Value *LoopCond = SI.getCondition(); 427 428 // If this isn't switching on an invariant condition, we can't unswitch it. 429 if (!L.isLoopInvariant(LoopCond)) 430 return false; 431 432 auto *ParentBB = SI.getParent(); 433 434 SmallVector<int, 4> ExitCaseIndices; 435 for (auto Case : SI.cases()) { 436 auto *SuccBB = Case.getCaseSuccessor(); 437 if (!L.contains(SuccBB) && 438 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 439 ExitCaseIndices.push_back(Case.getCaseIndex()); 440 } 441 BasicBlock *DefaultExitBB = nullptr; 442 if (!L.contains(SI.getDefaultDest()) && 443 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 444 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 445 DefaultExitBB = SI.getDefaultDest(); 446 else if (ExitCaseIndices.empty()) 447 return false; 448 449 LLVM_DEBUG(dbgs() << " unswitching trivial cases...\n"); 450 451 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 452 ExitCases.reserve(ExitCaseIndices.size()); 453 // We walk the case indices backwards so that we remove the last case first 454 // and don't disrupt the earlier indices. 455 for (unsigned Index : reverse(ExitCaseIndices)) { 456 auto CaseI = SI.case_begin() + Index; 457 // Save the value of this case. 458 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 459 // Delete the unswitched cases. 460 SI.removeCase(CaseI); 461 } 462 463 // Check if after this all of the remaining cases point at the same 464 // successor. 465 BasicBlock *CommonSuccBB = nullptr; 466 if (SI.getNumCases() > 0 && 467 std::all_of(std::next(SI.case_begin()), SI.case_end(), 468 [&SI](const SwitchInst::CaseHandle &Case) { 469 return Case.getCaseSuccessor() == 470 SI.case_begin()->getCaseSuccessor(); 471 })) 472 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 473 474 if (DefaultExitBB) { 475 // We can't remove the default edge so replace it with an edge to either 476 // the single common remaining successor (if we have one) or an unreachable 477 // block. 478 if (CommonSuccBB) { 479 SI.setDefaultDest(CommonSuccBB); 480 } else { 481 BasicBlock *UnreachableBB = BasicBlock::Create( 482 ParentBB->getContext(), 483 Twine(ParentBB->getName()) + ".unreachable_default", 484 ParentBB->getParent()); 485 new UnreachableInst(ParentBB->getContext(), UnreachableBB); 486 SI.setDefaultDest(UnreachableBB); 487 DT.addNewBlock(UnreachableBB, ParentBB); 488 } 489 } else { 490 // If we're not unswitching the default, we need it to match any cases to 491 // have a common successor or if we have no cases it is the common 492 // successor. 493 if (SI.getNumCases() == 0) 494 CommonSuccBB = SI.getDefaultDest(); 495 else if (SI.getDefaultDest() != CommonSuccBB) 496 CommonSuccBB = nullptr; 497 } 498 499 // Split the preheader, so that we know that there is a safe place to insert 500 // the switch. 501 BasicBlock *OldPH = L.getLoopPreheader(); 502 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 503 OldPH->getTerminator()->eraseFromParent(); 504 505 // Now add the unswitched switch. 506 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 507 508 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 509 // First, we split any exit blocks with remaining in-loop predecessors. Then 510 // we update the PHIs in one of two ways depending on if there was a split. 511 // We walk in reverse so that we split in the same order as the cases 512 // appeared. This is purely for convenience of reading the resulting IR, but 513 // it doesn't cost anything really. 514 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 515 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 516 // Handle the default exit if necessary. 517 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 518 // ranges aren't quite powerful enough yet. 519 if (DefaultExitBB) { 520 if (pred_empty(DefaultExitBB)) { 521 UnswitchedExitBBs.insert(DefaultExitBB); 522 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 523 } else { 524 auto *SplitBB = 525 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 526 rewritePHINodesForExitAndUnswitchedBlocks( 527 *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 528 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 529 } 530 } 531 // Note that we must use a reference in the for loop so that we update the 532 // container. 533 for (auto &CasePair : reverse(ExitCases)) { 534 // Grab a reference to the exit block in the pair so that we can update it. 535 BasicBlock *ExitBB = CasePair.second; 536 537 // If this case is the last edge into the exit block, we can simply reuse it 538 // as it will no longer be a loop exit. No mapping necessary. 539 if (pred_empty(ExitBB)) { 540 // Only rewrite once. 541 if (UnswitchedExitBBs.insert(ExitBB).second) 542 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 543 continue; 544 } 545 546 // Otherwise we need to split the exit block so that we retain an exit 547 // block from the loop and a target for the unswitched condition. 548 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 549 if (!SplitExitBB) { 550 // If this is the first time we see this, do the split and remember it. 551 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 552 rewritePHINodesForExitAndUnswitchedBlocks( 553 *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 554 } 555 // Update the case pair to point to the split block. 556 CasePair.second = SplitExitBB; 557 } 558 559 // Now add the unswitched cases. We do this in reverse order as we built them 560 // in reverse order. 561 for (auto CasePair : reverse(ExitCases)) { 562 ConstantInt *CaseVal = CasePair.first; 563 BasicBlock *UnswitchedBB = CasePair.second; 564 565 NewSI->addCase(CaseVal, UnswitchedBB); 566 } 567 568 // If the default was unswitched, re-point it and add explicit cases for 569 // entering the loop. 570 if (DefaultExitBB) { 571 NewSI->setDefaultDest(DefaultExitBB); 572 573 // We removed all the exit cases, so we just copy the cases to the 574 // unswitched switch. 575 for (auto Case : SI.cases()) 576 NewSI->addCase(Case.getCaseValue(), NewPH); 577 } 578 579 // If we ended up with a common successor for every path through the switch 580 // after unswitching, rewrite it to an unconditional branch to make it easy 581 // to recognize. Otherwise we potentially have to recognize the default case 582 // pointing at unreachable and other complexity. 583 if (CommonSuccBB) { 584 BasicBlock *BB = SI.getParent(); 585 SI.eraseFromParent(); 586 BranchInst::Create(CommonSuccBB, BB); 587 } 588 589 // Walk the unswitched exit blocks and the unswitched split blocks and update 590 // the dominator tree based on the CFG edits. While we are walking unordered 591 // containers here, the API for applyUpdates takes an unordered list of 592 // updates and requires them to not contain duplicates. 593 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 594 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 595 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 596 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 597 } 598 for (auto SplitUnswitchedPair : SplitExitBBMap) { 599 auto *UnswitchedBB = SplitUnswitchedPair.second; 600 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 601 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 602 } 603 DT.applyUpdates(DTUpdates); 604 605 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 606 ++NumTrivial; 607 ++NumSwitches; 608 return true; 609 } 610 611 /// This routine scans the loop to find a branch or switch which occurs before 612 /// any side effects occur. These can potentially be unswitched without 613 /// duplicating the loop. If a branch or switch is successfully unswitched the 614 /// scanning continues to see if subsequent branches or switches have become 615 /// trivial. Once all trivial candidates have been unswitched, this routine 616 /// returns. 617 /// 618 /// The return value indicates whether anything was unswitched (and therefore 619 /// changed). 620 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 621 LoopInfo &LI) { 622 bool Changed = false; 623 624 // If loop header has only one reachable successor we should keep looking for 625 // trivial condition candidates in the successor as well. An alternative is 626 // to constant fold conditions and merge successors into loop header (then we 627 // only need to check header's terminator). The reason for not doing this in 628 // LoopUnswitch pass is that it could potentially break LoopPassManager's 629 // invariants. Folding dead branches could either eliminate the current loop 630 // or make other loops unreachable. LCSSA form might also not be preserved 631 // after deleting branches. The following code keeps traversing loop header's 632 // successors until it finds the trivial condition candidate (condition that 633 // is not a constant). Since unswitching generates branches with constant 634 // conditions, this scenario could be very common in practice. 635 BasicBlock *CurrentBB = L.getHeader(); 636 SmallPtrSet<BasicBlock *, 8> Visited; 637 Visited.insert(CurrentBB); 638 do { 639 // Check if there are any side-effecting instructions (e.g. stores, calls, 640 // volatile loads) in the part of the loop that the code *would* execute 641 // without unswitching. 642 if (llvm::any_of(*CurrentBB, 643 [](Instruction &I) { return I.mayHaveSideEffects(); })) 644 return Changed; 645 646 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 647 648 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 649 // Don't bother trying to unswitch past a switch with a constant 650 // condition. This should be removed prior to running this pass by 651 // simplify-cfg. 652 if (isa<Constant>(SI->getCondition())) 653 return Changed; 654 655 if (!unswitchTrivialSwitch(L, *SI, DT, LI)) 656 // Couldn't unswitch this one so we're done. 657 return Changed; 658 659 // Mark that we managed to unswitch something. 