xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision a494ae43bef09c8d0f6a6a98e92f3a89758247d5)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Use.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/GenericDomTree.h"
53 #include "llvm/Support/InstructionCost.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/ValueMapper.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <iterator>
63 #include <numeric>
64 #include <utility>
65 
66 #define DEBUG_TYPE "simple-loop-unswitch"
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 STATISTIC(NumBranches, "Number of branches unswitched");
72 STATISTIC(NumSwitches, "Number of switches unswitched");
73 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
74 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
75 STATISTIC(
76     NumCostMultiplierSkipped,
77     "Number of unswitch candidates that had their cost multiplier skipped");
78 
79 static cl::opt<bool> EnableNonTrivialUnswitch(
80     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
81     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
82              "following the configuration passed into the pass."));
83 
84 static cl::opt<int>
85     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
86                       cl::ZeroOrMore,
87                       cl::desc("The cost threshold for unswitching a loop."));
88 
89 static cl::opt<bool> EnableUnswitchCostMultiplier(
90     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
91     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
92              "explosion in nontrivial unswitch."));
93 static cl::opt<int> UnswitchSiblingsToplevelDiv(
94     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
95     cl::desc("Toplevel siblings divisor for cost multiplier."));
96 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
97     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
98     cl::desc("Number of unswitch candidates that are ignored when calculating "
99              "cost multiplier."));
100 static cl::opt<bool> UnswitchGuards(
101     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
102     cl::desc("If enabled, simple loop unswitching will also consider "
103              "llvm.experimental.guard intrinsics as unswitch candidates."));
104 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
105     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
106     cl::init(false), cl::Hidden,
107     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
108              "null checks to save time analyzing if we can keep it."));
109 static cl::opt<unsigned>
110     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
111                   cl::desc("Max number of memory uses to explore during "
112                            "partial unswitching analysis"),
113                   cl::init(100), cl::Hidden);
114 static cl::opt<bool> FreezeLoopUnswitchCond(
115     "freeze-loop-unswitch-cond", cl::init(false), cl::Hidden,
116     cl::desc("If enabled, the freeze instruction will be added to condition "
117              "of loop unswitch to prevent miscompilation."));
118 
119 /// Collect all of the loop invariant input values transitively used by the
120 /// homogeneous instruction graph from a given root.
121 ///
122 /// This essentially walks from a root recursively through loop variant operands
123 /// which have the exact same opcode and finds all inputs which are loop
124 /// invariant. For some operations these can be re-associated and unswitched out
125 /// of the loop entirely.
126 static TinyPtrVector<Value *>
127 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
128                                          LoopInfo &LI) {
129   assert(!L.isLoopInvariant(&Root) &&
130          "Only need to walk the graph if root itself is not invariant.");
131   TinyPtrVector<Value *> Invariants;
132 
133   bool IsRootAnd = match(&Root, m_LogicalAnd());
134   bool IsRootOr  = match(&Root, m_LogicalOr());
135 
136   // Build a worklist and recurse through operators collecting invariants.
137   SmallVector<Instruction *, 4> Worklist;
138   SmallPtrSet<Instruction *, 8> Visited;
139   Worklist.push_back(&Root);
140   Visited.insert(&Root);
141   do {
142     Instruction &I = *Worklist.pop_back_val();
143     for (Value *OpV : I.operand_values()) {
144       // Skip constants as unswitching isn't interesting for them.
145       if (isa<Constant>(OpV))
146         continue;
147 
148       // Add it to our result if loop invariant.
149       if (L.isLoopInvariant(OpV)) {
150         Invariants.push_back(OpV);
151         continue;
152       }
153 
154       // If not an instruction with the same opcode, nothing we can do.
155       Instruction *OpI = dyn_cast<Instruction>(OpV);
156 
157       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
158                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
159         // Visit this operand.
160         if (Visited.insert(OpI).second)
161           Worklist.push_back(OpI);
162       }
163     }
164   } while (!Worklist.empty());
165 
166   return Invariants;
167 }
168 
169 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
170                                      Constant &Replacement) {
171   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
172 
173   // Replace uses of LIC in the loop with the given constant.
174   // We use make_early_inc_range as set invalidates the iterator.
175   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
176     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
177 
178     // Replace this use within the loop body.
179     if (UserI && L.contains(UserI))
180       U.set(&Replacement);
181   }
182 }
183 
184 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
185 /// incoming values along this edge.
186 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
187                                          BasicBlock &ExitBB) {
188   for (Instruction &I : ExitBB) {
189     auto *PN = dyn_cast<PHINode>(&I);
190     if (!PN)
191       // No more PHIs to check.
192       return true;
193 
194     // If the incoming value for this edge isn't loop invariant the unswitch
195     // won't be trivial.
196     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
197       return false;
198   }
199   llvm_unreachable("Basic blocks should never be empty!");
200 }
201 
202 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
203 /// end of \p BB and conditionally branch on the copied condition. We only
204 /// branch on a single value.
205 static void buildPartialUnswitchConditionalBranch(
206     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
207     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze) {
208   IRBuilder<> IRB(&BB);
209 
210   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
211     IRB.CreateAnd(Invariants);
212   if (InsertFreeze)
213     Cond = IRB.CreateFreeze(Cond, Cond->getName() + ".fr");
214   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
215                    Direction ? &NormalSucc : &UnswitchedSucc);
216 }
217 
218 /// Copy a set of loop invariant values, and conditionally branch on them.
219 static void buildPartialInvariantUnswitchConditionalBranch(
220     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
221     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
222     MemorySSAUpdater *MSSAU) {
223   ValueToValueMapTy VMap;
224   for (auto *Val : reverse(ToDuplicate)) {
225     Instruction *Inst = cast<Instruction>(Val);
226     Instruction *NewInst = Inst->clone();
227     BB.getInstList().insert(BB.end(), NewInst);
228     RemapInstruction(NewInst, VMap,
229                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
230     VMap[Val] = NewInst;
231 
232     if (!MSSAU)
233       continue;
234 
235     MemorySSA *MSSA = MSSAU->getMemorySSA();
236     if (auto *MemUse =
237             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
238       auto *DefiningAccess = MemUse->getDefiningAccess();
239       // Get the first defining access before the loop.
240       while (L.contains(DefiningAccess->getBlock())) {
241         // If the defining access is a MemoryPhi, get the incoming
242         // value for the pre-header as defining access.
243         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
244           DefiningAccess =
245               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
246         else
247           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
248       }
249       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
250                                     NewInst->getParent(),
251                                     MemorySSA::BeforeTerminator);
252     }
253   }
254 
255   IRBuilder<> IRB(&BB);
256   Value *Cond = VMap[ToDuplicate[0]];
257   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
258                    Direction ? &NormalSucc : &UnswitchedSucc);
259 }
260 
261 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
262 ///
263 /// Requires that the loop exit and unswitched basic block are the same, and
264 /// that the exiting block was a unique predecessor of that block. Rewrites the
265 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
266 /// PHI nodes from the old preheader that now contains the unswitched
267 /// terminator.
268 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
269                                                   BasicBlock &OldExitingBB,
270                                                   BasicBlock &OldPH) {
271   for (PHINode &PN : UnswitchedBB.phis()) {
272     // When the loop exit is directly unswitched we just need to update the
273     // incoming basic block. We loop to handle weird cases with repeated
274     // incoming blocks, but expect to typically only have one operand here.
275     for (auto i : seq<int>(0, PN.getNumOperands())) {
276       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
277              "Found incoming block different from unique predecessor!");
278       PN.setIncomingBlock(i, &OldPH);
279     }
280   }
281 }
282 
283 /// Rewrite the PHI nodes in the loop exit basic block and the split off
284 /// unswitched block.
285 ///
286 /// Because the exit block remains an exit from the loop, this rewrites the
287 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
288 /// nodes into the unswitched basic block to select between the value in the
289 /// old preheader and the loop exit.
290 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
291                                                       BasicBlock &UnswitchedBB,
292                                                       BasicBlock &OldExitingBB,
293                                                       BasicBlock &OldPH,
294                                                       bool FullUnswitch) {
295   assert(&ExitBB != &UnswitchedBB &&
296          "Must have different loop exit and unswitched blocks!");
297   Instruction *InsertPt = &*UnswitchedBB.begin();
298   for (PHINode &PN : ExitBB.phis()) {
299     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
300                                   PN.getName() + ".split", InsertPt);
301 
302     // Walk backwards over the old PHI node's inputs to minimize the cost of
303     // removing each one. We have to do this weird loop manually so that we
304     // create the same number of new incoming edges in the new PHI as we expect
305     // each case-based edge to be included in the unswitched switch in some
306     // cases.
307     // FIXME: This is really, really gross. It would be much cleaner if LLVM
308     // allowed us to create a single entry for a predecessor block without
309     // having separate entries for each "edge" even though these edges are
310     // required to produce identical results.
311     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
312       if (PN.getIncomingBlock(i) != &OldExitingBB)
313         continue;
314 
315       Value *Incoming = PN.getIncomingValue(i);
316       if (FullUnswitch)
317         // No more edge from the old exiting block to the exit block.
318         PN.removeIncomingValue(i);
319 
320       NewPN->addIncoming(Incoming, &OldPH);
321     }
322 
323     // Now replace the old PHI with the new one and wire the old one in as an
324     // input to the new one.
325     PN.replaceAllUsesWith(NewPN);
326     NewPN->addIncoming(&PN, &ExitBB);
327   }
328 }
329 
330 /// Hoist the current loop up to the innermost loop containing a remaining exit.
331 ///
332 /// Because we've removed an exit from the loop, we may have changed the set of
333 /// loops reachable and need to move the current loop up the loop nest or even
334 /// to an entirely separate nest.
335 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
336                                  DominatorTree &DT, LoopInfo &LI,
337                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
338   // If the loop is already at the top level, we can't hoist it anywhere.
339   Loop *OldParentL = L.getParentLoop();
340   if (!OldParentL)
341     return;
342 
343   SmallVector<BasicBlock *, 4> Exits;
344   L.getExitBlocks(Exits);
345   Loop *NewParentL = nullptr;
346   for (auto *ExitBB : Exits)
347     if (Loop *ExitL = LI.getLoopFor(ExitBB))
348       if (!NewParentL || NewParentL->contains(ExitL))
349         NewParentL = ExitL;
350 
351   if (NewParentL == OldParentL)
352     return;
353 
354   // The new parent loop (if different) should always contain the old one.
355   if (NewParentL)
356     assert(NewParentL->contains(OldParentL) &&
357            "Can only hoist this loop up the nest!");
358 
359   // The preheader will need to move with the body of this loop. However,
360   // because it isn't in this loop we also need to update the primary loop map.
361   assert(OldParentL == LI.getLoopFor(&Preheader) &&
362          "Parent loop of this loop should contain this loop's preheader!");
363   LI.changeLoopFor(&Preheader, NewParentL);
364 
365   // Remove this loop from its old parent.
366   OldParentL->removeChildLoop(&L);
367 
368   // Add the loop either to the new parent or as a top-level loop.
369   if (NewParentL)
370     NewParentL->addChildLoop(&L);
371   else
372     LI.addTopLevelLoop(&L);
373 
374   // Remove this loops blocks from the old parent and every other loop up the
375   // nest until reaching the new parent. Also update all of these
376   // no-longer-containing loops to reflect the nesting change.
377   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
378        OldContainingL = OldContainingL->getParentLoop()) {
379     llvm::erase_if(OldContainingL->getBlocksVector(),
380                    [&](const BasicBlock *BB) {
381                      return BB == &Preheader || L.contains(BB);
382                    });
383 
384     OldContainingL->getBlocksSet().erase(&Preheader);
385     for (BasicBlock *BB : L.blocks())
386       OldContainingL->getBlocksSet().erase(BB);
387 
388     // Because we just hoisted a loop out of this one, we have essentially
389     // created new exit paths from it. That means we need to form LCSSA PHI
390     // nodes for values used in the no-longer-nested loop.
