1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/GuardUtils.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ProfDataUtils.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/GenericDomTree.h" 55 #include "llvm/Support/InstructionCost.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar/LoopPassManager.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include "llvm/Transforms/Utils/Cloning.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include "llvm/Transforms/Utils/LoopUtils.h" 62 #include "llvm/Transforms/Utils/ValueMapper.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <iterator> 66 #include <numeric> 67 #include <optional> 68 #include <utility> 69 70 #define DEBUG_TYPE "simple-loop-unswitch" 71 72 using namespace llvm; 73 using namespace llvm::PatternMatch; 74 75 STATISTIC(NumBranches, "Number of branches unswitched"); 76 STATISTIC(NumSwitches, "Number of switches unswitched"); 77 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 78 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 79 STATISTIC( 80 NumCostMultiplierSkipped, 81 "Number of unswitch candidates that had their cost multiplier skipped"); 82 STATISTIC(NumInvariantConditionsInjected, 83 "Number of invariant conditions injected and unswitched"); 84 85 static cl::opt<bool> EnableNonTrivialUnswitch( 86 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 87 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 88 "following the configuration passed into the pass.")); 89 90 static cl::opt<int> 91 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 92 cl::desc("The cost threshold for unswitching a loop.")); 93 94 static cl::opt<bool> EnableUnswitchCostMultiplier( 95 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 96 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 97 "explosion in nontrivial unswitch.")); 98 static cl::opt<int> UnswitchSiblingsToplevelDiv( 99 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 100 cl::desc("Toplevel siblings divisor for cost multiplier.")); 101 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 102 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 103 cl::desc("Number of unswitch candidates that are ignored when calculating " 104 "cost multiplier.")); 105 static cl::opt<bool> UnswitchGuards( 106 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 107 cl::desc("If enabled, simple loop unswitching will also consider " 108 "llvm.experimental.guard intrinsics as unswitch candidates.")); 109 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 110 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 111 cl::init(false), cl::Hidden, 112 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 113 "null checks to save time analyzing if we can keep it.")); 114 static cl::opt<unsigned> 115 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 116 cl::desc("Max number of memory uses to explore during " 117 "partial unswitching analysis"), 118 cl::init(100), cl::Hidden); 119 static cl::opt<bool> FreezeLoopUnswitchCond( 120 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, 121 cl::desc("If enabled, the freeze instruction will be added to condition " 122 "of loop unswitch to prevent miscompilation.")); 123 124 static cl::opt<bool> InjectInvariantConditions( 125 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden, 126 cl::desc("Whether we should inject new invariants and unswitch them to " 127 "eliminate some existing (non-invariant) conditions."), 128 cl::init(true)); 129 130 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold( 131 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold", 132 cl::Hidden, cl::desc("Only try to inject loop invariant conditions and " 133 "unswitch on them to eliminate branches that are " 134 "not-taken 1/<this option> times or less."), 135 cl::init(16)); 136 137 namespace { 138 struct CompareDesc { 139 BranchInst *Term; 140 Value *Invariant; 141 BasicBlock *InLoopSucc; 142 143 CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc) 144 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {} 145 }; 146 147 struct InjectedInvariant { 148 ICmpInst::Predicate Pred; 149 Value *LHS; 150 Value *RHS; 151 BasicBlock *InLoopSucc; 152 153 InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 154 BasicBlock *InLoopSucc) 155 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {} 156 }; 157 158 struct NonTrivialUnswitchCandidate { 159 Instruction *TI = nullptr; 160 TinyPtrVector<Value *> Invariants; 161 std::optional<InstructionCost> Cost; 162 std::optional<InjectedInvariant> PendingInjection; 163 NonTrivialUnswitchCandidate( 164 Instruction *TI, ArrayRef<Value *> Invariants, 165 std::optional<InstructionCost> Cost = std::nullopt, 166 std::optional<InjectedInvariant> PendingInjection = std::nullopt) 167 : TI(TI), Invariants(Invariants), Cost(Cost), 168 PendingInjection(PendingInjection) {}; 169 170 bool hasPendingInjection() const { return PendingInjection.has_value(); } 171 }; 172 } // end anonymous namespace. 173 174 // Helper to skip (select x, true, false), which matches both a logical AND and 175 // OR and can confuse code that tries to determine if \p Cond is either a 176 // logical AND or OR but not both. 177 static Value *skipTrivialSelect(Value *Cond) { 178 Value *CondNext; 179 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 180 Cond = CondNext; 181 return Cond; 182 } 183 184 /// Collect all of the loop invariant input values transitively used by the 185 /// homogeneous instruction graph from a given root. 186 /// 187 /// This essentially walks from a root recursively through loop variant operands 188 /// which have perform the same logical operation (AND or OR) and finds all 189 /// inputs which are loop invariant. For some operations these can be 190 /// re-associated and unswitched out of the loop entirely. 191 static TinyPtrVector<Value *> 192 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, 193 const LoopInfo &LI) { 194 assert(!L.isLoopInvariant(&Root) && 195 "Only need to walk the graph if root itself is not invariant."); 196 TinyPtrVector<Value *> Invariants; 197 198 bool IsRootAnd = match(&Root, m_LogicalAnd()); 199 bool IsRootOr = match(&Root, m_LogicalOr()); 200 201 // Build a worklist and recurse through operators collecting invariants. 202 SmallVector<Instruction *, 4> Worklist; 203 SmallPtrSet<Instruction *, 8> Visited; 204 Worklist.push_back(&Root); 205 Visited.insert(&Root); 206 do { 207 Instruction &I = *Worklist.pop_back_val(); 208 for (Value *OpV : I.operand_values()) { 209 // Skip constants as unswitching isn't interesting for them. 210 if (isa<Constant>(OpV)) 211 continue; 212 213 // Add it to our result if loop invariant. 214 if (L.isLoopInvariant(OpV)) { 215 Invariants.push_back(OpV); 216 continue; 217 } 218 219 // If not an instruction with the same opcode, nothing we can do. 220 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); 221 222 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 223 (IsRootOr && match(OpI, m_LogicalOr())))) { 224 // Visit this operand. 225 if (Visited.insert(OpI).second) 226 Worklist.push_back(OpI); 227 } 228 } 229 } while (!Worklist.empty()); 230 231 return Invariants; 232 } 233 234 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, 235 Constant &Replacement) { 236 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 237 238 // Replace uses of LIC in the loop with the given constant. 239 // We use make_early_inc_range as set invalidates the iterator. 240 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 241 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 242 243 // Replace this use within the loop body. 244 if (UserI && L.contains(UserI)) 245 U.set(&Replacement); 246 } 247 } 248 249 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 250 /// incoming values along this edge. 251 static bool areLoopExitPHIsLoopInvariant(const Loop &L, 252 const BasicBlock &ExitingBB, 253 const BasicBlock &ExitBB) { 254 for (const Instruction &I : ExitBB) { 255 auto *PN = dyn_cast<PHINode>(&I); 256 if (!PN) 257 // No more PHIs to check. 258 return true; 259 260 // If the incoming value for this edge isn't loop invariant the unswitch 261 // won't be trivial. 262 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 263 return false; 264 } 265 llvm_unreachable("Basic blocks should never be empty!"); 266 } 267 268 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 269 /// end of \p BB and conditionally branch on the copied condition. We only 270 /// branch on a single value. 271 static void buildPartialUnswitchConditionalBranch( 272 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 273 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, 274 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) { 275 IRBuilder<> IRB(&BB); 276 277 SmallVector<Value *> FrozenInvariants; 278 for (Value *Inv : Invariants) { 279 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) 280 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); 281 FrozenInvariants.push_back(Inv); 282 } 283 284 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) 285 : IRB.CreateAnd(FrozenInvariants); 286 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 287 Direction ? &NormalSucc : &UnswitchedSucc); 288 } 289 290 /// Copy a set of loop invariant values, and conditionally branch on them. 291 static void buildPartialInvariantUnswitchConditionalBranch( 292 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 293 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 294 MemorySSAUpdater *MSSAU) { 295 ValueToValueMapTy VMap; 296 for (auto *Val : reverse(ToDuplicate)) { 297 Instruction *Inst = cast<Instruction>(Val); 298 Instruction *NewInst = Inst->clone(); 299 NewInst->insertInto(&BB, BB.end()); 300 RemapInstruction(NewInst, VMap, 301 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 302 VMap[Val] = NewInst; 303 304 if (!MSSAU) 305 continue; 306 307 MemorySSA *MSSA = MSSAU->getMemorySSA(); 308 if (auto *MemUse = 309 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 310 auto *DefiningAccess = MemUse->getDefiningAccess(); 311 // Get the first defining access before the loop. 312 while (L.contains(DefiningAccess->getBlock())) { 313 // If the defining access is a MemoryPhi, get the incoming 314 // value for the pre-header as defining access. 315 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 316 DefiningAccess = 317 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 318 else 319 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 320 } 321 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 322 NewInst->getParent(), 323 MemorySSA::BeforeTerminator); 324 } 325 } 326 327 IRBuilder<> IRB(&BB); 328 Value *Cond = VMap[ToDuplicate[0]]; 329 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 330 Direction ? &NormalSucc : &UnswitchedSucc); 331 } 332 333 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 334 /// 335 /// Requires that the loop exit and unswitched basic block are the same, and 336 /// that the exiting block was a unique predecessor of that block. Rewrites the 337 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 338 /// PHI nodes from the old preheader that now contains the unswitched 339 /// terminator. 340 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 341 BasicBlock &OldExitingBB, 342 BasicBlock &OldPH) { 343 for (PHINode &PN : UnswitchedBB.phis()) { 344 // When the loop exit is directly unswitched we just need to update the 345 // incoming basic block. We loop to handle weird cases with repeated 346 // incoming blocks, but expect to typically only have one operand here. 347 for (auto i : seq<int>(0, PN.getNumOperands())) { 348 assert(PN.getIncomingBlock(i) == &OldExitingBB && 349 "Found incoming block different from unique predecessor!"); 350 PN.setIncomingBlock(i, &OldPH); 351 } 352 } 353 } 354 355 /// Rewrite the PHI nodes in the loop exit basic block and the split off 356 /// unswitched block. 357 /// 358 /// Because the exit block remains an exit from the loop, this rewrites the 359 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 360 /// nodes into the unswitched basic block to select between the value in the 361 /// old preheader and the loop exit. 362 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 363 BasicBlock &UnswitchedBB, 364 BasicBlock &OldExitingBB, 365 BasicBlock &OldPH, 366 bool FullUnswitch) { 367 assert(&ExitBB != &UnswitchedBB && 368 "Must have different loop exit and unswitched blocks!"); 369 Instruction *InsertPt = &*UnswitchedBB.begin(); 370 for (PHINode &PN : ExitBB.phis()) { 371 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 372 PN.getName() + ".split", InsertPt); 373 374 // Walk backwards over the old PHI node's inputs to minimize the cost of 375 // removing each one. We have to do this weird loop manually so that we 376 // create the same number of new incoming edges in the new PHI as we expect 377 // each case-based edge to be included in the unswitched switch in some 378 // cases. 379 // FIXME: This is really, really gross. It would be much cleaner if LLVM 380 // allowed us to create a single entry for a predecessor block without 381 // having separate entries for each "edge" even though these edges are 382 // required to produce identical results. 383 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 384 if (PN.getIncomingBlock(i) != &OldExitingBB) 385 continue; 386 387 Value *Incoming = PN.getIncomingValue(i); 388 if (FullUnswitch) 389 // No more edge from the old exiting block to the exit block. 390 PN.removeIncomingValue(i); 391 392 NewPN->addIncoming(Incoming, &OldPH); 393 } 394 395 // Now replace the old PHI with the new one and wire the old one in as an 396 // input to the new one. 397 PN.replaceAllUsesWith(NewPN); 398 NewPN->addIncoming(&PN, &ExitBB); 399 } 400 } 401 402 /// Hoist the current loop up to the innermost loop containing a remaining exit. 403 /// 404 /// Because we've removed an exit from the loop, we may have changed the set of 405 /// loops reachable and need to move the current loop up the loop nest or even 406 /// to an entirely separate nest. 407 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 408 DominatorTree &DT, LoopInfo &LI, 409 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 410 // If the loop is already at the top level, we can't hoist it anywhere. 411 Loop *OldParentL = L.getParentLoop(); 412 if (!OldParentL) 413 return; 414 415 SmallVector<BasicBlock *, 4> Exits; 416 L.getExitBlocks(Exits); 417 Loop *NewParentL = nullptr; 418 for (auto *ExitBB : Exits) 419 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 420 if (!NewParentL || NewParentL->contains(ExitL)) 421 NewParentL = ExitL; 422 423 if (NewParentL == OldParentL) 424 return; 425 426 // The new parent loop (if different) should always contain the old one. 427 if (NewParentL) 428 assert(NewParentL->contains(OldParentL) && 429 "Can only hoist this loop up the nest!"); 430 431 // The preheader will need to move with the body of this loop. However, 432 // because it isn't in this loop we also need to update the primary loop map. 433 assert(OldParentL == LI.getLoopFor(&Preheader) && 434 "Parent loop of this loop should contain this loop's preheader!"); 435 LI.changeLoopFor(&Preheader, NewParentL); 436 437 // Remove this loop from its old parent. 438 OldParentL->removeChildLoop(&L); 439 440 // Add the loop either to the new parent or as a top-level loop. 441 if (NewParentL) 442 NewParentL->addChildLoop(&L); 443 else 444 LI.addTopLevelLoop(&L); 445 446 // Remove this loops blocks from the old parent and every other loop up the 447 // nest until reaching the new parent. Also update all of these 448 // no-longer-containing loops to reflect the nesting change. 449 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 450 OldContainingL = OldContainingL->getParentLoop()) { 451 llvm::erase_if(OldContainingL->getBlocksVector(), 452 [&](const BasicBlock *BB) { 453 return BB == &Preheader || L.contains(BB); 454 }); 455 456 OldContainingL->getBlocksSet().erase(&Preheader); 457 for (BasicBlock *BB : L.blocks()) 458 OldContainingL->getBlocksSet().erase(BB); 459 460 // Because we just hoisted a loop out of this one, we have essentially 461 // created new exit paths from it. That means we need to form LCSSA PHI 462 // nodes for values used in the no-longer-nested loop. 463 formLCSSA(*OldContainingL, DT, &LI, SE); 464 465 // We shouldn't need to form dedicated exits because the exit introduced 466 // here is the (just split by unswitching) preheader. However, after trivial 467 // unswitching it is possible to get new non-dedicated exits out of parent 468 // loop so let's conservatively form dedicated exit blocks and figure out 469 // if we can optimize later. 470 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 471 /*PreserveLCSSA*/ true); 472 } 473 } 474 475 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 476 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 477 // as exiting block. 478 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB, 479 const LoopInfo &LI) { 480 const Loop *TopMost = LI.getLoopFor(ExitBB); 481 const Loop *Current = TopMost; 482 while (Current) { 483 if (Current->isLoopExiting(ExitBB)) 484 TopMost = Current; 485 Current = Current->getParentLoop(); 486 } 487 return TopMost; 488 } 489 490 /// Unswitch a trivial branch if the condition is loop invariant. 491 /// 492 /// This routine should only be called when loop code leading to the branch has 493 /// been validated as trivial (no side effects). This routine checks if the 494 /// condition is invariant and one of the successors is a loop exit. This 495 /// allows us to unswitch without duplicating the loop, making it trivial. 496 /// 497 /// If this routine fails to unswitch the branch it returns false. 498 /// 499 /// If the branch can be unswitched, this routine splits the preheader and 500 /// hoists the branch above that split. Preserves loop simplified form 501 /// (splitting the exit block as necessary). It simplifies the branch within 502 /// the loop to an unconditional branch but doesn't remove it entirely. Further 503 /// cleanup can be done with some simplifycfg like pass. 504 /// 505 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 506 /// invalidated by this. 507 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 508 LoopInfo &LI, ScalarEvolution *SE, 509 MemorySSAUpdater *MSSAU) { 510 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 511 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 512 513 // The loop invariant values that we want to unswitch. 514 TinyPtrVector<Value *> Invariants; 515 516 // When true, we're fully unswitching the branch rather than just unswitching 517 // some input conditions to the branch. 