660 Changed = true; 661 662 // If unswitching turned the terminator into an unconditional branch then 663 // we can continue. The unswitching logic specifically works to fold any 664 // cases it can into an unconditional branch to make it easier to 665 // recognize here. 666 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 667 if (!BI || BI->isConditional()) 668 return Changed; 669 670 CurrentBB = BI->getSuccessor(0); 671 continue; 672 } 673 674 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 675 if (!BI) 676 // We do not understand other terminator instructions. 677 return Changed; 678 679 // Don't bother trying to unswitch past an unconditional branch or a branch 680 // with a constant value. These should be removed by simplify-cfg prior to 681 // running this pass. 682 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 683 return Changed; 684 685 // Found a trivial condition candidate: non-foldable conditional branch. If 686 // we fail to unswitch this, we can't do anything else that is trivial. 687 if (!unswitchTrivialBranch(L, *BI, DT, LI)) 688 return Changed; 689 690 // Mark that we managed to unswitch something. 691 Changed = true; 692 693 // If we only unswitched some of the conditions feeding the branch, we won't 694 // have collapsed it to a single successor. 695 BI = cast<BranchInst>(CurrentBB->getTerminator()); 696 if (BI->isConditional()) 697 return Changed; 698 699 // Follow the newly unconditional branch into its successor. 700 CurrentBB = BI->getSuccessor(0); 701 702 // When continuing, if we exit the loop or reach a previous visited block, 703 // then we can not reach any trivial condition candidates (unfoldable 704 // branch instructions or switch instructions) and no unswitch can happen. 705 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 706 707 return Changed; 708 } 709 710 /// Build the cloned blocks for an unswitched copy of the given loop. 711 /// 712 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 713 /// after the split block (`SplitBB`) that will be used to select between the 714 /// cloned and original loop. 715 /// 716 /// This routine handles cloning all of the necessary loop blocks and exit 717 /// blocks including rewriting their instructions and the relevant PHI nodes. 718 /// It skips loop and exit blocks that are not necessary based on the provided 719 /// set. It also correctly creates the unconditional branch in the cloned 720 /// unswitched parent block to only point at the unswitched successor. 721 /// 722 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 723 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 724 /// the cloned blocks (and their loops) are left without full `LoopInfo` 725 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 726 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 727 /// instead the caller must recompute an accurate DT. It *does* correctly 728 /// update the `AssumptionCache` provided in `AC`. 729 static BasicBlock *buildClonedLoopBlocks( 730 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 731 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 732 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 733 const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks, 734 ValueToValueMapTy &VMap, 735 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 736 DominatorTree &DT, LoopInfo &LI) { 737 SmallVector<BasicBlock *, 4> NewBlocks; 738 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 739 740 // We will need to clone a bunch of blocks, wrap up the clone operation in 741 // a helper. 742 auto CloneBlock = [&](BasicBlock *OldBB) { 743 // Clone the basic block and insert it before the new preheader. 744 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 745 NewBB->moveBefore(LoopPH); 746 747 // Record this block and the mapping. 748 NewBlocks.push_back(NewBB); 749 VMap[OldBB] = NewBB; 750 751 return NewBB; 752 }; 753 754 // First, clone the preheader. 755 auto *ClonedPH = CloneBlock(LoopPH); 756 757 // Then clone all the loop blocks, skipping the ones that aren't necessary. 758 for (auto *LoopBB : L.blocks()) 759 if (!SkippedLoopAndExitBlocks.count(LoopBB)) 760 CloneBlock(LoopBB); 761 762 // Split all the loop exit edges so that when we clone the exit blocks, if 763 // any of the exit blocks are *also* a preheader for some other loop, we 764 // don't create multiple predecessors entering the loop header. 765 for (auto *ExitBB : ExitBlocks) { 766 if (SkippedLoopAndExitBlocks.count(ExitBB)) 767 continue; 768 769 // When we are going to clone an exit, we don't need to clone all the 770 // instructions in the exit block and we want to ensure we have an easy 771 // place to merge the CFG, so split the exit first. This is always safe to 772 // do because there cannot be any non-loop predecessors of a loop exit in 773 // loop simplified form. 774 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 775 776 // Rearrange the names to make it easier to write test cases by having the 777 // exit block carry the suffix rather than the merge block carrying the 778 // suffix. 779 MergeBB->takeName(ExitBB); 780 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 781 782 // Now clone the original exit block. 783 auto *ClonedExitBB = CloneBlock(ExitBB); 784 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 785 "Exit block should have been split to have one successor!"); 786 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 787 "Cloned exit block has the wrong successor!"); 788 789 // Remap any cloned instructions and create a merge phi node for them. 790 for (auto ZippedInsts : llvm::zip_first( 791 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 792 llvm::make_range(ClonedExitBB->begin(), 793 std::prev(ClonedExitBB->end())))) { 794 Instruction &I = std::get<0>(ZippedInsts); 795 Instruction &ClonedI = std::get<1>(ZippedInsts); 796 797 // The only instructions in the exit block should be PHI nodes and 798 // potentially a landing pad. 799 assert( 800 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 801 "Bad instruction in exit block!"); 802 // We should have a value map between the instruction and its clone. 803 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 804 805 auto *MergePN = 806 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 807 &*MergeBB->getFirstInsertionPt()); 808 I.replaceAllUsesWith(MergePN); 809 MergePN->addIncoming(&I, ExitBB); 810 MergePN->addIncoming(&ClonedI, ClonedExitBB); 811 } 812 } 813 814 // Rewrite the instructions in the cloned blocks to refer to the instructions 815 // in the cloned blocks. We have to do this as a second pass so that we have 816 // everything available. Also, we have inserted new instructions which may 817 // include assume intrinsics, so we update the assumption cache while 818 // processing this. 819 for (auto *ClonedBB : NewBlocks) 820 for (Instruction &I : *ClonedBB) { 821 RemapInstruction(&I, VMap, 822 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 823 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 824 if (II->getIntrinsicID() == Intrinsic::assume) 825 AC.registerAssumption(II); 826 } 827 828 // Remove the cloned parent as a predecessor of the cloned continue successor 829 // if we did in fact clone it. 830 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 831 if (auto *ClonedContinueSuccBB = 832 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB))) 833 ClonedContinueSuccBB->removePredecessor(ClonedParentBB, 834 /*DontDeleteUselessPHIs*/ true); 835 // Replace the cloned branch with an unconditional branch to the cloned 836 // unswitched successor. 837 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 838 ClonedParentBB->getTerminator()->eraseFromParent(); 839 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 840 841 // Update any PHI nodes in the cloned successors of the skipped blocks to not 842 // have spurious incoming values. 843 for (auto *LoopBB : L.blocks()) 844 if (SkippedLoopAndExitBlocks.count(LoopBB)) 845 for (auto *SuccBB : successors(LoopBB)) 846 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 847 for (PHINode &PN : ClonedSuccBB->phis()) 848 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 849 850 // Record the domtree updates for the new blocks. 851 SmallPtrSet<BasicBlock *, 4> SuccSet; 852 for (auto *ClonedBB : NewBlocks) { 853 for (auto *SuccBB : successors(ClonedBB)) 854 if (SuccSet.insert(SuccBB).second) 855 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 856 SuccSet.clear(); 857 } 858 859 return ClonedPH; 860 } 861 862 /// Recursively clone the specified loop and all of its children. 863 /// 864 /// The target parent loop for the clone should be provided, or can be null if 865 /// the clone is a top-level loop. While cloning, all the blocks are mapped 866 /// with the provided value map. The entire original loop must be present in 867 /// the value map. The cloned loop is returned. 868 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 869 const ValueToValueMapTy &VMap, LoopInfo &LI) { 870 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 871 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 872 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 873 for (auto *BB : OrigL.blocks()) { 874 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 875 ClonedL.addBlockEntry(ClonedBB); 876 if (LI.getLoopFor(BB) == &OrigL) 877 LI.changeLoopFor(ClonedBB, &ClonedL); 878 } 879 }; 880 881 // We specially handle the first loop because it may get cloned into 882 // a different parent and because we most commonly are cloning leaf loops. 