391     formLCSSA(*OldContainingL, DT, &LI, SE);
392 
393     // We shouldn't need to form dedicated exits because the exit introduced
394     // here is the (just split by unswitching) preheader. However, after trivial
395     // unswitching it is possible to get new non-dedicated exits out of parent
396     // loop so let's conservatively form dedicated exit blocks and figure out
397     // if we can optimize later.
398     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
399                             /*PreserveLCSSA*/ true);
400   }
401 }
402 
403 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
404 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
405 // as exiting block.
406 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
407   Loop *TopMost = LI.getLoopFor(ExitBB);
408   Loop *Current = TopMost;
409   while (Current) {
410     if (Current->isLoopExiting(ExitBB))
411       TopMost = Current;
412     Current = Current->getParentLoop();
413   }
414   return TopMost;
415 }
416 
417 /// Unswitch a trivial branch if the condition is loop invariant.
418 ///
419 /// This routine should only be called when loop code leading to the branch has
420 /// been validated as trivial (no side effects). This routine checks if the
421 /// condition is invariant and one of the successors is a loop exit. This
422 /// allows us to unswitch without duplicating the loop, making it trivial.
423 ///
424 /// If this routine fails to unswitch the branch it returns false.
425 ///
426 /// If the branch can be unswitched, this routine splits the preheader and
427 /// hoists the branch above that split. Preserves loop simplified form
428 /// (splitting the exit block as necessary). It simplifies the branch within
429 /// the loop to an unconditional branch but doesn't remove it entirely. Further
430 /// cleanup can be done with some simplifycfg like pass.
431 ///
432 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
433 /// invalidated by this.
434 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
435                                   LoopInfo &LI, ScalarEvolution *SE,
436                                   MemorySSAUpdater *MSSAU) {
437   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
438   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
439 
440   // The loop invariant values that we want to unswitch.
441   TinyPtrVector<Value *> Invariants;
442 
443   // When true, we're fully unswitching the branch rather than just unswitching
444   // some input conditions to the branch.
445   bool FullUnswitch = false;
446 
447   if (L.isLoopInvariant(BI.getCondition())) {
448     Invariants.push_back(BI.getCondition());
449     FullUnswitch = true;
450   } else {
451     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
452       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
453     if (Invariants.empty()) {
454       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
455       return false;
456     }
457   }
458 
459   // Check that one of the branch's successors exits, and which one.
460   bool ExitDirection = true;
461   int LoopExitSuccIdx = 0;
462   auto *LoopExitBB = BI.getSuccessor(0);
463   if (L.contains(LoopExitBB)) {
464     ExitDirection = false;
465     LoopExitSuccIdx = 1;
466     LoopExitBB = BI.getSuccessor(1);
467     if (L.contains(LoopExitBB)) {
468       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
469       return false;
470     }
471   }
472   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
473   auto *ParentBB = BI.getParent();
474   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
475     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
476     return false;
477   }
478 
479   // When unswitching only part of the branch's condition, we need the exit
480   // block to be reached directly from the partially unswitched input. This can
481   // be done when the exit block is along the true edge and the branch condition
482   // is a graph of `or` operations, or the exit block is along the false edge
483   // and the condition is a graph of `and` operations.
484   if (!FullUnswitch) {
485     if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr())
486                       : !match(BI.getCondition(), m_LogicalAnd())) {
487       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
488                            "non-full unswitch!\n");
489       return false;
490     }
491   }
492 
493   LLVM_DEBUG({
494     dbgs() << "    unswitching trivial invariant conditions for: " << BI
495            << "\n";
496     for (Value *Invariant : Invariants) {
497       dbgs() << "      " << *Invariant << " == true";
498       if (Invariant != Invariants.back())
499         dbgs() << " ||";
500       dbgs() << "\n";
501     }
502   });
503 
504   // If we have scalar evolutions, we need to invalidate them including this
505   // loop, the loop containing the exit block and the topmost parent loop
506   // exiting via LoopExitBB.
507   if (SE) {
508     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
509       SE->forgetLoop(ExitL);
510     else
511       // Forget the entire nest as this exits the entire nest.
512       SE->forgetTopmostLoop(&L);
513   }
514 
515   if (MSSAU && VerifyMemorySSA)
516     MSSAU->getMemorySSA()->verifyMemorySSA();
517 
518   // Split the preheader, so that we know that there is a safe place to insert
519   // the conditional branch. We will change the preheader to have a conditional
520   // branch on LoopCond.
521   BasicBlock *OldPH = L.getLoopPreheader();
522   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
523 
524   // Now that we have a place to insert the conditional branch, create a place
525   // to branch to: this is the exit block out of the loop that we are
526   // unswitching. We need to split this if there are other loop predecessors.
527   // Because the loop is in simplified form, *any* other predecessor is enough.
528   BasicBlock *UnswitchedBB;
529   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
530     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
531            "A branch's parent isn't a predecessor!");
532     UnswitchedBB = LoopExitBB;
533   } else {
534     UnswitchedBB =
535         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
536   }
537 
538   if (MSSAU && VerifyMemorySSA)
539     MSSAU->getMemorySSA()->verifyMemorySSA();
540 
541   // Actually move the invariant uses into the unswitched position. If possible,
542   // we do this by moving the instructions, but when doing partial unswitching
543   // we do it by building a new merge of the values in the unswitched position.
544   OldPH->getTerminator()->eraseFromParent();
545   if (FullUnswitch) {
546     // If fully unswitching, we can use the existing branch instruction.
547     // Splice it into the old PH to gate reaching the new preheader and re-point
548     // its successors.
549     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
550                                 BI);
551     if (MSSAU) {
552       // Temporarily clone the terminator, to make MSSA update cheaper by
553       // separating "insert edge" updates from "remove edge" ones.
554       ParentBB->getInstList().push_back(BI.clone());
555     } else {
556       // Create a new unconditional branch that will continue the loop as a new
557       // terminator.
558       BranchInst::Create(ContinueBB, ParentBB);
559     }
560     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
561     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
562   } else {
563     // Only unswitching a subset of inputs to the condition, so we will need to
564     // build a new branch that merges the invariant inputs.
565     if (ExitDirection)
566       assert(match(BI.getCondition(), m_LogicalOr()) &&
567              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
568              "condition!");
569     else
570       assert(match(BI.getCondition(), m_LogicalAnd()) &&
571              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
572              " condition!");
573     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
574                                           *UnswitchedBB, *NewPH, false);
575   }
576 
577   // Update the dominator tree with the added edge.
578   DT.insertEdge(OldPH, UnswitchedBB);
579 
580   // After the dominator tree was updated with the added edge, update MemorySSA
581   // if available.
582   if (MSSAU) {
583     SmallVector<CFGUpdate, 1> Updates;
584     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
585     MSSAU->applyInsertUpdates(Updates, DT);
586   }
587 
588   // Finish updating dominator tree and memory ssa for full unswitch.
589   if (FullUnswitch) {
590     if (MSSAU) {
591       // Remove the cloned branch instruction.
592       ParentBB->getTerminator()->eraseFromParent();
593       // Create unconditional branch now.
594       BranchInst::Create(ContinueBB, ParentBB);
595       MSSAU->removeEdge(ParentBB, LoopExitBB);
596     }
597     DT.deleteEdge(ParentBB, LoopExitBB);
598   }
599 
600   if (MSSAU && VerifyMemorySSA)
601     MSSAU->getMemorySSA()->verifyMemorySSA();
602 
603   // Rewrite the relevant PHI nodes.
604   if (UnswitchedBB == LoopExitBB)
605     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
606   else
607     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
608                                               *ParentBB, *OldPH, FullUnswitch);
609 
610   // The constant we can replace all of our invariants with inside the loop
611   // body. If any of the invariants have a value other than this the loop won't
612   // be entered.
613   ConstantInt *Replacement = ExitDirection
614                                  ? ConstantInt::getFalse(BI.getContext())
615                                  : ConstantInt::getTrue(BI.getContext());
616 
617   // Since this is an i1 condition we can also trivially replace uses of it
618   // within the loop with a constant.
619   for (Value *Invariant : Invariants)
620     replaceLoopInvariantUses(L, Invariant, *Replacement);
621 
622   // If this was full unswitching, we may have changed the nesting relationship
623   // for this loop so hoist it to its correct parent if needed.
624   if (FullUnswitch)
625     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
626 
627   if (MSSAU && VerifyMemorySSA)
628     MSSAU->getMemorySSA()->verifyMemorySSA();
629 
630   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
631   ++NumTrivial;
632   ++NumBranches;
633   return true;
634 }
635 
636 /// Unswitch a trivial switch if the condition is loop invariant.
637 ///
638 /// This routine should only be called when loop code leading to the switch has
639 /// been validated as trivial (no side effects). This routine checks if the
640 /// condition is invariant and that at least one of the successors is a loop
641 /// exit. This allows us to unswitch without duplicating the loop, making it
642 /// trivial.
643 ///
644 /// If this routine fails to unswitch the switch it returns false.
645 ///
646 /// If the switch can be unswitched, this routine splits the preheader and
647 /// copies the switch above that split. If the default case is one of the
648 /// exiting cases, it copies the non-exiting cases and points them at the new
649 /// preheader. If the default case is not exiting, it copies the exiting cases
650 /// and points the default at the preheader. It preserves loop simplified form
651 /// (splitting the exit blocks as necessary). It simplifies the switch within
652 /// the loop by removing now-dead cases. If the default case is one of those
653 /// unswitched, it replaces its destination with a new basic block containing
654 /// only unreachable. Such basic blocks, while technically loop exits, are not
655 /// considered for unswitching so this is a stable transform and the same
656 /// switch will not be revisited. If after unswitching there is only a single
657 /// in-loop successor, the switch is further simplified to an unconditional
658 /// branch. Still more cleanup can be done with some simplifycfg like pass.
659 ///
660 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
661 /// invalidated by this.
662 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
663                                   LoopInfo &LI, ScalarEvolution *SE,
664                                   MemorySSAUpdater *MSSAU) {
665   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
666   Value *LoopCond = SI.getCondition();
667 
668   // If this isn't switching on an invariant condition, we can't unswitch it.
669   if (!L.isLoopInvariant(LoopCond))
670     return false;
671 
672   auto *ParentBB = SI.getParent();
673 
674   // The same check must be used both for the default and the exit cases. We
675   // should never leave edges from the switch instruction to a basic block that
676   // we are unswitching, hence the condition used to determine the default case
677   // needs to also be used to populate ExitCaseIndices, which is then used to
678   // remove cases from the switch.
679   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
680     // BBToCheck is not an exit block if it is inside loop L.
681     if (L.contains(&BBToCheck))
682       return false;
683     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
684     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
685       return false;
686     // We do not unswitch a block that only has an unreachable statement, as
687     // it's possible this is a previously unswitched block. Only unswitch if
688     // either the terminator is not unreachable, or, if it is, it's not the only
689     // instruction in the block.
690     auto *TI = BBToCheck.getTerminator();
691     bool isUnreachable = isa<UnreachableInst>(TI);
692     return !isUnreachable ||
693            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
694   };
695 
696   SmallVector<int, 4> ExitCaseIndices;
697   for (auto Case : SI.cases())
698     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
699       ExitCaseIndices.push_back(Case.getCaseIndex());
700   BasicBlock *DefaultExitBB = nullptr;
701   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
702       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
703   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
704     DefaultExitBB = SI.getDefaultDest();
705   } else if (ExitCaseIndices.empty())
706     return false;
707 
708   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
709 
710   if (MSSAU && VerifyMemorySSA)
711     MSSAU->getMemorySSA()->verifyMemorySSA();
712 
713   // We may need to invalidate SCEVs for the outermost loop reached by any of
714   // the exits.
715   Loop *OuterL = &L;
716 
717   if (DefaultExitBB) {
718     // Clear out the default destination temporarily to allow accurate
719     // predecessor lists to be examined below.
720     SI.setDefaultDest(nullptr);
721     // Check the loop containing this exit.