518 bool FullUnswitch = false; 519 520 Value *Cond = skipTrivialSelect(BI.getCondition()); 521 if (L.isLoopInvariant(Cond)) { 522 Invariants.push_back(Cond); 523 FullUnswitch = true; 524 } else { 525 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 526 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 527 if (Invariants.empty()) { 528 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 529 return false; 530 } 531 } 532 533 // Check that one of the branch's successors exits, and which one. 534 bool ExitDirection = true; 535 int LoopExitSuccIdx = 0; 536 auto *LoopExitBB = BI.getSuccessor(0); 537 if (L.contains(LoopExitBB)) { 538 ExitDirection = false; 539 LoopExitSuccIdx = 1; 540 LoopExitBB = BI.getSuccessor(1); 541 if (L.contains(LoopExitBB)) { 542 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 543 return false; 544 } 545 } 546 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 547 auto *ParentBB = BI.getParent(); 548 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 549 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 550 return false; 551 } 552 553 // When unswitching only part of the branch's condition, we need the exit 554 // block to be reached directly from the partially unswitched input. This can 555 // be done when the exit block is along the true edge and the branch condition 556 // is a graph of `or` operations, or the exit block is along the false edge 557 // and the condition is a graph of `and` operations. 558 if (!FullUnswitch) { 559 if (ExitDirection ? !match(Cond, m_LogicalOr()) 560 : !match(Cond, m_LogicalAnd())) { 561 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 562 "non-full unswitch!\n"); 563 return false; 564 } 565 } 566 567 LLVM_DEBUG({ 568 dbgs() << " unswitching trivial invariant conditions for: " << BI 569 << "\n"; 570 for (Value *Invariant : Invariants) { 571 dbgs() << " " << *Invariant << " == true"; 572 if (Invariant != Invariants.back()) 573 dbgs() << " ||"; 574 dbgs() << "\n"; 575 } 576 }); 577 578 // If we have scalar evolutions, we need to invalidate them including this 579 // loop, the loop containing the exit block and the topmost parent loop 580 // exiting via LoopExitBB. 581 if (SE) { 582 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 583 SE->forgetLoop(ExitL); 584 else 585 // Forget the entire nest as this exits the entire nest. 586 SE->forgetTopmostLoop(&L); 587 SE->forgetBlockAndLoopDispositions(); 588 } 589 590 if (MSSAU && VerifyMemorySSA) 591 MSSAU->getMemorySSA()->verifyMemorySSA(); 592 593 // Split the preheader, so that we know that there is a safe place to insert 594 // the conditional branch. We will change the preheader to have a conditional 595 // branch on LoopCond. 596 BasicBlock *OldPH = L.getLoopPreheader(); 597 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 598 599 // Now that we have a place to insert the conditional branch, create a place 600 // to branch to: this is the exit block out of the loop that we are 601 // unswitching. We need to split this if there are other loop predecessors. 602 // Because the loop is in simplified form, *any* other predecessor is enough. 603 BasicBlock *UnswitchedBB; 604 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 605 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 606 "A branch's parent isn't a predecessor!"); 607 UnswitchedBB = LoopExitBB; 608 } else { 609 UnswitchedBB = 610 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 611 } 612 613 if (MSSAU && VerifyMemorySSA) 614 MSSAU->getMemorySSA()->verifyMemorySSA(); 615 616 // Actually move the invariant uses into the unswitched position. If possible, 617 // we do this by moving the instructions, but when doing partial unswitching 618 // we do it by building a new merge of the values in the unswitched position. 619 OldPH->getTerminator()->eraseFromParent(); 620 if (FullUnswitch) { 621 // If fully unswitching, we can use the existing branch instruction. 622 // Splice it into the old PH to gate reaching the new preheader and re-point 623 // its successors. 624 OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator()); 625 BI.setCondition(Cond); 626 if (MSSAU) { 627 // Temporarily clone the terminator, to make MSSA update cheaper by 628 // separating "insert edge" updates from "remove edge" ones. 629 BI.clone()->insertInto(ParentBB, ParentBB->end()); 630 } else { 631 // Create a new unconditional branch that will continue the loop as a new 632 // terminator. 633 BranchInst::Create(ContinueBB, ParentBB); 634 } 635 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 636 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 637 } else { 638 // Only unswitching a subset of inputs to the condition, so we will need to 639 // build a new branch that merges the invariant inputs. 640 if (ExitDirection) 641 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && 642 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 643 "condition!"); 644 else 645 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && 646 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 647 " condition!"); 648 buildPartialUnswitchConditionalBranch( 649 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, 650 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); 651 } 652 653 // Update the dominator tree with the added edge. 654 DT.insertEdge(OldPH, UnswitchedBB); 655 656 // After the dominator tree was updated with the added edge, update MemorySSA 657 // if available. 658 if (MSSAU) { 659 SmallVector<CFGUpdate, 1> Updates; 660 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 661 MSSAU->applyInsertUpdates(Updates, DT); 662 } 663 664 // Finish updating dominator tree and memory ssa for full unswitch. 665 if (FullUnswitch) { 666 if (MSSAU) { 667 // Remove the cloned branch instruction. 668 ParentBB->getTerminator()->eraseFromParent(); 669 // Create unconditional branch now. 670 BranchInst::Create(ContinueBB, ParentBB); 671 MSSAU->removeEdge(ParentBB, LoopExitBB); 672 } 673 DT.deleteEdge(ParentBB, LoopExitBB); 674 } 675 676 if (MSSAU && VerifyMemorySSA) 677 MSSAU->getMemorySSA()->verifyMemorySSA(); 678 679 // Rewrite the relevant PHI nodes. 680 if (UnswitchedBB == LoopExitBB) 681 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 682 else 683 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 684 *ParentBB, *OldPH, FullUnswitch); 685 686 // The constant we can replace all of our invariants with inside the loop 687 // body. If any of the invariants have a value other than this the loop won't 688 // be entered. 689 ConstantInt *Replacement = ExitDirection 690 ? ConstantInt::getFalse(BI.getContext()) 691 : ConstantInt::getTrue(BI.getContext()); 692 693 // Since this is an i1 condition we can also trivially replace uses of it 694 // within the loop with a constant. 695 for (Value *Invariant : Invariants) 696 replaceLoopInvariantUses(L, Invariant, *Replacement); 697 698 // If this was full unswitching, we may have changed the nesting relationship 699 // for this loop so hoist it to its correct parent if needed. 700 if (FullUnswitch) 701 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 702 703 if (MSSAU && VerifyMemorySSA) 704 MSSAU->getMemorySSA()->verifyMemorySSA(); 705 706 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 707 ++NumTrivial; 708 ++NumBranches; 709 return true; 710 } 711 712 /// Unswitch a trivial switch if the condition is loop invariant. 713 /// 714 /// This routine should only be called when loop code leading to the switch has 715 /// been validated as trivial (no side effects). This routine checks if the 716 /// condition is invariant and that at least one of the successors is a loop 717 /// exit. This allows us to unswitch without duplicating the loop, making it 718 /// trivial. 719 /// 720 /// If this routine fails to unswitch the switch it returns false. 721 /// 722 /// If the switch can be unswitched, this routine splits the preheader and 723 /// copies the switch above that split. If the default case is one of the 724 /// exiting cases, it copies the non-exiting cases and points them at the new 725 /// preheader. If the default case is not exiting, it copies the exiting cases 726 /// and points the default at the preheader. It preserves loop simplified form 727 /// (splitting the exit blocks as necessary). It simplifies the switch within 728 /// the loop by removing now-dead cases. If the default case is one of those 729 /// unswitched, it replaces its destination with a new basic block containing 730 /// only unreachable. Such basic blocks, while technically loop exits, are not 731 /// considered for unswitching so this is a stable transform and the same 732 /// switch will not be revisited. If after unswitching there is only a single 733 /// in-loop successor, the switch is further simplified to an unconditional 734 /// branch. Still more cleanup can be done with some simplifycfg like pass. 735 /// 736 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 737 /// invalidated by this. 738 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 739 LoopInfo &LI, ScalarEvolution *SE, 740 MemorySSAUpdater *MSSAU) { 741 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 742 Value *LoopCond = SI.getCondition(); 743 744 // If this isn't switching on an invariant condition, we can't unswitch it. 745 if (!L.isLoopInvariant(LoopCond)) 746 return false; 747 748 auto *ParentBB = SI.getParent(); 749 750 // The same check must be used both for the default and the exit cases. We 751 // should never leave edges from the switch instruction to a basic block that 752 // we are unswitching, hence the condition used to determine the default case 753 // needs to also be used to populate ExitCaseIndices, which is then used to 754 // remove cases from the switch. 755 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 756 // BBToCheck is not an exit block if it is inside loop L. 757 if (L.contains(&BBToCheck)) 758 return false; 759 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 760 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 761 return false; 762 // We do not unswitch a block that only has an unreachable statement, as 763 // it's possible this is a previously unswitched block. Only unswitch if 764 // either the terminator is not unreachable, or, if it is, it's not the only 765 // instruction in the block. 766 auto *TI = BBToCheck.getTerminator(); 767 bool isUnreachable = isa<UnreachableInst>(TI); 768 return !isUnreachable || 769 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 770 }; 771 772 SmallVector<int, 4> ExitCaseIndices; 773 for (auto Case : SI.cases()) 774 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 775 ExitCaseIndices.push_back(Case.getCaseIndex()); 776 BasicBlock *DefaultExitBB = nullptr; 777 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 778 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 779 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 780 DefaultExitBB = SI.getDefaultDest(); 781 } else if (ExitCaseIndices.empty()) 782 return false; 783 784 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 785 786 if (MSSAU && VerifyMemorySSA) 787 MSSAU->getMemorySSA()->verifyMemorySSA(); 788 789 // We may need to invalidate SCEVs for the outermost loop reached by any of 790 // the exits. 791 Loop *OuterL = &L; 792 793 if (DefaultExitBB) { 794 // Check the loop containing this exit. 795 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 796 if (!ExitL || ExitL->contains(OuterL)) 797 OuterL = ExitL; 798 } 799 for (unsigned Index : ExitCaseIndices) { 800 auto CaseI = SI.case_begin() + Index; 801 // Compute the outer loop from this exit. 802 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 803 if (!ExitL || ExitL->contains(OuterL)) 804 OuterL = ExitL; 805 } 806 807 if (SE) { 808 if (OuterL) 809 SE->forgetLoop(OuterL); 810 else 811 SE->forgetTopmostLoop(&L); 812 } 813 814 if (DefaultExitBB) { 815 // Clear out the default destination temporarily to allow accurate 816 // predecessor lists to be examined below. 817 SI.setDefaultDest(nullptr); 818 } 819 820 // Store the exit cases into a separate data structure and remove them from 821 // the switch. 822 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 823 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 824 4> ExitCases; 825 ExitCases.reserve(ExitCaseIndices.size()); 826 SwitchInstProfUpdateWrapper SIW(SI); 827 // We walk the case indices backwards so that we remove the last case first 828 // and don't disrupt the earlier indices. 829 for (unsigned Index : reverse(ExitCaseIndices)) { 830 auto CaseI = SI.case_begin() + Index; 831 // Save the value of this case. 832 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 833 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 834 // Delete the unswitched cases. 835 SIW.removeCase(CaseI); 836 } 837 838 // Check if after this all of the remaining cases point at the same 839 // successor. 840 BasicBlock *CommonSuccBB = nullptr; 841 if (SI.getNumCases() > 0 && 842 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 843 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 844 })) 845 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 846 if (!DefaultExitBB) { 847 // If we're not unswitching the default, we need it to match any cases to 848 // have a common successor or if we have no cases it is the common 849 // successor. 850 if (SI.getNumCases() == 0) 851 CommonSuccBB = SI.getDefaultDest(); 852 else if (SI.getDefaultDest() != CommonSuccBB) 853 CommonSuccBB = nullptr; 854 } 855 856 // Split the preheader, so that we know that there is a safe place to insert 857 // the switch. 858 BasicBlock *OldPH = L.getLoopPreheader(); 859 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 860 OldPH->getTerminator()->eraseFromParent(); 861 862 // Now add the unswitched switch. 863 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 864 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 865 866 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 867 // First, we split any exit blocks with remaining in-loop predecessors. Then 868 // we update the PHIs in one of two ways depending on if there was a split. 869 // We walk in reverse so that we split in the same order as the cases 870 // appeared. This is purely for convenience of reading the resulting IR, but 871 // it doesn't cost anything really. 872 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 873 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 874 // Handle the default exit if necessary. 875 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 876 // ranges aren't quite powerful enough yet. 877 if (DefaultExitBB) { 878 if (pred_empty(DefaultExitBB)) { 879 UnswitchedExitBBs.insert(DefaultExitBB); 880 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 881 } else { 882 auto *SplitBB = 883 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 884 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 885 *ParentBB, *OldPH, 886 /*FullUnswitch*/ true); 887 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 888 } 889 } 890 // Note that we must use a reference in the for loop so that we update the 891 // container. 892 for (auto &ExitCase : reverse(ExitCases)) { 893 // Grab a reference to the exit block in the pair so that we can update it. 894 BasicBlock *ExitBB = std::get<1>(ExitCase); 895 896 // If this case is the last edge into the exit block, we can simply reuse it 897 // as it will no longer be a loop exit. No mapping necessary. 898 if (pred_empty(ExitBB)) { 899 // Only rewrite once. 900 if (UnswitchedExitBBs.insert(ExitBB).second) 901 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 902 continue; 903 } 904 905 // Otherwise we need to split the exit block so that we retain an exit 906 // block from the loop and a target for the unswitched condition. 907 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 908 if (!SplitExitBB) { 909 // If this is the first time we see this, do the split and remember it. 910 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 911 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 912 *ParentBB, *OldPH, 913 /*FullUnswitch*/ true); 914 } 915 // Update the case pair to point to the split block. 916 std::get<1>(ExitCase) = SplitExitBB; 917 } 918 919 // Now add the unswitched cases. We do this in reverse order as we built them 920 // in reverse order. 921 for (auto &ExitCase : reverse(ExitCases)) { 922 ConstantInt *CaseVal = std::get<0>(ExitCase); 923 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 924 925 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 926 } 927 928 // If the default was unswitched, re-point it and add explicit cases for 929 // entering the loop. 930 if (DefaultExitBB) { 931 NewSIW->setDefaultDest(DefaultExitBB); 932 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 933 934 // We removed all the exit cases, so we just copy the cases to the 935 // unswitched switch. 936 for (const auto &Case : SI.cases()) 937 NewSIW.addCase(Case.getCaseValue(), NewPH, 938 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 939 } else if (DefaultCaseWeight) { 940 // We have to set branch weight of the default case. 941 uint64_t SW = *DefaultCaseWeight; 942 for (const auto &Case : SI.cases()) { 943 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 944 assert(W && 945 "case weight must be defined as default case weight is defined"); 946 SW += *W; 947 } 948 NewSIW.setSuccessorWeight(0, SW); 949 } 950 951 // If we ended up with a common successor for every path through the switch 952 // after unswitching, rewrite it to an unconditional branch to make it easy 953 // to recognize. Otherwise we potentially have to recognize the default case 954 // pointing at unreachable and other complexity. 955 if (CommonSuccBB) { 956 BasicBlock *BB = SI.getParent(); 957 // We may have had multiple edges to this common successor block, so remove 958 // them as predecessors. We skip the first one, either the default or the 959 // actual first case. 960 bool SkippedFirst = DefaultExitBB == nullptr; 961 for (auto Case : SI.cases()) { 962 assert(Case.getCaseSuccessor() == CommonSuccBB && 963 "Non-common successor!"); 964 (void)Case; 965 if (!SkippedFirst) { 966 SkippedFirst = true; 967 continue; 968 } 969 CommonSuccBB->removePredecessor(BB, 970 /*KeepOneInputPHIs*/ true); 971 } 972 // Now nuke the switch and replace it with a direct branch. 973 SIW.eraseFromParent(); 974 BranchInst::Create(CommonSuccBB, BB); 975 } else if (DefaultExitBB) { 976 assert(SI.getNumCases() > 0 && 977 "If we had no cases we'd have a common successor!"); 978 // Move the last case to the default successor. This is valid as if the 979 // default got unswitched it cannot be reached. This has the advantage of 980 // being simple and keeping the number of edges from this switch to 981 // successors the same, and avoiding any PHI update complexity. 