883 Loop *ClonedRootL = LI.AllocateLoop(); 884 if (RootParentL) 885 RootParentL->addChildLoop(ClonedRootL); 886 else 887 LI.addTopLevelLoop(ClonedRootL); 888 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 889 890 if (OrigRootL.empty()) 891 return ClonedRootL; 892 893 // If we have a nest, we can quickly clone the entire loop nest using an 894 // iterative approach because it is a tree. We keep the cloned parent in the 895 // data structure to avoid repeatedly querying through a map to find it. 896 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 897 // Build up the loops to clone in reverse order as we'll clone them from the 898 // back. 899 for (Loop *ChildL : llvm::reverse(OrigRootL)) 900 LoopsToClone.push_back({ClonedRootL, ChildL}); 901 do { 902 Loop *ClonedParentL, *L; 903 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 904 Loop *ClonedL = LI.AllocateLoop(); 905 ClonedParentL->addChildLoop(ClonedL); 906 AddClonedBlocksToLoop(*L, *ClonedL); 907 for (Loop *ChildL : llvm::reverse(*L)) 908 LoopsToClone.push_back({ClonedL, ChildL}); 909 } while (!LoopsToClone.empty()); 910 911 return ClonedRootL; 912 } 913 914 /// Build the cloned loops of an original loop from unswitching. 915 /// 916 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 917 /// operation. We need to re-verify that there even is a loop (as the backedge 918 /// may not have been cloned), and even if there are remaining backedges the 919 /// backedge set may be different. However, we know that each child loop is 920 /// undisturbed, we only need to find where to place each child loop within 921 /// either any parent loop or within a cloned version of the original loop. 922 /// 923 /// Because child loops may end up cloned outside of any cloned version of the 924 /// original loop, multiple cloned sibling loops may be created. All of them 925 /// are returned so that the newly introduced loop nest roots can be 926 /// identified. 927 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 928 const ValueToValueMapTy &VMap, LoopInfo &LI, 929 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 930 Loop *ClonedL = nullptr; 931 932 auto *OrigPH = OrigL.getLoopPreheader(); 933 auto *OrigHeader = OrigL.getHeader(); 934 935 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 936 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 937 938 // We need to know the loops of the cloned exit blocks to even compute the 939 // accurate parent loop. If we only clone exits to some parent of the 940 // original parent, we want to clone into that outer loop. We also keep track 941 // of the loops that our cloned exit blocks participate in. 942 Loop *ParentL = nullptr; 943 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 944 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 945 ClonedExitsInLoops.reserve(ExitBlocks.size()); 946 for (auto *ExitBB : ExitBlocks) 947 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 948 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 949 ExitLoopMap[ClonedExitBB] = ExitL; 950 ClonedExitsInLoops.push_back(ClonedExitBB); 951 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 952 ParentL = ExitL; 953 } 954 assert((!ParentL || ParentL == OrigL.getParentLoop() || 955 ParentL->contains(OrigL.getParentLoop())) && 956 "The computed parent loop should always contain (or be) the parent of " 957 "the original loop."); 958 959 // We build the set of blocks dominated by the cloned header from the set of 960 // cloned blocks out of the original loop. While not all of these will 961 // necessarily be in the cloned loop, it is enough to establish that they 962 // aren't in unreachable cycles, etc. 963 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 964 for (auto *BB : OrigL.blocks()) 965 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 966 ClonedLoopBlocks.insert(ClonedBB); 967 968 // Rebuild the set of blocks that will end up in the cloned loop. We may have 969 // skipped cloning some region of this loop which can in turn skip some of 970 // the backedges so we have to rebuild the blocks in the loop based on the 971 // backedges that remain after cloning. 972 SmallVector<BasicBlock *, 16> Worklist; 973 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 974 for (auto *Pred : predecessors(ClonedHeader)) { 975 // The only possible non-loop header predecessor is the preheader because 976 // we know we cloned the loop in simplified form. 977 if (Pred == ClonedPH) 978 continue; 979 980 // Because the loop was in simplified form, the only non-loop predecessor 981 // should be the preheader. 982 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 983 "header other than the preheader " 984 "that is not part of the loop!"); 985 986 // Insert this block into the loop set and on the first visit (and if it 987 // isn't the header we're currently walking) put it into the worklist to 988 // recurse through. 989 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 990 Worklist.push_back(Pred); 991 } 992 993 // If we had any backedges then there *is* a cloned loop. Put the header into 994 // the loop set and then walk the worklist backwards to find all the blocks 995 // that remain within the loop after cloning. 996 if (!BlocksInClonedLoop.empty()) { 997 BlocksInClonedLoop.insert(ClonedHeader); 998 999 while (!Worklist.empty()) { 1000 BasicBlock *BB = Worklist.pop_back_val(); 1001 assert(BlocksInClonedLoop.count(BB) && 1002 "Didn't put block into the loop set!"); 1003 1004 // Insert any predecessors that are in the possible set into the cloned 1005 // set, and if the insert is successful, add them to the worklist. Note 1006 // that we filter on the blocks that are definitely reachable via the 1007 // backedge to the loop header so we may prune out dead code within the 1008 // cloned loop. 1009 for (auto *Pred : predecessors(BB)) 1010 if (ClonedLoopBlocks.count(Pred) && 1011 BlocksInClonedLoop.insert(Pred).second) 1012 Worklist.push_back(Pred); 1013 } 1014 1015 ClonedL = LI.AllocateLoop(); 1016 if (ParentL) { 1017 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1018 ParentL->addChildLoop(ClonedL); 1019 } else { 1020 LI.addTopLevelLoop(ClonedL); 1021 } 1022 NonChildClonedLoops.push_back(ClonedL); 1023 1024 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1025 // We don't want to just add the cloned loop blocks based on how we 1026 // discovered them. The original order of blocks was carefully built in 1027 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1028 // that logic, we just re-walk the original blocks (and those of the child 1029 // loops) and filter them as we add them into the cloned loop. 1030 for (auto *BB : OrigL.blocks()) { 1031 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1032 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1033 continue; 1034 1035 // Directly add the blocks that are only in this loop. 1036 if (LI.getLoopFor(BB) == &OrigL) { 1037 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1038 continue; 1039 } 1040 1041 // We want to manually add it to this loop and parents. 1042 // Registering it with LoopInfo will happen when we clone the top 1043 // loop for this block. 1044 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1045 PL->addBlockEntry(ClonedBB); 1046 } 1047 1048 // Now add each child loop whose header remains within the cloned loop. All 1049 // of the blocks within the loop must satisfy the same constraints as the 1050 // header so once we pass the header checks we can just clone the entire 1051 // child loop nest. 1052 for (Loop *ChildL : OrigL) { 1053 auto *ClonedChildHeader = 1054 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1055 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1056 continue; 1057 1058 #ifndef NDEBUG 1059 // We should never have a cloned child loop header but fail to have 1060 // all of the blocks for that child loop. 1061 for (auto *ChildLoopBB : ChildL->blocks()) 1062 assert(BlocksInClonedLoop.count( 1063 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1064 "Child cloned loop has a header within the cloned outer " 1065 "loop but not all of its blocks!"); 1066 #endif 1067 1068 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1069 } 1070 } 1071 1072 // Now that we've handled all the components of the original loop that were 1073 // cloned into a new loop, we still need to handle anything from the original 1074 // loop that wasn't in a cloned loop. 1075 1076 // Figure out what blocks are left to place within any loop nest containing 1077 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1078 // them. 1079 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1080 if (BlocksInClonedLoop.empty()) 1081 UnloopedBlockSet.insert(ClonedPH); 1082 for (auto *ClonedBB : ClonedLoopBlocks) 1083 if (!BlocksInClonedLoop.count(ClonedBB)) 1084 UnloopedBlockSet.insert(ClonedBB); 1085 1086 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1087 // backwards across these to process them inside out. The order shouldn't 1088 // matter as we're just trying to build up the map from inside-out; we use 1089 // the map in a more stably ordered way below. 1090 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1091 llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), 1092 [&](BasicBlock *LHS, BasicBlock *RHS) { 1093 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1094 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1095 }); 1096 1097 // Populate the existing ExitLoopMap with everything reachable from each 1098 // exit, starting from the inner most exit. 1099 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1100 assert(Worklist.empty() && "Didn't clear worklist!"); 1101 1102 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1103 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1104 1105 // Walk the CFG back until we hit the cloned PH adding everything reachable 1106 // and in the unlooped set to this exit block's loop. 1107 Worklist.push_back(ExitBB); 1108 do { 1109 BasicBlock *BB = Worklist.pop_back_val(); 1110 // We can stop recursing at the cloned preheader (if we get there). 