722     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
723     if (!ExitL || ExitL->contains(OuterL))
724       OuterL = ExitL;
725   }
726 
727   // Store the exit cases into a separate data structure and remove them from
728   // the switch.
729   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
730                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
731               4> ExitCases;
732   ExitCases.reserve(ExitCaseIndices.size());
733   SwitchInstProfUpdateWrapper SIW(SI);
734   // We walk the case indices backwards so that we remove the last case first
735   // and don't disrupt the earlier indices.
736   for (unsigned Index : reverse(ExitCaseIndices)) {
737     auto CaseI = SI.case_begin() + Index;
738     // Compute the outer loop from this exit.
739     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
740     if (!ExitL || ExitL->contains(OuterL))
741       OuterL = ExitL;
742     // Save the value of this case.
743     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
744     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
745     // Delete the unswitched cases.
746     SIW.removeCase(CaseI);
747   }
748 
749   if (SE) {
750     if (OuterL)
751       SE->forgetLoop(OuterL);
752     else
753       SE->forgetTopmostLoop(&L);
754   }
755 
756   // Check if after this all of the remaining cases point at the same
757   // successor.
758   BasicBlock *CommonSuccBB = nullptr;
759   if (SI.getNumCases() > 0 &&
760       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
761         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
762       }))
763     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
764   if (!DefaultExitBB) {
765     // If we're not unswitching the default, we need it to match any cases to
766     // have a common successor or if we have no cases it is the common
767     // successor.
768     if (SI.getNumCases() == 0)
769       CommonSuccBB = SI.getDefaultDest();
770     else if (SI.getDefaultDest() != CommonSuccBB)
771       CommonSuccBB = nullptr;
772   }
773 
774   // Split the preheader, so that we know that there is a safe place to insert
775   // the switch.
776   BasicBlock *OldPH = L.getLoopPreheader();
777   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
778   OldPH->getTerminator()->eraseFromParent();
779 
780   // Now add the unswitched switch.
781   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
782   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
783 
784   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
785   // First, we split any exit blocks with remaining in-loop predecessors. Then
786   // we update the PHIs in one of two ways depending on if there was a split.
787   // We walk in reverse so that we split in the same order as the cases
788   // appeared. This is purely for convenience of reading the resulting IR, but
789   // it doesn't cost anything really.
790   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
791   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
792   // Handle the default exit if necessary.
793   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
794   // ranges aren't quite powerful enough yet.
795   if (DefaultExitBB) {
796     if (pred_empty(DefaultExitBB)) {
797       UnswitchedExitBBs.insert(DefaultExitBB);
798       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
799     } else {
800       auto *SplitBB =
801           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
802       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
803                                                 *ParentBB, *OldPH,
804                                                 /*FullUnswitch*/ true);
805       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
806     }
807   }
808   // Note that we must use a reference in the for loop so that we update the
809   // container.
810   for (auto &ExitCase : reverse(ExitCases)) {
811     // Grab a reference to the exit block in the pair so that we can update it.
812     BasicBlock *ExitBB = std::get<1>(ExitCase);
813 
814     // If this case is the last edge into the exit block, we can simply reuse it
815     // as it will no longer be a loop exit. No mapping necessary.
816     if (pred_empty(ExitBB)) {
817       // Only rewrite once.
818       if (UnswitchedExitBBs.insert(ExitBB).second)
819         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
820       continue;
821     }
822 
823     // Otherwise we need to split the exit block so that we retain an exit
824     // block from the loop and a target for the unswitched condition.
825     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
826     if (!SplitExitBB) {
827       // If this is the first time we see this, do the split and remember it.
828       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
829       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
830                                                 *ParentBB, *OldPH,
831                                                 /*FullUnswitch*/ true);
832     }
833     // Update the case pair to point to the split block.
834     std::get<1>(ExitCase) = SplitExitBB;
835   }
836 
837   // Now add the unswitched cases. We do this in reverse order as we built them
838   // in reverse order.
839   for (auto &ExitCase : reverse(ExitCases)) {
840     ConstantInt *CaseVal = std::get<0>(ExitCase);
841     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
842 
843     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
844   }
845 
846   // If the default was unswitched, re-point it and add explicit cases for
847   // entering the loop.
848   if (DefaultExitBB) {
849     NewSIW->setDefaultDest(DefaultExitBB);
850     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
851 
852     // We removed all the exit cases, so we just copy the cases to the
853     // unswitched switch.
854     for (const auto &Case : SI.cases())
855       NewSIW.addCase(Case.getCaseValue(), NewPH,
856                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
857   } else if (DefaultCaseWeight) {
858     // We have to set branch weight of the default case.
859     uint64_t SW = *DefaultCaseWeight;
860     for (const auto &Case : SI.cases()) {
861       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
862       assert(W &&
863              "case weight must be defined as default case weight is defined");
864       SW += *W;
865     }
866     NewSIW.setSuccessorWeight(0, SW);
867   }
868 
869   // If we ended up with a common successor for every path through the switch
870   // after unswitching, rewrite it to an unconditional branch to make it easy
871   // to recognize. Otherwise we potentially have to recognize the default case
872   // pointing at unreachable and other complexity.
873   if (CommonSuccBB) {
874     BasicBlock *BB = SI.getParent();
875     // We may have had multiple edges to this common successor block, so remove
876     // them as predecessors. We skip the first one, either the default or the
877     // actual first case.
878     bool SkippedFirst = DefaultExitBB == nullptr;
879     for (auto Case : SI.cases()) {
880       assert(Case.getCaseSuccessor() == CommonSuccBB &&
881              "Non-common successor!");
882       (void)Case;
883       if (!SkippedFirst) {
884         SkippedFirst = true;
885         continue;
886       }
887       CommonSuccBB->removePredecessor(BB,
888                                       /*KeepOneInputPHIs*/ true);
889     }
890     // Now nuke the switch and replace it with a direct branch.
891     SIW.eraseFromParent();
892     BranchInst::Create(CommonSuccBB, BB);
893   } else if (DefaultExitBB) {
894     assert(SI.getNumCases() > 0 &&
895            "If we had no cases we'd have a common successor!");
896     // Move the last case to the default successor. This is valid as if the
897     // default got unswitched it cannot be reached. This has the advantage of
898     // being simple and keeping the number of edges from this switch to
899     // successors the same, and avoiding any PHI update complexity.
900     auto LastCaseI = std::prev(SI.case_end());
901 
902     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
903     SIW.setSuccessorWeight(
904         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
905     SIW.removeCase(LastCaseI);
906   }
907 
908   // Walk the unswitched exit blocks and the unswitched split blocks and update
909   // the dominator tree based on the CFG edits. While we are walking unordered
910   // containers here, the API for applyUpdates takes an unordered list of
911   // updates and requires them to not contain duplicates.
912   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
913   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
914     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
915     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
916   }
917   for (auto SplitUnswitchedPair : SplitExitBBMap) {
918     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
919     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
920   }
921 
922   if (MSSAU) {
923     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
924     if (VerifyMemorySSA)
925       MSSAU->getMemorySSA()->verifyMemorySSA();
926   } else {
927     DT.applyUpdates(DTUpdates);
928   }
929 
930   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
931 
932   // We may have changed the nesting relationship for this loop so hoist it to
933   // its correct parent if needed.
934   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
935 
936   if (MSSAU && VerifyMemorySSA)
937     MSSAU->getMemorySSA()->verifyMemorySSA();
938 
939   ++NumTrivial;
940   ++NumSwitches;
941   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
942   return true;
943 }
944 
945 /// This routine scans the loop to find a branch or switch which occurs before
946 /// any side effects occur. These can potentially be unswitched without
947 /// duplicating the loop. If a branch or switch is successfully unswitched the
948 /// scanning continues to see if subsequent branches or switches have become
949 /// trivial. Once all trivial candidates have been unswitched, this routine
950 /// returns.
951 ///
952 /// The return value indicates whether anything was unswitched (and therefore
953 /// changed).
954 ///
955 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
956 /// invalidated by this.
957 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
958                                          LoopInfo &LI, ScalarEvolution *SE,
959                                          MemorySSAUpdater *MSSAU) {
960   bool Changed = false;
961 
962   // If loop header has only one reachable successor we should keep looking for
963   // trivial condition candidates in the successor as well. An alternative is
964   // to constant fold conditions and merge successors into loop header (then we
965   // only need to check header's terminator). The reason for not doing this in
966   // LoopUnswitch pass is that it could potentially break LoopPassManager's
967   // invariants. Folding dead branches could either eliminate the current loop
968   // or make other loops unreachable. LCSSA form might also not be preserved
969   // after deleting branches. The following code keeps traversing loop header's
970   // successors until it finds the trivial condition candidate (condition that
971   // is not a constant). Since unswitching generates branches with constant
972   // conditions, this scenario could be very common in practice.
973   BasicBlock *CurrentBB = L.getHeader();
974   SmallPtrSet<BasicBlock *, 8> Visited;
975   Visited.insert(CurrentBB);
976   do {
977     // Check if there are any side-effecting instructions (e.g. stores, calls,
978     // volatile loads) in the part of the loop that the code *would* execute
979     // without unswitching.
980     if (MSSAU) // Possible early exit with MSSA
981       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
982         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
983           return Changed;
984     if (llvm::any_of(*CurrentBB,
985                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
986       return Changed;
987 
988     Instruction *CurrentTerm = CurrentBB->getTerminator();
989 
990     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
991       // Don't bother trying to unswitch past a switch with a constant
992       // condition. This should be removed prior to running this pass by
993       // simplifycfg.
994       if (isa<Constant>(SI->getCondition()))
995         return Changed;
996 
997       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
998         // Couldn't unswitch this one so we're done.
999         return Changed;
1000 
1001       // Mark that we managed to unswitch something.
1002       Changed = true;
1003 
1004       // If unswitching turned the terminator into an unconditional branch then
1005       // we can continue. The unswitching logic specifically works to fold any
1006       // cases it can into an unconditional branch to make it easier to
1007       // recognize here.
1008       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1009       if (!BI || BI->isConditional())
1010         return Changed;
1011 
1012       CurrentBB = BI->getSuccessor(0);
1013       continue;
1014     }
1015 
1016     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1017     if (!BI)
1018       // We do not understand other terminator instructions.
1019       return Changed;
1020 
1021     // Don't bother trying to unswitch past an unconditional branch or a branch
1022     // with a constant value. These should be removed by simplifycfg prior to
1023     // running this pass.
1024     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1025       return Changed;
1026 
1027     // Found a trivial condition candidate: non-foldable conditional branch. If
1028     // we fail to unswitch this, we can't do anything else that is trivial.
1029     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1030       return Changed;
1031 
1032     // Mark that we managed to unswitch something.
1033     Changed = true;
1034 
1035     // If we only unswitched some of the conditions feeding the branch, we won't
1036     // have collapsed it to a single successor.
1037     BI = cast<BranchInst>(CurrentBB->getTerminator());
1038     if (BI->isConditional())
1039       return Changed;
1040 
1041     // Follow the newly unconditional branch into its successor.
1042     CurrentBB = BI->getSuccessor(0);
1043 
1044     // When continuing, if we exit the loop or reach a previous visited block,
1045     // then we can not reach any trivial condition candidates (unfoldable
1046     // branch instructions or switch instructions) and no unswitch can happen.
1047   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1048 
1049   return Changed;
1050 }
1051 
1052 /// Build the cloned blocks for an unswitched copy of the given loop.
1053 ///
1054 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1055 /// after the split block (`SplitBB`) that will be used to select between the
1056 /// cloned and original loop.
1057 ///
1058 /// This routine handles cloning all of the necessary loop blocks and exit
1059 /// blocks including rewriting their instructions and the relevant PHI nodes.
1060 /// Any loop blocks or exit blocks which are dominated by a different successor
1061 /// than the one for this clone of the loop blocks can be trivially skipped. We
1062 /// use the `DominatingSucc` map to determine whether a block satisfies that
1063 /// property with a simple map lookup.