982 auto LastCaseI = std::prev(SI.case_end()); 983 984 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 985 SIW.setSuccessorWeight( 986 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 987 SIW.removeCase(LastCaseI); 988 } 989 990 // Walk the unswitched exit blocks and the unswitched split blocks and update 991 // the dominator tree based on the CFG edits. While we are walking unordered 992 // containers here, the API for applyUpdates takes an unordered list of 993 // updates and requires them to not contain duplicates. 994 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 995 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 996 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 997 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 998 } 999 for (auto SplitUnswitchedPair : SplitExitBBMap) { 1000 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 1001 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 1002 } 1003 1004 if (MSSAU) { 1005 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 1006 if (VerifyMemorySSA) 1007 MSSAU->getMemorySSA()->verifyMemorySSA(); 1008 } else { 1009 DT.applyUpdates(DTUpdates); 1010 } 1011 1012 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1013 1014 // We may have changed the nesting relationship for this loop so hoist it to 1015 // its correct parent if needed. 1016 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 1017 1018 if (MSSAU && VerifyMemorySSA) 1019 MSSAU->getMemorySSA()->verifyMemorySSA(); 1020 1021 ++NumTrivial; 1022 ++NumSwitches; 1023 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 1024 return true; 1025 } 1026 1027 /// This routine scans the loop to find a branch or switch which occurs before 1028 /// any side effects occur. These can potentially be unswitched without 1029 /// duplicating the loop. If a branch or switch is successfully unswitched the 1030 /// scanning continues to see if subsequent branches or switches have become 1031 /// trivial. Once all trivial candidates have been unswitched, this routine 1032 /// returns. 1033 /// 1034 /// The return value indicates whether anything was unswitched (and therefore 1035 /// changed). 1036 /// 1037 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 1038 /// invalidated by this. 1039 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 1040 LoopInfo &LI, ScalarEvolution *SE, 1041 MemorySSAUpdater *MSSAU) { 1042 bool Changed = false; 1043 1044 // If loop header has only one reachable successor we should keep looking for 1045 // trivial condition candidates in the successor as well. An alternative is 1046 // to constant fold conditions and merge successors into loop header (then we 1047 // only need to check header's terminator). The reason for not doing this in 1048 // LoopUnswitch pass is that it could potentially break LoopPassManager's 1049 // invariants. Folding dead branches could either eliminate the current loop 1050 // or make other loops unreachable. LCSSA form might also not be preserved 1051 // after deleting branches. The following code keeps traversing loop header's 1052 // successors until it finds the trivial condition candidate (condition that 1053 // is not a constant). Since unswitching generates branches with constant 1054 // conditions, this scenario could be very common in practice. 1055 BasicBlock *CurrentBB = L.getHeader(); 1056 SmallPtrSet<BasicBlock *, 8> Visited; 1057 Visited.insert(CurrentBB); 1058 do { 1059 // Check if there are any side-effecting instructions (e.g. stores, calls, 1060 // volatile loads) in the part of the loop that the code *would* execute 1061 // without unswitching. 1062 if (MSSAU) // Possible early exit with MSSA 1063 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 1064 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 1065 return Changed; 1066 if (llvm::any_of(*CurrentBB, 1067 [](Instruction &I) { return I.mayHaveSideEffects(); })) 1068 return Changed; 1069 1070 Instruction *CurrentTerm = CurrentBB->getTerminator(); 1071 1072 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1073 // Don't bother trying to unswitch past a switch with a constant 1074 // condition. This should be removed prior to running this pass by 1075 // simplifycfg. 1076 if (isa<Constant>(SI->getCondition())) 1077 return Changed; 1078 1079 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 1080 // Couldn't unswitch this one so we're done. 1081 return Changed; 1082 1083 // Mark that we managed to unswitch something. 1084 Changed = true; 1085 1086 // If unswitching turned the terminator into an unconditional branch then 1087 // we can continue. The unswitching logic specifically works to fold any 1088 // cases it can into an unconditional branch to make it easier to 1089 // recognize here. 1090 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1091 if (!BI || BI->isConditional()) 1092 return Changed; 1093 1094 CurrentBB = BI->getSuccessor(0); 1095 continue; 1096 } 1097 1098 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1099 if (!BI) 1100 // We do not understand other terminator instructions. 1101 return Changed; 1102 1103 // Don't bother trying to unswitch past an unconditional branch or a branch 1104 // with a constant value. These should be removed by simplifycfg prior to 1105 // running this pass. 1106 if (!BI->isConditional() || 1107 isa<Constant>(skipTrivialSelect(BI->getCondition()))) 1108 return Changed; 1109 1110 // Found a trivial condition candidate: non-foldable conditional branch. If 1111 // we fail to unswitch this, we can't do anything else that is trivial. 1112 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1113 return Changed; 1114 1115 // Mark that we managed to unswitch something. 1116 Changed = true; 1117 1118 // If we only unswitched some of the conditions feeding the branch, we won't 1119 // have collapsed it to a single successor. 1120 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1121 if (BI->isConditional()) 1122 return Changed; 1123 1124 // Follow the newly unconditional branch into its successor. 1125 CurrentBB = BI->getSuccessor(0); 1126 1127 // When continuing, if we exit the loop or reach a previous visited block, 1128 // then we can not reach any trivial condition candidates (unfoldable 1129 // branch instructions or switch instructions) and no unswitch can happen. 1130 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1131 1132 return Changed; 1133 } 1134 1135 /// Build the cloned blocks for an unswitched copy of the given loop. 1136 /// 1137 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1138 /// after the split block (`SplitBB`) that will be used to select between the 1139 /// cloned and original loop. 1140 /// 1141 /// This routine handles cloning all of the necessary loop blocks and exit 1142 /// blocks including rewriting their instructions and the relevant PHI nodes. 1143 /// Any loop blocks or exit blocks which are dominated by a different successor 1144 /// than the one for this clone of the loop blocks can be trivially skipped. We 1145 /// use the `DominatingSucc` map to determine whether a block satisfies that 1146 /// property with a simple map lookup. 1147 /// 1148 /// It also correctly creates the unconditional branch in the cloned 1149 /// unswitched parent block to only point at the unswitched successor. 1150 /// 1151 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1152 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1153 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1154 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1155 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1156 /// instead the caller must recompute an accurate DT. It *does* correctly 1157 /// update the `AssumptionCache` provided in `AC`. 1158 static BasicBlock *buildClonedLoopBlocks( 1159 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1160 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1161 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1162 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1163 ValueToValueMapTy &VMap, 1164 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1165 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, 1166 ScalarEvolution *SE) { 1167 SmallVector<BasicBlock *, 4> NewBlocks; 1168 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1169 1170 // We will need to clone a bunch of blocks, wrap up the clone operation in 1171 // a helper. 1172 auto CloneBlock = [&](BasicBlock *OldBB) { 1173 // Clone the basic block and insert it before the new preheader. 1174 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1175 NewBB->moveBefore(LoopPH); 1176 1177 // Record this block and the mapping. 1178 NewBlocks.push_back(NewBB); 1179 VMap[OldBB] = NewBB; 1180 1181 return NewBB; 1182 }; 1183 1184 // We skip cloning blocks when they have a dominating succ that is not the 1185 // succ we are cloning for. 1186 auto SkipBlock = [&](BasicBlock *BB) { 1187 auto It = DominatingSucc.find(BB); 1188 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1189 }; 1190 1191 // First, clone the preheader. 1192 auto *ClonedPH = CloneBlock(LoopPH); 1193 1194 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1195 for (auto *LoopBB : L.blocks()) 1196 if (!SkipBlock(LoopBB)) 1197 CloneBlock(LoopBB); 1198 1199 // Split all the loop exit edges so that when we clone the exit blocks, if 1200 // any of the exit blocks are *also* a preheader for some other loop, we 1201 // don't create multiple predecessors entering the loop header. 1202 for (auto *ExitBB : ExitBlocks) { 1203 if (SkipBlock(ExitBB)) 1204 continue; 1205 1206 // When we are going to clone an exit, we don't need to clone all the 1207 // instructions in the exit block and we want to ensure we have an easy 1208 // place to merge the CFG, so split the exit first. This is always safe to 1209 // do because there cannot be any non-loop predecessors of a loop exit in 1210 // loop simplified form. 1211 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1212 1213 // Rearrange the names to make it easier to write test cases by having the 1214 // exit block carry the suffix rather than the merge block carrying the 1215 // suffix. 1216 MergeBB->takeName(ExitBB); 1217 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1218 1219 // Now clone the original exit block. 1220 auto *ClonedExitBB = CloneBlock(ExitBB); 1221 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1222 "Exit block should have been split to have one successor!"); 1223 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1224 "Cloned exit block has the wrong successor!"); 1225 1226 // Remap any cloned instructions and create a merge phi node for them. 1227 for (auto ZippedInsts : llvm::zip_first( 1228 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1229 llvm::make_range(ClonedExitBB->begin(), 1230 std::prev(ClonedExitBB->end())))) { 1231 Instruction &I = std::get<0>(ZippedInsts); 1232 Instruction &ClonedI = std::get<1>(ZippedInsts); 1233 1234 // The only instructions in the exit block should be PHI nodes and 1235 // potentially a landing pad. 1236 assert( 1237 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1238 "Bad instruction in exit block!"); 1239 // We should have a value map between the instruction and its clone. 1240 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1241 1242 // Forget SCEVs based on exit phis in case SCEV looked through the phi. 1243 if (SE && isa<PHINode>(I)) 1244 SE->forgetValue(&I); 1245 1246 auto *MergePN = 1247 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1248 &*MergeBB->getFirstInsertionPt()); 1249 I.replaceAllUsesWith(MergePN); 1250 MergePN->addIncoming(&I, ExitBB); 1251 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1252 } 1253 } 1254 1255 // Rewrite the instructions in the cloned blocks to refer to the instructions 1256 // in the cloned blocks. We have to do this as a second pass so that we have 1257 // everything available. Also, we have inserted new instructions which may 1258 // include assume intrinsics, so we update the assumption cache while 1259 // processing this. 1260 for (auto *ClonedBB : NewBlocks) 1261 for (Instruction &I : *ClonedBB) { 1262 RemapInstruction(&I, VMap, 1263 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1264 if (auto *II = dyn_cast<AssumeInst>(&I)) 1265 AC.registerAssumption(II); 1266 } 1267 1268 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1269 // have spurious incoming values. 1270 for (auto *LoopBB : L.blocks()) 1271 if (SkipBlock(LoopBB)) 1272 for (auto *SuccBB : successors(LoopBB)) 1273 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1274 for (PHINode &PN : ClonedSuccBB->phis()) 1275 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1276 1277 // Remove the cloned parent as a predecessor of any successor we ended up 1278 // cloning other than the unswitched one. 1279 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1280 for (auto *SuccBB : successors(ParentBB)) { 1281 if (SuccBB == UnswitchedSuccBB) 1282 continue; 1283 1284 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1285 if (!ClonedSuccBB) 1286 continue; 1287 1288 ClonedSuccBB->removePredecessor(ClonedParentBB, 1289 /*KeepOneInputPHIs*/ true); 1290 } 1291 1292 // Replace the cloned branch with an unconditional branch to the cloned 1293 // unswitched successor. 1294 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1295 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1296 // Trivial Simplification. If Terminator is a conditional branch and 1297 // condition becomes dead - erase it. 1298 Value *ClonedConditionToErase = nullptr; 1299 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1300 ClonedConditionToErase = BI->getCondition(); 1301 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1302 ClonedConditionToErase = SI->getCondition(); 1303 1304 ClonedTerminator->eraseFromParent(); 1305 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1306 1307 if (ClonedConditionToErase) 1308 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1309 MSSAU); 1310 1311 // If there are duplicate entries in the PHI nodes because of multiple edges 1312 // to the unswitched successor, we need to nuke all but one as we replaced it 1313 // with a direct branch. 1314 for (PHINode &PN : ClonedSuccBB->phis()) { 1315 bool Found = false; 1316 // Loop over the incoming operands backwards so we can easily delete as we 1317 // go without invalidating the index. 1318 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1319 if (PN.getIncomingBlock(i) != ClonedParentBB) 1320 continue; 1321 if (!Found) { 1322 Found = true; 1323 continue; 1324 } 1325 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1326 } 1327 } 1328 1329 // Record the domtree updates for the new blocks. 1330 SmallPtrSet<BasicBlock *, 4> SuccSet; 1331 for (auto *ClonedBB : NewBlocks) { 1332 for (auto *SuccBB : successors(ClonedBB)) 1333 if (SuccSet.insert(SuccBB).second) 1334 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1335 SuccSet.clear(); 1336 } 1337 1338 return ClonedPH; 1339 } 1340 1341 /// Recursively clone the specified loop and all of its children. 1342 /// 1343 /// The target parent loop for the clone should be provided, or can be null if 1344 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1345 /// with the provided value map. The entire original loop must be present in 1346 /// the value map. The cloned loop is returned. 1347 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1348 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1349 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1350 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1351 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1352 for (auto *BB : OrigL.blocks()) { 1353 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1354 ClonedL.addBlockEntry(ClonedBB); 1355 if (LI.getLoopFor(BB) == &OrigL) 1356 LI.changeLoopFor(ClonedBB, &ClonedL); 1357 } 1358 }; 1359 1360 // We specially handle the first loop because it may get cloned into 1361 // a different parent and because we most commonly are cloning leaf loops. 1362 Loop *ClonedRootL = LI.AllocateLoop(); 1363 if (RootParentL) 1364 RootParentL->addChildLoop(ClonedRootL); 1365 else 1366 LI.addTopLevelLoop(ClonedRootL); 1367 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1368 1369 if (OrigRootL.isInnermost()) 1370 return ClonedRootL; 1371 1372 // If we have a nest, we can quickly clone the entire loop nest using an 1373 // iterative approach because it is a tree. We keep the cloned parent in the 1374 // data structure to avoid repeatedly querying through a map to find it. 1375 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1376 // Build up the loops to clone in reverse order as we'll clone them from the 1377 // back. 1378 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1379 LoopsToClone.push_back({ClonedRootL, ChildL}); 1380 do { 1381 Loop *ClonedParentL, *L; 1382 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1383 Loop *ClonedL = LI.AllocateLoop(); 1384 ClonedParentL->addChildLoop(ClonedL); 1385 AddClonedBlocksToLoop(*L, *ClonedL); 1386 for (Loop *ChildL : llvm::reverse(*L)) 1387 LoopsToClone.push_back({ClonedL, ChildL}); 1388 } while (!LoopsToClone.empty()); 1389 1390 return ClonedRootL; 1391 } 1392 1393 /// Build the cloned loops of an original loop from unswitching. 1394 /// 1395 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1396 /// operation. We need to re-verify that there even is a loop (as the backedge 1397 /// may not have been cloned), and even if there are remaining backedges the 1398 /// backedge set may be different. However, we know that each child loop is 1399 /// undisturbed, we only need to find where to place each child loop within 1400 /// either any parent loop or within a cloned version of the original loop. 1401 /// 1402 /// Because child loops may end up cloned outside of any cloned version of the 1403 /// original loop, multiple cloned sibling loops may be created. All of them 1404 /// are returned so that the newly introduced loop nest roots can be 1405 /// identified. 