1111 if (BB == ClonedPH) 1112 continue; 1113 1114 for (BasicBlock *PredBB : predecessors(BB)) { 1115 // If this pred has already been moved to our set or is part of some 1116 // (inner) loop, no update needed. 1117 if (!UnloopedBlockSet.erase(PredBB)) { 1118 assert( 1119 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1120 "Predecessor not mapped to a loop!"); 1121 continue; 1122 } 1123 1124 // We just insert into the loop set here. We'll add these blocks to the 1125 // exit loop after we build up the set in an order that doesn't rely on 1126 // predecessor order (which in turn relies on use list order). 1127 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1128 (void)Inserted; 1129 assert(Inserted && "Should only visit an unlooped block once!"); 1130 1131 // And recurse through to its predecessors. 1132 Worklist.push_back(PredBB); 1133 } 1134 } while (!Worklist.empty()); 1135 } 1136 1137 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1138 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1139 // in their original order adding them to the correct loop. 1140 1141 // We need a stable insertion order. We use the order of the original loop 1142 // order and map into the correct parent loop. 1143 for (auto *BB : llvm::concat<BasicBlock *const>( 1144 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1145 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1146 OuterL->addBasicBlockToLoop(BB, LI); 1147 1148 #ifndef NDEBUG 1149 for (auto &BBAndL : ExitLoopMap) { 1150 auto *BB = BBAndL.first; 1151 auto *OuterL = BBAndL.second; 1152 assert(LI.getLoopFor(BB) == OuterL && 1153 "Failed to put all blocks into outer loops!"); 1154 } 1155 #endif 1156 1157 // Now that all the blocks are placed into the correct containing loop in the 1158 // absence of child loops, find all the potentially cloned child loops and 1159 // clone them into whatever outer loop we placed their header into. 1160 for (Loop *ChildL : OrigL) { 1161 auto *ClonedChildHeader = 1162 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1163 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1164 continue; 1165 1166 #ifndef NDEBUG 1167 for (auto *ChildLoopBB : ChildL->blocks()) 1168 assert(VMap.count(ChildLoopBB) && 1169 "Cloned a child loop header but not all of that loops blocks!"); 1170 #endif 1171 1172 NonChildClonedLoops.push_back(cloneLoopNest( 1173 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1174 } 1175 } 1176 1177 static void 1178 deleteDeadBlocksFromLoop(Loop &L, 1179 const SmallVectorImpl<BasicBlock *> &DeadBlocks, 1180 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1181 DominatorTree &DT, LoopInfo &LI) { 1182 SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1183 DeadBlocks.end()); 1184 1185 // Filter out the dead blocks from the exit blocks list so that it can be 1186 // used in the caller. 1187 llvm::erase_if(ExitBlocks, 1188 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1189 1190 // Remove these blocks from their successors. 1191 for (auto *BB : DeadBlocks) 1192 for (BasicBlock *SuccBB : successors(BB)) 1193 SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true); 1194 1195 // Walk from this loop up through its parents removing all of the dead blocks. 1196 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1197 for (auto *BB : DeadBlocks) 1198 ParentL->getBlocksSet().erase(BB); 1199 llvm::erase_if(ParentL->getBlocksVector(), 1200 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1201 } 1202 1203 // Now delete the dead child loops. This raw delete will clear them 1204 // recursively. 1205 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1206 if (!DeadBlockSet.count(ChildL->getHeader())) 1207 return false; 1208 1209 assert(llvm::all_of(ChildL->blocks(), 1210 [&](BasicBlock *ChildBB) { 1211 return DeadBlockSet.count(ChildBB); 1212 }) && 1213 "If the child loop header is dead all blocks in the child loop must " 1214 "be dead as well!"); 1215 LI.destroy(ChildL); 1216 return true; 1217 }); 1218 1219 // Remove the loop mappings for the dead blocks and drop all the references 1220 // from these blocks to others to handle cyclic references as we start 1221 // deleting the blocks themselves. 1222 for (auto *BB : DeadBlocks) { 1223 // Check that the dominator tree has already been updated. 1224 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1225 LI.changeLoopFor(BB, nullptr); 1226 BB->dropAllReferences(); 1227 } 1228 1229 // Actually delete the blocks now that they've been fully unhooked from the 1230 // IR. 1231 for (auto *BB : DeadBlocks) 1232 BB->eraseFromParent(); 1233 } 1234 1235 /// Recompute the set of blocks in a loop after unswitching. 1236 /// 1237 /// This walks from the original headers predecessors to rebuild the loop. We 1238 /// take advantage of the fact that new blocks can't have been added, and so we 1239 /// filter by the original loop's blocks. This also handles potentially 1240 /// unreachable code that we don't want to explore but might be found examining 1241 /// the predecessors of the header. 1242 /// 1243 /// If the original loop is no longer a loop, this will return an empty set. If 1244 /// it remains a loop, all the blocks within it will be added to the set 1245 /// (including those blocks in inner loops). 1246 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1247 LoopInfo &LI) { 1248 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1249 1250 auto *PH = L.getLoopPreheader(); 1251 auto *Header = L.getHeader(); 1252 1253 // A worklist to use while walking backwards from the header. 1254 SmallVector<BasicBlock *, 16> Worklist; 1255 1256 // First walk the predecessors of the header to find the backedges. This will 1257 // form the basis of our walk. 1258 for (auto *Pred : predecessors(Header)) { 1259 // Skip the preheader. 1260 if (Pred == PH) 1261 continue; 1262 1263 // Because the loop was in simplified form, the only non-loop predecessor 1264 // is the preheader. 1265 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1266 "than the preheader that is not part of the " 1267 "loop!"); 1268 1269 // Insert this block into the loop set and on the first visit and, if it 1270 // isn't the header we're currently walking, put it into the worklist to 1271 // recurse through. 1272 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1273 Worklist.push_back(Pred); 1274 } 1275 1276 // If no backedges were found, we're done. 1277 if (LoopBlockSet.empty()) 1278 return LoopBlockSet; 1279 1280 // We found backedges, recurse through them to identify the loop blocks. 1281 while (!Worklist.empty()) { 1282 BasicBlock *BB = Worklist.pop_back_val(); 1283 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1284 1285 // No need to walk past the header. 1286 if (BB == Header) 1287 continue; 1288 1289 // Because we know the inner loop structure remains valid we can use the 1290 // loop structure to jump immediately across the entire nested loop. 1291 // Further, because it is in loop simplified form, we can directly jump 1292 // to its preheader afterward. 1293 if (Loop *InnerL = LI.getLoopFor(BB)) 1294 if (InnerL != &L) { 1295 assert(L.contains(InnerL) && 1296 "Should not reach a loop *outside* this loop!"); 1297 // The preheader is the only possible predecessor of the loop so 1298 // insert it into the set and check whether it was already handled. 1299 auto *InnerPH = InnerL->getLoopPreheader(); 1300 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1301 "but not contain the inner loop " 1302 "preheader!"); 1303 if (!LoopBlockSet.insert(InnerPH).second) 1304 // The only way to reach the preheader is through the loop body 1305 // itself so if it has been visited the loop is already handled. 1306 continue; 1307 1308 // Insert all of the blocks (other than those already present) into 1309 // the loop set. We expect at least the block that led us to find the 1310 // inner loop to be in the block set, but we may also have other loop 1311 // blocks if they were already enqueued as predecessors of some other 1312 // outer loop block. 1313 for (auto *InnerBB : InnerL->blocks()) { 1314 if (InnerBB == BB) { 1315 assert(LoopBlockSet.count(InnerBB) && 1316 "Block should already be in the set!"); 1317 continue; 1318 } 1319 1320 LoopBlockSet.insert(InnerBB); 1321 } 1322 1323 // Add the preheader to the worklist so we will continue past the 1324 // loop body. 1325 Worklist.push_back(InnerPH); 1326 continue; 1327 } 1328 1329 // Insert any predecessors that were in the original loop into the new 1330 // set, and if the insert is successful, add them to the worklist. 1331 for (auto *Pred : predecessors(BB)) 1332 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1333 Worklist.push_back(Pred); 1334 } 1335 1336 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1337 1338 // We've found all the blocks participating in the loop, return our completed 1339 // set. 1340 return LoopBlockSet; 1341 } 1342 1343 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1344 /// 1345 /// The removal may have removed some child loops entirely but cannot have 1346 /// disturbed any remaining child loops. However, they may need to be hoisted 1347 /// to the parent loop (or to be top-level loops). The original loop may be 1348 /// completely removed. 