1064 ///
1065 /// It also correctly creates the unconditional branch in the cloned
1066 /// unswitched parent block to only point at the unswitched successor.
1067 ///
1068 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1069 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1070 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1071 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1072 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1073 /// instead the caller must recompute an accurate DT. It *does* correctly
1074 /// update the `AssumptionCache` provided in `AC`.
1075 static BasicBlock *buildClonedLoopBlocks(
1076     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1077     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1078     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1079     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1080     ValueToValueMapTy &VMap,
1081     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1082     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1083   SmallVector<BasicBlock *, 4> NewBlocks;
1084   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1085 
1086   // We will need to clone a bunch of blocks, wrap up the clone operation in
1087   // a helper.
1088   auto CloneBlock = [&](BasicBlock *OldBB) {
1089     // Clone the basic block and insert it before the new preheader.
1090     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1091     NewBB->moveBefore(LoopPH);
1092 
1093     // Record this block and the mapping.
1094     NewBlocks.push_back(NewBB);
1095     VMap[OldBB] = NewBB;
1096 
1097     return NewBB;
1098   };
1099 
1100   // We skip cloning blocks when they have a dominating succ that is not the
1101   // succ we are cloning for.
1102   auto SkipBlock = [&](BasicBlock *BB) {
1103     auto It = DominatingSucc.find(BB);
1104     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1105   };
1106 
1107   // First, clone the preheader.
1108   auto *ClonedPH = CloneBlock(LoopPH);
1109 
1110   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1111   for (auto *LoopBB : L.blocks())
1112     if (!SkipBlock(LoopBB))
1113       CloneBlock(LoopBB);
1114 
1115   // Split all the loop exit edges so that when we clone the exit blocks, if
1116   // any of the exit blocks are *also* a preheader for some other loop, we
1117   // don't create multiple predecessors entering the loop header.
1118   for (auto *ExitBB : ExitBlocks) {
1119     if (SkipBlock(ExitBB))
1120       continue;
1121 
1122     // When we are going to clone an exit, we don't need to clone all the
1123     // instructions in the exit block and we want to ensure we have an easy
1124     // place to merge the CFG, so split the exit first. This is always safe to
1125     // do because there cannot be any non-loop predecessors of a loop exit in
1126     // loop simplified form.
1127     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1128 
1129     // Rearrange the names to make it easier to write test cases by having the
1130     // exit block carry the suffix rather than the merge block carrying the
1131     // suffix.
1132     MergeBB->takeName(ExitBB);
1133     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1134 
1135     // Now clone the original exit block.
1136     auto *ClonedExitBB = CloneBlock(ExitBB);
1137     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1138            "Exit block should have been split to have one successor!");
1139     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1140            "Cloned exit block has the wrong successor!");
1141 
1142     // Remap any cloned instructions and create a merge phi node for them.
1143     for (auto ZippedInsts : llvm::zip_first(
1144              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1145              llvm::make_range(ClonedExitBB->begin(),
1146                               std::prev(ClonedExitBB->end())))) {
1147       Instruction &I = std::get<0>(ZippedInsts);
1148       Instruction &ClonedI = std::get<1>(ZippedInsts);
1149 
1150       // The only instructions in the exit block should be PHI nodes and
1151       // potentially a landing pad.
1152       assert(
1153           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1154           "Bad instruction in exit block!");
1155       // We should have a value map between the instruction and its clone.
1156       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1157 
1158       auto *MergePN =
1159           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1160                           &*MergeBB->getFirstInsertionPt());
1161       I.replaceAllUsesWith(MergePN);
1162       MergePN->addIncoming(&I, ExitBB);
1163       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1164     }
1165   }
1166 
1167   // Rewrite the instructions in the cloned blocks to refer to the instructions
1168   // in the cloned blocks. We have to do this as a second pass so that we have
1169   // everything available. Also, we have inserted new instructions which may
1170   // include assume intrinsics, so we update the assumption cache while
1171   // processing this.
1172   for (auto *ClonedBB : NewBlocks)
1173     for (Instruction &I : *ClonedBB) {
1174       RemapInstruction(&I, VMap,
1175                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1176       if (auto *II = dyn_cast<AssumeInst>(&I))
1177         AC.registerAssumption(II);
1178     }
1179 
1180   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1181   // have spurious incoming values.
1182   for (auto *LoopBB : L.blocks())
1183     if (SkipBlock(LoopBB))
1184       for (auto *SuccBB : successors(LoopBB))
1185         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1186           for (PHINode &PN : ClonedSuccBB->phis())
1187             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1188 
1189   // Remove the cloned parent as a predecessor of any successor we ended up
1190   // cloning other than the unswitched one.
1191   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1192   for (auto *SuccBB : successors(ParentBB)) {
1193     if (SuccBB == UnswitchedSuccBB)
1194       continue;
1195 
1196     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1197     if (!ClonedSuccBB)
1198       continue;
1199 
1200     ClonedSuccBB->removePredecessor(ClonedParentBB,
1201                                     /*KeepOneInputPHIs*/ true);
1202   }
1203 
1204   // Replace the cloned branch with an unconditional branch to the cloned
1205   // unswitched successor.
1206   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1207   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1208   // Trivial Simplification. If Terminator is a conditional branch and
1209   // condition becomes dead - erase it.
1210   Value *ClonedConditionToErase = nullptr;
1211   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1212     ClonedConditionToErase = BI->getCondition();
1213   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1214     ClonedConditionToErase = SI->getCondition();
1215 
1216   ClonedTerminator->eraseFromParent();
1217   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1218 
1219   if (ClonedConditionToErase)
1220     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1221                                                MSSAU);
1222 
1223   // If there are duplicate entries in the PHI nodes because of multiple edges
1224   // to the unswitched successor, we need to nuke all but one as we replaced it
1225   // with a direct branch.
1226   for (PHINode &PN : ClonedSuccBB->phis()) {
1227     bool Found = false;
1228     // Loop over the incoming operands backwards so we can easily delete as we
1229     // go without invalidating the index.
1230     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1231       if (PN.getIncomingBlock(i) != ClonedParentBB)
1232         continue;
1233       if (!Found) {
1234         Found = true;
1235         continue;
1236       }
1237       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1238     }
1239   }
1240 
1241   // Record the domtree updates for the new blocks.
1242   SmallPtrSet<BasicBlock *, 4> SuccSet;
1243   for (auto *ClonedBB : NewBlocks) {
1244     for (auto *SuccBB : successors(ClonedBB))
1245       if (SuccSet.insert(SuccBB).second)
1246         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1247     SuccSet.clear();
1248   }
1249 
1250   return ClonedPH;
1251 }
1252 
1253 /// Recursively clone the specified loop and all of its children.
1254 ///
1255 /// The target parent loop for the clone should be provided, or can be null if
1256 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1257 /// with the provided value map. The entire original loop must be present in
1258 /// the value map. The cloned loop is returned.
1259 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1260                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1261   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1262     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1263     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1264     for (auto *BB : OrigL.blocks()) {
1265       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1266       ClonedL.addBlockEntry(ClonedBB);
1267       if (LI.getLoopFor(BB) == &OrigL)
1268         LI.changeLoopFor(ClonedBB, &ClonedL);
1269     }
1270   };
1271 
1272   // We specially handle the first loop because it may get cloned into
1273   // a different parent and because we most commonly are cloning leaf loops.
1274   Loop *ClonedRootL = LI.AllocateLoop();
1275   if (RootParentL)
1276     RootParentL->addChildLoop(ClonedRootL);
1277   else
1278     LI.addTopLevelLoop(ClonedRootL);
1279   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1280 
1281   if (OrigRootL.isInnermost())
1282     return ClonedRootL;
1283 
1284   // If we have a nest, we can quickly clone the entire loop nest using an
1285   // iterative approach because it is a tree. We keep the cloned parent in the
1286   // data structure to avoid repeatedly querying through a map to find it.
1287   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1288   // Build up the loops to clone in reverse order as we'll clone them from the
1289   // back.
1290   for (Loop *ChildL : llvm::reverse(OrigRootL))
1291     LoopsToClone.push_back({ClonedRootL, ChildL});
1292   do {
1293     Loop *ClonedParentL, *L;
1294     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1295     Loop *ClonedL = LI.AllocateLoop();
1296     ClonedParentL->addChildLoop(ClonedL);
1297     AddClonedBlocksToLoop(*L, *ClonedL);
1298     for (Loop *ChildL : llvm::reverse(*L))
1299       LoopsToClone.push_back({ClonedL, ChildL});
1300   } while (!LoopsToClone.empty());
1301 
1302   return ClonedRootL;
1303 }
1304 
1305 /// Build the cloned loops of an original loop from unswitching.
1306 ///
1307 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1308 /// operation. We need to re-verify that there even is a loop (as the backedge
1309 /// may not have been cloned), and even if there are remaining backedges the
1310 /// backedge set may be different. However, we know that each child loop is
1311 /// undisturbed, we only need to find where to place each child loop within
1312 /// either any parent loop or within a cloned version of the original loop.
1313 ///
1314 /// Because child loops may end up cloned outside of any cloned version of the
1315 /// original loop, multiple cloned sibling loops may be created. All of them
1316 /// are returned so that the newly introduced loop nest roots can be
1317 /// identified.
1318 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1319                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1320                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1321   Loop *ClonedL = nullptr;
1322 
1323   auto *OrigPH = OrigL.getLoopPreheader();
1324   auto *OrigHeader = OrigL.getHeader();
1325 
1326   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1327   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1328 
1329   // We need to know the loops of the cloned exit blocks to even compute the
1330   // accurate parent loop. If we only clone exits to some parent of the
1331   // original parent, we want to clone into that outer loop. We also keep track
1332   // of the loops that our cloned exit blocks participate in.
1333   Loop *ParentL = nullptr;
1334   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1335   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1336   ClonedExitsInLoops.reserve(ExitBlocks.size());
1337   for (auto *ExitBB : ExitBlocks)
1338     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1339       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1340         ExitLoopMap[ClonedExitBB] = ExitL;
1341         ClonedExitsInLoops.push_back(ClonedExitBB);
1342         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1343           ParentL = ExitL;
1344       }
1345   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1346           ParentL->contains(OrigL.getParentLoop())) &&
1347          "The computed parent loop should always contain (or be) the parent of "
1348          "the original loop.");
1349 
1350   // We build the set of blocks dominated by the cloned header from the set of
1351   // cloned blocks out of the original loop. While not all of these will
1352   // necessarily be in the cloned loop, it is enough to establish that they
1353   // aren't in unreachable cycles, etc.
1354   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1355   for (auto *BB : OrigL.blocks())
1356     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1357       ClonedLoopBlocks.insert(ClonedBB);
1358 
1359   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1360   // skipped cloning some region of this loop which can in turn skip some of
1361   // the backedges so we have to rebuild the blocks in the loop based on the
1362   // backedges that remain after cloning.
1363   SmallVector<BasicBlock *, 16> Worklist;
1364   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1365   for (auto *Pred : predecessors(ClonedHeader)) {
1366     // The only possible non-loop header predecessor is the preheader because
1367     // we know we cloned the loop in simplified form.
1368     if (Pred == ClonedPH)
1369       continue;
1370 
1371     // Because the loop was in simplified form, the only non-loop predecessor
1372     // should be the preheader.
1373     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1374                                            "header other than the preheader "
1375                                            "that is not part of the loop!");
1376 
1377     // Insert this block into the loop set and on the first visit (and if it
1378     // isn't the header we're currently walking) put it into the worklist to
1379     // recurse through.
1380     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1381       Worklist.push_back(Pred);
1382   }
1383 
1384   // If we had any backedges then there *is* a cloned loop. Put the header into
1385   // the loop set and then walk the worklist backwards to find all the blocks
1386   // that remain within the loop after cloning.
