1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/DomTreeUpdater.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/LoopAnalysisManager.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/MustExecute.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ProfDataUtils.h" 47 #include "llvm/IR/Use.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/GenericDomTree.h" 56 #include "llvm/Support/InstructionCost.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar/LoopPassManager.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/Local.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 #include "llvm/Transforms/Utils/ValueMapper.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <iterator> 67 #include <numeric> 68 #include <optional> 69 #include <utility> 70 71 #define DEBUG_TYPE "simple-loop-unswitch" 72 73 using namespace llvm; 74 using namespace llvm::PatternMatch; 75 76 STATISTIC(NumBranches, "Number of branches unswitched"); 77 STATISTIC(NumSwitches, "Number of switches unswitched"); 78 STATISTIC(NumSelects, "Number of selects turned into branches for unswitching"); 79 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 80 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 81 STATISTIC( 82 NumCostMultiplierSkipped, 83 "Number of unswitch candidates that had their cost multiplier skipped"); 84 STATISTIC(NumInvariantConditionsInjected, 85 "Number of invariant conditions injected and unswitched"); 86 87 static cl::opt<bool> EnableNonTrivialUnswitch( 88 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 89 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 90 "following the configuration passed into the pass.")); 91 92 static cl::opt<int> 93 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 94 cl::desc("The cost threshold for unswitching a loop.")); 95 96 static cl::opt<bool> EnableUnswitchCostMultiplier( 97 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 98 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 99 "explosion in nontrivial unswitch.")); 100 static cl::opt<int> UnswitchSiblingsToplevelDiv( 101 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 102 cl::desc("Toplevel siblings divisor for cost multiplier.")); 103 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 104 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 105 cl::desc("Number of unswitch candidates that are ignored when calculating " 106 "cost multiplier.")); 107 static cl::opt<bool> UnswitchGuards( 108 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 109 cl::desc("If enabled, simple loop unswitching will also consider " 110 "llvm.experimental.guard intrinsics as unswitch candidates.")); 111 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 112 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 113 cl::init(false), cl::Hidden, 114 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 115 "null checks to save time analyzing if we can keep it.")); 116 static cl::opt<unsigned> 117 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 118 cl::desc("Max number of memory uses to explore during " 119 "partial unswitching analysis"), 120 cl::init(100), cl::Hidden); 121 static cl::opt<bool> FreezeLoopUnswitchCond( 122 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, 123 cl::desc("If enabled, the freeze instruction will be added to condition " 124 "of loop unswitch to prevent miscompilation.")); 125 126 static cl::opt<bool> InjectInvariantConditions( 127 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden, 128 cl::desc("Whether we should inject new invariants and unswitch them to " 129 "eliminate some existing (non-invariant) conditions."), 130 cl::init(true)); 131 132 static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold( 133 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold", 134 cl::Hidden, cl::desc("Only try to inject loop invariant conditions and " 135 "unswitch on them to eliminate branches that are " 136 "not-taken 1/<this option> times or less."), 137 cl::init(16)); 138 139 namespace { 140 struct CompareDesc { 141 BranchInst *Term; 142 Value *Invariant; 143 BasicBlock *InLoopSucc; 144 145 CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc) 146 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {} 147 }; 148 149 struct InjectedInvariant { 150 ICmpInst::Predicate Pred; 151 Value *LHS; 152 Value *RHS; 153 BasicBlock *InLoopSucc; 154 155 InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 156 BasicBlock *InLoopSucc) 157 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {} 158 }; 159 160 struct NonTrivialUnswitchCandidate { 161 Instruction *TI = nullptr; 162 TinyPtrVector<Value *> Invariants; 163 std::optional<InstructionCost> Cost; 164 std::optional<InjectedInvariant> PendingInjection; 165 NonTrivialUnswitchCandidate( 166 Instruction *TI, ArrayRef<Value *> Invariants, 167 std::optional<InstructionCost> Cost = std::nullopt, 168 std::optional<InjectedInvariant> PendingInjection = std::nullopt) 169 : TI(TI), Invariants(Invariants), Cost(Cost), 170 PendingInjection(PendingInjection) {}; 171 172 bool hasPendingInjection() const { return PendingInjection.has_value(); } 173 }; 174 } // end anonymous namespace. 175 176 // Helper to skip (select x, true, false), which matches both a logical AND and 177 // OR and can confuse code that tries to determine if \p Cond is either a 178 // logical AND or OR but not both. 179 static Value *skipTrivialSelect(Value *Cond) { 180 Value *CondNext; 181 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 182 Cond = CondNext; 183 return Cond; 184 } 185 186 /// Collect all of the loop invariant input values transitively used by the 187 /// homogeneous instruction graph from a given root. 188 /// 189 /// This essentially walks from a root recursively through loop variant operands 190 /// which have perform the same logical operation (AND or OR) and finds all 191 /// inputs which are loop invariant. For some operations these can be 192 /// re-associated and unswitched out of the loop entirely. 193 static TinyPtrVector<Value *> 194 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, 195 const LoopInfo &LI) { 196 assert(!L.isLoopInvariant(&Root) && 197 "Only need to walk the graph if root itself is not invariant."); 198 TinyPtrVector<Value *> Invariants; 199 200 bool IsRootAnd = match(&Root, m_LogicalAnd()); 201 bool IsRootOr = match(&Root, m_LogicalOr()); 202 203 // Build a worklist and recurse through operators collecting invariants. 204 SmallVector<Instruction *, 4> Worklist; 205 SmallPtrSet<Instruction *, 8> Visited; 206 Worklist.push_back(&Root); 207 Visited.insert(&Root); 208 do { 209 Instruction &I = *Worklist.pop_back_val(); 210 for (Value *OpV : I.operand_values()) { 211 // Skip constants as unswitching isn't interesting for them. 212 if (isa<Constant>(OpV)) 213 continue; 214 215 // Add it to our result if loop invariant. 216 if (L.isLoopInvariant(OpV)) { 217 Invariants.push_back(OpV); 218 continue; 219 } 220 221 // If not an instruction with the same opcode, nothing we can do. 222 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); 223 224 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 225 (IsRootOr && match(OpI, m_LogicalOr())))) { 226 // Visit this operand. 227 if (Visited.insert(OpI).second) 228 Worklist.push_back(OpI); 229 } 230 } 231 } while (!Worklist.empty()); 232 233 return Invariants; 234 } 235 236 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, 237 Constant &Replacement) { 238 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 239 240 // Replace uses of LIC in the loop with the given constant. 241 // We use make_early_inc_range as set invalidates the iterator. 242 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 243 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 244 245 // Replace this use within the loop body. 246 if (UserI && L.contains(UserI)) 247 U.set(&Replacement); 248 } 249 } 250 251 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 252 /// incoming values along this edge. 253 static bool areLoopExitPHIsLoopInvariant(const Loop &L, 254 const BasicBlock &ExitingBB, 255 const BasicBlock &ExitBB) { 256 for (const Instruction &I : ExitBB) { 257 auto *PN = dyn_cast<PHINode>(&I); 258 if (!PN) 259 // No more PHIs to check. 260 return true; 261 262 // If the incoming value for this edge isn't loop invariant the unswitch 263 // won't be trivial. 264 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 265 return false; 266 } 267 llvm_unreachable("Basic blocks should never be empty!"); 268 } 269 270 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 271 /// end of \p BB and conditionally branch on the copied condition. We only 272 /// branch on a single value. 273 static void buildPartialUnswitchConditionalBranch( 274 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 275 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, 276 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) { 277 IRBuilder<> IRB(&BB); 278 279 SmallVector<Value *> FrozenInvariants; 280 for (Value *Inv : Invariants) { 281 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) 282 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); 283 FrozenInvariants.push_back(Inv); 284 } 285 286 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) 287 : IRB.CreateAnd(FrozenInvariants); 288 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 289 Direction ? &NormalSucc : &UnswitchedSucc); 290 } 291 292 /// Copy a set of loop invariant values, and conditionally branch on them. 293 static void buildPartialInvariantUnswitchConditionalBranch( 294 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 295 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 296 MemorySSAUpdater *MSSAU) { 297 ValueToValueMapTy VMap; 298 for (auto *Val : reverse(ToDuplicate)) { 299 Instruction *Inst = cast<Instruction>(Val); 300 Instruction *NewInst = Inst->clone(); 301 NewInst->insertInto(&BB, BB.end()); 302 RemapInstruction(NewInst, VMap, 303 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 304 VMap[Val] = NewInst; 305 306 if (!MSSAU) 307 continue; 308 309 MemorySSA *MSSA = MSSAU->getMemorySSA(); 310 if (auto *MemUse = 311 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 312 auto *DefiningAccess = MemUse->getDefiningAccess(); 313 // Get the first defining access before the loop. 314 while (L.contains(DefiningAccess->getBlock())) { 315 // If the defining access is a MemoryPhi, get the incoming 316 // value for the pre-header as defining access. 317 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 318 DefiningAccess = 319 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 320 else 321 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 322 } 323 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 324 NewInst->getParent(), 325 MemorySSA::BeforeTerminator); 326 } 327 } 328 329 IRBuilder<> IRB(&BB); 330 Value *Cond = VMap[ToDuplicate[0]]; 331 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 332 Direction ? &NormalSucc : &UnswitchedSucc); 333 } 334 335 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 336 /// 337 /// Requires that the loop exit and unswitched basic block are the same, and 338 /// that the exiting block was a unique predecessor of that block. Rewrites the 339 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 340 /// PHI nodes from the old preheader that now contains the unswitched 341 /// terminator. 342 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 343 BasicBlock &OldExitingBB, 344 BasicBlock &OldPH) { 345 for (PHINode &PN : UnswitchedBB.phis()) { 346 // When the loop exit is directly unswitched we just need to update the 347 // incoming basic block. We loop to handle weird cases with repeated 348 // incoming blocks, but expect to typically only have one operand here. 349 for (auto i : seq<int>(0, PN.getNumOperands())) { 350 assert(PN.getIncomingBlock(i) == &OldExitingBB && 351 "Found incoming block different from unique predecessor!"); 352 PN.setIncomingBlock(i, &OldPH); 353 } 354 } 355 } 356 357 /// Rewrite the PHI nodes in the loop exit basic block and the split off 358 /// unswitched block. 359 /// 360 /// Because the exit block remains an exit from the loop, this rewrites the 361 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 362 /// nodes into the unswitched basic block to select between the value in the 363 /// old preheader and the loop exit. 364 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 365 BasicBlock &UnswitchedBB, 366 BasicBlock &OldExitingBB, 367 BasicBlock &OldPH, 368 bool FullUnswitch) { 369 assert(&ExitBB != &UnswitchedBB && 370 "Must have different loop exit and unswitched blocks!"); 371 BasicBlock::iterator InsertPt = UnswitchedBB.begin(); 372 for (PHINode &PN : ExitBB.phis()) { 373 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 374 PN.getName() + ".split"); 375 NewPN->insertBefore(InsertPt); 376 377 // Walk backwards over the old PHI node's inputs to minimize the cost of 378 // removing each one. We have to do this weird loop manually so that we 379 // create the same number of new incoming edges in the new PHI as we expect 380 // each case-based edge to be included in the unswitched switch in some 381 // cases. 382 // FIXME: This is really, really gross. It would be much cleaner if LLVM 383 // allowed us to create a single entry for a predecessor block without 384 // having separate entries for each "edge" even though these edges are 385 // required to produce identical results. 386 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 387 if (PN.getIncomingBlock(i) != &OldExitingBB) 388 continue; 389 390 Value *Incoming = PN.getIncomingValue(i); 391 if (FullUnswitch) 392 // No more edge from the old exiting block to the exit block. 393 PN.removeIncomingValue(i); 394 395 NewPN->addIncoming(Incoming, &OldPH); 396 } 397 398 // Now replace the old PHI with the new one and wire the old one in as an 399 // input to the new one. 400 PN.replaceAllUsesWith(NewPN); 401 NewPN->addIncoming(&PN, &ExitBB); 402 } 403 } 404 405 /// Hoist the current loop up to the innermost loop containing a remaining exit. 406 /// 407 /// Because we've removed an exit from the loop, we may have changed the set of 408 /// loops reachable and need to move the current loop up the loop nest or even 409 /// to an entirely separate nest. 410 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 411 DominatorTree &DT, LoopInfo &LI, 412 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 413 // If the loop is already at the top level, we can't hoist it anywhere. 414 Loop *OldParentL = L.getParentLoop(); 415 if (!OldParentL) 416 return; 417 418 SmallVector<BasicBlock *, 4> Exits; 419 L.getExitBlocks(Exits); 420 Loop *NewParentL = nullptr; 421 for (auto *ExitBB : Exits) 422 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 423 if (!NewParentL || NewParentL->contains(ExitL)) 424 NewParentL = ExitL; 425 426 if (NewParentL == OldParentL) 427 return; 428 429 // The new parent loop (if different) should always contain the old one. 430 if (NewParentL) 431 assert(NewParentL->contains(OldParentL) && 432 "Can only hoist this loop up the nest!"); 433 434 // The preheader will need to move with the body of this loop. However, 435 // because it isn't in this loop we also need to update the primary loop map. 436 assert(OldParentL == LI.getLoopFor(&Preheader) && 437 "Parent loop of this loop should contain this loop's preheader!"); 438 LI.changeLoopFor(&Preheader, NewParentL); 439 440 // Remove this loop from its old parent. 441 OldParentL->removeChildLoop(&L); 442 443 // Add the loop either to the new parent or as a top-level loop. 444 if (NewParentL) 445 NewParentL->addChildLoop(&L); 446 else 447 LI.addTopLevelLoop(&L); 448 449 // Remove this loops blocks from the old parent and every other loop up the 450 // nest until reaching the new parent. Also update all of these 451 // no-longer-containing loops to reflect the nesting change. 452 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 453 OldContainingL = OldContainingL->getParentLoop()) { 454 llvm::erase_if(OldContainingL->getBlocksVector(), 455 [&](const BasicBlock *BB) { 456 return BB == &Preheader || L.contains(BB); 457 }); 458 459 OldContainingL->getBlocksSet().erase(&Preheader); 460 for (BasicBlock *BB : L.blocks()) 461 OldContainingL->getBlocksSet().erase(BB); 462 463 // Because we just hoisted a loop out of this one, we have essentially 464 // created new exit paths from it. That means we need to form LCSSA PHI 465 // nodes for values used in the no-longer-nested loop. 466 formLCSSA(*OldContainingL, DT, &LI, SE); 467 468 // We shouldn't need to form dedicated exits because the exit introduced 469 // here is the (just split by unswitching) preheader. However, after trivial 470 // unswitching it is possible to get new non-dedicated exits out of parent 471 // loop so let's conservatively form dedicated exit blocks and figure out 472 // if we can optimize later. 473 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 474 /*PreserveLCSSA*/ true); 475 } 476 } 477 478 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 479 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 480 // as exiting block. 481 static Loop *getTopMostExitingLoop(const BasicBlock *ExitBB, 482 const LoopInfo &LI) { 483 Loop *TopMost = LI.getLoopFor(ExitBB); 484 Loop *Current = TopMost; 485 while (Current) { 486 if (Current->isLoopExiting(ExitBB)) 487 TopMost = Current; 488 Current = Current->getParentLoop(); 489 } 490 return TopMost; 491 } 492 493 /// Unswitch a trivial branch if the condition is loop invariant. 494 /// 495 /// This routine should only be called when loop code leading to the branch has 496 /// been validated as trivial (no side effects). This routine checks if the 497 /// condition is invariant and one of the successors is a loop exit. This 498 /// allows us to unswitch without duplicating the loop, making it trivial. 499 /// 500 /// If this routine fails to unswitch the branch it returns false. 501 /// 502 /// If the branch can be unswitched, this routine splits the preheader and 503 /// hoists the branch above that split. Preserves loop simplified form 504 /// (splitting the exit block as necessary). It simplifies the branch within 505 /// the loop to an unconditional branch but doesn't remove it entirely. Further 506 /// cleanup can be done with some simplifycfg like pass. 507 /// 508 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 509 /// invalidated by this. 510 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 511 LoopInfo &LI, ScalarEvolution *SE, 512 MemorySSAUpdater *MSSAU) { 513 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 514 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 515 516 // The loop invariant values that we want to unswitch. 517 TinyPtrVector<Value *> Invariants; 518 519 // When true, we're fully unswitching the branch rather than just unswitching 520 // some input conditions to the branch. 