1349 /// 1350 /// The sibling loops resulting from this update are returned. If the original 1351 /// loop remains a valid loop, it will be the first entry in this list with all 1352 /// of the newly sibling loops following it. 1353 /// 1354 /// Returns true if the loop remains a loop after unswitching, and false if it 1355 /// is no longer a loop after unswitching (and should not continue to be 1356 /// referenced). 1357 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1358 LoopInfo &LI, 1359 SmallVectorImpl<Loop *> &HoistedLoops) { 1360 auto *PH = L.getLoopPreheader(); 1361 1362 // Compute the actual parent loop from the exit blocks. Because we may have 1363 // pruned some exits the loop may be different from the original parent. 1364 Loop *ParentL = nullptr; 1365 SmallVector<Loop *, 4> ExitLoops; 1366 SmallVector<BasicBlock *, 4> ExitsInLoops; 1367 ExitsInLoops.reserve(ExitBlocks.size()); 1368 for (auto *ExitBB : ExitBlocks) 1369 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1370 ExitLoops.push_back(ExitL); 1371 ExitsInLoops.push_back(ExitBB); 1372 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1373 ParentL = ExitL; 1374 } 1375 1376 // Recompute the blocks participating in this loop. This may be empty if it 1377 // is no longer a loop. 1378 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1379 1380 // If we still have a loop, we need to re-set the loop's parent as the exit 1381 // block set changing may have moved it within the loop nest. Note that this 1382 // can only happen when this loop has a parent as it can only hoist the loop 1383 // *up* the nest. 1384 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1385 // Remove this loop's (original) blocks from all of the intervening loops. 1386 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1387 IL = IL->getParentLoop()) { 1388 IL->getBlocksSet().erase(PH); 1389 for (auto *BB : L.blocks()) 1390 IL->getBlocksSet().erase(BB); 1391 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1392 return BB == PH || L.contains(BB); 1393 }); 1394 } 1395 1396 LI.changeLoopFor(PH, ParentL); 1397 L.getParentLoop()->removeChildLoop(&L); 1398 if (ParentL) 1399 ParentL->addChildLoop(&L); 1400 else 1401 LI.addTopLevelLoop(&L); 1402 } 1403 1404 // Now we update all the blocks which are no longer within the loop. 1405 auto &Blocks = L.getBlocksVector(); 1406 auto BlocksSplitI = 1407 LoopBlockSet.empty() 1408 ? Blocks.begin() 1409 : std::stable_partition( 1410 Blocks.begin(), Blocks.end(), 1411 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1412 1413 // Before we erase the list of unlooped blocks, build a set of them. 1414 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1415 if (LoopBlockSet.empty()) 1416 UnloopedBlocks.insert(PH); 1417 1418 // Now erase these blocks from the loop. 1419 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1420 L.getBlocksSet().erase(BB); 1421 Blocks.erase(BlocksSplitI, Blocks.end()); 1422 1423 // Sort the exits in ascending loop depth, we'll work backwards across these 1424 // to process them inside out. 1425 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1426 [&](BasicBlock *LHS, BasicBlock *RHS) { 1427 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1428 }); 1429 1430 // We'll build up a set for each exit loop. 1431 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1432 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1433 1434 auto RemoveUnloopedBlocksFromLoop = 1435 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1436 for (auto *BB : UnloopedBlocks) 1437 L.getBlocksSet().erase(BB); 1438 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1439 return UnloopedBlocks.count(BB); 1440 }); 1441 }; 1442 1443 SmallVector<BasicBlock *, 16> Worklist; 1444 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1445 assert(Worklist.empty() && "Didn't clear worklist!"); 1446 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1447 1448 // Grab the next exit block, in decreasing loop depth order. 1449 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1450 Loop &ExitL = *LI.getLoopFor(ExitBB); 1451 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1452 1453 // Erase all of the unlooped blocks from the loops between the previous 1454 // exit loop and this exit loop. This works because the ExitInLoops list is 1455 // sorted in increasing order of loop depth and thus we visit loops in 1456 // decreasing order of loop depth. 1457 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1458 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1459 1460 // Walk the CFG back until we hit the cloned PH adding everything reachable 1461 // and in the unlooped set to this exit block's loop. 1462 Worklist.push_back(ExitBB); 1463 do { 1464 BasicBlock *BB = Worklist.pop_back_val(); 1465 // We can stop recursing at the cloned preheader (if we get there). 1466 if (BB == PH) 1467 continue; 1468 1469 for (BasicBlock *PredBB : predecessors(BB)) { 1470 // If this pred has already been moved to our set or is part of some 1471 // (inner) loop, no update needed. 1472 if (!UnloopedBlocks.erase(PredBB)) { 1473 assert((NewExitLoopBlocks.count(PredBB) || 1474 ExitL.contains(LI.getLoopFor(PredBB))) && 1475 "Predecessor not in a nested loop (or already visited)!"); 1476 continue; 1477 } 1478 1479 // We just insert into the loop set here. We'll add these blocks to the 1480 // exit loop after we build up the set in a deterministic order rather 1481 // than the predecessor-influenced visit order. 1482 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1483 (void)Inserted; 1484 assert(Inserted && "Should only visit an unlooped block once!"); 1485 1486 // And recurse through to its predecessors. 1487 Worklist.push_back(PredBB); 1488 } 1489 } while (!Worklist.empty()); 1490 1491 // If blocks in this exit loop were directly part of the original loop (as 1492 // opposed to a child loop) update the map to point to this exit loop. This 1493 // just updates a map and so the fact that the order is unstable is fine. 1494 for (auto *BB : NewExitLoopBlocks) 1495 if (Loop *BBL = LI.getLoopFor(BB)) 1496 if (BBL == &L || !L.contains(BBL)) 1497 LI.changeLoopFor(BB, &ExitL); 1498 1499 // We will remove the remaining unlooped blocks from this loop in the next 1500 // iteration or below. 1501 NewExitLoopBlocks.clear(); 1502 } 1503 1504 // Any remaining unlooped blocks are no longer part of any loop unless they 1505 // are part of some child loop. 1506 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1507 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1508 for (auto *BB : UnloopedBlocks) 1509 if (Loop *BBL = LI.getLoopFor(BB)) 1510 if (BBL == &L || !L.contains(BBL)) 1511 LI.changeLoopFor(BB, nullptr); 1512 1513 // Sink all the child loops whose headers are no longer in the loop set to 1514 // the parent (or to be top level loops). We reach into the loop and directly 1515 // update its subloop vector to make this batch update efficient. 1516 auto &SubLoops = L.getSubLoopsVector(); 1517 auto SubLoopsSplitI = 1518 LoopBlockSet.empty() 1519 ? SubLoops.begin() 1520 : std::stable_partition( 1521 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1522 return LoopBlockSet.count(SubL->getHeader()); 1523 }); 1524 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1525 HoistedLoops.push_back(HoistedL); 1526 HoistedL->setParentLoop(nullptr); 1527 1528 // To compute the new parent of this hoisted loop we look at where we 1529 // placed the preheader above. We can't lookup the header itself because we 1530 // retained the mapping from the header to the hoisted loop. But the 1531 // preheader and header should have the exact same new parent computed 1532 // based on the set of exit blocks from the original loop as the preheader 1533 // is a predecessor of the header and so reached in the reverse walk. And 1534 // because the loops were all in simplified form the preheader of the 1535 // hoisted loop can't be part of some *other* loop. 1536 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1537 NewParentL->addChildLoop(HoistedL); 1538 else 1539 LI.addTopLevelLoop(HoistedL); 1540 } 1541 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1542 1543 // Actually delete the loop if nothing remained within it. 1544 if (Blocks.empty()) { 1545 assert(SubLoops.empty() && 1546 "Failed to remove all subloops from the original loop!"); 1547 if (Loop *ParentL = L.getParentLoop()) 1548 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1549 else 1550 LI.removeLoop(llvm::find(LI, &L)); 1551 LI.destroy(&L); 1552 return false; 1553 } 1554 1555 return true; 1556 } 1557 1558 /// Helper to visit a dominator subtree, invoking a callable on each node. 1559 /// 1560 /// Returning false at any point will stop walking past that node of the tree. 1561 template <typename CallableT> 1562 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1563 SmallVector<DomTreeNode *, 4> DomWorklist; 1564 DomWorklist.push_back(DT[BB]); 1565 #ifndef NDEBUG 1566 SmallPtrSet<DomTreeNode *, 4> Visited; 1567 Visited.insert(DT[BB]); 1568 #endif 1569 do { 1570 DomTreeNode *N = DomWorklist.pop_back_val(); 1571 1572 // Visit this node. 1573 if (!Callable(N->getBlock())) 1574 continue; 1575 1576 // Accumulate the child nodes. 1577 for (DomTreeNode *ChildN : *N) { 1578 assert(Visited.insert(ChildN).second && 1579 "Cannot visit a node twice when walking a tree!"); 1580 DomWorklist.push_back(ChildN); 1581 } 1582 } while (!DomWorklist.empty()); 1583 } 1584 1585 /// Take an invariant branch that has been determined to be safe and worthwhile 1586 /// to unswitch despite being non-trivial to do so and perform the unswitch. 1587 /// 1588 /// This directly updates the CFG to hoist the predicate out of the loop, and 1589 /// clone the necessary parts of the loop to maintain behavior. 1590 /// 1591 /// It also updates both dominator tree and loopinfo based on the unswitching. 