1387   if (!BlocksInClonedLoop.empty()) {
1388     BlocksInClonedLoop.insert(ClonedHeader);
1389 
1390     while (!Worklist.empty()) {
1391       BasicBlock *BB = Worklist.pop_back_val();
1392       assert(BlocksInClonedLoop.count(BB) &&
1393              "Didn't put block into the loop set!");
1394 
1395       // Insert any predecessors that are in the possible set into the cloned
1396       // set, and if the insert is successful, add them to the worklist. Note
1397       // that we filter on the blocks that are definitely reachable via the
1398       // backedge to the loop header so we may prune out dead code within the
1399       // cloned loop.
1400       for (auto *Pred : predecessors(BB))
1401         if (ClonedLoopBlocks.count(Pred) &&
1402             BlocksInClonedLoop.insert(Pred).second)
1403           Worklist.push_back(Pred);
1404     }
1405 
1406     ClonedL = LI.AllocateLoop();
1407     if (ParentL) {
1408       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1409       ParentL->addChildLoop(ClonedL);
1410     } else {
1411       LI.addTopLevelLoop(ClonedL);
1412     }
1413     NonChildClonedLoops.push_back(ClonedL);
1414 
1415     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1416     // We don't want to just add the cloned loop blocks based on how we
1417     // discovered them. The original order of blocks was carefully built in
1418     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1419     // that logic, we just re-walk the original blocks (and those of the child
1420     // loops) and filter them as we add them into the cloned loop.
1421     for (auto *BB : OrigL.blocks()) {
1422       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1423       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1424         continue;
1425 
1426       // Directly add the blocks that are only in this loop.
1427       if (LI.getLoopFor(BB) == &OrigL) {
1428         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1429         continue;
1430       }
1431 
1432       // We want to manually add it to this loop and parents.
1433       // Registering it with LoopInfo will happen when we clone the top
1434       // loop for this block.
1435       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1436         PL->addBlockEntry(ClonedBB);
1437     }
1438 
1439     // Now add each child loop whose header remains within the cloned loop. All
1440     // of the blocks within the loop must satisfy the same constraints as the
1441     // header so once we pass the header checks we can just clone the entire
1442     // child loop nest.
1443     for (Loop *ChildL : OrigL) {
1444       auto *ClonedChildHeader =
1445           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1446       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1447         continue;
1448 
1449 #ifndef NDEBUG
1450       // We should never have a cloned child loop header but fail to have
1451       // all of the blocks for that child loop.
1452       for (auto *ChildLoopBB : ChildL->blocks())
1453         assert(BlocksInClonedLoop.count(
1454                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1455                "Child cloned loop has a header within the cloned outer "
1456                "loop but not all of its blocks!");
1457 #endif
1458 
1459       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1460     }
1461   }
1462 
1463   // Now that we've handled all the components of the original loop that were
1464   // cloned into a new loop, we still need to handle anything from the original
1465   // loop that wasn't in a cloned loop.
1466 
1467   // Figure out what blocks are left to place within any loop nest containing
1468   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1469   // them.
1470   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1471   if (BlocksInClonedLoop.empty())
1472     UnloopedBlockSet.insert(ClonedPH);
1473   for (auto *ClonedBB : ClonedLoopBlocks)
1474     if (!BlocksInClonedLoop.count(ClonedBB))
1475       UnloopedBlockSet.insert(ClonedBB);
1476 
1477   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1478   // backwards across these to process them inside out. The order shouldn't
1479   // matter as we're just trying to build up the map from inside-out; we use
1480   // the map in a more stably ordered way below.
1481   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1482   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1483     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1484            ExitLoopMap.lookup(RHS)->getLoopDepth();
1485   });
1486 
1487   // Populate the existing ExitLoopMap with everything reachable from each
1488   // exit, starting from the inner most exit.
1489   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1490     assert(Worklist.empty() && "Didn't clear worklist!");
1491 
1492     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1493     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1494 
1495     // Walk the CFG back until we hit the cloned PH adding everything reachable
1496     // and in the unlooped set to this exit block's loop.
1497     Worklist.push_back(ExitBB);
1498     do {
1499       BasicBlock *BB = Worklist.pop_back_val();
1500       // We can stop recursing at the cloned preheader (if we get there).
1501       if (BB == ClonedPH)
1502         continue;
1503 
1504       for (BasicBlock *PredBB : predecessors(BB)) {
1505         // If this pred has already been moved to our set or is part of some
1506         // (inner) loop, no update needed.
1507         if (!UnloopedBlockSet.erase(PredBB)) {
1508           assert(
1509               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1510               "Predecessor not mapped to a loop!");
1511           continue;
1512         }
1513 
1514         // We just insert into the loop set here. We'll add these blocks to the
1515         // exit loop after we build up the set in an order that doesn't rely on
1516         // predecessor order (which in turn relies on use list order).
1517         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1518         (void)Inserted;
1519         assert(Inserted && "Should only visit an unlooped block once!");
1520 
1521         // And recurse through to its predecessors.
1522         Worklist.push_back(PredBB);
1523       }
1524     } while (!Worklist.empty());
1525   }
1526 
1527   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1528   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1529   // in their original order adding them to the correct loop.
1530 
1531   // We need a stable insertion order. We use the order of the original loop
1532   // order and map into the correct parent loop.
1533   for (auto *BB : llvm::concat<BasicBlock *const>(
1534            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1535     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1536       OuterL->addBasicBlockToLoop(BB, LI);
1537 
1538 #ifndef NDEBUG
1539   for (auto &BBAndL : ExitLoopMap) {
1540     auto *BB = BBAndL.first;
1541     auto *OuterL = BBAndL.second;
1542     assert(LI.getLoopFor(BB) == OuterL &&
1543            "Failed to put all blocks into outer loops!");
1544   }
1545 #endif
1546 
1547   // Now that all the blocks are placed into the correct containing loop in the
1548   // absence of child loops, find all the potentially cloned child loops and
1549   // clone them into whatever outer loop we placed their header into.
1550   for (Loop *ChildL : OrigL) {
1551     auto *ClonedChildHeader =
1552         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1553     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1554       continue;
1555 
1556 #ifndef NDEBUG
1557     for (auto *ChildLoopBB : ChildL->blocks())
1558       assert(VMap.count(ChildLoopBB) &&
1559              "Cloned a child loop header but not all of that loops blocks!");
1560 #endif
1561 
1562     NonChildClonedLoops.push_back(cloneLoopNest(
1563         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1564   }
1565 }
1566 
1567 static void
1568 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1569                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1570                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1571   // Find all the dead clones, and remove them from their successors.
1572   SmallVector<BasicBlock *, 16> DeadBlocks;
1573   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1574     for (auto &VMap : VMaps)
1575       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1576         if (!DT.isReachableFromEntry(ClonedBB)) {
1577           for (BasicBlock *SuccBB : successors(ClonedBB))
1578             SuccBB->removePredecessor(ClonedBB);
1579           DeadBlocks.push_back(ClonedBB);
1580         }
1581 
1582   // Remove all MemorySSA in the dead blocks
1583   if (MSSAU) {
1584     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1585                                                  DeadBlocks.end());
1586     MSSAU->removeBlocks(DeadBlockSet);
1587   }
1588 
1589   // Drop any remaining references to break cycles.
1590   for (BasicBlock *BB : DeadBlocks)
1591     BB->dropAllReferences();
1592   // Erase them from the IR.
1593   for (BasicBlock *BB : DeadBlocks)
1594     BB->eraseFromParent();
1595 }
1596 
1597 static void
1598 deleteDeadBlocksFromLoop(Loop &L,
1599                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1600                          DominatorTree &DT, LoopInfo &LI,
1601                          MemorySSAUpdater *MSSAU,
1602                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1603   // Find all the dead blocks tied to this loop, and remove them from their
1604   // successors.
1605   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1606 
1607   // Start with loop/exit blocks and get a transitive closure of reachable dead
1608   // blocks.
1609   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1610                                                 ExitBlocks.end());
1611   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1612   while (!DeathCandidates.empty()) {
1613     auto *BB = DeathCandidates.pop_back_val();
1614     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1615       for (BasicBlock *SuccBB : successors(BB)) {
1616         SuccBB->removePredecessor(BB);
1617         DeathCandidates.push_back(SuccBB);
1618       }
1619       DeadBlockSet.insert(BB);
1620     }
1621   }
1622 
1623   // Remove all MemorySSA in the dead blocks
1624   if (MSSAU)
1625     MSSAU->removeBlocks(DeadBlockSet);
1626 
1627   // Filter out the dead blocks from the exit blocks list so that it can be
1628   // used in the caller.
1629   llvm::erase_if(ExitBlocks,
1630                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1631 
1632   // Walk from this loop up through its parents removing all of the dead blocks.
1633   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1634     for (auto *BB : DeadBlockSet)
1635       ParentL->getBlocksSet().erase(BB);
1636     llvm::erase_if(ParentL->getBlocksVector(),
1637                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1638   }
1639 
1640   // Now delete the dead child loops. This raw delete will clear them
1641   // recursively.
1642   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1643     if (!DeadBlockSet.count(ChildL->getHeader()))
1644       return false;
1645 
1646     assert(llvm::all_of(ChildL->blocks(),
1647                         [&](BasicBlock *ChildBB) {
1648                           return DeadBlockSet.count(ChildBB);
1649                         }) &&
1650            "If the child loop header is dead all blocks in the child loop must "
1651            "be dead as well!");
1652     DestroyLoopCB(*ChildL, ChildL->getName());
1653     LI.destroy(ChildL);
1654     return true;
1655   });
1656 
1657   // Remove the loop mappings for the dead blocks and drop all the references
1658   // from these blocks to others to handle cyclic references as we start
1659   // deleting the blocks themselves.
1660   for (auto *BB : DeadBlockSet) {
1661     // Check that the dominator tree has already been updated.
1662     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1663     LI.changeLoopFor(BB, nullptr);
1664     // Drop all uses of the instructions to make sure we won't have dangling
1665     // uses in other blocks.
1666     for (auto &I : *BB)
1667       if (!I.use_empty())
1668         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1669     BB->dropAllReferences();
1670   }
1671 
1672   // Actually delete the blocks now that they've been fully unhooked from the
1673   // IR.
1674   for (auto *BB : DeadBlockSet)
1675     BB->eraseFromParent();
1676 }
1677 
1678 /// Recompute the set of blocks in a loop after unswitching.
1679 ///
1680 /// This walks from the original headers predecessors to rebuild the loop. We
1681 /// take advantage of the fact that new blocks can't have been added, and so we
1682 /// filter by the original loop's blocks. This also handles potentially
1683 /// unreachable code that we don't want to explore but might be found examining
1684 /// the predecessors of the header.
1685 ///
1686 /// If the original loop is no longer a loop, this will return an empty set. If
1687 /// it remains a loop, all the blocks within it will be added to the set
1688 /// (including those blocks in inner loops).
1689 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1690                                                                  LoopInfo &LI) {
1691   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1692 
1693   auto *PH = L.getLoopPreheader();
1694   auto *Header = L.getHeader();
1695 
1696   // A worklist to use while walking backwards from the header.
1697   SmallVector<BasicBlock *, 16> Worklist;
1698 
1699   // First walk the predecessors of the header to find the backedges. This will
1700   // form the basis of our walk.
1701   for (auto *Pred : predecessors(Header)) {
1702     // Skip the preheader.
1703     if (Pred == PH)
1704       continue;
1705 
1706     // Because the loop was in simplified form, the only non-loop predecessor
1707     // is the preheader.
1708     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1709                                "than the preheader that is not part of the "
1710                                "loop!");
1711 
1712     // Insert this block into the loop set and on the first visit and, if it
1713     // isn't the header we're currently walking, put it into the worklist to
1714     // recurse through.
1715     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1716       Worklist.push_back(Pred);
1717   }
1718 
1719   // If no backedges were found, we're done.
1720   if (LoopBlockSet.empty())
1721     return LoopBlockSet;
1722 
1723   // We found backedges, recurse through them to identify the loop blocks.