521 bool FullUnswitch = false; 522 523 Value *Cond = skipTrivialSelect(BI.getCondition()); 524 if (L.isLoopInvariant(Cond)) { 525 Invariants.push_back(Cond); 526 FullUnswitch = true; 527 } else { 528 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 529 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 530 if (Invariants.empty()) { 531 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 532 return false; 533 } 534 } 535 536 // Check that one of the branch's successors exits, and which one. 537 bool ExitDirection = true; 538 int LoopExitSuccIdx = 0; 539 auto *LoopExitBB = BI.getSuccessor(0); 540 if (L.contains(LoopExitBB)) { 541 ExitDirection = false; 542 LoopExitSuccIdx = 1; 543 LoopExitBB = BI.getSuccessor(1); 544 if (L.contains(LoopExitBB)) { 545 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 546 return false; 547 } 548 } 549 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 550 auto *ParentBB = BI.getParent(); 551 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 552 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 553 return false; 554 } 555 556 // When unswitching only part of the branch's condition, we need the exit 557 // block to be reached directly from the partially unswitched input. This can 558 // be done when the exit block is along the true edge and the branch condition 559 // is a graph of `or` operations, or the exit block is along the false edge 560 // and the condition is a graph of `and` operations. 561 if (!FullUnswitch) { 562 if (ExitDirection ? !match(Cond, m_LogicalOr()) 563 : !match(Cond, m_LogicalAnd())) { 564 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 565 "non-full unswitch!\n"); 566 return false; 567 } 568 } 569 570 LLVM_DEBUG({ 571 dbgs() << " unswitching trivial invariant conditions for: " << BI 572 << "\n"; 573 for (Value *Invariant : Invariants) { 574 dbgs() << " " << *Invariant << " == true"; 575 if (Invariant != Invariants.back()) 576 dbgs() << " ||"; 577 dbgs() << "\n"; 578 } 579 }); 580 581 // If we have scalar evolutions, we need to invalidate them including this 582 // loop, the loop containing the exit block and the topmost parent loop 583 // exiting via LoopExitBB. 584 if (SE) { 585 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 586 SE->forgetLoop(ExitL); 587 else 588 // Forget the entire nest as this exits the entire nest. 589 SE->forgetTopmostLoop(&L); 590 SE->forgetBlockAndLoopDispositions(); 591 } 592 593 if (MSSAU && VerifyMemorySSA) 594 MSSAU->getMemorySSA()->verifyMemorySSA(); 595 596 // Split the preheader, so that we know that there is a safe place to insert 597 // the conditional branch. We will change the preheader to have a conditional 598 // branch on LoopCond. 599 BasicBlock *OldPH = L.getLoopPreheader(); 600 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 601 602 // Now that we have a place to insert the conditional branch, create a place 603 // to branch to: this is the exit block out of the loop that we are 604 // unswitching. We need to split this if there are other loop predecessors. 605 // Because the loop is in simplified form, *any* other predecessor is enough. 606 BasicBlock *UnswitchedBB; 607 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 608 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 609 "A branch's parent isn't a predecessor!"); 610 UnswitchedBB = LoopExitBB; 611 } else { 612 UnswitchedBB = 613 SplitBlock(LoopExitBB, LoopExitBB->begin(), &DT, &LI, MSSAU, "", false); 614 } 615 616 if (MSSAU && VerifyMemorySSA) 617 MSSAU->getMemorySSA()->verifyMemorySSA(); 618 619 // Actually move the invariant uses into the unswitched position. If possible, 620 // we do this by moving the instructions, but when doing partial unswitching 621 // we do it by building a new merge of the values in the unswitched position. 622 OldPH->getTerminator()->eraseFromParent(); 623 if (FullUnswitch) { 624 // If fully unswitching, we can use the existing branch instruction. 625 // Splice it into the old PH to gate reaching the new preheader and re-point 626 // its successors. 627 BI.moveBefore(*OldPH, OldPH->end()); 628 BI.setCondition(Cond); 629 if (MSSAU) { 630 // Temporarily clone the terminator, to make MSSA update cheaper by 631 // separating "insert edge" updates from "remove edge" ones. 632 BI.clone()->insertInto(ParentBB, ParentBB->end()); 633 } else { 634 // Create a new unconditional branch that will continue the loop as a new 635 // terminator. 636 BranchInst::Create(ContinueBB, ParentBB); 637 } 638 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 639 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 640 } else { 641 // Only unswitching a subset of inputs to the condition, so we will need to 642 // build a new branch that merges the invariant inputs. 643 if (ExitDirection) 644 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && 645 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 646 "condition!"); 647 else 648 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && 649 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 650 " condition!"); 651 buildPartialUnswitchConditionalBranch( 652 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, 653 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); 654 } 655 656 // Update the dominator tree with the added edge. 657 DT.insertEdge(OldPH, UnswitchedBB); 658 659 // After the dominator tree was updated with the added edge, update MemorySSA 660 // if available. 661 if (MSSAU) { 662 SmallVector<CFGUpdate, 1> Updates; 663 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 664 MSSAU->applyInsertUpdates(Updates, DT); 665 } 666 667 // Finish updating dominator tree and memory ssa for full unswitch. 668 if (FullUnswitch) { 669 if (MSSAU) { 670 // Remove the cloned branch instruction. 671 ParentBB->getTerminator()->eraseFromParent(); 672 // Create unconditional branch now. 673 BranchInst::Create(ContinueBB, ParentBB); 674 MSSAU->removeEdge(ParentBB, LoopExitBB); 675 } 676 DT.deleteEdge(ParentBB, LoopExitBB); 677 } 678 679 if (MSSAU && VerifyMemorySSA) 680 MSSAU->getMemorySSA()->verifyMemorySSA(); 681 682 // Rewrite the relevant PHI nodes. 683 if (UnswitchedBB == LoopExitBB) 684 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 685 else 686 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 687 *ParentBB, *OldPH, FullUnswitch); 688 689 // The constant we can replace all of our invariants with inside the loop 690 // body. If any of the invariants have a value other than this the loop won't 691 // be entered. 692 ConstantInt *Replacement = ExitDirection 693 ? ConstantInt::getFalse(BI.getContext()) 694 : ConstantInt::getTrue(BI.getContext()); 695 696 // Since this is an i1 condition we can also trivially replace uses of it 697 // within the loop with a constant. 698 for (Value *Invariant : Invariants) 699 replaceLoopInvariantUses(L, Invariant, *Replacement); 700 701 // If this was full unswitching, we may have changed the nesting relationship 702 // for this loop so hoist it to its correct parent if needed. 703 if (FullUnswitch) 704 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 705 706 if (MSSAU && VerifyMemorySSA) 707 MSSAU->getMemorySSA()->verifyMemorySSA(); 708 709 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 710 ++NumTrivial; 711 ++NumBranches; 712 return true; 713 } 714 715 /// Unswitch a trivial switch if the condition is loop invariant. 716 /// 717 /// This routine should only be called when loop code leading to the switch has 718 /// been validated as trivial (no side effects). This routine checks if the 719 /// condition is invariant and that at least one of the successors is a loop 720 /// exit. This allows us to unswitch without duplicating the loop, making it 721 /// trivial. 722 /// 723 /// If this routine fails to unswitch the switch it returns false. 724 /// 725 /// If the switch can be unswitched, this routine splits the preheader and 726 /// copies the switch above that split. If the default case is one of the 727 /// exiting cases, it copies the non-exiting cases and points them at the new 728 /// preheader. If the default case is not exiting, it copies the exiting cases 729 /// and points the default at the preheader. It preserves loop simplified form 730 /// (splitting the exit blocks as necessary). It simplifies the switch within 731 /// the loop by removing now-dead cases. If the default case is one of those 732 /// unswitched, it replaces its destination with a new basic block containing 733 /// only unreachable. Such basic blocks, while technically loop exits, are not 734 /// considered for unswitching so this is a stable transform and the same 735 /// switch will not be revisited. If after unswitching there is only a single 736 /// in-loop successor, the switch is further simplified to an unconditional 737 /// branch. Still more cleanup can be done with some simplifycfg like pass. 738 /// 739 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 740 /// invalidated by this. 741 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 742 LoopInfo &LI, ScalarEvolution *SE, 743 MemorySSAUpdater *MSSAU) { 744 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 745 Value *LoopCond = SI.getCondition(); 746 747 // If this isn't switching on an invariant condition, we can't unswitch it. 748 if (!L.isLoopInvariant(LoopCond)) 749 return false; 750 751 auto *ParentBB = SI.getParent(); 752 753 // The same check must be used both for the default and the exit cases. We 754 // should never leave edges from the switch instruction to a basic block that 755 // we are unswitching, hence the condition used to determine the default case 756 // needs to also be used to populate ExitCaseIndices, which is then used to 757 // remove cases from the switch. 758 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 759 // BBToCheck is not an exit block if it is inside loop L. 760 if (L.contains(&BBToCheck)) 761 return false; 762 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 763 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 764 return false; 765 // We do not unswitch a block that only has an unreachable statement, as 766 // it's possible this is a previously unswitched block. Only unswitch if 767 // either the terminator is not unreachable, or, if it is, it's not the only 768 // instruction in the block. 769 auto *TI = BBToCheck.getTerminator(); 770 bool isUnreachable = isa<UnreachableInst>(TI); 771 return !isUnreachable || 772 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 773 }; 774 775 SmallVector<int, 4> ExitCaseIndices; 776 for (auto Case : SI.cases()) 777 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 778 ExitCaseIndices.push_back(Case.getCaseIndex()); 779 BasicBlock *DefaultExitBB = nullptr; 780 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 781 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 782 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 783 DefaultExitBB = SI.getDefaultDest(); 784 } else if (ExitCaseIndices.empty()) 785 return false; 786 787 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 788 789 if (MSSAU && VerifyMemorySSA) 790 MSSAU->getMemorySSA()->verifyMemorySSA(); 791 792 // We may need to invalidate SCEVs for the outermost loop reached by any of 793 // the exits. 794 Loop *OuterL = &L; 795 796 if (DefaultExitBB) { 797 // Check the loop containing this exit. 798 Loop *ExitL = getTopMostExitingLoop(DefaultExitBB, LI); 799 if (!ExitL || ExitL->contains(OuterL)) 800 OuterL = ExitL; 801 } 802 for (unsigned Index : ExitCaseIndices) { 803 auto CaseI = SI.case_begin() + Index; 804 // Compute the outer loop from this exit. 805 Loop *ExitL = getTopMostExitingLoop(CaseI->getCaseSuccessor(), LI); 806 if (!ExitL || ExitL->contains(OuterL)) 807 OuterL = ExitL; 808 } 809 810 if (SE) { 811 if (OuterL) 812 SE->forgetLoop(OuterL); 813 else 814 SE->forgetTopmostLoop(&L); 815 } 816 817 if (DefaultExitBB) { 818 // Clear out the default destination temporarily to allow accurate 819 // predecessor lists to be examined below. 820 SI.setDefaultDest(nullptr); 821 } 822 823 // Store the exit cases into a separate data structure and remove them from 824 // the switch. 825 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 826 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 827 4> ExitCases; 828 ExitCases.reserve(ExitCaseIndices.size()); 829 SwitchInstProfUpdateWrapper SIW(SI); 830 // We walk the case indices backwards so that we remove the last case first 831 // and don't disrupt the earlier indices. 832 for (unsigned Index : reverse(ExitCaseIndices)) { 833 auto CaseI = SI.case_begin() + Index; 834 // Save the value of this case. 835 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 836 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 837 // Delete the unswitched cases. 838 SIW.removeCase(CaseI); 839 } 840 841 // Check if after this all of the remaining cases point at the same 842 // successor. 843 BasicBlock *CommonSuccBB = nullptr; 844 if (SI.getNumCases() > 0 && 845 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 846 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 847 })) 848 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 849 if (!DefaultExitBB) { 850 // If we're not unswitching the default, we need it to match any cases to 851 // have a common successor or if we have no cases it is the common 852 // successor. 853 if (SI.getNumCases() == 0) 854 CommonSuccBB = SI.getDefaultDest(); 855 else if (SI.getDefaultDest() != CommonSuccBB) 856 CommonSuccBB = nullptr; 857 } 858 859 // Split the preheader, so that we know that there is a safe place to insert 860 // the switch. 861 BasicBlock *OldPH = L.getLoopPreheader(); 862 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 863 OldPH->getTerminator()->eraseFromParent(); 864 865 // Now add the unswitched switch. 866 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 867 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 868 869 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 870 // First, we split any exit blocks with remaining in-loop predecessors. Then 871 // we update the PHIs in one of two ways depending on if there was a split. 872 // We walk in reverse so that we split in the same order as the cases 873 // appeared. This is purely for convenience of reading the resulting IR, but 874 // it doesn't cost anything really. 875 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 876 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 877 // Handle the default exit if necessary. 878 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 879 // ranges aren't quite powerful enough yet. 880 if (DefaultExitBB) { 881 if (pred_empty(DefaultExitBB)) { 882 UnswitchedExitBBs.insert(DefaultExitBB); 883 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 884 } else { 885 auto *SplitBB = 886 SplitBlock(DefaultExitBB, DefaultExitBB->begin(), &DT, &LI, MSSAU); 887 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 888 *ParentBB, *OldPH, 889 /*FullUnswitch*/ true); 890 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 891 } 892 } 893 // Note that we must use a reference in the for loop so that we update the 894 // container. 895 for (auto &ExitCase : reverse(ExitCases)) { 896 // Grab a reference to the exit block in the pair so that we can update it. 897 BasicBlock *ExitBB = std::get<1>(ExitCase); 898 899 // If this case is the last edge into the exit block, we can simply reuse it 900 // as it will no longer be a loop exit. No mapping necessary. 901 if (pred_empty(ExitBB)) { 902 // Only rewrite once. 903 if (UnswitchedExitBBs.insert(ExitBB).second) 904 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 905 continue; 906 } 907 908 // Otherwise we need to split the exit block so that we retain an exit 909 // block from the loop and a target for the unswitched condition. 910 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 911 if (!SplitExitBB) { 912 // If this is the first time we see this, do the split and remember it. 913 SplitExitBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU); 914 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 915 *ParentBB, *OldPH, 916 /*FullUnswitch*/ true); 917 } 918 // Update the case pair to point to the split block. 919 std::get<1>(ExitCase) = SplitExitBB; 920 } 921 922 // Now add the unswitched cases. We do this in reverse order as we built them 923 // in reverse order. 924 for (auto &ExitCase : reverse(ExitCases)) { 925 ConstantInt *CaseVal = std::get<0>(ExitCase); 926 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 927 928 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 929 } 930 931 // If the default was unswitched, re-point it and add explicit cases for 932 // entering the loop. 933 if (DefaultExitBB) { 934 NewSIW->setDefaultDest(DefaultExitBB); 935 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 936 937 // We removed all the exit cases, so we just copy the cases to the 938 // unswitched switch. 939 for (const auto &Case : SI.cases()) 940 NewSIW.addCase(Case.getCaseValue(), NewPH, 941 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 942 } else if (DefaultCaseWeight) { 943 // We have to set branch weight of the default case. 944 uint64_t SW = *DefaultCaseWeight; 945 for (const auto &Case : SI.cases()) { 946 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 947 assert(W && 948 "case weight must be defined as default case weight is defined"); 949 SW += *W; 950 } 951 NewSIW.setSuccessorWeight(0, SW); 952 } 953 954 // If we ended up with a common successor for every path through the switch 955 // after unswitching, rewrite it to an unconditional branch to make it easy 956 // to recognize. Otherwise we potentially have to recognize the default case 957 // pointing at unreachable and other complexity. 958 if (CommonSuccBB) { 959 BasicBlock *BB = SI.getParent(); 960 // We may have had multiple edges to this common successor block, so remove 961 // them as predecessors. We skip the first one, either the default or the 962 // actual first case. 963 bool SkippedFirst = DefaultExitBB == nullptr; 964 for (auto Case : SI.cases()) { 965 assert(Case.getCaseSuccessor() == CommonSuccBB && 966 "Non-common successor!"); 967 (void)Case; 968 if (!SkippedFirst) { 969 SkippedFirst = true; 970 continue; 971 } 972 CommonSuccBB->removePredecessor(BB, 973 /*KeepOneInputPHIs*/ true); 974 } 975 // Now nuke the switch and replace it with a direct branch. 976 SIW.eraseFromParent(); 977 BranchInst::Create(CommonSuccBB, BB); 978 } else if (DefaultExitBB) { 979 assert(SI.getNumCases() > 0 && 980 "If we had no cases we'd have a common successor!"); 981 // Move the last case to the default successor. This is valid as if the 982 // default got unswitched it cannot be reached. This has the advantage of 983 // being simple and keeping the number of edges from this switch to 984 // successors the same, and avoiding any PHI update complexity. 985 auto LastCaseI = std::prev(SI.case_end()); 986 987 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 988 SIW.setSuccessorWeight( 989 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 990 SIW.removeCase(LastCaseI); 991 } 992 993 // Walk the unswitched exit blocks and the unswitched split blocks and update 994 // the dominator tree based on the CFG edits. While we are walking unordered 995 // containers here, the API for applyUpdates takes an unordered list of 996 // updates and requires them to not contain duplicates. 