1592 /// 1593 /// Once unswitching has been performed it runs the provided callback to report 1594 /// the new loops and no-longer valid loops to the caller. 1595 static bool unswitchInvariantBranch( 1596 Loop &L, BranchInst &BI, ArrayRef<Value *> Invariants, DominatorTree &DT, 1597 LoopInfo &LI, AssumptionCache &AC, 1598 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1599 auto *ParentBB = BI.getParent(); 1600 1601 // We can only unswitch conditional branches with an invariant condition or 1602 // combining invariant conditions with an instruction. 1603 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 1604 bool FullUnswitch = BI.getCondition() == Invariants[0]; 1605 if (FullUnswitch) 1606 assert(Invariants.size() == 1 && 1607 "Cannot have other invariants with full unswitching!"); 1608 else 1609 assert(isa<Instruction>(BI.getCondition()) && 1610 "Partial unswitching requires an instruction as the condition!"); 1611 1612 // Constant and BBs tracking the cloned and continuing successor. When we are 1613 // unswitching the entire condition, this can just be trivially chosen to 1614 // unswitch towards `true`. However, when we are unswitching a set of 1615 // invariants combined with `and` or `or`, the combining operation determines 1616 // the best direction to unswitch: we want to unswitch the direction that will 1617 // collapse the branch. 1618 bool Direction = true; 1619 int ClonedSucc = 0; 1620 if (!FullUnswitch) { 1621 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) { 1622 assert(cast<Instruction>(BI.getCondition())->getOpcode() == Instruction::And && 1623 "Only `or` and `and` instructions can combine invariants being unswitched."); 1624 Direction = false; 1625 ClonedSucc = 1; 1626 } 1627 } 1628 auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc); 1629 auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc); 1630 1631 assert(UnswitchedSuccBB != ContinueSuccBB && 1632 "Should not unswitch a branch that always goes to the same place!"); 1633 1634 // The branch should be in this exact loop. Any inner loop's invariant branch 1635 // should be handled by unswitching that inner loop. The caller of this 1636 // routine should filter out any candidates that remain (but were skipped for 1637 // whatever reason). 1638 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1639 1640 SmallVector<BasicBlock *, 4> ExitBlocks; 1641 L.getUniqueExitBlocks(ExitBlocks); 1642 1643 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 1644 // don't know how to split those exit blocks. 1645 // FIXME: We should teach SplitBlock to handle this and remove this 1646 // restriction. 1647 for (auto *ExitBB : ExitBlocks) 1648 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) 1649 return false; 1650 1651 SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(), 1652 ExitBlocks.end()); 1653 1654 // Compute the parent loop now before we start hacking on things. 1655 Loop *ParentL = L.getParentLoop(); 1656 1657 // Compute the outer-most loop containing one of our exit blocks. This is the 1658 // furthest up our loopnest which can be mutated, which we will use below to 1659 // update things. 1660 Loop *OuterExitL = &L; 1661 for (auto *ExitBB : ExitBlocks) { 1662 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1663 if (!NewOuterExitL) { 1664 // We exited the entire nest with this block, so we're done. 1665 OuterExitL = nullptr; 1666 break; 1667 } 1668 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1669 OuterExitL = NewOuterExitL; 1670 } 1671 1672 // If the edge we *aren't* cloning in the unswitch (the continuing edge) 1673 // dominates its target, we can skip cloning the dominated region of the loop 1674 // and its exits. We compute this as a set of nodes to be skipped. 1675 SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks; 1676 if (ContinueSuccBB->getUniquePredecessor() || 1677 llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) { 1678 return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB); 1679 })) { 1680 visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) { 1681 SkippedLoopAndExitBlocks.insert(BB); 1682 return true; 1683 }); 1684 } 1685 // If we are doing full unswitching, then similarly to the above, the edge we 1686 // *are* cloning in the unswitch (the unswitched edge) dominates its target, 1687 // we will end up with dead nodes in the original loop and its exits that will 1688 // need to be deleted. Here, we just retain that the property holds and will 1689 // compute the deleted set later. 1690 bool DeleteUnswitchedSucc = 1691 FullUnswitch && 1692 (UnswitchedSuccBB->getUniquePredecessor() || 1693 llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) { 1694 return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB); 1695 })); 1696 1697 // Split the preheader, so that we know that there is a safe place to insert 1698 // the conditional branch. We will change the preheader to have a conditional 1699 // branch on LoopCond. The original preheader will become the split point 1700 // between the unswitched versions, and we will have a new preheader for the 1701 // original loop. 1702 BasicBlock *SplitBB = L.getLoopPreheader(); 1703 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1704 1705 // Keep a mapping for the cloned values. 1706 ValueToValueMapTy VMap; 1707 1708 // Keep track of the dominator tree updates needed. 1709 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1710 1711 // Build the cloned blocks from the loop. 1712 auto *ClonedPH = buildClonedLoopBlocks( 1713 L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB, 1714 ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, DTUpdates, AC, DT, LI); 1715 1716 // The stitching of the branched code back together depends on whether we're 1717 // doing full unswitching or not with the exception that we always want to 1718 // nuke the initial terminator placed in the split block. 1719 SplitBB->getTerminator()->eraseFromParent(); 1720 if (FullUnswitch) { 1721 // Remove the parent as a predecessor of the 1722 // unswitched successor. 1723 UnswitchedSuccBB->removePredecessor(ParentBB, 1724 /*DontDeleteUselessPHIs*/ true); 1725 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 1726 1727 // Now splice the branch from the original loop and use it to select between 1728 // the two loops. 1729 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI); 1730 BI.setSuccessor(ClonedSucc, ClonedPH); 1731 BI.setSuccessor(1 - ClonedSucc, LoopPH); 1732 1733 // Create a new unconditional branch to the continuing block (as opposed to 1734 // the one cloned). 1735 BranchInst::Create(ContinueSuccBB, ParentBB); 1736 } else { 1737 // When doing a partial unswitch, we have to do a bit more work to build up 1738 // the branch in the split block. 1739 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 1740 *ClonedPH, *LoopPH); 1741 } 1742 1743 // Before we update the dominator tree, collect the dead blocks if we're going 1744 // to end up deleting the unswitched successor. 1745 SmallVector<BasicBlock *, 16> DeadBlocks; 1746 if (DeleteUnswitchedSucc) { 1747 DeadBlocks.push_back(UnswitchedSuccBB); 1748 for (int i = 0; i < (int)DeadBlocks.size(); ++i) { 1749 // If we reach an exit block, stop recursing as the unswitched loop will 1750 // end up reaching the merge block which we make the successor of the 1751 // exit. 1752 if (ExitBlockSet.count(DeadBlocks[i])) 1753 continue; 1754 1755 // Insert the children that are within the loop or exit block set. Other 1756 // children may reach out of the loop. While we don't expect these to be 1757 // dead (as the unswitched clone should reach them) we don't try to prove 1758 // that here. 1759 for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) 1760 if (L.contains(ChildN->getBlock()) || 1761 ExitBlockSet.count(ChildN->getBlock())) 1762 DeadBlocks.push_back(ChildN->getBlock()); 1763 } 1764 } 1765 1766 // Add the remaining edge to our updates and apply them to get an up-to-date 1767 // dominator tree. Note that this will cause the dead blocks above to be 1768 // unreachable and no longer in the dominator tree. 1769 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 1770 DT.applyUpdates(DTUpdates); 1771 1772 // Build the cloned loop structure itself. This may be substantially 1773 // different from the original structure due to the simplified CFG. This also 1774 // handles inserting all the cloned blocks into the correct loops. 1775 SmallVector<Loop *, 4> NonChildClonedLoops; 1776 buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops); 1777 1778 // Delete anything that was made dead in the original loop due to 1779 // unswitching. 1780 if (!DeadBlocks.empty()) 1781 deleteDeadBlocksFromLoop(L, DeadBlocks, ExitBlocks, DT, LI); 1782 1783 SmallVector<Loop *, 4> HoistedLoops; 1784 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 1785 1786 // This transformation has a high risk of corrupting the dominator tree, and 1787 // the below steps to rebuild loop structures will result in hard to debug 1788 // errors in that case so verify that the dominator tree is sane first. 1789 // FIXME: Remove this when the bugs stop showing up and rely on existing 1790 // verification steps. 1791 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1792 1793 // Now we want to replace all the uses of the invariants within both the 1794 // original and cloned blocks. We do this here so that we can use the now 1795 // updated dominator tree to identify which side the users are on. 1796 ConstantInt *UnswitchedReplacement = 1797 Direction ? ConstantInt::getTrue(BI.getContext()) 1798 : ConstantInt::getFalse(BI.getContext()); 1799 ConstantInt *ContinueReplacement = 1800 Direction ? ConstantInt::getFalse(BI.getContext()) 1801 : ConstantInt::getTrue(BI.getContext()); 1802 for (Value *Invariant : Invariants) 1803 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 1804 UI != UE;) { 1805 // Grab the use and walk past it so we can clobber it in the use list. 1806 Use *U = &*UI++; 1807 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1808 if (!UserI) 1809 continue; 1810 1811 // Replace it with the 'continue' side if in the main loop body, and the 1812 // unswitched if in the cloned blocks. 