1724   while (!Worklist.empty()) {
1725     BasicBlock *BB = Worklist.pop_back_val();
1726     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1727 
1728     // No need to walk past the header.
1729     if (BB == Header)
1730       continue;
1731 
1732     // Because we know the inner loop structure remains valid we can use the
1733     // loop structure to jump immediately across the entire nested loop.
1734     // Further, because it is in loop simplified form, we can directly jump
1735     // to its preheader afterward.
1736     if (Loop *InnerL = LI.getLoopFor(BB))
1737       if (InnerL != &L) {
1738         assert(L.contains(InnerL) &&
1739                "Should not reach a loop *outside* this loop!");
1740         // The preheader is the only possible predecessor of the loop so
1741         // insert it into the set and check whether it was already handled.
1742         auto *InnerPH = InnerL->getLoopPreheader();
1743         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1744                                       "but not contain the inner loop "
1745                                       "preheader!");
1746         if (!LoopBlockSet.insert(InnerPH).second)
1747           // The only way to reach the preheader is through the loop body
1748           // itself so if it has been visited the loop is already handled.
1749           continue;
1750 
1751         // Insert all of the blocks (other than those already present) into
1752         // the loop set. We expect at least the block that led us to find the
1753         // inner loop to be in the block set, but we may also have other loop
1754         // blocks if they were already enqueued as predecessors of some other
1755         // outer loop block.
1756         for (auto *InnerBB : InnerL->blocks()) {
1757           if (InnerBB == BB) {
1758             assert(LoopBlockSet.count(InnerBB) &&
1759                    "Block should already be in the set!");
1760             continue;
1761           }
1762 
1763           LoopBlockSet.insert(InnerBB);
1764         }
1765 
1766         // Add the preheader to the worklist so we will continue past the
1767         // loop body.
1768         Worklist.push_back(InnerPH);
1769         continue;
1770       }
1771 
1772     // Insert any predecessors that were in the original loop into the new
1773     // set, and if the insert is successful, add them to the worklist.
1774     for (auto *Pred : predecessors(BB))
1775       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1776         Worklist.push_back(Pred);
1777   }
1778 
1779   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1780 
1781   // We've found all the blocks participating in the loop, return our completed
1782   // set.
1783   return LoopBlockSet;
1784 }
1785 
1786 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1787 ///
1788 /// The removal may have removed some child loops entirely but cannot have
1789 /// disturbed any remaining child loops. However, they may need to be hoisted
1790 /// to the parent loop (or to be top-level loops). The original loop may be
1791 /// completely removed.
1792 ///
1793 /// The sibling loops resulting from this update are returned. If the original
1794 /// loop remains a valid loop, it will be the first entry in this list with all
1795 /// of the newly sibling loops following it.
1796 ///
1797 /// Returns true if the loop remains a loop after unswitching, and false if it
1798 /// is no longer a loop after unswitching (and should not continue to be
1799 /// referenced).
1800 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1801                                      LoopInfo &LI,
1802                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1803   auto *PH = L.getLoopPreheader();
1804 
1805   // Compute the actual parent loop from the exit blocks. Because we may have
1806   // pruned some exits the loop may be different from the original parent.
1807   Loop *ParentL = nullptr;
1808   SmallVector<Loop *, 4> ExitLoops;
1809   SmallVector<BasicBlock *, 4> ExitsInLoops;
1810   ExitsInLoops.reserve(ExitBlocks.size());
1811   for (auto *ExitBB : ExitBlocks)
1812     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1813       ExitLoops.push_back(ExitL);
1814       ExitsInLoops.push_back(ExitBB);
1815       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1816         ParentL = ExitL;
1817     }
1818 
1819   // Recompute the blocks participating in this loop. This may be empty if it
1820   // is no longer a loop.
1821   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1822 
1823   // If we still have a loop, we need to re-set the loop's parent as the exit
1824   // block set changing may have moved it within the loop nest. Note that this
1825   // can only happen when this loop has a parent as it can only hoist the loop
1826   // *up* the nest.
1827   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1828     // Remove this loop's (original) blocks from all of the intervening loops.
1829     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1830          IL = IL->getParentLoop()) {
1831       IL->getBlocksSet().erase(PH);
1832       for (auto *BB : L.blocks())
1833         IL->getBlocksSet().erase(BB);
1834       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1835         return BB == PH || L.contains(BB);
1836       });
1837     }
1838 
1839     LI.changeLoopFor(PH, ParentL);
1840     L.getParentLoop()->removeChildLoop(&L);
1841     if (ParentL)
1842       ParentL->addChildLoop(&L);
1843     else
1844       LI.addTopLevelLoop(&L);
1845   }
1846 
1847   // Now we update all the blocks which are no longer within the loop.
1848   auto &Blocks = L.getBlocksVector();
1849   auto BlocksSplitI =
1850       LoopBlockSet.empty()
1851           ? Blocks.begin()
1852           : std::stable_partition(
1853                 Blocks.begin(), Blocks.end(),
1854                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1855 
1856   // Before we erase the list of unlooped blocks, build a set of them.
1857   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1858   if (LoopBlockSet.empty())
1859     UnloopedBlocks.insert(PH);
1860 
1861   // Now erase these blocks from the loop.
1862   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1863     L.getBlocksSet().erase(BB);
1864   Blocks.erase(BlocksSplitI, Blocks.end());
1865 
1866   // Sort the exits in ascending loop depth, we'll work backwards across these
1867   // to process them inside out.
1868   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1869     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1870   });
1871 
1872   // We'll build up a set for each exit loop.
1873   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1874   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1875 
1876   auto RemoveUnloopedBlocksFromLoop =
1877       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1878         for (auto *BB : UnloopedBlocks)
1879           L.getBlocksSet().erase(BB);
1880         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1881           return UnloopedBlocks.count(BB);
1882         });
1883       };
1884 
1885   SmallVector<BasicBlock *, 16> Worklist;
1886   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1887     assert(Worklist.empty() && "Didn't clear worklist!");
1888     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1889 
1890     // Grab the next exit block, in decreasing loop depth order.
1891     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1892     Loop &ExitL = *LI.getLoopFor(ExitBB);
1893     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1894 
1895     // Erase all of the unlooped blocks from the loops between the previous
1896     // exit loop and this exit loop. This works because the ExitInLoops list is
1897     // sorted in increasing order of loop depth and thus we visit loops in
1898     // decreasing order of loop depth.
1899     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1900       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1901 
1902     // Walk the CFG back until we hit the cloned PH adding everything reachable
1903     // and in the unlooped set to this exit block's loop.
1904     Worklist.push_back(ExitBB);
1905     do {
1906       BasicBlock *BB = Worklist.pop_back_val();
1907       // We can stop recursing at the cloned preheader (if we get there).
1908       if (BB == PH)
1909         continue;
1910 
1911       for (BasicBlock *PredBB : predecessors(BB)) {
1912         // If this pred has already been moved to our set or is part of some
1913         // (inner) loop, no update needed.
1914         if (!UnloopedBlocks.erase(PredBB)) {
1915           assert((NewExitLoopBlocks.count(PredBB) ||
1916                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1917                  "Predecessor not in a nested loop (or already visited)!");
1918           continue;
1919         }
1920 
1921         // We just insert into the loop set here. We'll add these blocks to the
1922         // exit loop after we build up the set in a deterministic order rather
1923         // than the predecessor-influenced visit order.
1924         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1925         (void)Inserted;
1926         assert(Inserted && "Should only visit an unlooped block once!");
1927 
1928         // And recurse through to its predecessors.
1929         Worklist.push_back(PredBB);
1930       }
1931     } while (!Worklist.empty());
1932 
1933     // If blocks in this exit loop were directly part of the original loop (as
1934     // opposed to a child loop) update the map to point to this exit loop. This
1935     // just updates a map and so the fact that the order is unstable is fine.
1936     for (auto *BB : NewExitLoopBlocks)
1937       if (Loop *BBL = LI.getLoopFor(BB))
1938         if (BBL == &L || !L.contains(BBL))
1939           LI.changeLoopFor(BB, &ExitL);
1940 
1941     // We will remove the remaining unlooped blocks from this loop in the next
1942     // iteration or below.
1943     NewExitLoopBlocks.clear();
1944   }
1945 
1946   // Any remaining unlooped blocks are no longer part of any loop unless they
1947   // are part of some child loop.
1948   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1949     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1950   for (auto *BB : UnloopedBlocks)
1951     if (Loop *BBL = LI.getLoopFor(BB))
1952       if (BBL == &L || !L.contains(BBL))
1953         LI.changeLoopFor(BB, nullptr);
1954 
1955   // Sink all the child loops whose headers are no longer in the loop set to
1956   // the parent (or to be top level loops). We reach into the loop and directly
1957   // update its subloop vector to make this batch update efficient.
1958   auto &SubLoops = L.getSubLoopsVector();
1959   auto SubLoopsSplitI =
1960       LoopBlockSet.empty()
1961           ? SubLoops.begin()
1962           : std::stable_partition(
1963                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1964                   return LoopBlockSet.count(SubL->getHeader());
1965                 });
1966   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1967     HoistedLoops.push_back(HoistedL);
1968     HoistedL->setParentLoop(nullptr);
1969 
1970     // To compute the new parent of this hoisted loop we look at where we
1971     // placed the preheader above. We can't lookup the header itself because we
1972     // retained the mapping from the header to the hoisted loop. But the
1973     // preheader and header should have the exact same new parent computed
1974     // based on the set of exit blocks from the original loop as the preheader
1975     // is a predecessor of the header and so reached in the reverse walk. And
1976     // because the loops were all in simplified form the preheader of the
1977     // hoisted loop can't be part of some *other* loop.
1978     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1979       NewParentL->addChildLoop(HoistedL);
1980     else
1981       LI.addTopLevelLoop(HoistedL);
1982   }
1983   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1984 
1985   // Actually delete the loop if nothing remained within it.
1986   if (Blocks.empty()) {
1987     assert(SubLoops.empty() &&
1988            "Failed to remove all subloops from the original loop!");
1989     if (Loop *ParentL = L.getParentLoop())
1990       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1991     else
1992       LI.removeLoop(llvm::find(LI, &L));
1993     // markLoopAsDeleted for L should be triggered by the caller (it is typically
1994     // done by using the UnswitchCB callback).
1995     LI.destroy(&L);
1996     return false;
1997   }
1998 
1999   return true;
2000 }
2001 
2002 /// Helper to visit a dominator subtree, invoking a callable on each node.
2003 ///
2004 /// Returning false at any point will stop walking past that node of the tree.
2005 template <typename CallableT>
2006 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2007   SmallVector<DomTreeNode *, 4> DomWorklist;
2008   DomWorklist.push_back(DT[BB]);
2009 #ifndef NDEBUG
2010   SmallPtrSet<DomTreeNode *, 4> Visited;
2011   Visited.insert(DT[BB]);
2012 #endif
2013   do {
2014     DomTreeNode *N = DomWorklist.pop_back_val();
2015 
2016     // Visit this node.
2017     if (!Callable(N->getBlock()))
2018       continue;
2019 
2020     // Accumulate the child nodes.
2021     for (DomTreeNode *ChildN : *N) {
2022       assert(Visited.insert(ChildN).second &&
2023              "Cannot visit a node twice when walking a tree!");
2024       DomWorklist.push_back(ChildN);
2025     }
2026   } while (!DomWorklist.empty());
2027 }
2028 
2029 static void unswitchNontrivialInvariants(
2030     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2031     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2032     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2033     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2034     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2035     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2036   auto *ParentBB = TI.getParent();
2037   BranchInst *BI = dyn_cast<BranchInst>(&TI);
2038   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2039 
2040   // We can only unswitch switches, conditional branches with an invariant
2041   // condition, or combining invariant conditions with an instruction or
2042   // partially invariant instructions.