997 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 998 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 999 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 1000 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 1001 } 1002 for (auto SplitUnswitchedPair : SplitExitBBMap) { 1003 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 1004 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 1005 } 1006 1007 if (MSSAU) { 1008 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 1009 if (VerifyMemorySSA) 1010 MSSAU->getMemorySSA()->verifyMemorySSA(); 1011 } else { 1012 DT.applyUpdates(DTUpdates); 1013 } 1014 1015 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1016 1017 // We may have changed the nesting relationship for this loop so hoist it to 1018 // its correct parent if needed. 1019 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 1020 1021 if (MSSAU && VerifyMemorySSA) 1022 MSSAU->getMemorySSA()->verifyMemorySSA(); 1023 1024 ++NumTrivial; 1025 ++NumSwitches; 1026 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 1027 return true; 1028 } 1029 1030 /// This routine scans the loop to find a branch or switch which occurs before 1031 /// any side effects occur. These can potentially be unswitched without 1032 /// duplicating the loop. If a branch or switch is successfully unswitched the 1033 /// scanning continues to see if subsequent branches or switches have become 1034 /// trivial. Once all trivial candidates have been unswitched, this routine 1035 /// returns. 1036 /// 1037 /// The return value indicates whether anything was unswitched (and therefore 1038 /// changed). 1039 /// 1040 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 1041 /// invalidated by this. 1042 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 1043 LoopInfo &LI, ScalarEvolution *SE, 1044 MemorySSAUpdater *MSSAU) { 1045 bool Changed = false; 1046 1047 // If loop header has only one reachable successor we should keep looking for 1048 // trivial condition candidates in the successor as well. An alternative is 1049 // to constant fold conditions and merge successors into loop header (then we 1050 // only need to check header's terminator). The reason for not doing this in 1051 // LoopUnswitch pass is that it could potentially break LoopPassManager's 1052 // invariants. Folding dead branches could either eliminate the current loop 1053 // or make other loops unreachable. LCSSA form might also not be preserved 1054 // after deleting branches. The following code keeps traversing loop header's 1055 // successors until it finds the trivial condition candidate (condition that 1056 // is not a constant). Since unswitching generates branches with constant 1057 // conditions, this scenario could be very common in practice. 1058 BasicBlock *CurrentBB = L.getHeader(); 1059 SmallPtrSet<BasicBlock *, 8> Visited; 1060 Visited.insert(CurrentBB); 1061 do { 1062 // Check if there are any side-effecting instructions (e.g. stores, calls, 1063 // volatile loads) in the part of the loop that the code *would* execute 1064 // without unswitching. 1065 if (MSSAU) // Possible early exit with MSSA 1066 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 1067 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 1068 return Changed; 1069 if (llvm::any_of(*CurrentBB, 1070 [](Instruction &I) { return I.mayHaveSideEffects(); })) 1071 return Changed; 1072 1073 Instruction *CurrentTerm = CurrentBB->getTerminator(); 1074 1075 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1076 // Don't bother trying to unswitch past a switch with a constant 1077 // condition. This should be removed prior to running this pass by 1078 // simplifycfg. 1079 if (isa<Constant>(SI->getCondition())) 1080 return Changed; 1081 1082 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 1083 // Couldn't unswitch this one so we're done. 1084 return Changed; 1085 1086 // Mark that we managed to unswitch something. 1087 Changed = true; 1088 1089 // If unswitching turned the terminator into an unconditional branch then 1090 // we can continue. The unswitching logic specifically works to fold any 1091 // cases it can into an unconditional branch to make it easier to 1092 // recognize here. 1093 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1094 if (!BI || BI->isConditional()) 1095 return Changed; 1096 1097 CurrentBB = BI->getSuccessor(0); 1098 continue; 1099 } 1100 1101 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1102 if (!BI) 1103 // We do not understand other terminator instructions. 1104 return Changed; 1105 1106 // Don't bother trying to unswitch past an unconditional branch or a branch 1107 // with a constant value. These should be removed by simplifycfg prior to 1108 // running this pass. 1109 if (!BI->isConditional() || 1110 isa<Constant>(skipTrivialSelect(BI->getCondition()))) 1111 return Changed; 1112 1113 // Found a trivial condition candidate: non-foldable conditional branch. If 1114 // we fail to unswitch this, we can't do anything else that is trivial. 1115 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1116 return Changed; 1117 1118 // Mark that we managed to unswitch something. 1119 Changed = true; 1120 1121 // If we only unswitched some of the conditions feeding the branch, we won't 1122 // have collapsed it to a single successor. 1123 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1124 if (BI->isConditional()) 1125 return Changed; 1126 1127 // Follow the newly unconditional branch into its successor. 1128 CurrentBB = BI->getSuccessor(0); 1129 1130 // When continuing, if we exit the loop or reach a previous visited block, 1131 // then we can not reach any trivial condition candidates (unfoldable 1132 // branch instructions or switch instructions) and no unswitch can happen. 1133 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1134 1135 return Changed; 1136 } 1137 1138 /// Build the cloned blocks for an unswitched copy of the given loop. 1139 /// 1140 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1141 /// after the split block (`SplitBB`) that will be used to select between the 1142 /// cloned and original loop. 1143 /// 1144 /// This routine handles cloning all of the necessary loop blocks and exit 1145 /// blocks including rewriting their instructions and the relevant PHI nodes. 1146 /// Any loop blocks or exit blocks which are dominated by a different successor 1147 /// than the one for this clone of the loop blocks can be trivially skipped. We 1148 /// use the `DominatingSucc` map to determine whether a block satisfies that 1149 /// property with a simple map lookup. 1150 /// 1151 /// It also correctly creates the unconditional branch in the cloned 1152 /// unswitched parent block to only point at the unswitched successor. 1153 /// 1154 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1155 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1156 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1157 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1158 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1159 /// instead the caller must recompute an accurate DT. It *does* correctly 1160 /// update the `AssumptionCache` provided in `AC`. 1161 static BasicBlock *buildClonedLoopBlocks( 1162 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1163 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1164 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1165 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1166 ValueToValueMapTy &VMap, 1167 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1168 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, 1169 ScalarEvolution *SE) { 1170 SmallVector<BasicBlock *, 4> NewBlocks; 1171 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1172 1173 // We will need to clone a bunch of blocks, wrap up the clone operation in 1174 // a helper. 1175 auto CloneBlock = [&](BasicBlock *OldBB) { 1176 // Clone the basic block and insert it before the new preheader. 1177 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1178 NewBB->moveBefore(LoopPH); 1179 1180 // Record this block and the mapping. 1181 NewBlocks.push_back(NewBB); 1182 VMap[OldBB] = NewBB; 1183 1184 return NewBB; 1185 }; 1186 1187 // We skip cloning blocks when they have a dominating succ that is not the 1188 // succ we are cloning for. 1189 auto SkipBlock = [&](BasicBlock *BB) { 1190 auto It = DominatingSucc.find(BB); 1191 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1192 }; 1193 1194 // First, clone the preheader. 1195 auto *ClonedPH = CloneBlock(LoopPH); 1196 1197 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1198 for (auto *LoopBB : L.blocks()) 1199 if (!SkipBlock(LoopBB)) 1200 CloneBlock(LoopBB); 1201 1202 // Split all the loop exit edges so that when we clone the exit blocks, if 1203 // any of the exit blocks are *also* a preheader for some other loop, we 1204 // don't create multiple predecessors entering the loop header. 1205 for (auto *ExitBB : ExitBlocks) { 1206 if (SkipBlock(ExitBB)) 1207 continue; 1208 1209 // When we are going to clone an exit, we don't need to clone all the 1210 // instructions in the exit block and we want to ensure we have an easy 1211 // place to merge the CFG, so split the exit first. This is always safe to 1212 // do because there cannot be any non-loop predecessors of a loop exit in 1213 // loop simplified form. 1214 auto *MergeBB = SplitBlock(ExitBB, ExitBB->begin(), &DT, &LI, MSSAU); 1215 1216 // Rearrange the names to make it easier to write test cases by having the 1217 // exit block carry the suffix rather than the merge block carrying the 1218 // suffix. 1219 MergeBB->takeName(ExitBB); 1220 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1221 1222 // Now clone the original exit block. 1223 auto *ClonedExitBB = CloneBlock(ExitBB); 1224 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1225 "Exit block should have been split to have one successor!"); 1226 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1227 "Cloned exit block has the wrong successor!"); 1228 1229 // Remap any cloned instructions and create a merge phi node for them. 1230 for (auto ZippedInsts : llvm::zip_first( 1231 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1232 llvm::make_range(ClonedExitBB->begin(), 1233 std::prev(ClonedExitBB->end())))) { 1234 Instruction &I = std::get<0>(ZippedInsts); 1235 Instruction &ClonedI = std::get<1>(ZippedInsts); 1236 1237 // The only instructions in the exit block should be PHI nodes and 1238 // potentially a landing pad. 1239 assert( 1240 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1241 "Bad instruction in exit block!"); 1242 // We should have a value map between the instruction and its clone. 1243 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1244 1245 // Forget SCEVs based on exit phis in case SCEV looked through the phi. 1246 if (SE && isa<PHINode>(I)) 1247 SE->forgetValue(&I); 1248 1249 auto *MergePN = 1250 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi"); 1251 MergePN->insertBefore(MergeBB->getFirstInsertionPt()); 1252 I.replaceAllUsesWith(MergePN); 1253 MergePN->addIncoming(&I, ExitBB); 1254 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1255 } 1256 } 1257 1258 // Rewrite the instructions in the cloned blocks to refer to the instructions 1259 // in the cloned blocks. We have to do this as a second pass so that we have 1260 // everything available. Also, we have inserted new instructions which may 1261 // include assume intrinsics, so we update the assumption cache while 1262 // processing this. 1263 for (auto *ClonedBB : NewBlocks) 1264 for (Instruction &I : *ClonedBB) { 1265 RemapInstruction(&I, VMap, 1266 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1267 if (auto *II = dyn_cast<AssumeInst>(&I)) 1268 AC.registerAssumption(II); 1269 } 1270 1271 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1272 // have spurious incoming values. 1273 for (auto *LoopBB : L.blocks()) 1274 if (SkipBlock(LoopBB)) 1275 for (auto *SuccBB : successors(LoopBB)) 1276 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1277 for (PHINode &PN : ClonedSuccBB->phis()) 1278 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1279 1280 // Remove the cloned parent as a predecessor of any successor we ended up 1281 // cloning other than the unswitched one. 1282 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1283 for (auto *SuccBB : successors(ParentBB)) { 1284 if (SuccBB == UnswitchedSuccBB) 1285 continue; 1286 1287 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1288 if (!ClonedSuccBB) 1289 continue; 1290 1291 ClonedSuccBB->removePredecessor(ClonedParentBB, 1292 /*KeepOneInputPHIs*/ true); 1293 } 1294 1295 // Replace the cloned branch with an unconditional branch to the cloned 1296 // unswitched successor. 1297 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1298 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1299 // Trivial Simplification. If Terminator is a conditional branch and 1300 // condition becomes dead - erase it. 1301 Value *ClonedConditionToErase = nullptr; 1302 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1303 ClonedConditionToErase = BI->getCondition(); 1304 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1305 ClonedConditionToErase = SI->getCondition(); 1306 1307 ClonedTerminator->eraseFromParent(); 1308 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1309 1310 if (ClonedConditionToErase) 1311 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1312 MSSAU); 1313 1314 // If there are duplicate entries in the PHI nodes because of multiple edges 1315 // to the unswitched successor, we need to nuke all but one as we replaced it 1316 // with a direct branch. 1317 for (PHINode &PN : ClonedSuccBB->phis()) { 1318 bool Found = false; 1319 // Loop over the incoming operands backwards so we can easily delete as we 1320 // go without invalidating the index. 1321 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1322 if (PN.getIncomingBlock(i) != ClonedParentBB) 1323 continue; 1324 if (!Found) { 1325 Found = true; 1326 continue; 1327 } 1328 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1329 } 1330 } 1331 1332 // Record the domtree updates for the new blocks. 1333 SmallPtrSet<BasicBlock *, 4> SuccSet; 1334 for (auto *ClonedBB : NewBlocks) { 1335 for (auto *SuccBB : successors(ClonedBB)) 1336 if (SuccSet.insert(SuccBB).second) 1337 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1338 SuccSet.clear(); 1339 } 1340 1341 return ClonedPH; 1342 } 1343 1344 /// Recursively clone the specified loop and all of its children. 1345 /// 1346 /// The target parent loop for the clone should be provided, or can be null if 1347 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1348 /// with the provided value map. The entire original loop must be present in 1349 /// the value map. The cloned loop is returned. 1350 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1351 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1352 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1353 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1354 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1355 for (auto *BB : OrigL.blocks()) { 1356 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1357 ClonedL.addBlockEntry(ClonedBB); 1358 if (LI.getLoopFor(BB) == &OrigL) 1359 LI.changeLoopFor(ClonedBB, &ClonedL); 1360 } 1361 }; 1362 1363 // We specially handle the first loop because it may get cloned into 1364 // a different parent and because we most commonly are cloning leaf loops. 1365 Loop *ClonedRootL = LI.AllocateLoop(); 1366 if (RootParentL) 1367 RootParentL->addChildLoop(ClonedRootL); 1368 else 1369 LI.addTopLevelLoop(ClonedRootL); 1370 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1371 1372 if (OrigRootL.isInnermost()) 1373 return ClonedRootL; 1374 1375 // If we have a nest, we can quickly clone the entire loop nest using an 1376 // iterative approach because it is a tree. We keep the cloned parent in the 1377 // data structure to avoid repeatedly querying through a map to find it. 1378 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1379 // Build up the loops to clone in reverse order as we'll clone them from the 1380 // back. 1381 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1382 LoopsToClone.push_back({ClonedRootL, ChildL}); 1383 do { 1384 Loop *ClonedParentL, *L; 1385 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1386 Loop *ClonedL = LI.AllocateLoop(); 1387 ClonedParentL->addChildLoop(ClonedL); 1388 AddClonedBlocksToLoop(*L, *ClonedL); 1389 for (Loop *ChildL : llvm::reverse(*L)) 1390 LoopsToClone.push_back({ClonedL, ChildL}); 1391 } while (!LoopsToClone.empty()); 1392 1393 return ClonedRootL; 1394 } 1395 1396 /// Build the cloned loops of an original loop from unswitching. 1397 /// 1398 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1399 /// operation. We need to re-verify that there even is a loop (as the backedge 1400 /// may not have been cloned), and even if there are remaining backedges the 1401 /// backedge set may be different. However, we know that each child loop is 1402 /// undisturbed, we only need to find where to place each child loop within 1403 /// either any parent loop or within a cloned version of the original loop. 1404 /// 1405 /// Because child loops may end up cloned outside of any cloned version of the 1406 /// original loop, multiple cloned sibling loops may be created. All of them 1407 /// are returned so that the newly introduced loop nest roots can be 1408 /// identified. 1409 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1410 const ValueToValueMapTy &VMap, LoopInfo &LI, 1411 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1412 Loop *ClonedL = nullptr; 1413 1414 auto *OrigPH = OrigL.getLoopPreheader(); 1415 auto *OrigHeader = OrigL.getHeader(); 1416 1417 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1418 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1419 1420 // We need to know the loops of the cloned exit blocks to even compute the 1421 // accurate parent loop. If we only clone exits to some parent of the 1422 // original parent, we want to clone into that outer loop. We also keep track 1423 // of the loops that our cloned exit blocks participate in. 1424 Loop *ParentL = nullptr; 1425 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1426 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1427 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1428 for (auto *ExitBB : ExitBlocks) 1429 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1430 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1431 ExitLoopMap[ClonedExitBB] = ExitL; 1432 ClonedExitsInLoops.push_back(ClonedExitBB); 1433 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1434 ParentL = ExitL; 1435 } 1436 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1437 ParentL->contains(OrigL.getParentLoop())) && 1438 "The computed parent loop should always contain (or be) the parent of " 1439 "the original loop."); 1440 1441 // We build the set of blocks dominated by the cloned header from the set of 1442 // cloned blocks out of the original loop. While not all of these will 1443 // necessarily be in the cloned loop, it is enough to establish that they 1444 // aren't in unreachable cycles, etc. 1445 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1446 for (auto *BB : OrigL.blocks()) 1447 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1448 ClonedLoopBlocks.insert(ClonedBB); 1449 1450 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1451 // skipped cloning some region of this loop which can in turn skip some of 1452 // the backedges so we have to rebuild the blocks in the loop based on the 1453 // backedges that remain after cloning. 