1406 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1407 const ValueToValueMapTy &VMap, LoopInfo &LI, 1408 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1409 Loop *ClonedL = nullptr; 1410 1411 auto *OrigPH = OrigL.getLoopPreheader(); 1412 auto *OrigHeader = OrigL.getHeader(); 1413 1414 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1415 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1416 1417 // We need to know the loops of the cloned exit blocks to even compute the 1418 // accurate parent loop. If we only clone exits to some parent of the 1419 // original parent, we want to clone into that outer loop. We also keep track 1420 // of the loops that our cloned exit blocks participate in. 1421 Loop *ParentL = nullptr; 1422 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1423 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1424 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1425 for (auto *ExitBB : ExitBlocks) 1426 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1427 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1428 ExitLoopMap[ClonedExitBB] = ExitL; 1429 ClonedExitsInLoops.push_back(ClonedExitBB); 1430 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1431 ParentL = ExitL; 1432 } 1433 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1434 ParentL->contains(OrigL.getParentLoop())) && 1435 "The computed parent loop should always contain (or be) the parent of " 1436 "the original loop."); 1437 1438 // We build the set of blocks dominated by the cloned header from the set of 1439 // cloned blocks out of the original loop. While not all of these will 1440 // necessarily be in the cloned loop, it is enough to establish that they 1441 // aren't in unreachable cycles, etc. 1442 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1443 for (auto *BB : OrigL.blocks()) 1444 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1445 ClonedLoopBlocks.insert(ClonedBB); 1446 1447 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1448 // skipped cloning some region of this loop which can in turn skip some of 1449 // the backedges so we have to rebuild the blocks in the loop based on the 1450 // backedges that remain after cloning. 1451 SmallVector<BasicBlock *, 16> Worklist; 1452 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1453 for (auto *Pred : predecessors(ClonedHeader)) { 1454 // The only possible non-loop header predecessor is the preheader because 1455 // we know we cloned the loop in simplified form. 1456 if (Pred == ClonedPH) 1457 continue; 1458 1459 // Because the loop was in simplified form, the only non-loop predecessor 1460 // should be the preheader. 1461 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1462 "header other than the preheader " 1463 "that is not part of the loop!"); 1464 1465 // Insert this block into the loop set and on the first visit (and if it 1466 // isn't the header we're currently walking) put it into the worklist to 1467 // recurse through. 1468 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1469 Worklist.push_back(Pred); 1470 } 1471 1472 // If we had any backedges then there *is* a cloned loop. Put the header into 1473 // the loop set and then walk the worklist backwards to find all the blocks 1474 // that remain within the loop after cloning. 1475 if (!BlocksInClonedLoop.empty()) { 1476 BlocksInClonedLoop.insert(ClonedHeader); 1477 1478 while (!Worklist.empty()) { 1479 BasicBlock *BB = Worklist.pop_back_val(); 1480 assert(BlocksInClonedLoop.count(BB) && 1481 "Didn't put block into the loop set!"); 1482 1483 // Insert any predecessors that are in the possible set into the cloned 1484 // set, and if the insert is successful, add them to the worklist. Note 1485 // that we filter on the blocks that are definitely reachable via the 1486 // backedge to the loop header so we may prune out dead code within the 1487 // cloned loop. 1488 for (auto *Pred : predecessors(BB)) 1489 if (ClonedLoopBlocks.count(Pred) && 1490 BlocksInClonedLoop.insert(Pred).second) 1491 Worklist.push_back(Pred); 1492 } 1493 1494 ClonedL = LI.AllocateLoop(); 1495 if (ParentL) { 1496 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1497 ParentL->addChildLoop(ClonedL); 1498 } else { 1499 LI.addTopLevelLoop(ClonedL); 1500 } 1501 NonChildClonedLoops.push_back(ClonedL); 1502 1503 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1504 // We don't want to just add the cloned loop blocks based on how we 1505 // discovered them. The original order of blocks was carefully built in 1506 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1507 // that logic, we just re-walk the original blocks (and those of the child 1508 // loops) and filter them as we add them into the cloned loop. 1509 for (auto *BB : OrigL.blocks()) { 1510 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1511 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1512 continue; 1513 1514 // Directly add the blocks that are only in this loop. 1515 if (LI.getLoopFor(BB) == &OrigL) { 1516 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1517 continue; 1518 } 1519 1520 // We want to manually add it to this loop and parents. 1521 // Registering it with LoopInfo will happen when we clone the top 1522 // loop for this block. 1523 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1524 PL->addBlockEntry(ClonedBB); 1525 } 1526 1527 // Now add each child loop whose header remains within the cloned loop. All 1528 // of the blocks within the loop must satisfy the same constraints as the 1529 // header so once we pass the header checks we can just clone the entire 1530 // child loop nest. 1531 for (Loop *ChildL : OrigL) { 1532 auto *ClonedChildHeader = 1533 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1534 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1535 continue; 1536 1537 #ifndef NDEBUG 1538 // We should never have a cloned child loop header but fail to have 1539 // all of the blocks for that child loop. 1540 for (auto *ChildLoopBB : ChildL->blocks()) 1541 assert(BlocksInClonedLoop.count( 1542 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1543 "Child cloned loop has a header within the cloned outer " 1544 "loop but not all of its blocks!"); 1545 #endif 1546 1547 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1548 } 1549 } 1550 1551 // Now that we've handled all the components of the original loop that were 1552 // cloned into a new loop, we still need to handle anything from the original 1553 // loop that wasn't in a cloned loop. 1554 1555 // Figure out what blocks are left to place within any loop nest containing 1556 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1557 // them. 1558 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1559 if (BlocksInClonedLoop.empty()) 1560 UnloopedBlockSet.insert(ClonedPH); 1561 for (auto *ClonedBB : ClonedLoopBlocks) 1562 if (!BlocksInClonedLoop.count(ClonedBB)) 1563 UnloopedBlockSet.insert(ClonedBB); 1564 1565 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1566 // backwards across these to process them inside out. The order shouldn't 1567 // matter as we're just trying to build up the map from inside-out; we use 1568 // the map in a more stably ordered way below. 1569 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1570 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1571 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1572 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1573 }); 1574 1575 // Populate the existing ExitLoopMap with everything reachable from each 1576 // exit, starting from the inner most exit. 1577 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1578 assert(Worklist.empty() && "Didn't clear worklist!"); 1579 1580 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1581 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1582 1583 // Walk the CFG back until we hit the cloned PH adding everything reachable 1584 // and in the unlooped set to this exit block's loop. 1585 Worklist.push_back(ExitBB); 1586 do { 1587 BasicBlock *BB = Worklist.pop_back_val(); 1588 // We can stop recursing at the cloned preheader (if we get there). 1589 if (BB == ClonedPH) 1590 continue; 1591 1592 for (BasicBlock *PredBB : predecessors(BB)) { 1593 // If this pred has already been moved to our set or is part of some 1594 // (inner) loop, no update needed. 1595 if (!UnloopedBlockSet.erase(PredBB)) { 1596 assert( 1597 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1598 "Predecessor not mapped to a loop!"); 1599 continue; 1600 } 1601 1602 // We just insert into the loop set here. We'll add these blocks to the 1603 // exit loop after we build up the set in an order that doesn't rely on 1604 // predecessor order (which in turn relies on use list order). 1605 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1606 (void)Inserted; 1607 assert(Inserted && "Should only visit an unlooped block once!"); 1608 1609 // And recurse through to its predecessors. 1610 Worklist.push_back(PredBB); 1611 } 1612 } while (!Worklist.empty()); 1613 } 1614 1615 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1616 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1617 // in their original order adding them to the correct loop. 1618 1619 // We need a stable insertion order. We use the order of the original loop 1620 // order and map into the correct parent loop. 1621 for (auto *BB : llvm::concat<BasicBlock *const>( 1622 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1623 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1624 OuterL->addBasicBlockToLoop(BB, LI); 1625 1626 #ifndef NDEBUG 1627 for (auto &BBAndL : ExitLoopMap) { 1628 auto *BB = BBAndL.first; 1629 auto *OuterL = BBAndL.second; 1630 assert(LI.getLoopFor(BB) == OuterL && 1631 "Failed to put all blocks into outer loops!"); 1632 } 1633 #endif 1634 1635 // Now that all the blocks are placed into the correct containing loop in the 1636 // absence of child loops, find all the potentially cloned child loops and 1637 // clone them into whatever outer loop we placed their header into. 1638 for (Loop *ChildL : OrigL) { 1639 auto *ClonedChildHeader = 1640 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1641 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1642 continue; 1643 1644 #ifndef NDEBUG 1645 for (auto *ChildLoopBB : ChildL->blocks()) 1646 assert(VMap.count(ChildLoopBB) && 1647 "Cloned a child loop header but not all of that loops blocks!"); 1648 #endif 1649 1650 NonChildClonedLoops.push_back(cloneLoopNest( 1651 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1652 } 1653 } 1654 1655 static void 1656 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1657 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1658 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1659 // Find all the dead clones, and remove them from their successors. 1660 SmallVector<BasicBlock *, 16> DeadBlocks; 1661 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1662 for (const auto &VMap : VMaps) 1663 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1664 if (!DT.isReachableFromEntry(ClonedBB)) { 1665 for (BasicBlock *SuccBB : successors(ClonedBB)) 1666 SuccBB->removePredecessor(ClonedBB); 1667 DeadBlocks.push_back(ClonedBB); 1668 } 1669 1670 // Remove all MemorySSA in the dead blocks 1671 if (MSSAU) { 1672 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1673 DeadBlocks.end()); 1674 MSSAU->removeBlocks(DeadBlockSet); 1675 } 1676 1677 // Drop any remaining references to break cycles. 1678 for (BasicBlock *BB : DeadBlocks) 1679 BB->dropAllReferences(); 1680 // Erase them from the IR. 1681 for (BasicBlock *BB : DeadBlocks) 1682 BB->eraseFromParent(); 1683 } 1684 1685 static void 1686 deleteDeadBlocksFromLoop(Loop &L, 1687 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1688 DominatorTree &DT, LoopInfo &LI, 1689 MemorySSAUpdater *MSSAU, 1690 ScalarEvolution *SE, 1691 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1692 // Find all the dead blocks tied to this loop, and remove them from their 1693 // successors. 1694 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1695 1696 // Start with loop/exit blocks and get a transitive closure of reachable dead 1697 // blocks. 1698 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1699 ExitBlocks.end()); 1700 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1701 while (!DeathCandidates.empty()) { 1702 auto *BB = DeathCandidates.pop_back_val(); 1703 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1704 for (BasicBlock *SuccBB : successors(BB)) { 1705 SuccBB->removePredecessor(BB); 1706 DeathCandidates.push_back(SuccBB); 1707 } 1708 DeadBlockSet.insert(BB); 1709 } 1710 } 1711 1712 // Remove all MemorySSA in the dead blocks 1713 if (MSSAU) 1714 MSSAU->removeBlocks(DeadBlockSet); 1715 1716 // Filter out the dead blocks from the exit blocks list so that it can be 1717 // used in the caller. 1718 llvm::erase_if(ExitBlocks, 1719 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1720 1721 // Walk from this loop up through its parents removing all of the dead blocks. 1722 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1723 for (auto *BB : DeadBlockSet) 1724 ParentL->getBlocksSet().erase(BB); 1725 llvm::erase_if(ParentL->getBlocksVector(), 1726 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1727 } 1728 1729 // Now delete the dead child loops. This raw delete will clear them 1730 // recursively. 1731 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1732 if (!DeadBlockSet.count(ChildL->getHeader())) 1733 return false; 1734 1735 assert(llvm::all_of(ChildL->blocks(), 1736 [&](BasicBlock *ChildBB) { 1737 return DeadBlockSet.count(ChildBB); 1738 }) && 1739 "If the child loop header is dead all blocks in the child loop must " 1740 "be dead as well!"); 1741 DestroyLoopCB(*ChildL, ChildL->getName()); 1742 if (SE) 1743 SE->forgetBlockAndLoopDispositions(); 1744 LI.destroy(ChildL); 1745 return true; 1746 }); 1747 1748 // Remove the loop mappings for the dead blocks and drop all the references 1749 // from these blocks to others to handle cyclic references as we start 1750 // deleting the blocks themselves. 1751 for (auto *BB : DeadBlockSet) { 1752 // Check that the dominator tree has already been updated. 1753 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1754 LI.changeLoopFor(BB, nullptr); 1755 // Drop all uses of the instructions to make sure we won't have dangling 1756 // uses in other blocks. 1757 for (auto &I : *BB) 1758 if (!I.use_empty()) 1759 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 1760 BB->dropAllReferences(); 1761 } 1762 1763 // Actually delete the blocks now that they've been fully unhooked from the 1764 // IR. 1765 for (auto *BB : DeadBlockSet) 1766 BB->eraseFromParent(); 1767 } 1768 1769 /// Recompute the set of blocks in a loop after unswitching. 1770 /// 1771 /// This walks from the original headers predecessors to rebuild the loop. We 1772 /// take advantage of the fact that new blocks can't have been added, and so we 1773 /// filter by the original loop's blocks. This also handles potentially 1774 /// unreachable code that we don't want to explore but might be found examining 1775 /// the predecessors of the header. 1776 /// 1777 /// If the original loop is no longer a loop, this will return an empty set. If 1778 /// it remains a loop, all the blocks within it will be added to the set 1779 /// (including those blocks in inner loops). 1780 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1781 LoopInfo &LI) { 1782 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1783 1784 auto *PH = L.getLoopPreheader(); 1785 auto *Header = L.getHeader(); 1786 1787 // A worklist to use while walking backwards from the header. 1788 SmallVector<BasicBlock *, 16> Worklist; 1789 1790 // First walk the predecessors of the header to find the backedges. This will 1791 // form the basis of our walk. 1792 for (auto *Pred : predecessors(Header)) { 1793 // Skip the preheader. 1794 if (Pred == PH) 1795 continue; 1796 1797 // Because the loop was in simplified form, the only non-loop predecessor 1798 // is the preheader. 1799 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1800 "than the preheader that is not part of the " 1801 "loop!"); 1802 1803 // Insert this block into the loop set and on the first visit and, if it 1804 // isn't the header we're currently walking, put it into the worklist to 1805 // recurse through. 1806 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1807 Worklist.push_back(Pred); 1808 } 1809 1810 // If no backedges were found, we're done. 1811 if (LoopBlockSet.empty()) 1812 return LoopBlockSet; 1813 1814 // We found backedges, recurse through them to identify the loop blocks. 1815 while (!Worklist.empty()) { 1816 BasicBlock *BB = Worklist.pop_back_val(); 1817 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1818 1819 // No need to walk past the header. 1820 if (BB == Header) 1821 continue; 1822 1823 // Because we know the inner loop structure remains valid we can use the 1824 // loop structure to jump immediately across the entire nested loop. 1825 // Further, because it is in loop simplified form, we can directly jump 1826 // to its preheader afterward. 1827 if (Loop *InnerL = LI.getLoopFor(BB)) 1828 if (InnerL != &L) { 1829 assert(L.contains(InnerL) && 1830 "Should not reach a loop *outside* this loop!"); 1831 // The preheader is the only possible predecessor of the loop so 1832 // insert it into the set and check whether it was already handled. 1833 auto *InnerPH = InnerL->getLoopPreheader(); 1834 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1835 "but not contain the inner loop " 1836 "preheader!"); 1837 if (!LoopBlockSet.insert(InnerPH).second) 1838 // The only way to reach the preheader is through the loop body 1839 // itself so if it has been visited the loop is already handled. 1840 continue; 1841 1842 // Insert all of the blocks (other than those already present) into 1843 // the loop set. We expect at least the block that led us to find the 1844 // inner loop to be in the block set, but we may also have other loop 1845 // blocks if they were already enqueued as predecessors of some other 1846 // outer loop block. 1847 for (auto *InnerBB : InnerL->blocks()) { 1848 if (InnerBB == BB) { 1849 assert(LoopBlockSet.count(InnerBB) && 1850 "Block should already be in the set!"); 1851 continue; 1852 } 1853 1854 LoopBlockSet.insert(InnerBB); 1855 } 1856 1857 // Add the preheader to the worklist so we will continue past the 1858 // loop body. 1859 Worklist.push_back(InnerPH); 1860 continue; 1861 } 1862 1863 // Insert any predecessors that were in the original loop into the new 1864 // set, and if the insert is successful, add them to the worklist. 1865 for (auto *Pred : predecessors(BB)) 1866 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1867 Worklist.push_back(Pred); 1868 } 1869 1870 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1871 1872 // We've found all the blocks participating in the loop, return our completed 1873 // set. 1874 return LoopBlockSet; 1875 } 1876 1877 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1878 /// 1879 /// The removal may have removed some child loops entirely but cannot have 1880 /// disturbed any remaining child loops. However, they may need to be hoisted 1881 /// to the parent loop (or to be top-level loops). The original loop may be 1882 /// completely removed. 