2043   assert((SI || (BI && BI->isConditional())) &&
2044          "Can only unswitch switches and conditional branch!");
2045   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2046   bool FullUnswitch =
2047       SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2048   if (FullUnswitch)
2049     assert(Invariants.size() == 1 &&
2050            "Cannot have other invariants with full unswitching!");
2051   else
2052     assert(isa<Instruction>(BI->getCondition()) &&
2053            "Partial unswitching requires an instruction as the condition!");
2054 
2055   if (MSSAU && VerifyMemorySSA)
2056     MSSAU->getMemorySSA()->verifyMemorySSA();
2057 
2058   // Constant and BBs tracking the cloned and continuing successor. When we are
2059   // unswitching the entire condition, this can just be trivially chosen to
2060   // unswitch towards `true`. However, when we are unswitching a set of
2061   // invariants combined with `and` or `or` or partially invariant instructions,
2062   // the combining operation determines the best direction to unswitch: we want
2063   // to unswitch the direction that will collapse the branch.
2064   bool Direction = true;
2065   int ClonedSucc = 0;
2066   if (!FullUnswitch) {
2067     Value *Cond = BI->getCondition();
2068     (void)Cond;
2069     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2070             PartiallyInvariant) &&
2071            "Only `or`, `and`, an `select`, partially invariant instructions "
2072            "can combine invariants being unswitched.");
2073     if (!match(BI->getCondition(), m_LogicalOr())) {
2074       if (match(BI->getCondition(), m_LogicalAnd()) ||
2075           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2076         Direction = false;
2077         ClonedSucc = 1;
2078       }
2079     }
2080   }
2081 
2082   BasicBlock *RetainedSuccBB =
2083       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2084   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2085   if (BI)
2086     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2087   else
2088     for (auto Case : SI->cases())
2089       if (Case.getCaseSuccessor() != RetainedSuccBB)
2090         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2091 
2092   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2093          "Should not unswitch the same successor we are retaining!");
2094 
2095   // The branch should be in this exact loop. Any inner loop's invariant branch
2096   // should be handled by unswitching that inner loop. The caller of this
2097   // routine should filter out any candidates that remain (but were skipped for
2098   // whatever reason).
2099   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2100 
2101   // Compute the parent loop now before we start hacking on things.
2102   Loop *ParentL = L.getParentLoop();
2103   // Get blocks in RPO order for MSSA update, before changing the CFG.
2104   LoopBlocksRPO LBRPO(&L);
2105   if (MSSAU)
2106     LBRPO.perform(&LI);
2107 
2108   // Compute the outer-most loop containing one of our exit blocks. This is the
2109   // furthest up our loopnest which can be mutated, which we will use below to
2110   // update things.
2111   Loop *OuterExitL = &L;
2112   for (auto *ExitBB : ExitBlocks) {
2113     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2114     if (!NewOuterExitL) {
2115       // We exited the entire nest with this block, so we're done.
2116       OuterExitL = nullptr;
2117       break;
2118     }
2119     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2120       OuterExitL = NewOuterExitL;
2121   }
2122 
2123   // At this point, we're definitely going to unswitch something so invalidate
2124   // any cached information in ScalarEvolution for the outer most loop
2125   // containing an exit block and all nested loops.
2126   if (SE) {
2127     if (OuterExitL)
2128       SE->forgetLoop(OuterExitL);
2129     else
2130       SE->forgetTopmostLoop(&L);
2131   }
2132 
2133   bool InsertFreeze = false;
2134   if (FreezeLoopUnswitchCond) {
2135     ICFLoopSafetyInfo SafetyInfo;
2136     SafetyInfo.computeLoopSafetyInfo(&L);
2137     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2138   }
2139 
2140   // If the edge from this terminator to a successor dominates that successor,
2141   // store a map from each block in its dominator subtree to it. This lets us
2142   // tell when cloning for a particular successor if a block is dominated by
2143   // some *other* successor with a single data structure. We use this to
2144   // significantly reduce cloning.
2145   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2146   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2147            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2148     if (SuccBB->getUniquePredecessor() ||
2149         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2150           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2151         }))
2152       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2153         DominatingSucc[BB] = SuccBB;
2154         return true;
2155       });
2156 
2157   // Split the preheader, so that we know that there is a safe place to insert
2158   // the conditional branch. We will change the preheader to have a conditional
2159   // branch on LoopCond. The original preheader will become the split point
2160   // between the unswitched versions, and we will have a new preheader for the
2161   // original loop.
2162   BasicBlock *SplitBB = L.getLoopPreheader();
2163   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2164 
2165   // Keep track of the dominator tree updates needed.
2166   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2167 
2168   // Clone the loop for each unswitched successor.
2169   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2170   VMaps.reserve(UnswitchedSuccBBs.size());
2171   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2172   for (auto *SuccBB : UnswitchedSuccBBs) {
2173     VMaps.emplace_back(new ValueToValueMapTy());
2174     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2175         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2176         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2177   }
2178 
2179   // Drop metadata if we may break its semantics by moving this instr into the
2180   // split block.
2181   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2182     if (DropNonTrivialImplicitNullChecks)
2183       // Do not spend time trying to understand if we can keep it, just drop it
2184       // to save compile time.
2185       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2186     else {
2187       // It is only legal to preserve make.implicit metadata if we are
2188       // guaranteed no reach implicit null check after following this branch.
2189       ICFLoopSafetyInfo SafetyInfo;
2190       SafetyInfo.computeLoopSafetyInfo(&L);
2191       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2192         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2193     }
2194   }
2195 
2196   // The stitching of the branched code back together depends on whether we're
2197   // doing full unswitching or not with the exception that we always want to
2198   // nuke the initial terminator placed in the split block.
2199   SplitBB->getTerminator()->eraseFromParent();
2200   if (FullUnswitch) {
2201     // Splice the terminator from the original loop and rewrite its
2202     // successors.
2203     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2204 
2205     // Keep a clone of the terminator for MSSA updates.
2206     Instruction *NewTI = TI.clone();
2207     ParentBB->getInstList().push_back(NewTI);
2208 
2209     // First wire up the moved terminator to the preheaders.
2210     if (BI) {
2211       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2212       BI->setSuccessor(ClonedSucc, ClonedPH);
2213       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2214       if (InsertFreeze) {
2215         auto Cond = BI->getCondition();
2216         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2217           BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI));
2218       }
2219       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2220     } else {
2221       assert(SI && "Must either be a branch or switch!");
2222 
2223       // Walk the cases and directly update their successors.
2224       assert(SI->getDefaultDest() == RetainedSuccBB &&
2225              "Not retaining default successor!");
2226       SI->setDefaultDest(LoopPH);
2227       for (auto &Case : SI->cases())
2228         if (Case.getCaseSuccessor() == RetainedSuccBB)
2229           Case.setSuccessor(LoopPH);
2230         else
2231           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2232 
2233       if (InsertFreeze) {
2234         auto Cond = SI->getCondition();
2235         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2236           SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2237       }
2238       // We need to use the set to populate domtree updates as even when there
2239       // are multiple cases pointing at the same successor we only want to
2240       // remove and insert one edge in the domtree.
2241       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2242         DTUpdates.push_back(
2243             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2244     }
2245 
2246     if (MSSAU) {
2247       DT.applyUpdates(DTUpdates);
2248       DTUpdates.clear();
2249 
2250       // Remove all but one edge to the retained block and all unswitched
2251       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2252       // when we know we only keep a single edge for each case.
2253       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2254       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2255         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2256 
2257       for (auto &VMap : VMaps)
2258         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2259                                    /*IgnoreIncomingWithNoClones=*/true);
2260       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2261 
2262       // Remove all edges to unswitched blocks.
2263       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2264         MSSAU->removeEdge(ParentBB, SuccBB);
2265     }
2266 
2267     // Now unhook the successor relationship as we'll be replacing
2268     // the terminator with a direct branch. This is much simpler for branches
2269     // than switches so we handle those first.
2270     if (BI) {
2271       // Remove the parent as a predecessor of the unswitched successor.
2272       assert(UnswitchedSuccBBs.size() == 1 &&
2273              "Only one possible unswitched block for a branch!");
2274       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2275       UnswitchedSuccBB->removePredecessor(ParentBB,
2276                                           /*KeepOneInputPHIs*/ true);
2277       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2278     } else {
2279       // Note that we actually want to remove the parent block as a predecessor
2280       // of *every* case successor. The case successor is either unswitched,
2281       // completely eliminating an edge from the parent to that successor, or it
2282       // is a duplicate edge to the retained successor as the retained successor
2283       // is always the default successor and as we'll replace this with a direct
2284       // branch we no longer need the duplicate entries in the PHI nodes.
2285       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2286       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2287              "Not retaining default successor!");
2288       for (auto &Case : NewSI->cases())
2289         Case.getCaseSuccessor()->removePredecessor(
2290             ParentBB,
2291             /*KeepOneInputPHIs*/ true);
2292 
2293       // We need to use the set to populate domtree updates as even when there
2294       // are multiple cases pointing at the same successor we only want to
2295       // remove and insert one edge in the domtree.
2296       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2297         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2298     }
2299 
2300     // After MSSAU update, remove the cloned terminator instruction NewTI.
2301     ParentBB->getTerminator()->eraseFromParent();
2302 
2303     // Create a new unconditional branch to the continuing block (as opposed to
2304     // the one cloned).
2305     BranchInst::Create(RetainedSuccBB, ParentBB);
2306   } else {
2307     assert(BI && "Only branches have partial unswitching.");
2308     assert(UnswitchedSuccBBs.size() == 1 &&
2309            "Only one possible unswitched block for a branch!");
2310     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2311     // When doing a partial unswitch, we have to do a bit more work to build up
2312     // the branch in the split block.
2313     if (PartiallyInvariant)
2314       buildPartialInvariantUnswitchConditionalBranch(
2315           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2316     else
2317       buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2318                                             *ClonedPH, *LoopPH, InsertFreeze);
2319     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2320 
2321     if (MSSAU) {
2322       DT.applyUpdates(DTUpdates);
2323       DTUpdates.clear();
2324 
2325       // Perform MSSA cloning updates.
2326       for (auto &VMap : VMaps)
2327         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2328                                    /*IgnoreIncomingWithNoClones=*/true);
2329       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2330     }
2331   }
2332 
2333   // Apply the updates accumulated above to get an up-to-date dominator tree.
2334   DT.applyUpdates(DTUpdates);
2335 
2336   // Now that we have an accurate dominator tree, first delete the dead cloned
2337   // blocks so that we can accurately build any cloned loops. It is important to
2338   // not delete the blocks from the original loop yet because we still want to
2339   // reference the original loop to understand the cloned loop's structure.
2340   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2341 
2342   // Build the cloned loop structure itself. This may be substantially
2343   // different from the original structure due to the simplified CFG. This also
2344   // handles inserting all the cloned blocks into the correct loops.
2345   SmallVector<Loop *, 4> NonChildClonedLoops;
2346   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2347     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2348 
2349   // Now that our cloned loops have been built, we can update the original loop.
2350   // First we delete the dead blocks from it and then we rebuild the loop
2351   // structure taking these deletions into account.
2352   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2353 
2354   if (MSSAU && VerifyMemorySSA)
2355     MSSAU->getMemorySSA()->verifyMemorySSA();
2356 
2357   SmallVector<Loop *, 4> HoistedLoops;
2358   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2359 
2360   if (MSSAU && VerifyMemorySSA)
2361     MSSAU->getMemorySSA()->verifyMemorySSA();
2362 
2363   // This transformation has a high risk of corrupting the dominator tree, and
2364   // the below steps to rebuild loop structures will result in hard to debug
2365   // errors in that case so verify that the dominator tree is sane first.
2366   // FIXME: Remove this when the bugs stop showing up and rely on existing
2367   // verification steps.
2368   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2369 
2370   if (BI && !PartiallyInvariant) {
2371     // If we unswitched a branch which collapses the condition to a known
2372     // constant we want to replace all the uses of the invariants within both
2373     // the original and cloned blocks. We do this here so that we can use the
2374     // now updated dominator tree to identify which side the users are on.