1454 SmallVector<BasicBlock *, 16> Worklist; 1455 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1456 for (auto *Pred : predecessors(ClonedHeader)) { 1457 // The only possible non-loop header predecessor is the preheader because 1458 // we know we cloned the loop in simplified form. 1459 if (Pred == ClonedPH) 1460 continue; 1461 1462 // Because the loop was in simplified form, the only non-loop predecessor 1463 // should be the preheader. 1464 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1465 "header other than the preheader " 1466 "that is not part of the loop!"); 1467 1468 // Insert this block into the loop set and on the first visit (and if it 1469 // isn't the header we're currently walking) put it into the worklist to 1470 // recurse through. 1471 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1472 Worklist.push_back(Pred); 1473 } 1474 1475 // If we had any backedges then there *is* a cloned loop. Put the header into 1476 // the loop set and then walk the worklist backwards to find all the blocks 1477 // that remain within the loop after cloning. 1478 if (!BlocksInClonedLoop.empty()) { 1479 BlocksInClonedLoop.insert(ClonedHeader); 1480 1481 while (!Worklist.empty()) { 1482 BasicBlock *BB = Worklist.pop_back_val(); 1483 assert(BlocksInClonedLoop.count(BB) && 1484 "Didn't put block into the loop set!"); 1485 1486 // Insert any predecessors that are in the possible set into the cloned 1487 // set, and if the insert is successful, add them to the worklist. Note 1488 // that we filter on the blocks that are definitely reachable via the 1489 // backedge to the loop header so we may prune out dead code within the 1490 // cloned loop. 1491 for (auto *Pred : predecessors(BB)) 1492 if (ClonedLoopBlocks.count(Pred) && 1493 BlocksInClonedLoop.insert(Pred).second) 1494 Worklist.push_back(Pred); 1495 } 1496 1497 ClonedL = LI.AllocateLoop(); 1498 if (ParentL) { 1499 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1500 ParentL->addChildLoop(ClonedL); 1501 } else { 1502 LI.addTopLevelLoop(ClonedL); 1503 } 1504 NonChildClonedLoops.push_back(ClonedL); 1505 1506 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1507 // We don't want to just add the cloned loop blocks based on how we 1508 // discovered them. The original order of blocks was carefully built in 1509 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1510 // that logic, we just re-walk the original blocks (and those of the child 1511 // loops) and filter them as we add them into the cloned loop. 1512 for (auto *BB : OrigL.blocks()) { 1513 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1514 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1515 continue; 1516 1517 // Directly add the blocks that are only in this loop. 1518 if (LI.getLoopFor(BB) == &OrigL) { 1519 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1520 continue; 1521 } 1522 1523 // We want to manually add it to this loop and parents. 1524 // Registering it with LoopInfo will happen when we clone the top 1525 // loop for this block. 1526 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1527 PL->addBlockEntry(ClonedBB); 1528 } 1529 1530 // Now add each child loop whose header remains within the cloned loop. All 1531 // of the blocks within the loop must satisfy the same constraints as the 1532 // header so once we pass the header checks we can just clone the entire 1533 // child loop nest. 1534 for (Loop *ChildL : OrigL) { 1535 auto *ClonedChildHeader = 1536 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1537 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1538 continue; 1539 1540 #ifndef NDEBUG 1541 // We should never have a cloned child loop header but fail to have 1542 // all of the blocks for that child loop. 1543 for (auto *ChildLoopBB : ChildL->blocks()) 1544 assert(BlocksInClonedLoop.count( 1545 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1546 "Child cloned loop has a header within the cloned outer " 1547 "loop but not all of its blocks!"); 1548 #endif 1549 1550 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1551 } 1552 } 1553 1554 // Now that we've handled all the components of the original loop that were 1555 // cloned into a new loop, we still need to handle anything from the original 1556 // loop that wasn't in a cloned loop. 1557 1558 // Figure out what blocks are left to place within any loop nest containing 1559 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1560 // them. 1561 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1562 if (BlocksInClonedLoop.empty()) 1563 UnloopedBlockSet.insert(ClonedPH); 1564 for (auto *ClonedBB : ClonedLoopBlocks) 1565 if (!BlocksInClonedLoop.count(ClonedBB)) 1566 UnloopedBlockSet.insert(ClonedBB); 1567 1568 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1569 // backwards across these to process them inside out. The order shouldn't 1570 // matter as we're just trying to build up the map from inside-out; we use 1571 // the map in a more stably ordered way below. 1572 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1573 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1574 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1575 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1576 }); 1577 1578 // Populate the existing ExitLoopMap with everything reachable from each 1579 // exit, starting from the inner most exit. 1580 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1581 assert(Worklist.empty() && "Didn't clear worklist!"); 1582 1583 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1584 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1585 1586 // Walk the CFG back until we hit the cloned PH adding everything reachable 1587 // and in the unlooped set to this exit block's loop. 1588 Worklist.push_back(ExitBB); 1589 do { 1590 BasicBlock *BB = Worklist.pop_back_val(); 1591 // We can stop recursing at the cloned preheader (if we get there). 1592 if (BB == ClonedPH) 1593 continue; 1594 1595 for (BasicBlock *PredBB : predecessors(BB)) { 1596 // If this pred has already been moved to our set or is part of some 1597 // (inner) loop, no update needed. 1598 if (!UnloopedBlockSet.erase(PredBB)) { 1599 assert( 1600 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1601 "Predecessor not mapped to a loop!"); 1602 continue; 1603 } 1604 1605 // We just insert into the loop set here. We'll add these blocks to the 1606 // exit loop after we build up the set in an order that doesn't rely on 1607 // predecessor order (which in turn relies on use list order). 1608 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1609 (void)Inserted; 1610 assert(Inserted && "Should only visit an unlooped block once!"); 1611 1612 // And recurse through to its predecessors. 1613 Worklist.push_back(PredBB); 1614 } 1615 } while (!Worklist.empty()); 1616 } 1617 1618 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1619 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1620 // in their original order adding them to the correct loop. 1621 1622 // We need a stable insertion order. We use the order of the original loop 1623 // order and map into the correct parent loop. 1624 for (auto *BB : llvm::concat<BasicBlock *const>( 1625 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1626 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1627 OuterL->addBasicBlockToLoop(BB, LI); 1628 1629 #ifndef NDEBUG 1630 for (auto &BBAndL : ExitLoopMap) { 1631 auto *BB = BBAndL.first; 1632 auto *OuterL = BBAndL.second; 1633 assert(LI.getLoopFor(BB) == OuterL && 1634 "Failed to put all blocks into outer loops!"); 1635 } 1636 #endif 1637 1638 // Now that all the blocks are placed into the correct containing loop in the 1639 // absence of child loops, find all the potentially cloned child loops and 1640 // clone them into whatever outer loop we placed their header into. 1641 for (Loop *ChildL : OrigL) { 1642 auto *ClonedChildHeader = 1643 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1644 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1645 continue; 1646 1647 #ifndef NDEBUG 1648 for (auto *ChildLoopBB : ChildL->blocks()) 1649 assert(VMap.count(ChildLoopBB) && 1650 "Cloned a child loop header but not all of that loops blocks!"); 1651 #endif 1652 1653 NonChildClonedLoops.push_back(cloneLoopNest( 1654 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1655 } 1656 } 1657 1658 static void 1659 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1660 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1661 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1662 // Find all the dead clones, and remove them from their successors. 1663 SmallVector<BasicBlock *, 16> DeadBlocks; 1664 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1665 for (const auto &VMap : VMaps) 1666 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1667 if (!DT.isReachableFromEntry(ClonedBB)) { 1668 for (BasicBlock *SuccBB : successors(ClonedBB)) 1669 SuccBB->removePredecessor(ClonedBB); 1670 DeadBlocks.push_back(ClonedBB); 1671 } 1672 1673 // Remove all MemorySSA in the dead blocks 1674 if (MSSAU) { 1675 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1676 DeadBlocks.end()); 1677 MSSAU->removeBlocks(DeadBlockSet); 1678 } 1679 1680 // Drop any remaining references to break cycles. 1681 for (BasicBlock *BB : DeadBlocks) 1682 BB->dropAllReferences(); 1683 // Erase them from the IR. 1684 for (BasicBlock *BB : DeadBlocks) 1685 BB->eraseFromParent(); 1686 } 1687 1688 static void 1689 deleteDeadBlocksFromLoop(Loop &L, 1690 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1691 DominatorTree &DT, LoopInfo &LI, 1692 MemorySSAUpdater *MSSAU, 1693 ScalarEvolution *SE, 1694 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1695 // Find all the dead blocks tied to this loop, and remove them from their 1696 // successors. 1697 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1698 1699 // Start with loop/exit blocks and get a transitive closure of reachable dead 1700 // blocks. 1701 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1702 ExitBlocks.end()); 1703 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1704 while (!DeathCandidates.empty()) { 1705 auto *BB = DeathCandidates.pop_back_val(); 1706 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1707 for (BasicBlock *SuccBB : successors(BB)) { 1708 SuccBB->removePredecessor(BB); 1709 DeathCandidates.push_back(SuccBB); 1710 } 1711 DeadBlockSet.insert(BB); 1712 } 1713 } 1714 1715 // Remove all MemorySSA in the dead blocks 1716 if (MSSAU) 1717 MSSAU->removeBlocks(DeadBlockSet); 1718 1719 // Filter out the dead blocks from the exit blocks list so that it can be 1720 // used in the caller. 1721 llvm::erase_if(ExitBlocks, 1722 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1723 1724 // Walk from this loop up through its parents removing all of the dead blocks. 1725 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1726 for (auto *BB : DeadBlockSet) 1727 ParentL->getBlocksSet().erase(BB); 1728 llvm::erase_if(ParentL->getBlocksVector(), 1729 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1730 } 1731 1732 // Now delete the dead child loops. This raw delete will clear them 1733 // recursively. 1734 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1735 if (!DeadBlockSet.count(ChildL->getHeader())) 1736 return false; 1737 1738 assert(llvm::all_of(ChildL->blocks(), 1739 [&](BasicBlock *ChildBB) { 1740 return DeadBlockSet.count(ChildBB); 1741 }) && 1742 "If the child loop header is dead all blocks in the child loop must " 1743 "be dead as well!"); 1744 DestroyLoopCB(*ChildL, ChildL->getName()); 1745 if (SE) 1746 SE->forgetBlockAndLoopDispositions(); 1747 LI.destroy(ChildL); 1748 return true; 1749 }); 1750 1751 // Remove the loop mappings for the dead blocks and drop all the references 1752 // from these blocks to others to handle cyclic references as we start 1753 // deleting the blocks themselves. 1754 for (auto *BB : DeadBlockSet) { 1755 // Check that the dominator tree has already been updated. 1756 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1757 LI.changeLoopFor(BB, nullptr); 1758 // Drop all uses of the instructions to make sure we won't have dangling 1759 // uses in other blocks. 1760 for (auto &I : *BB) 1761 if (!I.use_empty()) 1762 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 1763 BB->dropAllReferences(); 1764 } 1765 1766 // Actually delete the blocks now that they've been fully unhooked from the 1767 // IR. 1768 for (auto *BB : DeadBlockSet) 1769 BB->eraseFromParent(); 1770 } 1771 1772 /// Recompute the set of blocks in a loop after unswitching. 1773 /// 1774 /// This walks from the original headers predecessors to rebuild the loop. We 1775 /// take advantage of the fact that new blocks can't have been added, and so we 1776 /// filter by the original loop's blocks. This also handles potentially 1777 /// unreachable code that we don't want to explore but might be found examining 1778 /// the predecessors of the header. 1779 /// 1780 /// If the original loop is no longer a loop, this will return an empty set. If 1781 /// it remains a loop, all the blocks within it will be added to the set 1782 /// (including those blocks in inner loops). 1783 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1784 LoopInfo &LI) { 1785 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1786 1787 auto *PH = L.getLoopPreheader(); 1788 auto *Header = L.getHeader(); 1789 1790 // A worklist to use while walking backwards from the header. 1791 SmallVector<BasicBlock *, 16> Worklist; 1792 1793 // First walk the predecessors of the header to find the backedges. This will 1794 // form the basis of our walk. 1795 for (auto *Pred : predecessors(Header)) { 1796 // Skip the preheader. 1797 if (Pred == PH) 1798 continue; 1799 1800 // Because the loop was in simplified form, the only non-loop predecessor 1801 // is the preheader. 1802 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1803 "than the preheader that is not part of the " 1804 "loop!"); 1805 1806 // Insert this block into the loop set and on the first visit and, if it 1807 // isn't the header we're currently walking, put it into the worklist to 1808 // recurse through. 1809 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1810 Worklist.push_back(Pred); 1811 } 1812 1813 // If no backedges were found, we're done. 1814 if (LoopBlockSet.empty()) 1815 return LoopBlockSet; 1816 1817 // We found backedges, recurse through them to identify the loop blocks. 1818 while (!Worklist.empty()) { 1819 BasicBlock *BB = Worklist.pop_back_val(); 1820 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1821 1822 // No need to walk past the header. 1823 if (BB == Header) 1824 continue; 1825 1826 // Because we know the inner loop structure remains valid we can use the 1827 // loop structure to jump immediately across the entire nested loop. 1828 // Further, because it is in loop simplified form, we can directly jump 1829 // to its preheader afterward. 1830 if (Loop *InnerL = LI.getLoopFor(BB)) 1831 if (InnerL != &L) { 1832 assert(L.contains(InnerL) && 1833 "Should not reach a loop *outside* this loop!"); 1834 // The preheader is the only possible predecessor of the loop so 1835 // insert it into the set and check whether it was already handled. 1836 auto *InnerPH = InnerL->getLoopPreheader(); 1837 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1838 "but not contain the inner loop " 1839 "preheader!"); 1840 if (!LoopBlockSet.insert(InnerPH).second) 1841 // The only way to reach the preheader is through the loop body 1842 // itself so if it has been visited the loop is already handled. 1843 continue; 1844 1845 // Insert all of the blocks (other than those already present) into 1846 // the loop set. We expect at least the block that led us to find the 1847 // inner loop to be in the block set, but we may also have other loop 1848 // blocks if they were already enqueued as predecessors of some other 1849 // outer loop block. 1850 for (auto *InnerBB : InnerL->blocks()) { 1851 if (InnerBB == BB) { 1852 assert(LoopBlockSet.count(InnerBB) && 1853 "Block should already be in the set!"); 1854 continue; 1855 } 1856 1857 LoopBlockSet.insert(InnerBB); 1858 } 1859 1860 // Add the preheader to the worklist so we will continue past the 1861 // loop body. 1862 Worklist.push_back(InnerPH); 1863 continue; 1864 } 1865 1866 // Insert any predecessors that were in the original loop into the new 1867 // set, and if the insert is successful, add them to the worklist. 1868 for (auto *Pred : predecessors(BB)) 1869 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1870 Worklist.push_back(Pred); 1871 } 1872 1873 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1874 1875 // We've found all the blocks participating in the loop, return our completed 1876 // set. 1877 return LoopBlockSet; 1878 } 1879 1880 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1881 /// 1882 /// The removal may have removed some child loops entirely but cannot have 1883 /// disturbed any remaining child loops. However, they may need to be hoisted 1884 /// to the parent loop (or to be top-level loops). The original loop may be 1885 /// completely removed. 1886 /// 1887 /// The sibling loops resulting from this update are returned. If the original 1888 /// loop remains a valid loop, it will be the first entry in this list with all 1889 /// of the newly sibling loops following it. 1890 /// 1891 /// Returns true if the loop remains a loop after unswitching, and false if it 1892 /// is no longer a loop after unswitching (and should not continue to be 1893 /// referenced). 1894 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1895 LoopInfo &LI, 1896 SmallVectorImpl<Loop *> &HoistedLoops, 1897 ScalarEvolution *SE) { 1898 auto *PH = L.getLoopPreheader(); 1899 1900 // Compute the actual parent loop from the exit blocks. Because we may have 1901 // pruned some exits the loop may be different from the original parent. 1902 Loop *ParentL = nullptr; 1903 SmallVector<Loop *, 4> ExitLoops; 1904 SmallVector<BasicBlock *, 4> ExitsInLoops; 1905 ExitsInLoops.reserve(ExitBlocks.size()); 1906 for (auto *ExitBB : ExitBlocks) 1907 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1908 ExitLoops.push_back(ExitL); 1909 ExitsInLoops.push_back(ExitBB); 1910 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1911 ParentL = ExitL; 1912 } 1913 1914 // Recompute the blocks participating in this loop. This may be empty if it 1915 // is no longer a loop. 1916 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1917 1918 // If we still have a loop, we need to re-set the loop's parent as the exit 1919 // block set changing may have moved it within the loop nest. Note that this 1920 // can only happen when this loop has a parent as it can only hoist the loop 1921 // *up* the nest. 1922 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1923 // Remove this loop's (original) blocks from all of the intervening loops. 