1883 /// 1884 /// The sibling loops resulting from this update are returned. If the original 1885 /// loop remains a valid loop, it will be the first entry in this list with all 1886 /// of the newly sibling loops following it. 1887 /// 1888 /// Returns true if the loop remains a loop after unswitching, and false if it 1889 /// is no longer a loop after unswitching (and should not continue to be 1890 /// referenced). 1891 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1892 LoopInfo &LI, 1893 SmallVectorImpl<Loop *> &HoistedLoops, 1894 ScalarEvolution *SE) { 1895 auto *PH = L.getLoopPreheader(); 1896 1897 // Compute the actual parent loop from the exit blocks. Because we may have 1898 // pruned some exits the loop may be different from the original parent. 1899 Loop *ParentL = nullptr; 1900 SmallVector<Loop *, 4> ExitLoops; 1901 SmallVector<BasicBlock *, 4> ExitsInLoops; 1902 ExitsInLoops.reserve(ExitBlocks.size()); 1903 for (auto *ExitBB : ExitBlocks) 1904 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1905 ExitLoops.push_back(ExitL); 1906 ExitsInLoops.push_back(ExitBB); 1907 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1908 ParentL = ExitL; 1909 } 1910 1911 // Recompute the blocks participating in this loop. This may be empty if it 1912 // is no longer a loop. 1913 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1914 1915 // If we still have a loop, we need to re-set the loop's parent as the exit 1916 // block set changing may have moved it within the loop nest. Note that this 1917 // can only happen when this loop has a parent as it can only hoist the loop 1918 // *up* the nest. 1919 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1920 // Remove this loop's (original) blocks from all of the intervening loops. 1921 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1922 IL = IL->getParentLoop()) { 1923 IL->getBlocksSet().erase(PH); 1924 for (auto *BB : L.blocks()) 1925 IL->getBlocksSet().erase(BB); 1926 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1927 return BB == PH || L.contains(BB); 1928 }); 1929 } 1930 1931 LI.changeLoopFor(PH, ParentL); 1932 L.getParentLoop()->removeChildLoop(&L); 1933 if (ParentL) 1934 ParentL->addChildLoop(&L); 1935 else 1936 LI.addTopLevelLoop(&L); 1937 } 1938 1939 // Now we update all the blocks which are no longer within the loop. 1940 auto &Blocks = L.getBlocksVector(); 1941 auto BlocksSplitI = 1942 LoopBlockSet.empty() 1943 ? Blocks.begin() 1944 : std::stable_partition( 1945 Blocks.begin(), Blocks.end(), 1946 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1947 1948 // Before we erase the list of unlooped blocks, build a set of them. 1949 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1950 if (LoopBlockSet.empty()) 1951 UnloopedBlocks.insert(PH); 1952 1953 // Now erase these blocks from the loop. 1954 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1955 L.getBlocksSet().erase(BB); 1956 Blocks.erase(BlocksSplitI, Blocks.end()); 1957 1958 // Sort the exits in ascending loop depth, we'll work backwards across these 1959 // to process them inside out. 1960 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1961 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1962 }); 1963 1964 // We'll build up a set for each exit loop. 1965 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1966 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1967 1968 auto RemoveUnloopedBlocksFromLoop = 1969 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1970 for (auto *BB : UnloopedBlocks) 1971 L.getBlocksSet().erase(BB); 1972 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1973 return UnloopedBlocks.count(BB); 1974 }); 1975 }; 1976 1977 SmallVector<BasicBlock *, 16> Worklist; 1978 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1979 assert(Worklist.empty() && "Didn't clear worklist!"); 1980 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1981 1982 // Grab the next exit block, in decreasing loop depth order. 1983 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1984 Loop &ExitL = *LI.getLoopFor(ExitBB); 1985 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1986 1987 // Erase all of the unlooped blocks from the loops between the previous 1988 // exit loop and this exit loop. This works because the ExitInLoops list is 1989 // sorted in increasing order of loop depth and thus we visit loops in 1990 // decreasing order of loop depth. 1991 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1992 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1993 1994 // Walk the CFG back until we hit the cloned PH adding everything reachable 1995 // and in the unlooped set to this exit block's loop. 1996 Worklist.push_back(ExitBB); 1997 do { 1998 BasicBlock *BB = Worklist.pop_back_val(); 1999 // We can stop recursing at the cloned preheader (if we get there). 2000 if (BB == PH) 2001 continue; 2002 2003 for (BasicBlock *PredBB : predecessors(BB)) { 2004 // If this pred has already been moved to our set or is part of some 2005 // (inner) loop, no update needed. 2006 if (!UnloopedBlocks.erase(PredBB)) { 2007 assert((NewExitLoopBlocks.count(PredBB) || 2008 ExitL.contains(LI.getLoopFor(PredBB))) && 2009 "Predecessor not in a nested loop (or already visited)!"); 2010 continue; 2011 } 2012 2013 // We just insert into the loop set here. We'll add these blocks to the 2014 // exit loop after we build up the set in a deterministic order rather 2015 // than the predecessor-influenced visit order. 2016 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 2017 (void)Inserted; 2018 assert(Inserted && "Should only visit an unlooped block once!"); 2019 2020 // And recurse through to its predecessors. 2021 Worklist.push_back(PredBB); 2022 } 2023 } while (!Worklist.empty()); 2024 2025 // If blocks in this exit loop were directly part of the original loop (as 2026 // opposed to a child loop) update the map to point to this exit loop. This 2027 // just updates a map and so the fact that the order is unstable is fine. 2028 for (auto *BB : NewExitLoopBlocks) 2029 if (Loop *BBL = LI.getLoopFor(BB)) 2030 if (BBL == &L || !L.contains(BBL)) 2031 LI.changeLoopFor(BB, &ExitL); 2032 2033 // We will remove the remaining unlooped blocks from this loop in the next 2034 // iteration or below. 2035 NewExitLoopBlocks.clear(); 2036 } 2037 2038 // Any remaining unlooped blocks are no longer part of any loop unless they 2039 // are part of some child loop. 2040 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 2041 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 2042 for (auto *BB : UnloopedBlocks) 2043 if (Loop *BBL = LI.getLoopFor(BB)) 2044 if (BBL == &L || !L.contains(BBL)) 2045 LI.changeLoopFor(BB, nullptr); 2046 2047 // Sink all the child loops whose headers are no longer in the loop set to 2048 // the parent (or to be top level loops). We reach into the loop and directly 2049 // update its subloop vector to make this batch update efficient. 2050 auto &SubLoops = L.getSubLoopsVector(); 2051 auto SubLoopsSplitI = 2052 LoopBlockSet.empty() 2053 ? SubLoops.begin() 2054 : std::stable_partition( 2055 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 2056 return LoopBlockSet.count(SubL->getHeader()); 2057 }); 2058 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 2059 HoistedLoops.push_back(HoistedL); 2060 HoistedL->setParentLoop(nullptr); 2061 2062 // To compute the new parent of this hoisted loop we look at where we 2063 // placed the preheader above. We can't lookup the header itself because we 2064 // retained the mapping from the header to the hoisted loop. But the 2065 // preheader and header should have the exact same new parent computed 2066 // based on the set of exit blocks from the original loop as the preheader 2067 // is a predecessor of the header and so reached in the reverse walk. And 2068 // because the loops were all in simplified form the preheader of the 2069 // hoisted loop can't be part of some *other* loop. 2070 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 2071 NewParentL->addChildLoop(HoistedL); 2072 else 2073 LI.addTopLevelLoop(HoistedL); 2074 } 2075 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 2076 2077 // Actually delete the loop if nothing remained within it. 2078 if (Blocks.empty()) { 2079 assert(SubLoops.empty() && 2080 "Failed to remove all subloops from the original loop!"); 2081 if (Loop *ParentL = L.getParentLoop()) 2082 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 2083 else 2084 LI.removeLoop(llvm::find(LI, &L)); 2085 // markLoopAsDeleted for L should be triggered by the caller (it is typically 2086 // done by using the UnswitchCB callback). 2087 if (SE) 2088 SE->forgetBlockAndLoopDispositions(); 2089 LI.destroy(&L); 2090 return false; 2091 } 2092 2093 return true; 2094 } 2095 2096 /// Helper to visit a dominator subtree, invoking a callable on each node. 2097 /// 2098 /// Returning false at any point will stop walking past that node of the tree. 2099 template <typename CallableT> 2100 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2101 SmallVector<DomTreeNode *, 4> DomWorklist; 2102 DomWorklist.push_back(DT[BB]); 2103 #ifndef NDEBUG 2104 SmallPtrSet<DomTreeNode *, 4> Visited; 2105 Visited.insert(DT[BB]); 2106 #endif 2107 do { 2108 DomTreeNode *N = DomWorklist.pop_back_val(); 2109 2110 // Visit this node. 2111 if (!Callable(N->getBlock())) 2112 continue; 2113 2114 // Accumulate the child nodes. 2115 for (DomTreeNode *ChildN : *N) { 2116 assert(Visited.insert(ChildN).second && 2117 "Cannot visit a node twice when walking a tree!"); 2118 DomWorklist.push_back(ChildN); 2119 } 2120 } while (!DomWorklist.empty()); 2121 } 2122 2123 static void unswitchNontrivialInvariants( 2124 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2125 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, 2126 AssumptionCache &AC, 2127 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2128 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2129 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2130 auto *ParentBB = TI.getParent(); 2131 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2132 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2133 2134 // We can only unswitch switches, conditional branches with an invariant 2135 // condition, or combining invariant conditions with an instruction or 2136 // partially invariant instructions. 2137 assert((SI || (BI && BI->isConditional())) && 2138 "Can only unswitch switches and conditional branch!"); 2139 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2140 bool FullUnswitch = 2141 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && 2142 !PartiallyInvariant); 2143 if (FullUnswitch) 2144 assert(Invariants.size() == 1 && 2145 "Cannot have other invariants with full unswitching!"); 2146 else 2147 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && 2148 "Partial unswitching requires an instruction as the condition!"); 2149 2150 if (MSSAU && VerifyMemorySSA) 2151 MSSAU->getMemorySSA()->verifyMemorySSA(); 2152 2153 // Constant and BBs tracking the cloned and continuing successor. When we are 2154 // unswitching the entire condition, this can just be trivially chosen to 2155 // unswitch towards `true`. However, when we are unswitching a set of 2156 // invariants combined with `and` or `or` or partially invariant instructions, 2157 // the combining operation determines the best direction to unswitch: we want 2158 // to unswitch the direction that will collapse the branch. 2159 bool Direction = true; 2160 int ClonedSucc = 0; 2161 if (!FullUnswitch) { 2162 Value *Cond = skipTrivialSelect(BI->getCondition()); 2163 (void)Cond; 2164 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2165 PartiallyInvariant) && 2166 "Only `or`, `and`, an `select`, partially invariant instructions " 2167 "can combine invariants being unswitched."); 2168 if (!match(Cond, m_LogicalOr())) { 2169 if (match(Cond, m_LogicalAnd()) || 2170 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2171 Direction = false; 2172 ClonedSucc = 1; 2173 } 2174 } 2175 } 2176 2177 BasicBlock *RetainedSuccBB = 2178 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2179 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2180 if (BI) 2181 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2182 else 2183 for (auto Case : SI->cases()) 2184 if (Case.getCaseSuccessor() != RetainedSuccBB) 2185 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2186 2187 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2188 "Should not unswitch the same successor we are retaining!"); 2189 2190 // The branch should be in this exact loop. Any inner loop's invariant branch 2191 // should be handled by unswitching that inner loop. The caller of this 2192 // routine should filter out any candidates that remain (but were skipped for 2193 // whatever reason). 2194 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2195 2196 // Compute the parent loop now before we start hacking on things. 2197 Loop *ParentL = L.getParentLoop(); 2198 // Get blocks in RPO order for MSSA update, before changing the CFG. 2199 LoopBlocksRPO LBRPO(&L); 2200 if (MSSAU) 2201 LBRPO.perform(&LI); 2202 2203 // Compute the outer-most loop containing one of our exit blocks. This is the 2204 // furthest up our loopnest which can be mutated, which we will use below to 2205 // update things. 2206 Loop *OuterExitL = &L; 2207 SmallVector<BasicBlock *, 4> ExitBlocks; 2208 L.getUniqueExitBlocks(ExitBlocks); 2209 for (auto *ExitBB : ExitBlocks) { 2210 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2211 if (!NewOuterExitL) { 2212 // We exited the entire nest with this block, so we're done. 2213 OuterExitL = nullptr; 2214 break; 2215 } 2216 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2217 OuterExitL = NewOuterExitL; 2218 } 2219 2220 // At this point, we're definitely going to unswitch something so invalidate 2221 // any cached information in ScalarEvolution for the outer most loop 2222 // containing an exit block and all nested loops. 2223 if (SE) { 2224 if (OuterExitL) 2225 SE->forgetLoop(OuterExitL); 2226 else 2227 SE->forgetTopmostLoop(&L); 2228 SE->forgetBlockAndLoopDispositions(); 2229 } 2230 2231 bool InsertFreeze = false; 2232 if (FreezeLoopUnswitchCond) { 2233 ICFLoopSafetyInfo SafetyInfo; 2234 SafetyInfo.computeLoopSafetyInfo(&L); 2235 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 2236 } 2237 2238 // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform, 2239 // otherwise the branch instruction will have been moved outside the loop 2240 // already, and may imply that a poison condition is always UB. 2241 Value *FullUnswitchCond = nullptr; 2242 if (FullUnswitch) { 2243 FullUnswitchCond = 2244 BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition(); 2245 if (InsertFreeze) 2246 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison( 2247 FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT); 2248 } 2249 2250 // If the edge from this terminator to a successor dominates that successor, 2251 // store a map from each block in its dominator subtree to it. This lets us 2252 // tell when cloning for a particular successor if a block is dominated by 2253 // some *other* successor with a single data structure. We use this to 2254 // significantly reduce cloning. 2255 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2256 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB), 2257 UnswitchedSuccBBs)) 2258 if (SuccBB->getUniquePredecessor() || 2259 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2260 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2261 })) 2262 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2263 DominatingSucc[BB] = SuccBB; 2264 return true; 2265 }); 2266 2267 // Split the preheader, so that we know that there is a safe place to insert 2268 // the conditional branch. We will change the preheader to have a conditional 2269 // branch on LoopCond. The original preheader will become the split point 2270 // between the unswitched versions, and we will have a new preheader for the 2271 // original loop. 2272 BasicBlock *SplitBB = L.getLoopPreheader(); 2273 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2274 2275 // Keep track of the dominator tree updates needed. 2276 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2277 2278 // Clone the loop for each unswitched successor. 2279 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2280 VMaps.reserve(UnswitchedSuccBBs.size()); 2281 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2282 for (auto *SuccBB : UnswitchedSuccBBs) { 2283 VMaps.emplace_back(new ValueToValueMapTy()); 2284 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2285 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2286 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE); 2287 } 2288 2289 // Drop metadata if we may break its semantics by moving this instr into the 2290 // split block. 2291 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2292 if (DropNonTrivialImplicitNullChecks) 2293 // Do not spend time trying to understand if we can keep it, just drop it 2294 // to save compile time. 2295 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2296 else { 2297 // It is only legal to preserve make.implicit metadata if we are 2298 // guaranteed no reach implicit null check after following this branch. 2299 ICFLoopSafetyInfo SafetyInfo; 2300 SafetyInfo.computeLoopSafetyInfo(&L); 2301 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2302 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2303 } 2304 } 2305 2306 // The stitching of the branched code back together depends on whether we're 2307 // doing full unswitching or not with the exception that we always want to 2308 // nuke the initial terminator placed in the split block. 2309 SplitBB->getTerminator()->eraseFromParent(); 2310 if (FullUnswitch) { 2311 // Splice the terminator from the original loop and rewrite its 2312 // successors. 2313 SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator()); 2314 2315 // Keep a clone of the terminator for MSSA updates. 2316 Instruction *NewTI = TI.clone(); 2317 NewTI->insertInto(ParentBB, ParentBB->end()); 2318 2319 // First wire up the moved terminator to the preheaders. 2320 if (BI) { 2321 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2322 BI->setSuccessor(ClonedSucc, ClonedPH); 2323 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2324 if (InsertFreeze) 2325 FullUnswitchCond = new FreezeInst( 2326 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI); 2327 BI->setCondition(FullUnswitchCond); 2328 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2329 } else { 2330 assert(SI && "Must either be a branch or switch!"); 2331 2332 // Walk the cases and directly update their successors. 