1813 if (DT.dominates(LoopPH, UserI->getParent())) 1814 U->set(ContinueReplacement); 1815 else if (DT.dominates(ClonedPH, UserI->getParent())) 1816 U->set(UnswitchedReplacement); 1817 } 1818 1819 // We can change which blocks are exit blocks of all the cloned sibling 1820 // loops, the current loop, and any parent loops which shared exit blocks 1821 // with the current loop. As a consequence, we need to re-form LCSSA for 1822 // them. But we shouldn't need to re-form LCSSA for any child loops. 1823 // FIXME: This could be made more efficient by tracking which exit blocks are 1824 // new, and focusing on them, but that isn't likely to be necessary. 1825 // 1826 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 1827 // loop nest and update every loop that could have had its exits changed. We 1828 // also need to cover any intervening loops. We add all of these loops to 1829 // a list and sort them by loop depth to achieve this without updating 1830 // unnecessary loops. 1831 auto UpdateLoop = [&](Loop &UpdateL) { 1832 #ifndef NDEBUG 1833 UpdateL.verifyLoop(); 1834 for (Loop *ChildL : UpdateL) { 1835 ChildL->verifyLoop(); 1836 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 1837 "Perturbed a child loop's LCSSA form!"); 1838 } 1839 #endif 1840 // First build LCSSA for this loop so that we can preserve it when 1841 // forming dedicated exits. We don't want to perturb some other loop's 1842 // LCSSA while doing that CFG edit. 1843 formLCSSA(UpdateL, DT, &LI, nullptr); 1844 1845 // For loops reached by this loop's original exit blocks we may 1846 // introduced new, non-dedicated exits. At least try to re-form dedicated 1847 // exits for these loops. This may fail if they couldn't have dedicated 1848 // exits to start with. 1849 formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 1850 }; 1851 1852 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 1853 // and we can do it in any order as they don't nest relative to each other. 1854 // 1855 // Also check if any of the loops we have updated have become top-level loops 1856 // as that will necessitate widening the outer loop scope. 1857 for (Loop *UpdatedL : 1858 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 1859 UpdateLoop(*UpdatedL); 1860 if (!UpdatedL->getParentLoop()) 1861 OuterExitL = nullptr; 1862 } 1863 if (IsStillLoop) { 1864 UpdateLoop(L); 1865 if (!L.getParentLoop()) 1866 OuterExitL = nullptr; 1867 } 1868 1869 // If the original loop had exit blocks, walk up through the outer most loop 1870 // of those exit blocks to update LCSSA and form updated dedicated exits. 1871 if (OuterExitL != &L) 1872 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 1873 OuterL = OuterL->getParentLoop()) 1874 UpdateLoop(*OuterL); 1875 1876 #ifndef NDEBUG 1877 // Verify the entire loop structure to catch any incorrect updates before we 1878 // progress in the pass pipeline. 1879 LI.verify(DT); 1880 #endif 1881 1882 // Now that we've unswitched something, make callbacks to report the changes. 1883 // For that we need to merge together the updated loops and the cloned loops 1884 // and check whether the original loop survived. 1885 SmallVector<Loop *, 4> SibLoops; 1886 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 1887 if (UpdatedL->getParentLoop() == ParentL) 1888 SibLoops.push_back(UpdatedL); 1889 UnswitchCB(IsStillLoop, SibLoops); 1890 1891 ++NumBranches; 1892 return true; 1893 } 1894 1895 /// Recursively compute the cost of a dominator subtree based on the per-block 1896 /// cost map provided. 1897 /// 1898 /// The recursive computation is memozied into the provided DT-indexed cost map 1899 /// to allow querying it for most nodes in the domtree without it becoming 1900 /// quadratic. 1901 static int 1902 computeDomSubtreeCost(DomTreeNode &N, 1903 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 1904 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 1905 // Don't accumulate cost (or recurse through) blocks not in our block cost 1906 // map and thus not part of the duplication cost being considered. 1907 auto BBCostIt = BBCostMap.find(N.getBlock()); 1908 if (BBCostIt == BBCostMap.end()) 1909 return 0; 1910 1911 // Lookup this node to see if we already computed its cost. 1912 auto DTCostIt = DTCostMap.find(&N); 1913 if (DTCostIt != DTCostMap.end()) 1914 return DTCostIt->second; 1915 1916 // If not, we have to compute it. We can't use insert above and update 1917 // because computing the cost may insert more things into the map. 1918 int Cost = std::accumulate( 1919 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 1920 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 1921 }); 1922 bool Inserted = DTCostMap.insert({&N, Cost}).second; 1923 (void)Inserted; 1924 assert(Inserted && "Should not insert a node while visiting children!"); 1925 return Cost; 1926 } 1927 1928 static bool unswitchBestCondition( 1929 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 1930 TargetTransformInfo &TTI, 1931 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 1932 // Collect all invariant conditions within this loop (as opposed to an inner 1933 // loop which would be handled when visiting that inner loop). 1934 SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4> 1935 UnswitchCandidates; 1936 for (auto *BB : L.blocks()) { 1937 if (LI.getLoopFor(BB) != &L) 1938 continue; 1939 1940 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1941 // FIXME: Handle switches here! 1942 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 1943 BI->getSuccessor(0) == BI->getSuccessor(1)) 1944 continue; 1945 1946 if (L.isLoopInvariant(BI->getCondition())) { 1947 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 1948 continue; 1949 } 1950 1951 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 1952 if (CondI.getOpcode() != Instruction::And && 1953 CondI.getOpcode() != Instruction::Or) 1954 continue; 1955 1956 TinyPtrVector<Value *> Invariants = 1957 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 1958 if (Invariants.empty()) 1959 continue; 1960 1961 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 1962 } 1963 1964 // If we didn't find any candidates, we're done. 1965 if (UnswitchCandidates.empty()) 1966 return false; 1967 1968 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 1969 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 1970 // irreducible control flow into reducible control flow and introduce new 1971 // loops "out of thin air". If we ever discover important use cases for doing 1972 // this, we can add support to loop unswitch, but it is a lot of complexity 1973 // for what seems little or no real world benefit. 1974 LoopBlocksRPO RPOT(&L); 1975 RPOT.perform(&LI); 1976 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 1977 return false; 1978 1979 LLVM_DEBUG( 1980 dbgs() << "Considering " << UnswitchCandidates.size() 1981 << " non-trivial loop invariant conditions for unswitching.\n"); 1982 1983 // Given that unswitching these terminators will require duplicating parts of 1984 // the loop, so we need to be able to model that cost. Compute the ephemeral 1985 // values and set up a data structure to hold per-BB costs. We cache each 1986 // block's cost so that we don't recompute this when considering different 1987 // subsets of the loop for duplication during unswitching. 1988 SmallPtrSet<const Value *, 4> EphValues; 1989 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 1990 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 1991 1992 // Compute the cost of each block, as well as the total loop cost. Also, bail 1993 // out if we see instructions which are incompatible with loop unswitching 1994 // (convergent, noduplicate, or cross-basic-block tokens). 1995 // FIXME: We might be able to safely handle some of these in non-duplicated 1996 // regions. 1997 int LoopCost = 0; 1998 for (auto *BB : L.blocks()) { 1999 int Cost = 0; 2000 for (auto &I : *BB) { 2001 if (EphValues.count(&I)) 2002 continue; 2003 2004 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2005 return false; 2006 if (auto CS = CallSite(&I)) 2007 if (CS.isConvergent() || CS.cannotDuplicate()) 2008 return false; 2009 2010 Cost += TTI.getUserCost(&I); 2011 } 2012 assert(Cost >= 0 && "Must not have negative costs!"); 2013 LoopCost += Cost; 2014 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2015 BBCostMap[BB] = Cost; 2016 } 2017 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2018 2019 // Now we find the best candidate by searching for the one with the following 2020 // properties in order: 2021 // 2022 // 1) An unswitching cost below the threshold 2023 // 2) The smallest number of duplicated unswitch candidates (to avoid 2024 // creating redundant subsequent unswitching) 2025 // 3) The smallest cost after unswitching. 2026 // 2027 // We prioritize reducing fanout of unswitch candidates provided the cost 2028 // remains below the threshold because this has a multiplicative effect. 2029 // 2030 // This requires memoizing each dominator subtree to avoid redundant work. 2031 // 2032 // FIXME: Need to actually do the number of candidates part above. 2033 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2034 // Given a terminator which might be unswitched, computes the non-duplicated 2035 // cost for that terminator. 