1924 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1925 IL = IL->getParentLoop()) { 1926 IL->getBlocksSet().erase(PH); 1927 for (auto *BB : L.blocks()) 1928 IL->getBlocksSet().erase(BB); 1929 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1930 return BB == PH || L.contains(BB); 1931 }); 1932 } 1933 1934 LI.changeLoopFor(PH, ParentL); 1935 L.getParentLoop()->removeChildLoop(&L); 1936 if (ParentL) 1937 ParentL->addChildLoop(&L); 1938 else 1939 LI.addTopLevelLoop(&L); 1940 } 1941 1942 // Now we update all the blocks which are no longer within the loop. 1943 auto &Blocks = L.getBlocksVector(); 1944 auto BlocksSplitI = 1945 LoopBlockSet.empty() 1946 ? Blocks.begin() 1947 : std::stable_partition( 1948 Blocks.begin(), Blocks.end(), 1949 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1950 1951 // Before we erase the list of unlooped blocks, build a set of them. 1952 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1953 if (LoopBlockSet.empty()) 1954 UnloopedBlocks.insert(PH); 1955 1956 // Now erase these blocks from the loop. 1957 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1958 L.getBlocksSet().erase(BB); 1959 Blocks.erase(BlocksSplitI, Blocks.end()); 1960 1961 // Sort the exits in ascending loop depth, we'll work backwards across these 1962 // to process them inside out. 1963 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1964 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1965 }); 1966 1967 // We'll build up a set for each exit loop. 1968 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1969 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1970 1971 auto RemoveUnloopedBlocksFromLoop = 1972 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1973 for (auto *BB : UnloopedBlocks) 1974 L.getBlocksSet().erase(BB); 1975 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1976 return UnloopedBlocks.count(BB); 1977 }); 1978 }; 1979 1980 SmallVector<BasicBlock *, 16> Worklist; 1981 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1982 assert(Worklist.empty() && "Didn't clear worklist!"); 1983 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1984 1985 // Grab the next exit block, in decreasing loop depth order. 1986 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1987 Loop &ExitL = *LI.getLoopFor(ExitBB); 1988 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1989 1990 // Erase all of the unlooped blocks from the loops between the previous 1991 // exit loop and this exit loop. This works because the ExitInLoops list is 1992 // sorted in increasing order of loop depth and thus we visit loops in 1993 // decreasing order of loop depth. 1994 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1995 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1996 1997 // Walk the CFG back until we hit the cloned PH adding everything reachable 1998 // and in the unlooped set to this exit block's loop. 1999 Worklist.push_back(ExitBB); 2000 do { 2001 BasicBlock *BB = Worklist.pop_back_val(); 2002 // We can stop recursing at the cloned preheader (if we get there). 2003 if (BB == PH) 2004 continue; 2005 2006 for (BasicBlock *PredBB : predecessors(BB)) { 2007 // If this pred has already been moved to our set or is part of some 2008 // (inner) loop, no update needed. 2009 if (!UnloopedBlocks.erase(PredBB)) { 2010 assert((NewExitLoopBlocks.count(PredBB) || 2011 ExitL.contains(LI.getLoopFor(PredBB))) && 2012 "Predecessor not in a nested loop (or already visited)!"); 2013 continue; 2014 } 2015 2016 // We just insert into the loop set here. We'll add these blocks to the 2017 // exit loop after we build up the set in a deterministic order rather 2018 // than the predecessor-influenced visit order. 2019 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 2020 (void)Inserted; 2021 assert(Inserted && "Should only visit an unlooped block once!"); 2022 2023 // And recurse through to its predecessors. 2024 Worklist.push_back(PredBB); 2025 } 2026 } while (!Worklist.empty()); 2027 2028 // If blocks in this exit loop were directly part of the original loop (as 2029 // opposed to a child loop) update the map to point to this exit loop. This 2030 // just updates a map and so the fact that the order is unstable is fine. 2031 for (auto *BB : NewExitLoopBlocks) 2032 if (Loop *BBL = LI.getLoopFor(BB)) 2033 if (BBL == &L || !L.contains(BBL)) 2034 LI.changeLoopFor(BB, &ExitL); 2035 2036 // We will remove the remaining unlooped blocks from this loop in the next 2037 // iteration or below. 2038 NewExitLoopBlocks.clear(); 2039 } 2040 2041 // Any remaining unlooped blocks are no longer part of any loop unless they 2042 // are part of some child loop. 2043 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 2044 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 2045 for (auto *BB : UnloopedBlocks) 2046 if (Loop *BBL = LI.getLoopFor(BB)) 2047 if (BBL == &L || !L.contains(BBL)) 2048 LI.changeLoopFor(BB, nullptr); 2049 2050 // Sink all the child loops whose headers are no longer in the loop set to 2051 // the parent (or to be top level loops). We reach into the loop and directly 2052 // update its subloop vector to make this batch update efficient. 2053 auto &SubLoops = L.getSubLoopsVector(); 2054 auto SubLoopsSplitI = 2055 LoopBlockSet.empty() 2056 ? SubLoops.begin() 2057 : std::stable_partition( 2058 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 2059 return LoopBlockSet.count(SubL->getHeader()); 2060 }); 2061 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 2062 HoistedLoops.push_back(HoistedL); 2063 HoistedL->setParentLoop(nullptr); 2064 2065 // To compute the new parent of this hoisted loop we look at where we 2066 // placed the preheader above. We can't lookup the header itself because we 2067 // retained the mapping from the header to the hoisted loop. But the 2068 // preheader and header should have the exact same new parent computed 2069 // based on the set of exit blocks from the original loop as the preheader 2070 // is a predecessor of the header and so reached in the reverse walk. And 2071 // because the loops were all in simplified form the preheader of the 2072 // hoisted loop can't be part of some *other* loop. 2073 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 2074 NewParentL->addChildLoop(HoistedL); 2075 else 2076 LI.addTopLevelLoop(HoistedL); 2077 } 2078 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 2079 2080 // Actually delete the loop if nothing remained within it. 2081 if (Blocks.empty()) { 2082 assert(SubLoops.empty() && 2083 "Failed to remove all subloops from the original loop!"); 2084 if (Loop *ParentL = L.getParentLoop()) 2085 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 2086 else 2087 LI.removeLoop(llvm::find(LI, &L)); 2088 // markLoopAsDeleted for L should be triggered by the caller (it is typically 2089 // done by using the UnswitchCB callback). 2090 if (SE) 2091 SE->forgetBlockAndLoopDispositions(); 2092 LI.destroy(&L); 2093 return false; 2094 } 2095 2096 return true; 2097 } 2098 2099 /// Helper to visit a dominator subtree, invoking a callable on each node. 2100 /// 2101 /// Returning false at any point will stop walking past that node of the tree. 2102 template <typename CallableT> 2103 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2104 SmallVector<DomTreeNode *, 4> DomWorklist; 2105 DomWorklist.push_back(DT[BB]); 2106 #ifndef NDEBUG 2107 SmallPtrSet<DomTreeNode *, 4> Visited; 2108 Visited.insert(DT[BB]); 2109 #endif 2110 do { 2111 DomTreeNode *N = DomWorklist.pop_back_val(); 2112 2113 // Visit this node. 2114 if (!Callable(N->getBlock())) 2115 continue; 2116 2117 // Accumulate the child nodes. 2118 for (DomTreeNode *ChildN : *N) { 2119 assert(Visited.insert(ChildN).second && 2120 "Cannot visit a node twice when walking a tree!"); 2121 DomWorklist.push_back(ChildN); 2122 } 2123 } while (!DomWorklist.empty()); 2124 } 2125 2126 static void unswitchNontrivialInvariants( 2127 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2128 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, 2129 AssumptionCache &AC, 2130 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2131 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2132 function_ref<void(Loop &, StringRef)> DestroyLoopCB, bool InsertFreeze) { 2133 auto *ParentBB = TI.getParent(); 2134 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2135 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2136 2137 // We can only unswitch switches, conditional branches with an invariant 2138 // condition, or combining invariant conditions with an instruction or 2139 // partially invariant instructions. 2140 assert((SI || (BI && BI->isConditional())) && 2141 "Can only unswitch switches and conditional branch!"); 2142 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2143 bool FullUnswitch = 2144 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && 2145 !PartiallyInvariant); 2146 if (FullUnswitch) 2147 assert(Invariants.size() == 1 && 2148 "Cannot have other invariants with full unswitching!"); 2149 else 2150 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && 2151 "Partial unswitching requires an instruction as the condition!"); 2152 2153 if (MSSAU && VerifyMemorySSA) 2154 MSSAU->getMemorySSA()->verifyMemorySSA(); 2155 2156 // Constant and BBs tracking the cloned and continuing successor. When we are 2157 // unswitching the entire condition, this can just be trivially chosen to 2158 // unswitch towards `true`. However, when we are unswitching a set of 2159 // invariants combined with `and` or `or` or partially invariant instructions, 2160 // the combining operation determines the best direction to unswitch: we want 2161 // to unswitch the direction that will collapse the branch. 2162 bool Direction = true; 2163 int ClonedSucc = 0; 2164 if (!FullUnswitch) { 2165 Value *Cond = skipTrivialSelect(BI->getCondition()); 2166 (void)Cond; 2167 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2168 PartiallyInvariant) && 2169 "Only `or`, `and`, an `select`, partially invariant instructions " 2170 "can combine invariants being unswitched."); 2171 if (!match(Cond, m_LogicalOr())) { 2172 if (match(Cond, m_LogicalAnd()) || 2173 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2174 Direction = false; 2175 ClonedSucc = 1; 2176 } 2177 } 2178 } 2179 2180 BasicBlock *RetainedSuccBB = 2181 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2182 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2183 if (BI) 2184 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2185 else 2186 for (auto Case : SI->cases()) 2187 if (Case.getCaseSuccessor() != RetainedSuccBB) 2188 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2189 2190 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2191 "Should not unswitch the same successor we are retaining!"); 2192 2193 // The branch should be in this exact loop. Any inner loop's invariant branch 2194 // should be handled by unswitching that inner loop. The caller of this 2195 // routine should filter out any candidates that remain (but were skipped for 2196 // whatever reason). 2197 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2198 2199 // Compute the parent loop now before we start hacking on things. 2200 Loop *ParentL = L.getParentLoop(); 2201 // Get blocks in RPO order for MSSA update, before changing the CFG. 2202 LoopBlocksRPO LBRPO(&L); 2203 if (MSSAU) 2204 LBRPO.perform(&LI); 2205 2206 // Compute the outer-most loop containing one of our exit blocks. This is the 2207 // furthest up our loopnest which can be mutated, which we will use below to 2208 // update things. 2209 Loop *OuterExitL = &L; 2210 SmallVector<BasicBlock *, 4> ExitBlocks; 2211 L.getUniqueExitBlocks(ExitBlocks); 2212 for (auto *ExitBB : ExitBlocks) { 2213 // ExitBB can be an exit block for several levels in the loop nest. Make 2214 // sure we find the top most. 2215 Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI); 2216 if (!NewOuterExitL) { 2217 // We exited the entire nest with this block, so we're done. 2218 OuterExitL = nullptr; 2219 break; 2220 } 2221 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2222 OuterExitL = NewOuterExitL; 2223 } 2224 2225 // At this point, we're definitely going to unswitch something so invalidate 2226 // any cached information in ScalarEvolution for the outer most loop 2227 // containing an exit block and all nested loops. 2228 if (SE) { 2229 if (OuterExitL) 2230 SE->forgetLoop(OuterExitL); 2231 else 2232 SE->forgetTopmostLoop(&L); 2233 SE->forgetBlockAndLoopDispositions(); 2234 } 2235 2236 // If the edge from this terminator to a successor dominates that successor, 2237 // store a map from each block in its dominator subtree to it. This lets us 2238 // tell when cloning for a particular successor if a block is dominated by 2239 // some *other* successor with a single data structure. We use this to 2240 // significantly reduce cloning. 2241 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2242 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB), 2243 UnswitchedSuccBBs)) 2244 if (SuccBB->getUniquePredecessor() || 2245 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2246 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2247 })) 2248 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2249 DominatingSucc[BB] = SuccBB; 2250 return true; 2251 }); 2252 2253 // Split the preheader, so that we know that there is a safe place to insert 2254 // the conditional branch. We will change the preheader to have a conditional 2255 // branch on LoopCond. The original preheader will become the split point 2256 // between the unswitched versions, and we will have a new preheader for the 2257 // original loop. 2258 BasicBlock *SplitBB = L.getLoopPreheader(); 2259 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2260 2261 // Keep track of the dominator tree updates needed. 2262 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2263 2264 // Clone the loop for each unswitched successor. 2265 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2266 VMaps.reserve(UnswitchedSuccBBs.size()); 2267 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2268 for (auto *SuccBB : UnswitchedSuccBBs) { 2269 VMaps.emplace_back(new ValueToValueMapTy()); 2270 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2271 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2272 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE); 2273 } 2274 2275 // Drop metadata if we may break its semantics by moving this instr into the 2276 // split block. 2277 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2278 if (DropNonTrivialImplicitNullChecks) 2279 // Do not spend time trying to understand if we can keep it, just drop it 2280 // to save compile time. 2281 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2282 else { 2283 // It is only legal to preserve make.implicit metadata if we are 2284 // guaranteed no reach implicit null check after following this branch. 2285 ICFLoopSafetyInfo SafetyInfo; 2286 SafetyInfo.computeLoopSafetyInfo(&L); 2287 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2288 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2289 } 2290 } 2291 2292 // The stitching of the branched code back together depends on whether we're 2293 // doing full unswitching or not with the exception that we always want to 2294 // nuke the initial terminator placed in the split block. 2295 SplitBB->getTerminator()->eraseFromParent(); 2296 if (FullUnswitch) { 2297 // Splice the terminator from the original loop and rewrite its 2298 // successors. 2299 TI.moveBefore(*SplitBB, SplitBB->end()); 2300 2301 // Keep a clone of the terminator for MSSA updates. 2302 Instruction *NewTI = TI.clone(); 2303 NewTI->insertInto(ParentBB, ParentBB->end()); 2304 2305 // First wire up the moved terminator to the preheaders. 2306 if (BI) { 2307 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2308 BI->setSuccessor(ClonedSucc, ClonedPH); 2309 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2310 Value *Cond = skipTrivialSelect(BI->getCondition()); 2311 if (InsertFreeze) 2312 Cond = new FreezeInst( 2313 Cond, Cond->getName() + ".fr", BI); 2314 BI->setCondition(Cond); 2315 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2316 } else { 2317 assert(SI && "Must either be a branch or switch!"); 2318 2319 // Walk the cases and directly update their successors. 2320 assert(SI->getDefaultDest() == RetainedSuccBB && 2321 "Not retaining default successor!"); 2322 SI->setDefaultDest(LoopPH); 2323 for (const auto &Case : SI->cases()) 2324 if (Case.getCaseSuccessor() == RetainedSuccBB) 2325 Case.setSuccessor(LoopPH); 2326 else 2327 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2328 2329 if (InsertFreeze) 2330 SI->setCondition(new FreezeInst( 2331 SI->getCondition(), SI->getCondition()->getName() + ".fr", SI)); 2332 2333 // We need to use the set to populate domtree updates as even when there 2334 // are multiple cases pointing at the same successor we only want to 2335 // remove and insert one edge in the domtree. 2336 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2337 DTUpdates.push_back( 2338 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2339 } 2340 2341 if (MSSAU) { 2342 DT.applyUpdates(DTUpdates); 2343 DTUpdates.clear(); 2344 2345 // Remove all but one edge to the retained block and all unswitched 2346 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2347 // when we know we only keep a single edge for each case. 2348 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2349 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2350 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2351 2352 for (auto &VMap : VMaps) 2353 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2354 /*IgnoreIncomingWithNoClones=*/true); 2355 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2356 2357 // Remove all edges to unswitched blocks. 2358 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2359 MSSAU->removeEdge(ParentBB, SuccBB); 2360 } 2361 2362 // Now unhook the successor relationship as we'll be replacing 2363 // the terminator with a direct branch. This is much simpler for branches 2364 // than switches so we handle those first. 2365 if (BI) { 2366 // Remove the parent as a predecessor of the unswitched successor. 2367 assert(UnswitchedSuccBBs.size() == 1 && 2368 "Only one possible unswitched block for a branch!"); 2369 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2370 UnswitchedSuccBB->removePredecessor(ParentBB, 2371 /*KeepOneInputPHIs*/ true); 2372 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2373 } else { 2374 // Note that we actually want to remove the parent block as a predecessor 2375 // of *every* case successor. The case successor is either unswitched, 2376 // completely eliminating an edge from the parent to that successor, or it 2377 // is a duplicate edge to the retained successor as the retained successor 2378 // is always the default successor and as we'll replace this with a direct 2379 // branch we no longer need the duplicate entries in the PHI nodes. 