2333 assert(SI->getDefaultDest() == RetainedSuccBB && 2334 "Not retaining default successor!"); 2335 SI->setDefaultDest(LoopPH); 2336 for (const auto &Case : SI->cases()) 2337 if (Case.getCaseSuccessor() == RetainedSuccBB) 2338 Case.setSuccessor(LoopPH); 2339 else 2340 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2341 2342 if (InsertFreeze) 2343 SI->setCondition(new FreezeInst( 2344 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI)); 2345 2346 // We need to use the set to populate domtree updates as even when there 2347 // are multiple cases pointing at the same successor we only want to 2348 // remove and insert one edge in the domtree. 2349 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2350 DTUpdates.push_back( 2351 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2352 } 2353 2354 if (MSSAU) { 2355 DT.applyUpdates(DTUpdates); 2356 DTUpdates.clear(); 2357 2358 // Remove all but one edge to the retained block and all unswitched 2359 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2360 // when we know we only keep a single edge for each case. 2361 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2362 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2363 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2364 2365 for (auto &VMap : VMaps) 2366 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2367 /*IgnoreIncomingWithNoClones=*/true); 2368 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2369 2370 // Remove all edges to unswitched blocks. 2371 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2372 MSSAU->removeEdge(ParentBB, SuccBB); 2373 } 2374 2375 // Now unhook the successor relationship as we'll be replacing 2376 // the terminator with a direct branch. This is much simpler for branches 2377 // than switches so we handle those first. 2378 if (BI) { 2379 // Remove the parent as a predecessor of the unswitched successor. 2380 assert(UnswitchedSuccBBs.size() == 1 && 2381 "Only one possible unswitched block for a branch!"); 2382 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2383 UnswitchedSuccBB->removePredecessor(ParentBB, 2384 /*KeepOneInputPHIs*/ true); 2385 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2386 } else { 2387 // Note that we actually want to remove the parent block as a predecessor 2388 // of *every* case successor. The case successor is either unswitched, 2389 // completely eliminating an edge from the parent to that successor, or it 2390 // is a duplicate edge to the retained successor as the retained successor 2391 // is always the default successor and as we'll replace this with a direct 2392 // branch we no longer need the duplicate entries in the PHI nodes. 2393 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2394 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2395 "Not retaining default successor!"); 2396 for (const auto &Case : NewSI->cases()) 2397 Case.getCaseSuccessor()->removePredecessor( 2398 ParentBB, 2399 /*KeepOneInputPHIs*/ true); 2400 2401 // We need to use the set to populate domtree updates as even when there 2402 // are multiple cases pointing at the same successor we only want to 2403 // remove and insert one edge in the domtree. 2404 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2405 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2406 } 2407 2408 // After MSSAU update, remove the cloned terminator instruction NewTI. 2409 ParentBB->getTerminator()->eraseFromParent(); 2410 2411 // Create a new unconditional branch to the continuing block (as opposed to 2412 // the one cloned). 2413 BranchInst::Create(RetainedSuccBB, ParentBB); 2414 } else { 2415 assert(BI && "Only branches have partial unswitching."); 2416 assert(UnswitchedSuccBBs.size() == 1 && 2417 "Only one possible unswitched block for a branch!"); 2418 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2419 // When doing a partial unswitch, we have to do a bit more work to build up 2420 // the branch in the split block. 2421 if (PartiallyInvariant) 2422 buildPartialInvariantUnswitchConditionalBranch( 2423 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2424 else { 2425 buildPartialUnswitchConditionalBranch( 2426 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 2427 FreezeLoopUnswitchCond, BI, &AC, DT); 2428 } 2429 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2430 2431 if (MSSAU) { 2432 DT.applyUpdates(DTUpdates); 2433 DTUpdates.clear(); 2434 2435 // Perform MSSA cloning updates. 2436 for (auto &VMap : VMaps) 2437 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2438 /*IgnoreIncomingWithNoClones=*/true); 2439 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2440 } 2441 } 2442 2443 // Apply the updates accumulated above to get an up-to-date dominator tree. 2444 DT.applyUpdates(DTUpdates); 2445 2446 // Now that we have an accurate dominator tree, first delete the dead cloned 2447 // blocks so that we can accurately build any cloned loops. It is important to 2448 // not delete the blocks from the original loop yet because we still want to 2449 // reference the original loop to understand the cloned loop's structure. 2450 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2451 2452 // Build the cloned loop structure itself. This may be substantially 2453 // different from the original structure due to the simplified CFG. This also 2454 // handles inserting all the cloned blocks into the correct loops. 2455 SmallVector<Loop *, 4> NonChildClonedLoops; 2456 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2457 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2458 2459 // Now that our cloned loops have been built, we can update the original loop. 2460 // First we delete the dead blocks from it and then we rebuild the loop 2461 // structure taking these deletions into account. 2462 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB); 2463 2464 if (MSSAU && VerifyMemorySSA) 2465 MSSAU->getMemorySSA()->verifyMemorySSA(); 2466 2467 SmallVector<Loop *, 4> HoistedLoops; 2468 bool IsStillLoop = 2469 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE); 2470 2471 if (MSSAU && VerifyMemorySSA) 2472 MSSAU->getMemorySSA()->verifyMemorySSA(); 2473 2474 // This transformation has a high risk of corrupting the dominator tree, and 2475 // the below steps to rebuild loop structures will result in hard to debug 2476 // errors in that case so verify that the dominator tree is sane first. 2477 // FIXME: Remove this when the bugs stop showing up and rely on existing 2478 // verification steps. 2479 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2480 2481 if (BI && !PartiallyInvariant) { 2482 // If we unswitched a branch which collapses the condition to a known 2483 // constant we want to replace all the uses of the invariants within both 2484 // the original and cloned blocks. We do this here so that we can use the 2485 // now updated dominator tree to identify which side the users are on. 2486 assert(UnswitchedSuccBBs.size() == 1 && 2487 "Only one possible unswitched block for a branch!"); 2488 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2489 2490 // When considering multiple partially-unswitched invariants 2491 // we cant just go replace them with constants in both branches. 2492 // 2493 // For 'AND' we infer that true branch ("continue") means true 2494 // for each invariant operand. 2495 // For 'OR' we can infer that false branch ("continue") means false 2496 // for each invariant operand. 2497 // So it happens that for multiple-partial case we dont replace 2498 // in the unswitched branch. 2499 bool ReplaceUnswitched = 2500 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2501 2502 ConstantInt *UnswitchedReplacement = 2503 Direction ? ConstantInt::getTrue(BI->getContext()) 2504 : ConstantInt::getFalse(BI->getContext()); 2505 ConstantInt *ContinueReplacement = 2506 Direction ? ConstantInt::getFalse(BI->getContext()) 2507 : ConstantInt::getTrue(BI->getContext()); 2508 for (Value *Invariant : Invariants) { 2509 assert(!isa<Constant>(Invariant) && 2510 "Should not be replacing constant values!"); 2511 // Use make_early_inc_range here as set invalidates the iterator. 2512 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2513 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2514 if (!UserI) 2515 continue; 2516 2517 // Replace it with the 'continue' side if in the main loop body, and the 2518 // unswitched if in the cloned blocks. 2519 if (DT.dominates(LoopPH, UserI->getParent())) 2520 U.set(ContinueReplacement); 2521 else if (ReplaceUnswitched && 2522 DT.dominates(ClonedPH, UserI->getParent())) 2523 U.set(UnswitchedReplacement); 2524 } 2525 } 2526 } 2527 2528 // We can change which blocks are exit blocks of all the cloned sibling 2529 // loops, the current loop, and any parent loops which shared exit blocks 2530 // with the current loop. As a consequence, we need to re-form LCSSA for 2531 // them. But we shouldn't need to re-form LCSSA for any child loops. 2532 // FIXME: This could be made more efficient by tracking which exit blocks are 2533 // new, and focusing on them, but that isn't likely to be necessary. 2534 // 2535 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2536 // loop nest and update every loop that could have had its exits changed. We 2537 // also need to cover any intervening loops. We add all of these loops to 2538 // a list and sort them by loop depth to achieve this without updating 2539 // unnecessary loops. 2540 auto UpdateLoop = [&](Loop &UpdateL) { 2541 #ifndef NDEBUG 2542 UpdateL.verifyLoop(); 2543 for (Loop *ChildL : UpdateL) { 2544 ChildL->verifyLoop(); 2545 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2546 "Perturbed a child loop's LCSSA form!"); 2547 } 2548 #endif 2549 // First build LCSSA for this loop so that we can preserve it when 2550 // forming dedicated exits. We don't want to perturb some other loop's 2551 // LCSSA while doing that CFG edit. 2552 formLCSSA(UpdateL, DT, &LI, SE); 2553 2554 // For loops reached by this loop's original exit blocks we may 2555 // introduced new, non-dedicated exits. At least try to re-form dedicated 2556 // exits for these loops. This may fail if they couldn't have dedicated 2557 // exits to start with. 2558 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2559 }; 2560 2561 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2562 // and we can do it in any order as they don't nest relative to each other. 2563 // 2564 // Also check if any of the loops we have updated have become top-level loops 2565 // as that will necessitate widening the outer loop scope. 2566 for (Loop *UpdatedL : 2567 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2568 UpdateLoop(*UpdatedL); 2569 if (UpdatedL->isOutermost()) 2570 OuterExitL = nullptr; 2571 } 2572 if (IsStillLoop) { 2573 UpdateLoop(L); 2574 if (L.isOutermost()) 2575 OuterExitL = nullptr; 2576 } 2577 2578 // If the original loop had exit blocks, walk up through the outer most loop 2579 // of those exit blocks to update LCSSA and form updated dedicated exits. 2580 if (OuterExitL != &L) 2581 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2582 OuterL = OuterL->getParentLoop()) 2583 UpdateLoop(*OuterL); 2584 2585 #ifndef NDEBUG 2586 // Verify the entire loop structure to catch any incorrect updates before we 2587 // progress in the pass pipeline. 2588 LI.verify(DT); 2589 #endif 2590 2591 // Now that we've unswitched something, make callbacks to report the changes. 2592 // For that we need to merge together the updated loops and the cloned loops 2593 // and check whether the original loop survived. 2594 SmallVector<Loop *, 4> SibLoops; 2595 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2596 if (UpdatedL->getParentLoop() == ParentL) 2597 SibLoops.push_back(UpdatedL); 2598 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2599 2600 if (MSSAU && VerifyMemorySSA) 2601 MSSAU->getMemorySSA()->verifyMemorySSA(); 2602 2603 if (BI) 2604 ++NumBranches; 2605 else 2606 ++NumSwitches; 2607 } 2608 2609 /// Recursively compute the cost of a dominator subtree based on the per-block 2610 /// cost map provided. 2611 /// 2612 /// The recursive computation is memozied into the provided DT-indexed cost map 2613 /// to allow querying it for most nodes in the domtree without it becoming 2614 /// quadratic. 2615 static InstructionCost computeDomSubtreeCost( 2616 DomTreeNode &N, 2617 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2618 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2619 // Don't accumulate cost (or recurse through) blocks not in our block cost 2620 // map and thus not part of the duplication cost being considered. 2621 auto BBCostIt = BBCostMap.find(N.getBlock()); 2622 if (BBCostIt == BBCostMap.end()) 2623 return 0; 2624 2625 // Lookup this node to see if we already computed its cost. 2626 auto DTCostIt = DTCostMap.find(&N); 2627 if (DTCostIt != DTCostMap.end()) 2628 return DTCostIt->second; 2629 2630 // If not, we have to compute it. We can't use insert above and update 2631 // because computing the cost may insert more things into the map. 2632 InstructionCost Cost = std::accumulate( 2633 N.begin(), N.end(), BBCostIt->second, 2634 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2635 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2636 }); 2637 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2638 (void)Inserted; 2639 assert(Inserted && "Should not insert a node while visiting children!"); 2640 return Cost; 2641 } 2642 2643 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2644 /// making the following replacement: 2645 /// 2646 /// --code before guard-- 2647 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2648 /// --code after guard-- 2649 /// 2650 /// into 2651 /// 2652 /// --code before guard-- 2653 /// br i1 %cond, label %guarded, label %deopt 2654 /// 2655 /// guarded: 2656 /// --code after guard-- 2657 /// 2658 /// deopt: 2659 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2660 /// unreachable 2661 /// 2662 /// It also makes all relevant DT and LI updates, so that all structures are in 2663 /// valid state after this transform. 2664 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2665 DominatorTree &DT, LoopInfo &LI, 2666 MemorySSAUpdater *MSSAU) { 2667 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2668 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2669 BasicBlock *CheckBB = GI->getParent(); 2670 2671 if (MSSAU && VerifyMemorySSA) 2672 MSSAU->getMemorySSA()->verifyMemorySSA(); 2673 2674 // Remove all CheckBB's successors from DomTree. A block can be seen among 2675 // successors more than once, but for DomTree it should be added only once. 2676 SmallPtrSet<BasicBlock *, 4> Successors; 2677 for (auto *Succ : successors(CheckBB)) 2678 if (Successors.insert(Succ).second) 2679 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2680 2681 Instruction *DeoptBlockTerm = 2682 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2683 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2684 // SplitBlockAndInsertIfThen inserts control flow that branches to 2685 // DeoptBlockTerm if the condition is true. We want the opposite. 2686 CheckBI->swapSuccessors(); 2687 2688 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2689 GuardedBlock->setName("guarded"); 2690 CheckBI->getSuccessor(1)->setName("deopt"); 2691 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2692 2693 if (MSSAU) 2694 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2695 2696 GI->moveBefore(DeoptBlockTerm); 2697 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2698 2699 // Add new successors of CheckBB into DomTree. 2700 for (auto *Succ : successors(CheckBB)) 2701 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2702 2703 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2704 // successors. 2705 for (auto *Succ : Successors) 2706 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2707 2708 // Make proper changes to DT. 2709 DT.applyUpdates(DTUpdates); 2710 // Inform LI of a new loop block. 2711 L.addBasicBlockToLoop(GuardedBlock, LI); 2712 2713 if (MSSAU) { 2714 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2715 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2716 if (VerifyMemorySSA) 2717 MSSAU->getMemorySSA()->verifyMemorySSA(); 2718 } 2719 2720 ++NumGuards; 2721 return CheckBI; 2722 } 2723 2724 /// Cost multiplier is a way to limit potentially exponential behavior 2725 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2726 /// candidates available. Also accounting for the number of "sibling" loops with 2727 /// the idea to account for previous unswitches that already happened on this 2728 /// cluster of loops. There was an attempt to keep this formula simple, 2729 /// just enough to limit the worst case behavior. Even if it is not that simple 2730 /// now it is still not an attempt to provide a detailed heuristic size 2731 /// prediction. 2732 /// 2733 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2734 /// unswitch candidates, making adequate predictions instead of wild guesses. 2735 /// That requires knowing not just the number of "remaining" candidates but 2736 /// also costs of unswitching for each of these candidates. 2737 static int CalculateUnswitchCostMultiplier( 2738 const Instruction &TI, const Loop &L, const LoopInfo &LI, 2739 const DominatorTree &DT, 2740 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) { 2741 2742 // Guards and other exiting conditions do not contribute to exponential 2743 // explosion as soon as they dominate the latch (otherwise there might be 2744 // another path to the latch remaining that does not allow to eliminate the 2745 // loop copy on unswitch). 2746 const BasicBlock *Latch = L.getLoopLatch(); 2747 const BasicBlock *CondBlock = TI.getParent(); 2748 if (DT.dominates(CondBlock, Latch) && 2749 (isGuard(&TI) || 2750 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) { 2751 return L.contains(SuccBB); 2752 }) <= 1)) { 2753 NumCostMultiplierSkipped++; 2754 return 1; 2755 } 2756 2757 auto *ParentL = L.getParentLoop(); 2758 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2759 : std::distance(LI.begin(), LI.end())); 2760 // Count amount of clones that all the candidates might cause during 2761 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2762 int UnswitchedClones = 0; 2763 for (auto Candidate : UnswitchCandidates) { 2764 const Instruction *CI = Candidate.TI; 2765 const BasicBlock *CondBlock = CI->getParent(); 2766 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2767 if (isGuard(CI)) { 2768 if (!SkipExitingSuccessors) 2769 UnswitchedClones++; 2770 continue; 2771 } 2772 int NonExitingSuccessors = 2773 llvm::count_if(successors(CondBlock), 2774 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) { 2775 return !SkipExitingSuccessors || L.contains(SuccBB); 2776 }); 2777 UnswitchedClones += Log2_32(NonExitingSuccessors); 2778 } 2779 2780 // Ignore up to the "unscaled candidates" number of unswitch candidates 2781 // when calculating the power-of-two scaling of the cost. The main idea 2782 // with this control is to allow a small number of unswitches to happen 2783 // and rely more on siblings multiplier (see below) when the number 2784 // of candidates is small. 