2036 auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) { 2037 BasicBlock &BB = *TI.getParent(); 2038 SmallPtrSet<BasicBlock *, 4> Visited; 2039 2040 int Cost = LoopCost; 2041 for (BasicBlock *SuccBB : successors(&BB)) { 2042 // Don't count successors more than once. 2043 if (!Visited.insert(SuccBB).second) 2044 continue; 2045 2046 // If this is a partial unswitch candidate, then it must be a conditional 2047 // branch with a condition of either `or` or `and`. In that case, one of 2048 // the successors is necessarily duplicated, so don't even try to remove 2049 // its cost. 2050 if (!FullUnswitch) { 2051 auto &BI = cast<BranchInst>(TI); 2052 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2053 Instruction::And) { 2054 if (SuccBB == BI.getSuccessor(1)) 2055 continue; 2056 } else { 2057 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2058 Instruction::Or && 2059 "Only `and` and `or` conditions can result in a partial " 2060 "unswitch!"); 2061 if (SuccBB == BI.getSuccessor(0)) 2062 continue; 2063 } 2064 } 2065 2066 // This successor's domtree will not need to be duplicated after 2067 // unswitching if the edge to the successor dominates it (and thus the 2068 // entire tree). This essentially means there is no other path into this 2069 // subtree and so it will end up live in only one clone of the loop. 2070 if (SuccBB->getUniquePredecessor() || 2071 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2072 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2073 })) { 2074 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2075 assert(Cost >= 0 && 2076 "Non-duplicated cost should never exceed total loop cost!"); 2077 } 2078 } 2079 2080 // Now scale the cost by the number of unique successors minus one. We 2081 // subtract one because there is already at least one copy of the entire 2082 // loop. This is computing the new cost of unswitching a condition. 2083 assert(Visited.size() > 1 && 2084 "Cannot unswitch a condition without multiple distinct successors!"); 2085 return Cost * (Visited.size() - 1); 2086 }; 2087 TerminatorInst *BestUnswitchTI = nullptr; 2088 int BestUnswitchCost; 2089 ArrayRef<Value *> BestUnswitchInvariants; 2090 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2091 TerminatorInst &TI = *TerminatorAndInvariants.first; 2092 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2093 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2094 int CandidateCost = 2095 ComputeUnswitchedCost(TI, /*FullUnswitch*/ Invariants.size() == 1 && BI && 2096 Invariants[0] == BI->getCondition()); 2097 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2098 << " for unswitch candidate: " << TI << "\n"); 2099 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2100 BestUnswitchTI = &TI; 2101 BestUnswitchCost = CandidateCost; 2102 BestUnswitchInvariants = Invariants; 2103 } 2104 } 2105 2106 if (BestUnswitchCost >= UnswitchThreshold) { 2107 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2108 << BestUnswitchCost << "\n"); 2109 return false; 2110 } 2111 2112 auto *UnswitchBI = dyn_cast<BranchInst>(BestUnswitchTI); 2113 if (!UnswitchBI) { 2114 // FIXME: Add support for unswitching a switch here! 2115 LLVM_DEBUG(dbgs() << "Cannot unswitch anything but a branch!\n"); 2116 return false; 2117 } 2118 2119 LLVM_DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " 2120 << BestUnswitchCost << ") branch: " << *UnswitchBI << "\n"); 2121 return unswitchInvariantBranch(L, *UnswitchBI, BestUnswitchInvariants, DT, LI, 2122 AC, UnswitchCB); 2123 } 2124 2125 /// Unswitch control flow predicated on loop invariant conditions. 2126 /// 2127 /// This first hoists all branches or switches which are trivial (IE, do not 2128 /// require duplicating any part of the loop) out of the loop body. It then 2129 /// looks at other loop invariant control flows and tries to unswitch those as 2130 /// well by cloning the loop if the result is small enough. 2131 static bool 2132 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2133 TargetTransformInfo &TTI, bool NonTrivial, 2134 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB) { 2135 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2136 "Loops must be in LCSSA form before unswitching."); 2137 bool Changed = false; 2138 2139 // Must be in loop simplified form: we need a preheader and dedicated exits. 2140 if (!L.isLoopSimplifyForm()) 2141 return false; 2142 2143 // Try trivial unswitch first before loop over other basic blocks in the loop. 2144 if (unswitchAllTrivialConditions(L, DT, LI)) { 2145 // If we unswitched successfully we will want to clean up the loop before 2146 // processing it further so just mark it as unswitched and return. 2147 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2148 return true; 2149 } 2150 2151 // If we're not doing non-trivial unswitching, we're done. We both accept 2152 // a parameter but also check a local flag that can be used for testing 2153 // a debugging. 2154 if (!NonTrivial && !EnableNonTrivialUnswitch) 2155 return false; 2156 2157 // For non-trivial unswitching, because it often creates new loops, we rely on 2158 // the pass manager to iterate on the loops rather than trying to immediately 2159 // reach a fixed point. There is no substantial advantage to iterating 2160 // internally, and if any of the new loops are simplified enough to contain 2161 // trivial unswitching we want to prefer those. 2162 2163 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2164 // a partial unswitch when possible below the threshold. 2165 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB)) 2166 return true; 2167 2168 // No other opportunities to unswitch. 2169 return Changed; 2170 } 2171 2172 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2173 LoopStandardAnalysisResults &AR, 2174 LPMUpdater &U) { 2175 Function &F = *L.getHeader()->getParent(); 2176 (void)F; 2177 2178 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2179 << "\n"); 2180 2181 // Save the current loop name in a variable so that we can report it even 2182 // after it has been deleted. 2183 std::string LoopName = L.getName(); 2184 2185 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2186 ArrayRef<Loop *> NewLoops) { 2187 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2188 if (!NewLoops.empty()) 2189 U.addSiblingLoops(NewLoops); 2190 2191 // If the current loop remains valid, we should revisit it to catch any 2192 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2193 if (CurrentLoopValid) 2194 U.revisitCurrentLoop(); 2195 else 2196 U.markLoopAsDeleted(L, LoopName); 2197 }; 2198 2199 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, 2200 UnswitchCB)) 2201 return PreservedAnalyses::all(); 2202 2203 // Historically this pass has had issues with the dominator tree so verify it 2204 // in asserts builds. 2205 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2206 return getLoopPassPreservedAnalyses(); 2207 } 2208 2209 namespace { 2210 2211 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2212 bool NonTrivial; 2213 2214 public: 2215 static char ID; // Pass ID, replacement for typeid 2216 2217 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2218 : LoopPass(ID), NonTrivial(NonTrivial) { 2219 initializeSimpleLoopUnswitchLegacyPassPass( 2220 *PassRegistry::getPassRegistry()); 2221 } 2222 2223 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2224 2225 void getAnalysisUsage(AnalysisUsage &AU) const override { 2226 AU.addRequired<AssumptionCacheTracker>(); 2227 AU.addRequired<TargetTransformInfoWrapperPass>(); 2228 getLoopAnalysisUsage(AU); 2229 } 2230 }; 2231 2232 } // end anonymous namespace 2233 2234 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2235 if (skipLoop(L)) 2236 return false; 2237 2238 Function &F = *L->getHeader()->getParent(); 2239 2240 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2241 << "\n"); 2242 2243 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2244 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2245 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2246 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2247 2248 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2249 ArrayRef<Loop *> NewLoops) { 2250 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2251 for (auto *NewL : NewLoops) 2252 LPM.addLoop(*NewL); 2253 2254 // If the current loop remains valid, re-add it to the queue. This is 2255 // a little wasteful as we'll finish processing the current loop as well, 2256 // but it is the best we can do in the old PM. 2257 if (CurrentLoopValid) 2258 LPM.addLoop(*L); 2259 else 2260 LPM.markLoopAsDeleted(*L); 2261 }; 2262 2263 bool Changed = 2264 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB); 2265 2266 // If anything was unswitched, also clear any cached information about this 2267 // loop. 2268 LPM.deleteSimpleAnalysisLoop(L); 2269 2270 // Historically this pass has had issues with the dominator tree so verify it 2271 // in asserts builds. 2272 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2273 2274 return Changed; 2275 } 2276 2277 char SimpleLoopUnswitchLegacyPass::ID = 0; 2278 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2279 "Simple unswitch loops", false, false) 2280 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2281 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2283 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2284 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2285 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2286 "Simple unswitch loops", false, false) 2287 2288 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2289 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 2290 } 2291