2380 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2381 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2382 "Not retaining default successor!"); 2383 for (const auto &Case : NewSI->cases()) 2384 Case.getCaseSuccessor()->removePredecessor( 2385 ParentBB, 2386 /*KeepOneInputPHIs*/ true); 2387 2388 // We need to use the set to populate domtree updates as even when there 2389 // are multiple cases pointing at the same successor we only want to 2390 // remove and insert one edge in the domtree. 2391 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2392 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2393 } 2394 2395 // After MSSAU update, remove the cloned terminator instruction NewTI. 2396 ParentBB->getTerminator()->eraseFromParent(); 2397 2398 // Create a new unconditional branch to the continuing block (as opposed to 2399 // the one cloned). 2400 BranchInst::Create(RetainedSuccBB, ParentBB); 2401 } else { 2402 assert(BI && "Only branches have partial unswitching."); 2403 assert(UnswitchedSuccBBs.size() == 1 && 2404 "Only one possible unswitched block for a branch!"); 2405 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2406 // When doing a partial unswitch, we have to do a bit more work to build up 2407 // the branch in the split block. 2408 if (PartiallyInvariant) 2409 buildPartialInvariantUnswitchConditionalBranch( 2410 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2411 else { 2412 buildPartialUnswitchConditionalBranch( 2413 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 2414 FreezeLoopUnswitchCond, BI, &AC, DT); 2415 } 2416 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2417 2418 if (MSSAU) { 2419 DT.applyUpdates(DTUpdates); 2420 DTUpdates.clear(); 2421 2422 // Perform MSSA cloning updates. 2423 for (auto &VMap : VMaps) 2424 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2425 /*IgnoreIncomingWithNoClones=*/true); 2426 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2427 } 2428 } 2429 2430 // Apply the updates accumulated above to get an up-to-date dominator tree. 2431 DT.applyUpdates(DTUpdates); 2432 2433 // Now that we have an accurate dominator tree, first delete the dead cloned 2434 // blocks so that we can accurately build any cloned loops. It is important to 2435 // not delete the blocks from the original loop yet because we still want to 2436 // reference the original loop to understand the cloned loop's structure. 2437 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2438 2439 // Build the cloned loop structure itself. This may be substantially 2440 // different from the original structure due to the simplified CFG. This also 2441 // handles inserting all the cloned blocks into the correct loops. 2442 SmallVector<Loop *, 4> NonChildClonedLoops; 2443 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2444 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2445 2446 // Now that our cloned loops have been built, we can update the original loop. 2447 // First we delete the dead blocks from it and then we rebuild the loop 2448 // structure taking these deletions into account. 2449 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB); 2450 2451 if (MSSAU && VerifyMemorySSA) 2452 MSSAU->getMemorySSA()->verifyMemorySSA(); 2453 2454 SmallVector<Loop *, 4> HoistedLoops; 2455 bool IsStillLoop = 2456 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE); 2457 2458 if (MSSAU && VerifyMemorySSA) 2459 MSSAU->getMemorySSA()->verifyMemorySSA(); 2460 2461 // This transformation has a high risk of corrupting the dominator tree, and 2462 // the below steps to rebuild loop structures will result in hard to debug 2463 // errors in that case so verify that the dominator tree is sane first. 2464 // FIXME: Remove this when the bugs stop showing up and rely on existing 2465 // verification steps. 2466 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2467 2468 if (BI && !PartiallyInvariant) { 2469 // If we unswitched a branch which collapses the condition to a known 2470 // constant we want to replace all the uses of the invariants within both 2471 // the original and cloned blocks. We do this here so that we can use the 2472 // now updated dominator tree to identify which side the users are on. 2473 assert(UnswitchedSuccBBs.size() == 1 && 2474 "Only one possible unswitched block for a branch!"); 2475 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2476 2477 // When considering multiple partially-unswitched invariants 2478 // we cant just go replace them with constants in both branches. 2479 // 2480 // For 'AND' we infer that true branch ("continue") means true 2481 // for each invariant operand. 2482 // For 'OR' we can infer that false branch ("continue") means false 2483 // for each invariant operand. 2484 // So it happens that for multiple-partial case we dont replace 2485 // in the unswitched branch. 2486 bool ReplaceUnswitched = 2487 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2488 2489 ConstantInt *UnswitchedReplacement = 2490 Direction ? ConstantInt::getTrue(BI->getContext()) 2491 : ConstantInt::getFalse(BI->getContext()); 2492 ConstantInt *ContinueReplacement = 2493 Direction ? ConstantInt::getFalse(BI->getContext()) 2494 : ConstantInt::getTrue(BI->getContext()); 2495 for (Value *Invariant : Invariants) { 2496 assert(!isa<Constant>(Invariant) && 2497 "Should not be replacing constant values!"); 2498 // Use make_early_inc_range here as set invalidates the iterator. 2499 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2500 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2501 if (!UserI) 2502 continue; 2503 2504 // Replace it with the 'continue' side if in the main loop body, and the 2505 // unswitched if in the cloned blocks. 2506 if (DT.dominates(LoopPH, UserI->getParent())) 2507 U.set(ContinueReplacement); 2508 else if (ReplaceUnswitched && 2509 DT.dominates(ClonedPH, UserI->getParent())) 2510 U.set(UnswitchedReplacement); 2511 } 2512 } 2513 } 2514 2515 // We can change which blocks are exit blocks of all the cloned sibling 2516 // loops, the current loop, and any parent loops which shared exit blocks 2517 // with the current loop. As a consequence, we need to re-form LCSSA for 2518 // them. But we shouldn't need to re-form LCSSA for any child loops. 2519 // FIXME: This could be made more efficient by tracking which exit blocks are 2520 // new, and focusing on them, but that isn't likely to be necessary. 2521 // 2522 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2523 // loop nest and update every loop that could have had its exits changed. We 2524 // also need to cover any intervening loops. We add all of these loops to 2525 // a list and sort them by loop depth to achieve this without updating 2526 // unnecessary loops. 2527 auto UpdateLoop = [&](Loop &UpdateL) { 2528 #ifndef NDEBUG 2529 UpdateL.verifyLoop(); 2530 for (Loop *ChildL : UpdateL) { 2531 ChildL->verifyLoop(); 2532 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2533 "Perturbed a child loop's LCSSA form!"); 2534 } 2535 #endif 2536 // First build LCSSA for this loop so that we can preserve it when 2537 // forming dedicated exits. We don't want to perturb some other loop's 2538 // LCSSA while doing that CFG edit. 2539 formLCSSA(UpdateL, DT, &LI, SE); 2540 2541 // For loops reached by this loop's original exit blocks we may 2542 // introduced new, non-dedicated exits. At least try to re-form dedicated 2543 // exits for these loops. This may fail if they couldn't have dedicated 2544 // exits to start with. 2545 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2546 }; 2547 2548 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2549 // and we can do it in any order as they don't nest relative to each other. 2550 // 2551 // Also check if any of the loops we have updated have become top-level loops 2552 // as that will necessitate widening the outer loop scope. 2553 for (Loop *UpdatedL : 2554 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2555 UpdateLoop(*UpdatedL); 2556 if (UpdatedL->isOutermost()) 2557 OuterExitL = nullptr; 2558 } 2559 if (IsStillLoop) { 2560 UpdateLoop(L); 2561 if (L.isOutermost()) 2562 OuterExitL = nullptr; 2563 } 2564 2565 // If the original loop had exit blocks, walk up through the outer most loop 2566 // of those exit blocks to update LCSSA and form updated dedicated exits. 2567 if (OuterExitL != &L) 2568 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2569 OuterL = OuterL->getParentLoop()) 2570 UpdateLoop(*OuterL); 2571 2572 #ifndef NDEBUG 2573 // Verify the entire loop structure to catch any incorrect updates before we 2574 // progress in the pass pipeline. 2575 LI.verify(DT); 2576 #endif 2577 2578 // Now that we've unswitched something, make callbacks to report the changes. 2579 // For that we need to merge together the updated loops and the cloned loops 2580 // and check whether the original loop survived. 2581 SmallVector<Loop *, 4> SibLoops; 2582 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2583 if (UpdatedL->getParentLoop() == ParentL) 2584 SibLoops.push_back(UpdatedL); 2585 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2586 2587 if (MSSAU && VerifyMemorySSA) 2588 MSSAU->getMemorySSA()->verifyMemorySSA(); 2589 2590 if (BI) 2591 ++NumBranches; 2592 else 2593 ++NumSwitches; 2594 } 2595 2596 /// Recursively compute the cost of a dominator subtree based on the per-block 2597 /// cost map provided. 2598 /// 2599 /// The recursive computation is memozied into the provided DT-indexed cost map 2600 /// to allow querying it for most nodes in the domtree without it becoming 2601 /// quadratic. 2602 static InstructionCost computeDomSubtreeCost( 2603 DomTreeNode &N, 2604 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2605 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2606 // Don't accumulate cost (or recurse through) blocks not in our block cost 2607 // map and thus not part of the duplication cost being considered. 2608 auto BBCostIt = BBCostMap.find(N.getBlock()); 2609 if (BBCostIt == BBCostMap.end()) 2610 return 0; 2611 2612 // Lookup this node to see if we already computed its cost. 2613 auto DTCostIt = DTCostMap.find(&N); 2614 if (DTCostIt != DTCostMap.end()) 2615 return DTCostIt->second; 2616 2617 // If not, we have to compute it. We can't use insert above and update 2618 // because computing the cost may insert more things into the map. 2619 InstructionCost Cost = std::accumulate( 2620 N.begin(), N.end(), BBCostIt->second, 2621 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2622 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2623 }); 2624 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2625 (void)Inserted; 2626 assert(Inserted && "Should not insert a node while visiting children!"); 2627 return Cost; 2628 } 2629 2630 /// Turns a select instruction into implicit control flow branch, 2631 /// making the following replacement: 2632 /// 2633 /// head: 2634 /// --code before select-- 2635 /// select %cond, %trueval, %falseval 2636 /// --code after select-- 2637 /// 2638 /// into 2639 /// 2640 /// head: 2641 /// --code before select-- 2642 /// br i1 %cond, label %then, label %tail 2643 /// 2644 /// then: 2645 /// br %tail 2646 /// 2647 /// tail: 2648 /// phi [ %trueval, %then ], [ %falseval, %head] 2649 /// unreachable 2650 /// 2651 /// It also makes all relevant DT and LI updates, so that all structures are in 2652 /// valid state after this transform. 2653 static BranchInst *turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT, 2654 LoopInfo &LI, MemorySSAUpdater *MSSAU, 2655 AssumptionCache *AC) { 2656 LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n"); 2657 BasicBlock *HeadBB = SI->getParent(); 2658 2659 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2660 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false, 2661 SI->getMetadata(LLVMContext::MD_prof), &DTU, &LI); 2662 auto *CondBr = cast<BranchInst>(HeadBB->getTerminator()); 2663 BasicBlock *ThenBB = CondBr->getSuccessor(0), 2664 *TailBB = CondBr->getSuccessor(1); 2665 if (MSSAU) 2666 MSSAU->moveAllAfterSpliceBlocks(HeadBB, TailBB, SI); 2667 2668 PHINode *Phi = PHINode::Create(SI->getType(), 2, "unswitched.select", SI); 2669 Phi->addIncoming(SI->getTrueValue(), ThenBB); 2670 Phi->addIncoming(SI->getFalseValue(), HeadBB); 2671 SI->replaceAllUsesWith(Phi); 2672 SI->eraseFromParent(); 2673 2674 if (MSSAU && VerifyMemorySSA) 2675 MSSAU->getMemorySSA()->verifyMemorySSA(); 2676 2677 ++NumSelects; 2678 return CondBr; 2679 } 2680 2681 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2682 /// making the following replacement: 2683 /// 2684 /// --code before guard-- 2685 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2686 /// --code after guard-- 2687 /// 2688 /// into 2689 /// 2690 /// --code before guard-- 2691 /// br i1 %cond, label %guarded, label %deopt 2692 /// 2693 /// guarded: 2694 /// --code after guard-- 2695 /// 2696 /// deopt: 2697 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2698 /// unreachable 2699 /// 2700 /// It also makes all relevant DT and LI updates, so that all structures are in 2701 /// valid state after this transform. 2702 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2703 DominatorTree &DT, LoopInfo &LI, 2704 MemorySSAUpdater *MSSAU) { 2705 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2706 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2707 BasicBlock *CheckBB = GI->getParent(); 2708 2709 if (MSSAU && VerifyMemorySSA) 2710 MSSAU->getMemorySSA()->verifyMemorySSA(); 2711 2712 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2713 Instruction *DeoptBlockTerm = 2714 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true, 2715 GI->getMetadata(LLVMContext::MD_prof), &DTU, &LI); 2716 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2717 // SplitBlockAndInsertIfThen inserts control flow that branches to 2718 // DeoptBlockTerm if the condition is true. We want the opposite. 2719 CheckBI->swapSuccessors(); 2720 2721 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2722 GuardedBlock->setName("guarded"); 2723 CheckBI->getSuccessor(1)->setName("deopt"); 2724 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2725 2726 if (MSSAU) 2727 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2728 2729 GI->moveBefore(DeoptBlockTerm); 2730 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2731 2732 if (MSSAU) { 2733 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2734 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2735 if (VerifyMemorySSA) 2736 MSSAU->getMemorySSA()->verifyMemorySSA(); 2737 } 2738 2739 if (VerifyLoopInfo) 2740 LI.verify(DT); 2741 ++NumGuards; 2742 return CheckBI; 2743 } 2744 2745 /// Cost multiplier is a way to limit potentially exponential behavior 2746 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2747 /// candidates available. Also accounting for the number of "sibling" loops with 2748 /// the idea to account for previous unswitches that already happened on this 2749 /// cluster of loops. There was an attempt to keep this formula simple, 2750 /// just enough to limit the worst case behavior. Even if it is not that simple 2751 /// now it is still not an attempt to provide a detailed heuristic size 2752 /// prediction. 2753 /// 2754 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2755 /// unswitch candidates, making adequate predictions instead of wild guesses. 2756 /// That requires knowing not just the number of "remaining" candidates but 2757 /// also costs of unswitching for each of these candidates. 2758 static int CalculateUnswitchCostMultiplier( 2759 const Instruction &TI, const Loop &L, const LoopInfo &LI, 2760 const DominatorTree &DT, 2761 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) { 2762 2763 // Guards and other exiting conditions do not contribute to exponential 2764 // explosion as soon as they dominate the latch (otherwise there might be 2765 // another path to the latch remaining that does not allow to eliminate the 2766 // loop copy on unswitch). 2767 const BasicBlock *Latch = L.getLoopLatch(); 2768 const BasicBlock *CondBlock = TI.getParent(); 2769 if (DT.dominates(CondBlock, Latch) && 2770 (isGuard(&TI) || 2771 (TI.isTerminator() && 2772 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) { 2773 return L.contains(SuccBB); 2774 }) <= 1))) { 2775 NumCostMultiplierSkipped++; 2776 return 1; 2777 } 2778 2779 auto *ParentL = L.getParentLoop(); 2780 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2781 : std::distance(LI.begin(), LI.end())); 2782 // Count amount of clones that all the candidates might cause during 2783 // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its 2784 // cases. 2785 int UnswitchedClones = 0; 2786 for (const auto &Candidate : UnswitchCandidates) { 2787 const Instruction *CI = Candidate.TI; 2788 const BasicBlock *CondBlock = CI->getParent(); 2789 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2790 if (isa<SelectInst>(CI)) { 2791 UnswitchedClones++; 2792 continue; 2793 } 2794 if (isGuard(CI)) { 2795 if (!SkipExitingSuccessors) 2796 UnswitchedClones++; 2797 continue; 2798 } 2799 int NonExitingSuccessors = 2800 llvm::count_if(successors(CondBlock), 2801 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) { 2802 return !SkipExitingSuccessors || L.contains(SuccBB); 2803 }); 2804 UnswitchedClones += Log2_32(NonExitingSuccessors); 2805 } 2806 2807 // Ignore up to the "unscaled candidates" number of unswitch candidates 2808 // when calculating the power-of-two scaling of the cost. The main idea 2809 // with this control is to allow a small number of unswitches to happen 2810 // and rely more on siblings multiplier (see below) when the number 2811 // of candidates is small. 2812 unsigned ClonesPower = 2813 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2814 2815 // Allowing top-level loops to spread a bit more than nested ones. 2816 int SiblingsMultiplier = 2817 std::max((ParentL ? SiblingsCount 2818 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2819 1); 2820 // Compute the cost multiplier in a way that won't overflow by saturating 2821 // at an upper bound. 