2785 unsigned ClonesPower = 2786 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2787 2788 // Allowing top-level loops to spread a bit more than nested ones. 2789 int SiblingsMultiplier = 2790 std::max((ParentL ? SiblingsCount 2791 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2792 1); 2793 // Compute the cost multiplier in a way that won't overflow by saturating 2794 // at an upper bound. 2795 int CostMultiplier; 2796 if (ClonesPower > Log2_32(UnswitchThreshold) || 2797 SiblingsMultiplier > UnswitchThreshold) 2798 CostMultiplier = UnswitchThreshold; 2799 else 2800 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2801 (int)UnswitchThreshold); 2802 2803 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2804 << " (siblings " << SiblingsMultiplier << " * clones " 2805 << (1 << ClonesPower) << ")" 2806 << " for unswitch candidate: " << TI << "\n"); 2807 return CostMultiplier; 2808 } 2809 2810 static bool collectUnswitchCandidates( 2811 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 2812 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, 2813 const Loop &L, const LoopInfo &LI, AAResults &AA, 2814 const MemorySSAUpdater *MSSAU) { 2815 assert(UnswitchCandidates.empty() && "Should be!"); 2816 // Whether or not we should also collect guards in the loop. 2817 bool CollectGuards = false; 2818 if (UnswitchGuards) { 2819 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2820 Intrinsic::getName(Intrinsic::experimental_guard)); 2821 if (GuardDecl && !GuardDecl->use_empty()) 2822 CollectGuards = true; 2823 } 2824 2825 for (auto *BB : L.blocks()) { 2826 if (LI.getLoopFor(BB) != &L) 2827 continue; 2828 2829 if (CollectGuards) 2830 for (auto &I : *BB) 2831 if (isGuard(&I)) { 2832 auto *Cond = 2833 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0)); 2834 // TODO: Support AND, OR conditions and partial unswitching. 2835 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2836 UnswitchCandidates.push_back({&I, {Cond}}); 2837 } 2838 2839 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2840 // We can only consider fully loop-invariant switch conditions as we need 2841 // to completely eliminate the switch after unswitching. 2842 if (!isa<Constant>(SI->getCondition()) && 2843 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2844 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2845 continue; 2846 } 2847 2848 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2849 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2850 BI->getSuccessor(0) == BI->getSuccessor(1)) 2851 continue; 2852 2853 Value *Cond = skipTrivialSelect(BI->getCondition()); 2854 if (isa<Constant>(Cond)) 2855 continue; 2856 2857 if (L.isLoopInvariant(Cond)) { 2858 UnswitchCandidates.push_back({BI, {Cond}}); 2859 continue; 2860 } 2861 2862 Instruction &CondI = *cast<Instruction>(Cond); 2863 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2864 TinyPtrVector<Value *> Invariants = 2865 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2866 if (Invariants.empty()) 2867 continue; 2868 2869 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2870 continue; 2871 } 2872 } 2873 2874 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2875 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2876 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator(); 2877 })) { 2878 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2879 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2880 LLVM_DEBUG( 2881 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2882 << *Info->InstToDuplicate[0] << "\n"); 2883 PartialIVInfo = *Info; 2884 PartialIVCondBranch = L.getHeader()->getTerminator(); 2885 TinyPtrVector<Value *> ValsToDuplicate; 2886 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate); 2887 UnswitchCandidates.push_back( 2888 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2889 } 2890 } 2891 return !UnswitchCandidates.empty(); 2892 } 2893 2894 /// Tries to canonicalize condition described by: 2895 /// 2896 /// br (LHS pred RHS), label IfTrue, label IfFalse 2897 /// 2898 /// into its equivalent where `Pred` is something that we support for injected 2899 /// invariants (so far it is limited to ult), LHS in canonicalized form is 2900 /// non-invariant and RHS is an invariant. 2901 static void canonicalizeForInvariantConditionInjection( 2902 ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue, 2903 BasicBlock *&IfFalse, const Loop &L) { 2904 if (!L.contains(IfTrue)) { 2905 Pred = ICmpInst::getInversePredicate(Pred); 2906 std::swap(IfTrue, IfFalse); 2907 } 2908 2909 // Move loop-invariant argument to RHS position. 2910 if (L.isLoopInvariant(LHS)) { 2911 Pred = ICmpInst::getSwappedPredicate(Pred); 2912 std::swap(LHS, RHS); 2913 } 2914 2915 if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) { 2916 // Turn "x >=s 0" into "x <u UMIN_INT" 2917 Pred = ICmpInst::ICMP_ULT; 2918 RHS = ConstantInt::get( 2919 RHS->getContext(), 2920 APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth())); 2921 } 2922 } 2923 2924 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS ) 2925 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by 2926 /// injecting a loop-invariant condition. 2927 static bool shouldTryInjectInvariantCondition( 2928 const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS, 2929 const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) { 2930 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) 2931 return false; 2932 // TODO: Support other predicates. 2933 if (Pred != ICmpInst::ICMP_ULT) 2934 return false; 2935 // TODO: Support non-loop-exiting branches? 2936 if (!L.contains(IfTrue) || L.contains(IfFalse)) 2937 return false; 2938 // FIXME: For some reason this causes problems with MSSA updates, need to 2939 // investigate why. So far, just don't unswitch latch. 2940 if (L.getHeader() == IfTrue) 2941 return false; 2942 return true; 2943 } 2944 2945 /// Returns true, if metadata on \p BI allows us to optimize branching into \p 2946 /// TakenSucc via injection of invariant conditions. The branch should be not 2947 /// enough and not previously unswitched, the information about this comes from 2948 /// the metadata. 2949 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI, 2950 const BasicBlock *TakenSucc) { 2951 // Skip branches that have already been unswithed this way. After successful 2952 // unswitching of injected condition, we will still have a copy of this loop 2953 // which looks exactly the same as original one. To prevent the 2nd attempt 2954 // of unswitching it in the same pass, mark this branch as "nothing to do 2955 // here". 2956 if (BI->hasMetadata("llvm.invariant.condition.injection.disabled")) 2957 return false; 2958 SmallVector<uint32_t> Weights; 2959 if (!extractBranchWeights(*BI, Weights)) 2960 return false; 2961 unsigned T = InjectInvariantConditionHotnesThreshold; 2962 BranchProbability LikelyTaken(T - 1, T); 2963 2964 assert(Weights.size() == 2 && "Unexpected profile data!"); 2965 size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1; 2966 auto Num = Weights[Idx]; 2967 auto Denom = Weights[0] + Weights[1]; 2968 // Degenerate or overflowed metadata. 2969 if (Denom == 0 || Num > Denom) 2970 return false; 2971 BranchProbability ActualTaken(Num, Denom); 2972 if (LikelyTaken > ActualTaken) 2973 return false; 2974 return true; 2975 } 2976 2977 /// Materialize pending invariant condition of the given candidate into IR. The 2978 /// injected loop-invariant condition implies the original loop-variant branch 2979 /// condition, so the materialization turns 2980 /// 2981 /// loop_block: 2982 /// ... 2983 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc 2984 /// 2985 /// into 2986 /// 2987 /// preheader: 2988 /// %invariant_cond = LHS pred RHS 2989 /// ... 2990 /// loop_block: 2991 /// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck 2992 /// OriginalCheck: 2993 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc 2994 /// ... 2995 static NonTrivialUnswitchCandidate 2996 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L, 2997 DominatorTree &DT, LoopInfo &LI, 2998 AssumptionCache &AC, MemorySSAUpdater *MSSAU) { 2999 assert(Candidate.hasPendingInjection() && "Nothing to inject!"); 3000 BasicBlock *Preheader = L.getLoopPreheader(); 3001 assert(Preheader && "Loop is not in simplified form?"); 3002 assert(LI.getLoopFor(Candidate.TI->getParent()) == &L && 3003 "Unswitching branch of inner loop!"); 3004 3005 auto Pred = Candidate.PendingInjection->Pred; 3006 auto *LHS = Candidate.PendingInjection->LHS; 3007 auto *RHS = Candidate.PendingInjection->RHS; 3008 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc; 3009 auto *TI = cast<BranchInst>(Candidate.TI); 3010 auto *BB = Candidate.TI->getParent(); 3011 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1) 3012 : TI->getSuccessor(0); 3013 // FIXME: Remove this once limitation on successors is lifted. 3014 assert(L.contains(InLoopSucc) && "Not supported yet!"); 3015 assert(!L.contains(OutOfLoopSucc) && "Not supported yet!"); 3016 auto &Ctx = BB->getContext(); 3017 3018 IRBuilder<> Builder(Preheader->getTerminator()); 3019 assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!"); 3020 if (LHS->getType() != RHS->getType()) { 3021 if (LHS->getType()->getIntegerBitWidth() < 3022 RHS->getType()->getIntegerBitWidth()) 3023 LHS = Builder.CreateZExt(LHS, RHS->getType(), LHS->getName() + ".wide"); 3024 else 3025 RHS = Builder.CreateZExt(RHS, LHS->getType(), RHS->getName() + ".wide"); 3026 } 3027 // Do not use builder here: CreateICmp may simplify this into a constant and 3028 // unswitching will break. Better optimize it away later. 3029 auto *InjectedCond = 3030 ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond", 3031 Preheader->getTerminator()); 3032 auto *OldCond = TI->getCondition(); 3033 3034 BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check", 3035 BB->getParent(), InLoopSucc); 3036 Builder.SetInsertPoint(TI); 3037 auto *InvariantBr = 3038 Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock); 3039 3040 Builder.SetInsertPoint(CheckBlock); 3041 auto *NewTerm = Builder.CreateCondBr(OldCond, InLoopSucc, OutOfLoopSucc); 3042 3043 TI->eraseFromParent(); 3044 // Prevent infinite unswitching. 3045 NewTerm->setMetadata("llvm.invariant.condition.injection.disabled", 3046 MDNode::get(BB->getContext(), {})); 3047 3048 // Fixup phis. 3049 for (auto &I : *InLoopSucc) { 3050 auto *PN = dyn_cast<PHINode>(&I); 3051 if (!PN) 3052 break; 3053 auto *Inc = PN->getIncomingValueForBlock(BB); 3054 PN->addIncoming(Inc, CheckBlock); 3055 } 3056 OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock); 3057 3058 SmallVector<DominatorTree::UpdateType, 4> DTUpdates = { 3059 { DominatorTree::Insert, BB, CheckBlock }, 3060 { DominatorTree::Insert, CheckBlock, InLoopSucc }, 3061 { DominatorTree::Insert, CheckBlock, OutOfLoopSucc }, 3062 { DominatorTree::Delete, BB, OutOfLoopSucc } 3063 }; 3064 3065 DT.applyUpdates(DTUpdates); 3066 if (MSSAU) 3067 MSSAU->applyUpdates(DTUpdates, DT); 3068 L.addBasicBlockToLoop(CheckBlock, LI); 3069 3070 #ifndef NDEBUG 3071 DT.verify(); 3072 LI.verify(DT); 3073 if (MSSAU && VerifyMemorySSA) 3074 MSSAU->getMemorySSA()->verifyMemorySSA(); 3075 #endif 3076 3077 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly* 3078 // higher because we have just inserted a new block. Need to think how to 3079 // adjust the cost of injected candidates when it was first computed. 3080 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr 3081 << " and considering it for unswitching."); 3082 ++NumInvariantConditionsInjected; 3083 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond }, 3084 Candidate.Cost); 3085 } 3086 3087 /// Given chain of loop branch conditions looking like: 3088 /// br (Variant < Invariant1) 3089 /// br (Variant < Invariant2) 3090 /// br (Variant < Invariant3) 3091 /// ... 3092 /// collect set of invariant conditions on which we want to unswitch, which 3093 /// look like: 3094 /// Invariant1 <= Invariant2 3095 /// Invariant2 <= Invariant3 3096 /// ... 3097 /// Though they might not immediately exist in the IR, we can still inject them. 3098 static bool insertCandidatesWithPendingInjections( 3099 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L, 3100 ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares, 3101 const DominatorTree &DT) { 3102 3103 assert(ICmpInst::isRelational(Pred)); 3104 assert(ICmpInst::isStrictPredicate(Pred)); 3105 if (Compares.size() < 2) 3106 return false; 3107 ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred); 3108 for (auto Prev = Compares.begin(), Next = Compares.begin() + 1; 3109 Next != Compares.end(); ++Prev, ++Next) { 3110 Value *LHS = Next->Invariant; 3111 Value *RHS = Prev->Invariant; 3112 BasicBlock *InLoopSucc = Prev->InLoopSucc; 3113 InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc); 3114 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS }, 3115 std::nullopt, std::move(ToInject)); 3116 UnswitchCandidates.push_back(std::move(Candidate)); 3117 } 3118 return true; 3119 } 3120 3121 /// Collect unswitch candidates by invariant conditions that are not immediately 3122 /// present in the loop. However, they can be injected into the code if we 3123 /// decide it's profitable. 3124 /// An example of such conditions is following: 3125 /// 3126 /// for (...) { 3127 /// x = load ... 3128 /// if (! x <u C1) break; 3129 /// if (! x <u C2) break; 3130 /// <do something> 3131 /// } 3132 /// 3133 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <= 3134 /// C2" automatically implies "x <u C2", so we can get rid of one of 3135 /// loop-variant checks in unswitched loop version. 3136 static bool collectUnswitchCandidatesWithInjections( 3137 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 3138 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L, 3139 const DominatorTree &DT, const LoopInfo &LI, AAResults &AA, 3140 const MemorySSAUpdater *MSSAU) { 3141 if (!InjectInvariantConditions) 3142 return false; 3143 3144 if (!DT.isReachableFromEntry(L.getHeader())) 3145 return false; 3146 auto *Latch = L.getLoopLatch(); 3147 // Need to have a single latch and a preheader. 3148 if (!Latch) 3149 return false; 3150 assert(L.getLoopPreheader() && "Must have a preheader!"); 3151 3152 DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT; 3153 // Traverse the conditions that dominate latch (and therefore dominate each 3154 // other). 3155 for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock()); 3156 DTN = DTN->getIDom()) { 3157 ICmpInst::Predicate Pred; 3158 Value *LHS = nullptr, *RHS = nullptr; 3159 BasicBlock *IfTrue = nullptr, *IfFalse = nullptr; 3160 auto *BB = DTN->getBlock(); 3161 // Ignore inner loops. 3162 if (LI.getLoopFor(BB) != &L) 3163 continue; 3164 auto *Term = BB->getTerminator(); 3165 if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 3166 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) 3167 continue; 3168 canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse, 3169 L); 3170 if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L)) 3171 continue; 3172 if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue)) 3173 continue; 3174 // Strip ZEXT for unsigned predicate. 3175 // TODO: once signed predicates are supported, also strip SEXT. 3176 CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue); 3177 while (auto *Zext = dyn_cast<ZExtInst>(LHS)) 3178 LHS = Zext->getOperand(0); 3179 CandidatesULT[LHS].push_back(Desc); 3180 } 3181 3182 bool Found = false; 3183 for (auto &It : CandidatesULT) 3184 Found |= insertCandidatesWithPendingInjections( 3185 UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT); 3186 return Found; 3187 } 3188 3189 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) { 3190 if (!L.isSafeToClone()) 3191 return false; 3192 for (auto *BB : L.blocks()) 3193 for (auto &I : *BB) { 3194 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 3195 return false; 3196 if (auto *CB = dyn_cast<CallBase>(&I)) { 3197 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone()."); 3198 if (CB->isConvergent()) 3199 return false; 3200 } 3201 } 3202 3203 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 3204 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 3205 // irreducible control flow into reducible control flow and introduce new 3206 // loops "out of thin air". If we ever discover important use cases for doing 3207 // this, we can add support to loop unswitch, but it is a lot of complexity 3208 // for what seems little or no real world benefit. 3209 LoopBlocksRPO RPOT(&L); 3210 RPOT.perform(&LI); 3211 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 3212 return false; 3213 3214 SmallVector<BasicBlock *, 4> ExitBlocks; 3215 L.getUniqueExitBlocks(ExitBlocks); 3216 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 3217 // instruction as we don't know how to split those exit blocks. 3218 // FIXME: We should teach SplitBlock to handle this and remove this 3219 // restriction. 3220 for (auto *ExitBB : ExitBlocks) { 3221 auto *I = ExitBB->getFirstNonPHI(); 3222 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 3223 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 3224 "in exit block\n"); 3225 return false; 3226 } 3227 } 3228 3229 return true; 3230 } 3231 3232 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate( 3233 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L, 3234 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, 3235 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) { 3236 // Given that unswitching these terminators will require duplicating parts of 3237 // the loop, so we need to be able to model that cost. Compute the ephemeral 3238 // values and set up a data structure to hold per-BB costs. We cache each 3239 // block's cost so that we don't recompute this when considering different 3240 // subsets of the loop for duplication during unswitching. 3241 SmallPtrSet<const Value *, 4> EphValues; 3242 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 3243 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 3244 3245 // Compute the cost of each block, as well as the total loop cost. Also, bail 3246 // out if we see instructions which are incompatible with loop unswitching 3247 // (convergent, noduplicate, or cross-basic-block tokens). 3248 // FIXME: We might be able to safely handle some of these in non-duplicated 3249 // regions. 3250 TargetTransformInfo::TargetCostKind CostKind = 3251 L.getHeader()->getParent()->hasMinSize() 3252 ? TargetTransformInfo::TCK_CodeSize 3253 : TargetTransformInfo::TCK_SizeAndLatency; 3254 InstructionCost LoopCost = 0; 3255 for (auto *BB : L.blocks()) { 3256 InstructionCost Cost = 0; 3257 for (auto &I : *BB) { 3258 if (EphValues.count(&I)) 3259 continue; 3260 Cost += TTI.getInstructionCost(&I, CostKind); 3261 } 3262 assert(Cost >= 0 && "Must not have negative costs!"); 3263 LoopCost += Cost; 3264 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 3265 BBCostMap[BB] = Cost; 3266 } 3267 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 3268 3269 // Now we find the best candidate by searching for the one with the following 3270 // properties in order: 3271 // 3272 // 1) An unswitching cost below the threshold 3273 // 2) The smallest number of duplicated unswitch candidates (to avoid 3274 // creating redundant subsequent unswitching) 3275 // 3) The smallest cost after unswitching. 3276 // 3277 // We prioritize reducing fanout of unswitch candidates provided the cost 3278 // remains below the threshold because this has a multiplicative effect. 3279 // 3280 // This requires memoizing each dominator subtree to avoid redundant work. 3281 // 3282 // FIXME: Need to actually do the number of candidates part above. 3283 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 3284 // Given a terminator which might be unswitched, computes the non-duplicated 3285 // cost for that terminator. 3286 auto ComputeUnswitchedCost = [&](Instruction &TI, 3287 bool FullUnswitch) -> InstructionCost { 3288 BasicBlock &BB = *TI.getParent(); 3289 SmallPtrSet<BasicBlock *, 4> Visited; 3290 3291 InstructionCost Cost = 0; 3292 for (BasicBlock *SuccBB : successors(&BB)) { 3293 // Don't count successors more than once. 3294 if (!Visited.insert(SuccBB).second) 3295 continue; 3296 3297 // If this is a partial unswitch candidate, then it must be a conditional 3298 // branch with a condition of either `or`, `and`, their corresponding 3299 // select forms or partially invariant instructions. In that case, one of 3300 // the successors is necessarily duplicated, so don't even try to remove 3301 // its cost. 3302 if (!FullUnswitch) { 3303 auto &BI = cast<BranchInst>(TI); 3304 Value *Cond = skipTrivialSelect(BI.getCondition()); 3305 if (match(Cond, m_LogicalAnd())) { 3306 if (SuccBB == BI.getSuccessor(1)) 3307 continue; 3308 } else if (match(Cond, m_LogicalOr())) { 3309 if (SuccBB == BI.getSuccessor(0)) 3310 continue; 3311 } else if ((PartialIVInfo.KnownValue->isOneValue() && 3312 SuccBB == BI.getSuccessor(0)) || 3313 (!PartialIVInfo.KnownValue->isOneValue() && 3314 SuccBB == BI.getSuccessor(1))) 3315 continue; 3316 } 3317 3318 // This successor's domtree will not need to be duplicated after 3319 // unswitching if the edge to the successor dominates it (and thus the 3320 // entire tree). This essentially means there is no other path into this 3321 // subtree and so it will end up live in only one clone of the loop. 3322 if (SuccBB->getUniquePredecessor() || 3323 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 3324 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 3325 })) { 3326 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 3327 assert(Cost <= LoopCost && 3328 "Non-duplicated cost should never exceed total loop cost!"); 3329 } 3330 } 3331 3332 // Now scale the cost by the number of unique successors minus one. We 3333 // subtract one because there is already at least one copy of the entire 3334 // loop. This is computing the new cost of unswitching a condition. 3335 // Note that guards always have 2 unique successors that are implicit and 3336 // will be materialized if we decide to unswitch it. 3337 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 3338 assert(SuccessorsCount > 1 && 3339 "Cannot unswitch a condition without multiple distinct successors!"); 3340 return (LoopCost - Cost) * (SuccessorsCount - 1); 3341 }; 3342 3343 std::optional<NonTrivialUnswitchCandidate> Best; 3344 for (auto &Candidate : UnswitchCandidates) { 3345 Instruction &TI = *Candidate.TI; 3346 ArrayRef<Value *> Invariants = Candidate.Invariants; 3347 BranchInst *BI = dyn_cast<BranchInst>(&TI); 3348 bool FullUnswitch = 3349 !BI || Candidate.hasPendingInjection() || 3350 (Invariants.size() == 1 && 3351 Invariants[0] == skipTrivialSelect(BI->getCondition())); 3352 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch); 3353 // Calculate cost multiplier which is a tool to limit potentially 3354 // exponential behavior of loop-unswitch. 3355 if (EnableUnswitchCostMultiplier) { 3356 int CostMultiplier = 3357 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 3358 assert( 3359 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 3360 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 3361 CandidateCost *= CostMultiplier; 3362 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3363 << " (multiplier: " << CostMultiplier << ")" 3364 << " for unswitch candidate: " << TI << "\n"); 3365 } else { 3366 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3367 << " for unswitch candidate: " << TI << "\n"); 3368 } 3369 3370 if (!Best || CandidateCost < Best->Cost) { 3371 Best = Candidate; 3372 Best->Cost = CandidateCost; 3373 } 3374 } 3375 assert(Best && "Must be!"); 3376 return *Best; 3377 } 3378 3379 static bool unswitchBestCondition( 3380 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3381 AAResults &AA, TargetTransformInfo &TTI, 3382 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3383 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3384 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3385 // Collect all invariant conditions within this loop (as opposed to an inner 3386 // loop which would be handled when visiting that inner loop). 3387 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates; 3388 IVConditionInfo PartialIVInfo; 3389 Instruction *PartialIVCondBranch = nullptr; 3390 collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo, 3391 PartialIVCondBranch, L, LI, AA, MSSAU); 3392 collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo, 3393 PartialIVCondBranch, L, DT, LI, AA, 3394 MSSAU); 3395 // If we didn't find any candidates, we're done. 3396 if (UnswitchCandidates.empty()) 3397 return false; 3398 3399 LLVM_DEBUG( 3400 dbgs() << "Considering " << UnswitchCandidates.size() 3401 << " non-trivial loop invariant conditions for unswitching.\n"); 3402 3403 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate( 3404 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo); 3405 3406 assert(Best.TI && "Failed to find loop unswitch candidate"); 3407 assert(Best.Cost && "Failed to compute cost"); 3408 3409 if (*Best.Cost >= UnswitchThreshold) { 3410 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost 3411 << "\n"); 3412 return false; 3413 } 3414 3415 if (Best.hasPendingInjection()) 3416 Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU); 3417 assert(!Best.hasPendingInjection() && 3418 "All injections should have been done by now!"); 3419 3420 if (Best.TI != PartialIVCondBranch) 3421 PartialIVInfo.InstToDuplicate.clear(); 3422 3423 // If the best candidate is a guard, turn it into a branch. 3424 if (isGuard(Best.TI)) 3425 Best.TI = 3426 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU); 3427 3428 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost 3429 << ") terminator: " << *Best.TI << "\n"); 3430 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT, 3431 LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB); 3432 return true; 3433 } 3434 3435 /// Unswitch control flow predicated on loop invariant conditions. 3436 /// 3437 /// This first hoists all branches or switches which are trivial (IE, do not 3438 /// require duplicating any part of the loop) out of the loop body. It then 3439 /// looks at other loop invariant control flows and tries to unswitch those as 3440 /// well by cloning the loop if the result is small enough. 3441 /// 3442 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3443 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3444 /// valid (i.e. its use is enabled). 3445 /// 3446 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 3447 /// true, we will attempt to do non-trivial unswitching as well as trivial 3448 /// unswitching. 3449 /// 3450 /// The `UnswitchCB` callback provided will be run after unswitching is 3451 /// complete, with the first parameter set to `true` if the provided loop 3452 /// remains a loop, and a list of new sibling loops created. 3453 /// 3454 /// If `SE` is non-null, we will update that analysis based on the unswitching 3455 /// done. 3456 static bool 3457 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3458 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3459 bool NonTrivial, 3460 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3461 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3462 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 3463 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3464 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3465 "Loops must be in LCSSA form before unswitching."); 3466 3467 // Must be in loop simplified form: we need a preheader and dedicated exits. 3468 if (!L.isLoopSimplifyForm()) 3469 return false; 3470 3471 // Try trivial unswitch first before loop over other basic blocks in the loop. 3472 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3473 // If we unswitched successfully we will want to clean up the loop before 3474 // processing it further so just mark it as unswitched and return. 3475 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3476 return true; 3477 } 3478 3479 // Check whether we should continue with non-trivial conditions. 3480 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3481 // unswitching for testing and debugging. 3482 // NonTrivial: Parameter that enables non-trivial unswitching for this 3483 // invocation of the transform. But this should be allowed only 3484 // for targets without branch divergence. 3485 // 3486 // FIXME: If divergence analysis becomes available to a loop 3487 // transform, we should allow unswitching for non-trivial uniform 3488 // branches even on targets that have divergence. 3489 // https://bugs.llvm.org/show_bug.cgi?id=48819 3490 bool ContinueWithNonTrivial = 3491 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3492 if (!ContinueWithNonTrivial) 3493 return false; 3494 3495 // Skip non-trivial unswitching for optsize functions. 3496 if (L.getHeader()->getParent()->hasOptSize()) 3497 return false; 3498 3499 // Returns true if Loop L's loop nest is cold, i.e. if the headers of L, 3500 // of the loops L is nested in, and of the loops nested in L are all cold. 3501 auto IsLoopNestCold = [&](const Loop *L) { 3502 // Check L and all of its parent loops. 3503 auto *Parent = L; 3504 while (Parent) { 3505 if (!PSI->isColdBlock(Parent->getHeader(), BFI)) 3506 return false; 3507 Parent = Parent->getParentLoop(); 3508 } 3509 // Next check all loops nested within L. 3510 SmallVector<const Loop *, 4> Worklist; 3511 Worklist.insert(Worklist.end(), L->getSubLoops().begin(), 3512 L->getSubLoops().end()); 3513 while (!Worklist.empty()) { 3514 auto *CurLoop = Worklist.pop_back_val(); 3515 if (!PSI->isColdBlock(CurLoop->getHeader(), BFI)) 3516 return false; 3517 Worklist.insert(Worklist.end(), CurLoop->getSubLoops().begin(), 3518 CurLoop->getSubLoops().end()); 3519 } 3520 return true; 3521 }; 3522 3523 // Skip cold loops in cold loop nests, as unswitching them brings little 3524 // benefit but increases the code size 3525 if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) { 3526 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n"); 3527 return false; 3528 } 3529 3530 // Perform legality checks. 3531 if (!isSafeForNoNTrivialUnswitching(L, LI)) 3532 return false; 3533 3534 // For non-trivial unswitching, because it often creates new loops, we rely on 3535 // the pass manager to iterate on the loops rather than trying to immediately 3536 // reach a fixed point. There is no substantial advantage to iterating 3537 // internally, and if any of the new loops are simplified enough to contain 3538 // trivial unswitching we want to prefer those. 3539 3540 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3541 // a partial unswitch when possible below the threshold. 3542 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3543 DestroyLoopCB)) 3544 return true; 3545 3546 // No other opportunities to unswitch. 3547 return false; 3548 } 3549 3550 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3551 LoopStandardAnalysisResults &AR, 3552 LPMUpdater &U) { 3553 Function &F = *L.getHeader()->getParent(); 3554 (void)F; 3555 ProfileSummaryInfo *PSI = nullptr; 3556 if (auto OuterProxy = 3557 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR) 3558 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F)) 3559 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3560 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3561 << "\n"); 3562 3563 // Save the current loop name in a variable so that we can report it even 3564 // after it has been deleted. 3565 std::string LoopName = std::string(L.getName()); 3566 3567 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3568 bool PartiallyInvariant, 3569 ArrayRef<Loop *> NewLoops) { 3570 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3571 if (!NewLoops.empty()) 3572 U.addSiblingLoops(NewLoops); 3573 3574 // If the current loop remains valid, we should revisit it to catch any 3575 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3576 if (CurrentLoopValid) { 3577 if (PartiallyInvariant) { 3578 // Mark the new loop as partially unswitched, to avoid unswitching on 3579 // the same condition again. 3580 auto &Context = L.getHeader()->getContext(); 3581 MDNode *DisableUnswitchMD = MDNode::get( 3582 Context, 3583 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3584 MDNode *NewLoopID = makePostTransformationMetadata( 3585 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3586 {DisableUnswitchMD}); 3587 L.setLoopID(NewLoopID); 3588 } else 3589 U.revisitCurrentLoop(); 3590 } else 3591 U.markLoopAsDeleted(L, LoopName); 3592 }; 3593 3594 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3595 U.markLoopAsDeleted(L, Name); 3596 }; 3597 3598 std::optional<MemorySSAUpdater> MSSAU; 3599 if (AR.MSSA) { 3600 MSSAU = MemorySSAUpdater(AR.MSSA); 3601 if (VerifyMemorySSA) 3602 AR.MSSA->verifyMemorySSA(); 3603 } 3604 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3605 UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, 3606 DestroyLoopCB)) 3607 return PreservedAnalyses::all(); 3608 3609 if (AR.MSSA && VerifyMemorySSA) 3610 AR.MSSA->verifyMemorySSA(); 3611 3612 // Historically this pass has had issues with the dominator tree so verify it 3613 // in asserts builds. 3614 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3615 3616 auto PA = getLoopPassPreservedAnalyses(); 3617 if (AR.MSSA) 3618 PA.preserve<MemorySSAAnalysis>(); 3619 return PA; 3620 } 3621 3622 void SimpleLoopUnswitchPass::printPipeline( 3623 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3624 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3625 OS, MapClassName2PassName); 3626 3627 OS << '<'; 3628 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3629 OS << (Trivial ? "" : "no-") << "trivial"; 3630 OS << '>'; 3631 } 3632 3633 namespace { 3634 3635 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3636 bool NonTrivial; 3637 3638 public: 3639 static char ID; // Pass ID, replacement for typeid 3640 3641 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3642 : LoopPass(ID), NonTrivial(NonTrivial) { 3643 initializeSimpleLoopUnswitchLegacyPassPass( 3644 *PassRegistry::getPassRegistry()); 3645 } 3646 3647 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3648 3649 void getAnalysisUsage(AnalysisUsage &AU) const override { 3650 AU.addRequired<AssumptionCacheTracker>(); 3651 AU.addRequired<TargetTransformInfoWrapperPass>(); 3652 AU.addRequired<MemorySSAWrapperPass>(); 3653 AU.addPreserved<MemorySSAWrapperPass>(); 3654 getLoopAnalysisUsage(AU); 3655 } 3656 }; 3657 3658 } // end anonymous namespace 3659 3660 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3661 if (skipLoop(L)) 3662 return false; 3663 3664 Function &F = *L->getHeader()->getParent(); 3665 3666 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3667 << "\n"); 3668 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3669 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3670 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3671 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3672 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3673 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3674 MemorySSAUpdater MSSAU(MSSA); 3675 3676 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3677 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3678 3679 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3680 ArrayRef<Loop *> NewLoops) { 3681 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3682 for (auto *NewL : NewLoops) 3683 LPM.addLoop(*NewL); 3684 3685 // If the current loop remains valid, re-add it to the queue. This is 3686 // a little wasteful as we'll finish processing the current loop as well, 3687 // but it is the best we can do in the old PM. 3688 if (CurrentLoopValid) { 3689 // If the current loop has been unswitched using a partially invariant 3690 // condition, we should not re-add the current loop to avoid unswitching 3691 // on the same condition again. 3692 if (!PartiallyInvariant) 3693 LPM.addLoop(*L); 3694 } else 3695 LPM.markLoopAsDeleted(*L); 3696 }; 3697 3698 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3699 LPM.markLoopAsDeleted(L); 3700 }; 3701 3702 if (VerifyMemorySSA) 3703 MSSA->verifyMemorySSA(); 3704 bool Changed = 3705 unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE, 3706 &MSSAU, nullptr, nullptr, DestroyLoopCB); 3707 3708 if (VerifyMemorySSA) 3709 MSSA->verifyMemorySSA(); 3710 3711 // Historically this pass has had issues with the dominator tree so verify it 3712 // in asserts builds. 3713 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3714 3715 return Changed; 3716 } 3717 3718 char SimpleLoopUnswitchLegacyPass::ID = 0; 3719 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3720 "Simple unswitch loops", false, false) 3721 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3722 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3723 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3724 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3725 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3726 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3727 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3728 "Simple unswitch loops", false, false) 3729 3730 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3731 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3732 } 3733