2822 int CostMultiplier; 2823 if (ClonesPower > Log2_32(UnswitchThreshold) || 2824 SiblingsMultiplier > UnswitchThreshold) 2825 CostMultiplier = UnswitchThreshold; 2826 else 2827 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2828 (int)UnswitchThreshold); 2829 2830 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2831 << " (siblings " << SiblingsMultiplier << " * clones " 2832 << (1 << ClonesPower) << ")" 2833 << " for unswitch candidate: " << TI << "\n"); 2834 return CostMultiplier; 2835 } 2836 2837 static bool collectUnswitchCandidates( 2838 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 2839 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, 2840 const Loop &L, const LoopInfo &LI, AAResults &AA, 2841 const MemorySSAUpdater *MSSAU) { 2842 assert(UnswitchCandidates.empty() && "Should be!"); 2843 2844 auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) { 2845 Cond = skipTrivialSelect(Cond); 2846 if (isa<Constant>(Cond)) 2847 return; 2848 if (L.isLoopInvariant(Cond)) { 2849 UnswitchCandidates.push_back({I, {Cond}}); 2850 return; 2851 } 2852 if (match(Cond, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2853 TinyPtrVector<Value *> Invariants = 2854 collectHomogenousInstGraphLoopInvariants( 2855 L, *static_cast<Instruction *>(Cond), LI); 2856 if (!Invariants.empty()) 2857 UnswitchCandidates.push_back({I, std::move(Invariants)}); 2858 } 2859 }; 2860 2861 // Whether or not we should also collect guards in the loop. 2862 bool CollectGuards = false; 2863 if (UnswitchGuards) { 2864 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2865 Intrinsic::getName(Intrinsic::experimental_guard)); 2866 if (GuardDecl && !GuardDecl->use_empty()) 2867 CollectGuards = true; 2868 } 2869 2870 for (auto *BB : L.blocks()) { 2871 if (LI.getLoopFor(BB) != &L) 2872 continue; 2873 2874 for (auto &I : *BB) { 2875 if (auto *SI = dyn_cast<SelectInst>(&I)) { 2876 auto *Cond = SI->getCondition(); 2877 // Do not unswitch vector selects and logical and/or selects 2878 if (Cond->getType()->isIntegerTy(1) && !SI->getType()->isIntegerTy(1)) 2879 AddUnswitchCandidatesForInst(SI, Cond); 2880 } else if (CollectGuards && isGuard(&I)) { 2881 auto *Cond = 2882 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0)); 2883 // TODO: Support AND, OR conditions and partial unswitching. 2884 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2885 UnswitchCandidates.push_back({&I, {Cond}}); 2886 } 2887 } 2888 2889 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2890 // We can only consider fully loop-invariant switch conditions as we need 2891 // to completely eliminate the switch after unswitching. 2892 if (!isa<Constant>(SI->getCondition()) && 2893 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2894 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2895 continue; 2896 } 2897 2898 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2899 if (!BI || !BI->isConditional() || 2900 BI->getSuccessor(0) == BI->getSuccessor(1)) 2901 continue; 2902 2903 AddUnswitchCandidatesForInst(BI, BI->getCondition()); 2904 } 2905 2906 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2907 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2908 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator(); 2909 })) { 2910 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2911 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2912 LLVM_DEBUG( 2913 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2914 << *Info->InstToDuplicate[0] << "\n"); 2915 PartialIVInfo = *Info; 2916 PartialIVCondBranch = L.getHeader()->getTerminator(); 2917 TinyPtrVector<Value *> ValsToDuplicate; 2918 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate); 2919 UnswitchCandidates.push_back( 2920 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2921 } 2922 } 2923 return !UnswitchCandidates.empty(); 2924 } 2925 2926 /// Tries to canonicalize condition described by: 2927 /// 2928 /// br (LHS pred RHS), label IfTrue, label IfFalse 2929 /// 2930 /// into its equivalent where `Pred` is something that we support for injected 2931 /// invariants (so far it is limited to ult), LHS in canonicalized form is 2932 /// non-invariant and RHS is an invariant. 2933 static void canonicalizeForInvariantConditionInjection( 2934 ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue, 2935 BasicBlock *&IfFalse, const Loop &L) { 2936 if (!L.contains(IfTrue)) { 2937 Pred = ICmpInst::getInversePredicate(Pred); 2938 std::swap(IfTrue, IfFalse); 2939 } 2940 2941 // Move loop-invariant argument to RHS position. 2942 if (L.isLoopInvariant(LHS)) { 2943 Pred = ICmpInst::getSwappedPredicate(Pred); 2944 std::swap(LHS, RHS); 2945 } 2946 2947 if (Pred == ICmpInst::ICMP_SGE && match(RHS, m_Zero())) { 2948 // Turn "x >=s 0" into "x <u UMIN_INT" 2949 Pred = ICmpInst::ICMP_ULT; 2950 RHS = ConstantInt::get( 2951 RHS->getContext(), 2952 APInt::getSignedMinValue(RHS->getType()->getIntegerBitWidth())); 2953 } 2954 } 2955 2956 /// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS ) 2957 /// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by 2958 /// injecting a loop-invariant condition. 2959 static bool shouldTryInjectInvariantCondition( 2960 const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS, 2961 const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) { 2962 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) 2963 return false; 2964 // TODO: Support other predicates. 2965 if (Pred != ICmpInst::ICMP_ULT) 2966 return false; 2967 // TODO: Support non-loop-exiting branches? 2968 if (!L.contains(IfTrue) || L.contains(IfFalse)) 2969 return false; 2970 // FIXME: For some reason this causes problems with MSSA updates, need to 2971 // investigate why. So far, just don't unswitch latch. 2972 if (L.getHeader() == IfTrue) 2973 return false; 2974 return true; 2975 } 2976 2977 /// Returns true, if metadata on \p BI allows us to optimize branching into \p 2978 /// TakenSucc via injection of invariant conditions. The branch should be not 2979 /// enough and not previously unswitched, the information about this comes from 2980 /// the metadata. 2981 bool shouldTryInjectBasingOnMetadata(const BranchInst *BI, 2982 const BasicBlock *TakenSucc) { 2983 // Skip branches that have already been unswithed this way. After successful 2984 // unswitching of injected condition, we will still have a copy of this loop 2985 // which looks exactly the same as original one. To prevent the 2nd attempt 2986 // of unswitching it in the same pass, mark this branch as "nothing to do 2987 // here". 2988 if (BI->hasMetadata("llvm.invariant.condition.injection.disabled")) 2989 return false; 2990 SmallVector<uint32_t> Weights; 2991 if (!extractBranchWeights(*BI, Weights)) 2992 return false; 2993 unsigned T = InjectInvariantConditionHotnesThreshold; 2994 BranchProbability LikelyTaken(T - 1, T); 2995 2996 assert(Weights.size() == 2 && "Unexpected profile data!"); 2997 size_t Idx = BI->getSuccessor(0) == TakenSucc ? 0 : 1; 2998 auto Num = Weights[Idx]; 2999 auto Denom = Weights[0] + Weights[1]; 3000 // Degenerate or overflowed metadata. 3001 if (Denom == 0 || Num > Denom) 3002 return false; 3003 BranchProbability ActualTaken(Num, Denom); 3004 if (LikelyTaken > ActualTaken) 3005 return false; 3006 return true; 3007 } 3008 3009 /// Materialize pending invariant condition of the given candidate into IR. The 3010 /// injected loop-invariant condition implies the original loop-variant branch 3011 /// condition, so the materialization turns 3012 /// 3013 /// loop_block: 3014 /// ... 3015 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc 3016 /// 3017 /// into 3018 /// 3019 /// preheader: 3020 /// %invariant_cond = LHS pred RHS 3021 /// ... 3022 /// loop_block: 3023 /// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck 3024 /// OriginalCheck: 3025 /// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc 3026 /// ... 3027 static NonTrivialUnswitchCandidate 3028 injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L, 3029 DominatorTree &DT, LoopInfo &LI, 3030 AssumptionCache &AC, MemorySSAUpdater *MSSAU) { 3031 assert(Candidate.hasPendingInjection() && "Nothing to inject!"); 3032 BasicBlock *Preheader = L.getLoopPreheader(); 3033 assert(Preheader && "Loop is not in simplified form?"); 3034 assert(LI.getLoopFor(Candidate.TI->getParent()) == &L && 3035 "Unswitching branch of inner loop!"); 3036 3037 auto Pred = Candidate.PendingInjection->Pred; 3038 auto *LHS = Candidate.PendingInjection->LHS; 3039 auto *RHS = Candidate.PendingInjection->RHS; 3040 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc; 3041 auto *TI = cast<BranchInst>(Candidate.TI); 3042 auto *BB = Candidate.TI->getParent(); 3043 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(0) ? TI->getSuccessor(1) 3044 : TI->getSuccessor(0); 3045 // FIXME: Remove this once limitation on successors is lifted. 3046 assert(L.contains(InLoopSucc) && "Not supported yet!"); 3047 assert(!L.contains(OutOfLoopSucc) && "Not supported yet!"); 3048 auto &Ctx = BB->getContext(); 3049 3050 IRBuilder<> Builder(Preheader->getTerminator()); 3051 assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!"); 3052 if (LHS->getType() != RHS->getType()) { 3053 if (LHS->getType()->getIntegerBitWidth() < 3054 RHS->getType()->getIntegerBitWidth()) 3055 LHS = Builder.CreateZExt(LHS, RHS->getType(), LHS->getName() + ".wide"); 3056 else 3057 RHS = Builder.CreateZExt(RHS, LHS->getType(), RHS->getName() + ".wide"); 3058 } 3059 // Do not use builder here: CreateICmp may simplify this into a constant and 3060 // unswitching will break. Better optimize it away later. 3061 auto *InjectedCond = 3062 ICmpInst::Create(Instruction::ICmp, Pred, LHS, RHS, "injected.cond", 3063 Preheader->getTerminator()); 3064 3065 BasicBlock *CheckBlock = BasicBlock::Create(Ctx, BB->getName() + ".check", 3066 BB->getParent(), InLoopSucc); 3067 Builder.SetInsertPoint(TI); 3068 auto *InvariantBr = 3069 Builder.CreateCondBr(InjectedCond, InLoopSucc, CheckBlock); 3070 3071 Builder.SetInsertPoint(CheckBlock); 3072 auto *NewTerm = Builder.CreateCondBr(TI->getCondition(), TI->getSuccessor(0), 3073 TI->getSuccessor(1)); 3074 3075 TI->eraseFromParent(); 3076 // Prevent infinite unswitching. 3077 NewTerm->setMetadata("llvm.invariant.condition.injection.disabled", 3078 MDNode::get(BB->getContext(), {})); 3079 3080 // Fixup phis. 3081 for (auto &I : *InLoopSucc) { 3082 auto *PN = dyn_cast<PHINode>(&I); 3083 if (!PN) 3084 break; 3085 auto *Inc = PN->getIncomingValueForBlock(BB); 3086 PN->addIncoming(Inc, CheckBlock); 3087 } 3088 OutOfLoopSucc->replacePhiUsesWith(BB, CheckBlock); 3089 3090 SmallVector<DominatorTree::UpdateType, 4> DTUpdates = { 3091 { DominatorTree::Insert, BB, CheckBlock }, 3092 { DominatorTree::Insert, CheckBlock, InLoopSucc }, 3093 { DominatorTree::Insert, CheckBlock, OutOfLoopSucc }, 3094 { DominatorTree::Delete, BB, OutOfLoopSucc } 3095 }; 3096 3097 DT.applyUpdates(DTUpdates); 3098 if (MSSAU) 3099 MSSAU->applyUpdates(DTUpdates, DT); 3100 L.addBasicBlockToLoop(CheckBlock, LI); 3101 3102 #ifndef NDEBUG 3103 DT.verify(); 3104 LI.verify(DT); 3105 if (MSSAU && VerifyMemorySSA) 3106 MSSAU->getMemorySSA()->verifyMemorySSA(); 3107 #endif 3108 3109 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly* 3110 // higher because we have just inserted a new block. Need to think how to 3111 // adjust the cost of injected candidates when it was first computed. 3112 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr 3113 << " and considering it for unswitching."); 3114 ++NumInvariantConditionsInjected; 3115 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond }, 3116 Candidate.Cost); 3117 } 3118 3119 /// Given chain of loop branch conditions looking like: 3120 /// br (Variant < Invariant1) 3121 /// br (Variant < Invariant2) 3122 /// br (Variant < Invariant3) 3123 /// ... 3124 /// collect set of invariant conditions on which we want to unswitch, which 3125 /// look like: 3126 /// Invariant1 <= Invariant2 3127 /// Invariant2 <= Invariant3 3128 /// ... 3129 /// Though they might not immediately exist in the IR, we can still inject them. 3130 static bool insertCandidatesWithPendingInjections( 3131 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L, 3132 ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares, 3133 const DominatorTree &DT) { 3134 3135 assert(ICmpInst::isRelational(Pred)); 3136 assert(ICmpInst::isStrictPredicate(Pred)); 3137 if (Compares.size() < 2) 3138 return false; 3139 ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(Pred); 3140 for (auto Prev = Compares.begin(), Next = Compares.begin() + 1; 3141 Next != Compares.end(); ++Prev, ++Next) { 3142 Value *LHS = Next->Invariant; 3143 Value *RHS = Prev->Invariant; 3144 BasicBlock *InLoopSucc = Prev->InLoopSucc; 3145 InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc); 3146 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS }, 3147 std::nullopt, std::move(ToInject)); 3148 UnswitchCandidates.push_back(std::move(Candidate)); 3149 } 3150 return true; 3151 } 3152 3153 /// Collect unswitch candidates by invariant conditions that are not immediately 3154 /// present in the loop. However, they can be injected into the code if we 3155 /// decide it's profitable. 3156 /// An example of such conditions is following: 3157 /// 3158 /// for (...) { 3159 /// x = load ... 3160 /// if (! x <u C1) break; 3161 /// if (! x <u C2) break; 3162 /// <do something> 3163 /// } 3164 /// 3165 /// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <= 3166 /// C2" automatically implies "x <u C2", so we can get rid of one of 3167 /// loop-variant checks in unswitched loop version. 3168 static bool collectUnswitchCandidatesWithInjections( 3169 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 3170 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L, 3171 const DominatorTree &DT, const LoopInfo &LI, AAResults &AA, 3172 const MemorySSAUpdater *MSSAU) { 3173 if (!InjectInvariantConditions) 3174 return false; 3175 3176 if (!DT.isReachableFromEntry(L.getHeader())) 3177 return false; 3178 auto *Latch = L.getLoopLatch(); 3179 // Need to have a single latch and a preheader. 3180 if (!Latch) 3181 return false; 3182 assert(L.getLoopPreheader() && "Must have a preheader!"); 3183 3184 DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT; 3185 // Traverse the conditions that dominate latch (and therefore dominate each 3186 // other). 3187 for (auto *DTN = DT.getNode(Latch); L.contains(DTN->getBlock()); 3188 DTN = DTN->getIDom()) { 3189 ICmpInst::Predicate Pred; 3190 Value *LHS = nullptr, *RHS = nullptr; 3191 BasicBlock *IfTrue = nullptr, *IfFalse = nullptr; 3192 auto *BB = DTN->getBlock(); 3193 // Ignore inner loops. 3194 if (LI.getLoopFor(BB) != &L) 3195 continue; 3196 auto *Term = BB->getTerminator(); 3197 if (!match(Term, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 3198 m_BasicBlock(IfTrue), m_BasicBlock(IfFalse)))) 3199 continue; 3200 if (!LHS->getType()->isIntegerTy()) 3201 continue; 3202 canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse, 3203 L); 3204 if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L)) 3205 continue; 3206 if (!shouldTryInjectBasingOnMetadata(cast<BranchInst>(Term), IfTrue)) 3207 continue; 3208 // Strip ZEXT for unsigned predicate. 3209 // TODO: once signed predicates are supported, also strip SEXT. 3210 CompareDesc Desc(cast<BranchInst>(Term), RHS, IfTrue); 3211 while (auto *Zext = dyn_cast<ZExtInst>(LHS)) 3212 LHS = Zext->getOperand(0); 3213 CandidatesULT[LHS].push_back(Desc); 3214 } 3215 3216 bool Found = false; 3217 for (auto &It : CandidatesULT) 3218 Found |= insertCandidatesWithPendingInjections( 3219 UnswitchCandidates, L, ICmpInst::ICMP_ULT, It.second, DT); 3220 return Found; 3221 } 3222 3223 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) { 3224 if (!L.isSafeToClone()) 3225 return false; 3226 for (auto *BB : L.blocks()) 3227 for (auto &I : *BB) { 3228 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 3229 return false; 3230 if (auto *CB = dyn_cast<CallBase>(&I)) { 3231 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone()."); 3232 if (CB->isConvergent()) 3233 return false; 3234 } 3235 } 3236 3237 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 3238 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 3239 // irreducible control flow into reducible control flow and introduce new 3240 // loops "out of thin air". If we ever discover important use cases for doing 3241 // this, we can add support to loop unswitch, but it is a lot of complexity 3242 // for what seems little or no real world benefit. 3243 LoopBlocksRPO RPOT(&L); 3244 RPOT.perform(&LI); 3245 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 3246 return false; 3247 3248 SmallVector<BasicBlock *, 4> ExitBlocks; 3249 L.getUniqueExitBlocks(ExitBlocks); 3250 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 3251 // instruction as we don't know how to split those exit blocks. 3252 // FIXME: We should teach SplitBlock to handle this and remove this 3253 // restriction. 3254 for (auto *ExitBB : ExitBlocks) { 3255 auto *I = ExitBB->getFirstNonPHI(); 3256 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 3257 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 3258 "in exit block\n"); 3259 return false; 3260 } 3261 } 3262 3263 return true; 3264 } 3265 3266 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate( 3267 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L, 3268 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, 3269 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) { 3270 // Given that unswitching these terminators will require duplicating parts of 3271 // the loop, so we need to be able to model that cost. Compute the ephemeral 3272 // values and set up a data structure to hold per-BB costs. We cache each 3273 // block's cost so that we don't recompute this when considering different 3274 // subsets of the loop for duplication during unswitching. 3275 SmallPtrSet<const Value *, 4> EphValues; 3276 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 3277 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 3278 3279 // Compute the cost of each block, as well as the total loop cost. Also, bail 3280 // out if we see instructions which are incompatible with loop unswitching 3281 // (convergent, noduplicate, or cross-basic-block tokens). 3282 // FIXME: We might be able to safely handle some of these in non-duplicated 3283 // regions. 3284 TargetTransformInfo::TargetCostKind CostKind = 3285 L.getHeader()->getParent()->hasMinSize() 3286 ? TargetTransformInfo::TCK_CodeSize 3287 : TargetTransformInfo::TCK_SizeAndLatency; 3288 InstructionCost LoopCost = 0; 3289 for (auto *BB : L.blocks()) { 3290 InstructionCost Cost = 0; 3291 for (auto &I : *BB) { 3292 if (EphValues.count(&I)) 3293 continue; 3294 Cost += TTI.getInstructionCost(&I, CostKind); 3295 } 3296 assert(Cost >= 0 && "Must not have negative costs!"); 3297 LoopCost += Cost; 3298 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 3299 BBCostMap[BB] = Cost; 3300 } 3301 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 3302 3303 // Now we find the best candidate by searching for the one with the following 3304 // properties in order: 3305 // 3306 // 1) An unswitching cost below the threshold 3307 // 2) The smallest number of duplicated unswitch candidates (to avoid 3308 // creating redundant subsequent unswitching) 3309 // 3) The smallest cost after unswitching. 3310 // 3311 // We prioritize reducing fanout of unswitch candidates provided the cost 3312 // remains below the threshold because this has a multiplicative effect. 3313 // 3314 // This requires memoizing each dominator subtree to avoid redundant work. 3315 // 3316 // FIXME: Need to actually do the number of candidates part above. 3317 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 3318 // Given a terminator which might be unswitched, computes the non-duplicated 3319 // cost for that terminator. 3320 auto ComputeUnswitchedCost = [&](Instruction &TI, 3321 bool FullUnswitch) -> InstructionCost { 3322 // Unswitching selects unswitches the entire loop. 3323 if (isa<SelectInst>(TI)) 3324 return LoopCost; 3325 3326 BasicBlock &BB = *TI.getParent(); 3327 SmallPtrSet<BasicBlock *, 4> Visited; 3328 3329 InstructionCost Cost = 0; 3330 for (BasicBlock *SuccBB : successors(&BB)) { 3331 // Don't count successors more than once. 3332 if (!Visited.insert(SuccBB).second) 3333 continue; 3334 3335 // If this is a partial unswitch candidate, then it must be a conditional 3336 // branch with a condition of either `or`, `and`, their corresponding 3337 // select forms or partially invariant instructions. In that case, one of 3338 // the successors is necessarily duplicated, so don't even try to remove 3339 // its cost. 3340 if (!FullUnswitch) { 3341 auto &BI = cast<BranchInst>(TI); 3342 Value *Cond = skipTrivialSelect(BI.getCondition()); 3343 if (match(Cond, m_LogicalAnd())) { 3344 if (SuccBB == BI.getSuccessor(1)) 3345 continue; 3346 } else if (match(Cond, m_LogicalOr())) { 3347 if (SuccBB == BI.getSuccessor(0)) 3348 continue; 3349 } else if ((PartialIVInfo.KnownValue->isOneValue() && 3350 SuccBB == BI.getSuccessor(0)) || 3351 (!PartialIVInfo.KnownValue->isOneValue() && 3352 SuccBB == BI.getSuccessor(1))) 3353 continue; 3354 } 3355 3356 // This successor's domtree will not need to be duplicated after 3357 // unswitching if the edge to the successor dominates it (and thus the 3358 // entire tree). This essentially means there is no other path into this 3359 // subtree and so it will end up live in only one clone of the loop. 3360 if (SuccBB->getUniquePredecessor() || 3361 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 3362 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 3363 })) { 3364 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 3365 assert(Cost <= LoopCost && 3366 "Non-duplicated cost should never exceed total loop cost!"); 3367 } 3368 } 3369 3370 // Now scale the cost by the number of unique successors minus one. We 3371 // subtract one because there is already at least one copy of the entire 3372 // loop. This is computing the new cost of unswitching a condition. 3373 // Note that guards always have 2 unique successors that are implicit and 3374 // will be materialized if we decide to unswitch it. 3375 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 3376 assert(SuccessorsCount > 1 && 3377 "Cannot unswitch a condition without multiple distinct successors!"); 3378 return (LoopCost - Cost) * (SuccessorsCount - 1); 3379 }; 3380 3381 std::optional<NonTrivialUnswitchCandidate> Best; 3382 for (auto &Candidate : UnswitchCandidates) { 3383 Instruction &TI = *Candidate.TI; 3384 ArrayRef<Value *> Invariants = Candidate.Invariants; 3385 BranchInst *BI = dyn_cast<BranchInst>(&TI); 3386 bool FullUnswitch = 3387 !BI || Candidate.hasPendingInjection() || 3388 (Invariants.size() == 1 && 3389 Invariants[0] == skipTrivialSelect(BI->getCondition())); 3390 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch); 3391 // Calculate cost multiplier which is a tool to limit potentially 3392 // exponential behavior of loop-unswitch. 3393 if (EnableUnswitchCostMultiplier) { 3394 int CostMultiplier = 3395 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 3396 assert( 3397 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 3398 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 3399 CandidateCost *= CostMultiplier; 3400 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3401 << " (multiplier: " << CostMultiplier << ")" 3402 << " for unswitch candidate: " << TI << "\n"); 3403 } else { 3404 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3405 << " for unswitch candidate: " << TI << "\n"); 3406 } 3407 3408 if (!Best || CandidateCost < Best->Cost) { 3409 Best = Candidate; 3410 Best->Cost = CandidateCost; 3411 } 3412 } 3413 assert(Best && "Must be!"); 3414 return *Best; 3415 } 3416 3417 // Insert a freeze on an unswitched branch if all is true: 3418 // 1. freeze-loop-unswitch-cond option is true 3419 // 2. The branch may not execute in the loop pre-transformation. If a branch may 3420 // not execute and could cause UB, it would always cause UB if it is hoisted outside 3421 // of the loop. Insert a freeze to prevent this case. 3422 // 3. The branch condition may be poison or undef 3423 static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT, 3424 AssumptionCache &AC) { 3425 assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI)); 3426 if (!FreezeLoopUnswitchCond) 3427 return false; 3428 3429 ICFLoopSafetyInfo SafetyInfo; 3430 SafetyInfo.computeLoopSafetyInfo(&L); 3431 if (SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 3432 return false; 3433 3434 Value *Cond; 3435 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) 3436 Cond = skipTrivialSelect(BI->getCondition()); 3437 else 3438 Cond = skipTrivialSelect(cast<SwitchInst>(&TI)->getCondition()); 3439 return !isGuaranteedNotToBeUndefOrPoison( 3440 Cond, &AC, L.getLoopPreheader()->getTerminator(), &DT); 3441 } 3442 3443 static bool unswitchBestCondition( 3444 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3445 AAResults &AA, TargetTransformInfo &TTI, 3446 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3447 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3448 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3449 // Collect all invariant conditions within this loop (as opposed to an inner 3450 // loop which would be handled when visiting that inner loop). 3451 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates; 3452 IVConditionInfo PartialIVInfo; 3453 Instruction *PartialIVCondBranch = nullptr; 3454 collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo, 3455 PartialIVCondBranch, L, LI, AA, MSSAU); 3456 collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo, 3457 PartialIVCondBranch, L, DT, LI, AA, 3458 MSSAU); 3459 // If we didn't find any candidates, we're done. 3460 if (UnswitchCandidates.empty()) 3461 return false; 3462 3463 LLVM_DEBUG( 3464 dbgs() << "Considering " << UnswitchCandidates.size() 3465 << " non-trivial loop invariant conditions for unswitching.\n"); 3466 3467 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate( 3468 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo); 3469 3470 assert(Best.TI && "Failed to find loop unswitch candidate"); 3471 assert(Best.Cost && "Failed to compute cost"); 3472 3473 if (*Best.Cost >= UnswitchThreshold) { 3474 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost 3475 << "\n"); 3476 return false; 3477 } 3478 3479 if (Best.hasPendingInjection()) 3480 Best = injectPendingInvariantConditions(Best, L, DT, LI, AC, MSSAU); 3481 assert(!Best.hasPendingInjection() && 3482 "All injections should have been done by now!"); 3483 3484 if (Best.TI != PartialIVCondBranch) 3485 PartialIVInfo.InstToDuplicate.clear(); 3486 3487 bool InsertFreeze; 3488 if (auto *SI = dyn_cast<SelectInst>(Best.TI)) { 3489 // If the best candidate is a select, turn it into a branch. Select 3490 // instructions with a poison conditional do not propagate poison, but 3491 // branching on poison causes UB. Insert a freeze on the select 3492 // conditional to prevent UB after turning the select into a branch. 3493 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison( 3494 SI->getCondition(), &AC, L.getLoopPreheader()->getTerminator(), &DT); 3495 Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, &AC); 3496 } else { 3497 // If the best candidate is a guard, turn it into a branch. 3498 if (isGuard(Best.TI)) 3499 Best.TI = 3500 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU); 3501 InsertFreeze = shouldInsertFreeze(L, *Best.TI, DT, AC); 3502 } 3503 3504 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost 3505 << ") terminator: " << *Best.TI << "\n"); 3506 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT, 3507 LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB, 3508 InsertFreeze); 3509 return true; 3510 } 3511 3512 /// Unswitch control flow predicated on loop invariant conditions. 3513 /// 3514 /// This first hoists all branches or switches which are trivial (IE, do not 3515 /// require duplicating any part of the loop) out of the loop body. It then 3516 /// looks at other loop invariant control flows and tries to unswitch those as 3517 /// well by cloning the loop if the result is small enough. 3518 /// 3519 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3520 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3521 /// valid (i.e. its use is enabled). 3522 /// 3523 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 3524 /// true, we will attempt to do non-trivial unswitching as well as trivial 3525 /// unswitching. 3526 /// 3527 /// The `UnswitchCB` callback provided will be run after unswitching is 3528 /// complete, with the first parameter set to `true` if the provided loop 3529 /// remains a loop, and a list of new sibling loops created. 3530 /// 3531 /// If `SE` is non-null, we will update that analysis based on the unswitching 3532 /// done. 3533 static bool 3534 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3535 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3536 bool NonTrivial, 3537 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3538 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3539 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 3540 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3541 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3542 "Loops must be in LCSSA form before unswitching."); 3543 3544 // Must be in loop simplified form: we need a preheader and dedicated exits. 3545 if (!L.isLoopSimplifyForm()) 3546 return false; 3547 3548 // Try trivial unswitch first before loop over other basic blocks in the loop. 3549 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3550 // If we unswitched successfully we will want to clean up the loop before 3551 // processing it further so just mark it as unswitched and return. 3552 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3553 return true; 3554 } 3555 3556 const Function *F = L.getHeader()->getParent(); 3557 3558 // Check whether we should continue with non-trivial conditions. 3559 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3560 // unswitching for testing and debugging. 3561 // NonTrivial: Parameter that enables non-trivial unswitching for this 3562 // invocation of the transform. But this should be allowed only 3563 // for targets without branch divergence. 3564 // 3565 // FIXME: If divergence analysis becomes available to a loop 3566 // transform, we should allow unswitching for non-trivial uniform 3567 // branches even on targets that have divergence. 3568 // https://bugs.llvm.org/show_bug.cgi?id=48819 3569 bool ContinueWithNonTrivial = 3570 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence(F)); 3571 if (!ContinueWithNonTrivial) 3572 return false; 3573 3574 // Skip non-trivial unswitching for optsize functions. 3575 if (F->hasOptSize()) 3576 return false; 3577 3578 // Returns true if Loop L's loop nest is cold, i.e. if the headers of L, 3579 // of the loops L is nested in, and of the loops nested in L are all cold. 3580 auto IsLoopNestCold = [&](const Loop *L) { 3581 // Check L and all of its parent loops. 3582 auto *Parent = L; 3583 while (Parent) { 3584 if (!PSI->isColdBlock(Parent->getHeader(), BFI)) 3585 return false; 3586 Parent = Parent->getParentLoop(); 3587 } 3588 // Next check all loops nested within L. 3589 SmallVector<const Loop *, 4> Worklist; 3590 Worklist.insert(Worklist.end(), L->getSubLoops().begin(), 3591 L->getSubLoops().end()); 3592 while (!Worklist.empty()) { 3593 auto *CurLoop = Worklist.pop_back_val(); 3594 if (!PSI->isColdBlock(CurLoop->getHeader(), BFI)) 3595 return false; 3596 Worklist.insert(Worklist.end(), CurLoop->getSubLoops().begin(), 3597 CurLoop->getSubLoops().end()); 3598 } 3599 return true; 3600 }; 3601 3602 // Skip cold loops in cold loop nests, as unswitching them brings little 3603 // benefit but increases the code size 3604 if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) { 3605 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n"); 3606 return false; 3607 } 3608 3609 // Perform legality checks. 3610 if (!isSafeForNoNTrivialUnswitching(L, LI)) 3611 return false; 3612 3613 // For non-trivial unswitching, because it often creates new loops, we rely on 3614 // the pass manager to iterate on the loops rather than trying to immediately 3615 // reach a fixed point. There is no substantial advantage to iterating 3616 // internally, and if any of the new loops are simplified enough to contain 3617 // trivial unswitching we want to prefer those. 3618 3619 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3620 // a partial unswitch when possible below the threshold. 3621 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3622 DestroyLoopCB)) 3623 return true; 3624 3625 // No other opportunities to unswitch. 3626 return false; 3627 } 3628 3629 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3630 LoopStandardAnalysisResults &AR, 3631 LPMUpdater &U) { 3632 Function &F = *L.getHeader()->getParent(); 3633 (void)F; 3634 ProfileSummaryInfo *PSI = nullptr; 3635 if (auto OuterProxy = 3636 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR) 3637 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F)) 3638 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3639 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3640 << "\n"); 3641 3642 // Save the current loop name in a variable so that we can report it even 3643 // after it has been deleted. 3644 std::string LoopName = std::string(L.getName()); 3645 3646 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3647 bool PartiallyInvariant, 3648 ArrayRef<Loop *> NewLoops) { 3649 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3650 if (!NewLoops.empty()) 3651 U.addSiblingLoops(NewLoops); 3652 3653 // If the current loop remains valid, we should revisit it to catch any 3654 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3655 if (CurrentLoopValid) { 3656 if (PartiallyInvariant) { 3657 // Mark the new loop as partially unswitched, to avoid unswitching on 3658 // the same condition again. 3659 auto &Context = L.getHeader()->getContext(); 3660 MDNode *DisableUnswitchMD = MDNode::get( 3661 Context, 3662 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3663 MDNode *NewLoopID = makePostTransformationMetadata( 3664 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3665 {DisableUnswitchMD}); 3666 L.setLoopID(NewLoopID); 3667 } else 3668 U.revisitCurrentLoop(); 3669 } else 3670 U.markLoopAsDeleted(L, LoopName); 3671 }; 3672 3673 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3674 U.markLoopAsDeleted(L, Name); 3675 }; 3676 3677 std::optional<MemorySSAUpdater> MSSAU; 3678 if (AR.MSSA) { 3679 MSSAU = MemorySSAUpdater(AR.MSSA); 3680 if (VerifyMemorySSA) 3681 AR.MSSA->verifyMemorySSA(); 3682 } 3683 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3684 UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, 3685 DestroyLoopCB)) 3686 return PreservedAnalyses::all(); 3687 3688 if (AR.MSSA && VerifyMemorySSA) 3689 AR.MSSA->verifyMemorySSA(); 3690 3691 // Historically this pass has had issues with the dominator tree so verify it 3692 // in asserts builds. 3693 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3694 3695 auto PA = getLoopPassPreservedAnalyses(); 3696 if (AR.MSSA) 3697 PA.preserve<MemorySSAAnalysis>(); 3698 return PA; 3699 } 3700 3701 void SimpleLoopUnswitchPass::printPipeline( 3702 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3703 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3704 OS, MapClassName2PassName); 3705 3706 OS << '<'; 3707 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3708 OS << (Trivial ? "" : "no-") << "trivial"; 3709 OS << '>'; 3710 } 3711 3712 namespace { 3713 3714 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3715 bool NonTrivial; 3716 3717 public: 3718 static char ID; // Pass ID, replacement for typeid 3719 3720 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3721 : LoopPass(ID), NonTrivial(NonTrivial) { 3722 initializeSimpleLoopUnswitchLegacyPassPass( 3723 *PassRegistry::getPassRegistry()); 3724 } 3725 3726 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3727 3728 void getAnalysisUsage(AnalysisUsage &AU) const override { 3729 AU.addRequired<AssumptionCacheTracker>(); 3730 AU.addRequired<TargetTransformInfoWrapperPass>(); 3731 AU.addRequired<MemorySSAWrapperPass>(); 3732 AU.addPreserved<MemorySSAWrapperPass>(); 3733 getLoopAnalysisUsage(AU); 3734 } 3735 }; 3736 3737 } // end anonymous namespace 3738 3739 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3740 if (skipLoop(L)) 3741 return false; 3742 3743 Function &F = *L->getHeader()->getParent(); 3744 3745 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3746 << "\n"); 3747 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3748 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3749 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3750 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3751 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3752 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3753 MemorySSAUpdater MSSAU(MSSA); 3754 3755 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3756 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3757 3758 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3759 ArrayRef<Loop *> NewLoops) { 3760 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3761 for (auto *NewL : NewLoops) 3762 LPM.addLoop(*NewL); 3763 3764 // If the current loop remains valid, re-add it to the queue. This is 3765 // a little wasteful as we'll finish processing the current loop as well, 3766 // but it is the best we can do in the old PM. 3767 if (CurrentLoopValid) { 3768 // If the current loop has been unswitched using a partially invariant 3769 // condition, we should not re-add the current loop to avoid unswitching 3770 // on the same condition again. 3771 if (!PartiallyInvariant) 3772 LPM.addLoop(*L); 3773 } else 3774 LPM.markLoopAsDeleted(*L); 3775 }; 3776 3777 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3778 LPM.markLoopAsDeleted(L); 3779 }; 3780 3781 if (VerifyMemorySSA) 3782 MSSA->verifyMemorySSA(); 3783 bool Changed = 3784 unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE, 3785 &MSSAU, nullptr, nullptr, DestroyLoopCB); 3786 3787 if (VerifyMemorySSA) 3788 MSSA->verifyMemorySSA(); 3789 3790 // Historically this pass has had issues with the dominator tree so verify it 3791 // in asserts builds. 3792 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3793 3794 return Changed; 3795 } 3796 3797 char SimpleLoopUnswitchLegacyPass::ID = 0; 3798 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3799 "Simple unswitch loops", false, false) 3800 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3801 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3802 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3803 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3804 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3805 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3806 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3807 "Simple unswitch loops", false, false) 3808 3809 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3810 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3811 } 3812