2375     assert(UnswitchedSuccBBs.size() == 1 &&
2376            "Only one possible unswitched block for a branch!");
2377     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2378 
2379     // When considering multiple partially-unswitched invariants
2380     // we cant just go replace them with constants in both branches.
2381     //
2382     // For 'AND' we infer that true branch ("continue") means true
2383     // for each invariant operand.
2384     // For 'OR' we can infer that false branch ("continue") means false
2385     // for each invariant operand.
2386     // So it happens that for multiple-partial case we dont replace
2387     // in the unswitched branch.
2388     bool ReplaceUnswitched =
2389         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2390 
2391     ConstantInt *UnswitchedReplacement =
2392         Direction ? ConstantInt::getTrue(BI->getContext())
2393                   : ConstantInt::getFalse(BI->getContext());
2394     ConstantInt *ContinueReplacement =
2395         Direction ? ConstantInt::getFalse(BI->getContext())
2396                   : ConstantInt::getTrue(BI->getContext());
2397     for (Value *Invariant : Invariants) {
2398       assert(!isa<Constant>(Invariant) &&
2399              "Should not be replacing constant values!");
2400       // Use make_early_inc_range here as set invalidates the iterator.
2401       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2402         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2403         if (!UserI)
2404           continue;
2405 
2406         // Replace it with the 'continue' side if in the main loop body, and the
2407         // unswitched if in the cloned blocks.
2408         if (DT.dominates(LoopPH, UserI->getParent()))
2409           U.set(ContinueReplacement);
2410         else if (ReplaceUnswitched &&
2411                  DT.dominates(ClonedPH, UserI->getParent()))
2412           U.set(UnswitchedReplacement);
2413       }
2414     }
2415   }
2416 
2417   // We can change which blocks are exit blocks of all the cloned sibling
2418   // loops, the current loop, and any parent loops which shared exit blocks
2419   // with the current loop. As a consequence, we need to re-form LCSSA for
2420   // them. But we shouldn't need to re-form LCSSA for any child loops.
2421   // FIXME: This could be made more efficient by tracking which exit blocks are
2422   // new, and focusing on them, but that isn't likely to be necessary.
2423   //
2424   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2425   // loop nest and update every loop that could have had its exits changed. We
2426   // also need to cover any intervening loops. We add all of these loops to
2427   // a list and sort them by loop depth to achieve this without updating
2428   // unnecessary loops.
2429   auto UpdateLoop = [&](Loop &UpdateL) {
2430 #ifndef NDEBUG
2431     UpdateL.verifyLoop();
2432     for (Loop *ChildL : UpdateL) {
2433       ChildL->verifyLoop();
2434       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2435              "Perturbed a child loop's LCSSA form!");
2436     }
2437 #endif
2438     // First build LCSSA for this loop so that we can preserve it when
2439     // forming dedicated exits. We don't want to perturb some other loop's
2440     // LCSSA while doing that CFG edit.
2441     formLCSSA(UpdateL, DT, &LI, SE);
2442 
2443     // For loops reached by this loop's original exit blocks we may
2444     // introduced new, non-dedicated exits. At least try to re-form dedicated
2445     // exits for these loops. This may fail if they couldn't have dedicated
2446     // exits to start with.
2447     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2448   };
2449 
2450   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2451   // and we can do it in any order as they don't nest relative to each other.
2452   //
2453   // Also check if any of the loops we have updated have become top-level loops
2454   // as that will necessitate widening the outer loop scope.
2455   for (Loop *UpdatedL :
2456        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2457     UpdateLoop(*UpdatedL);
2458     if (UpdatedL->isOutermost())
2459       OuterExitL = nullptr;
2460   }
2461   if (IsStillLoop) {
2462     UpdateLoop(L);
2463     if (L.isOutermost())
2464       OuterExitL = nullptr;
2465   }
2466 
2467   // If the original loop had exit blocks, walk up through the outer most loop
2468   // of those exit blocks to update LCSSA and form updated dedicated exits.
2469   if (OuterExitL != &L)
2470     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2471          OuterL = OuterL->getParentLoop())
2472       UpdateLoop(*OuterL);
2473 
2474 #ifndef NDEBUG
2475   // Verify the entire loop structure to catch any incorrect updates before we
2476   // progress in the pass pipeline.
2477   LI.verify(DT);
2478 #endif
2479 
2480   // Now that we've unswitched something, make callbacks to report the changes.
2481   // For that we need to merge together the updated loops and the cloned loops
2482   // and check whether the original loop survived.
2483   SmallVector<Loop *, 4> SibLoops;
2484   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2485     if (UpdatedL->getParentLoop() == ParentL)
2486       SibLoops.push_back(UpdatedL);
2487   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2488 
2489   if (MSSAU && VerifyMemorySSA)
2490     MSSAU->getMemorySSA()->verifyMemorySSA();
2491 
2492   if (BI)
2493     ++NumBranches;
2494   else
2495     ++NumSwitches;
2496 }
2497 
2498 /// Recursively compute the cost of a dominator subtree based on the per-block
2499 /// cost map provided.
2500 ///
2501 /// The recursive computation is memozied into the provided DT-indexed cost map
2502 /// to allow querying it for most nodes in the domtree without it becoming
2503 /// quadratic.
2504 static InstructionCost computeDomSubtreeCost(
2505     DomTreeNode &N,
2506     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2507     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2508   // Don't accumulate cost (or recurse through) blocks not in our block cost
2509   // map and thus not part of the duplication cost being considered.
2510   auto BBCostIt = BBCostMap.find(N.getBlock());
2511   if (BBCostIt == BBCostMap.end())
2512     return 0;
2513 
2514   // Lookup this node to see if we already computed its cost.
2515   auto DTCostIt = DTCostMap.find(&N);
2516   if (DTCostIt != DTCostMap.end())
2517     return DTCostIt->second;
2518 
2519   // If not, we have to compute it. We can't use insert above and update
2520   // because computing the cost may insert more things into the map.
2521   InstructionCost Cost = std::accumulate(
2522       N.begin(), N.end(), BBCostIt->second,
2523       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2524         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2525       });
2526   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2527   (void)Inserted;
2528   assert(Inserted && "Should not insert a node while visiting children!");
2529   return Cost;
2530 }
2531 
2532 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2533 /// making the following replacement:
2534 ///
2535 ///   --code before guard--
2536 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2537 ///   --code after guard--
2538 ///
2539 /// into
2540 ///
2541 ///   --code before guard--
2542 ///   br i1 %cond, label %guarded, label %deopt
2543 ///
2544 /// guarded:
2545 ///   --code after guard--
2546 ///
2547 /// deopt:
2548 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2549 ///   unreachable
2550 ///
2551 /// It also makes all relevant DT and LI updates, so that all structures are in
2552 /// valid state after this transform.
2553 static BranchInst *
2554 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2555                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2556                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2557   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2558   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2559   BasicBlock *CheckBB = GI->getParent();
2560 
2561   if (MSSAU && VerifyMemorySSA)
2562      MSSAU->getMemorySSA()->verifyMemorySSA();
2563 
2564   // Remove all CheckBB's successors from DomTree. A block can be seen among
2565   // successors more than once, but for DomTree it should be added only once.
2566   SmallPtrSet<BasicBlock *, 4> Successors;
2567   for (auto *Succ : successors(CheckBB))
2568     if (Successors.insert(Succ).second)
2569       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2570 
2571   Instruction *DeoptBlockTerm =
2572       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2573   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2574   // SplitBlockAndInsertIfThen inserts control flow that branches to
2575   // DeoptBlockTerm if the condition is true.  We want the opposite.
2576   CheckBI->swapSuccessors();
2577 
2578   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2579   GuardedBlock->setName("guarded");
2580   CheckBI->getSuccessor(1)->setName("deopt");
2581   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2582 
2583   // We now have a new exit block.
2584   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2585 
2586   if (MSSAU)
2587     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2588 
2589   GI->moveBefore(DeoptBlockTerm);
2590   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2591 
2592   // Add new successors of CheckBB into DomTree.
2593   for (auto *Succ : successors(CheckBB))
2594     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2595 
2596   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2597   // successors.
2598   for (auto *Succ : Successors)
2599     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2600 
2601   // Make proper changes to DT.
2602   DT.applyUpdates(DTUpdates);
2603   // Inform LI of a new loop block.
2604   L.addBasicBlockToLoop(GuardedBlock, LI);
2605 
2606   if (MSSAU) {
2607     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2608     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2609     if (VerifyMemorySSA)
2610       MSSAU->getMemorySSA()->verifyMemorySSA();
2611   }
2612 
2613   ++NumGuards;
2614   return CheckBI;
2615 }
2616 
2617 /// Cost multiplier is a way to limit potentially exponential behavior
2618 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2619 /// candidates available. Also accounting for the number of "sibling" loops with
2620 /// the idea to account for previous unswitches that already happened on this
2621 /// cluster of loops. There was an attempt to keep this formula simple,
2622 /// just enough to limit the worst case behavior. Even if it is not that simple
2623 /// now it is still not an attempt to provide a detailed heuristic size
2624 /// prediction.
2625 ///
2626 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2627 /// unswitch candidates, making adequate predictions instead of wild guesses.
2628 /// That requires knowing not just the number of "remaining" candidates but
2629 /// also costs of unswitching for each of these candidates.
2630 static int CalculateUnswitchCostMultiplier(
2631     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2632     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2633         UnswitchCandidates) {
2634 
2635   // Guards and other exiting conditions do not contribute to exponential
2636   // explosion as soon as they dominate the latch (otherwise there might be
2637   // another path to the latch remaining that does not allow to eliminate the
2638   // loop copy on unswitch).
2639   BasicBlock *Latch = L.getLoopLatch();
2640   BasicBlock *CondBlock = TI.getParent();
2641   if (DT.dominates(CondBlock, Latch) &&
2642       (isGuard(&TI) ||
2643        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2644          return L.contains(SuccBB);
2645        }) <= 1)) {
2646     NumCostMultiplierSkipped++;
2647     return 1;
2648   }
2649 
2650   auto *ParentL = L.getParentLoop();
2651   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2652                                : std::distance(LI.begin(), LI.end()));
2653   // Count amount of clones that all the candidates might cause during
2654   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2655   int UnswitchedClones = 0;
2656   for (auto Candidate : UnswitchCandidates) {
2657     Instruction *CI = Candidate.first;
2658     BasicBlock *CondBlock = CI->getParent();
2659     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2660     if (isGuard(CI)) {
2661       if (!SkipExitingSuccessors)
2662         UnswitchedClones++;
2663       continue;
2664     }
2665     int NonExitingSuccessors = llvm::count_if(
2666         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2667           return !SkipExitingSuccessors || L.contains(SuccBB);
2668         });
2669     UnswitchedClones += Log2_32(NonExitingSuccessors);
2670   }
2671 
2672   // Ignore up to the "unscaled candidates" number of unswitch candidates
2673   // when calculating the power-of-two scaling of the cost. The main idea
2674   // with this control is to allow a small number of unswitches to happen
2675   // and rely more on siblings multiplier (see below) when the number
2676   // of candidates is small.
2677   unsigned ClonesPower =
2678       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2679 
2680   // Allowing top-level loops to spread a bit more than nested ones.
2681   int SiblingsMultiplier =
2682       std::max((ParentL ? SiblingsCount
2683                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2684                1);
2685   // Compute the cost multiplier in a way that won't overflow by saturating
2686   // at an upper bound.
2687   int CostMultiplier;
2688   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2689       SiblingsMultiplier > UnswitchThreshold)
2690     CostMultiplier = UnswitchThreshold;
2691   else
2692     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2693                               (int)UnswitchThreshold);
2694 
2695   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2696                     << " (siblings " << SiblingsMultiplier << " * clones "
2697                     << (1 << ClonesPower) << ")"
2698                     << " for unswitch candidate: " << TI << "\n");
2699   return CostMultiplier;
2700 }
2701 
2702 static bool unswitchBestCondition(
2703     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2704     AAResults &AA, TargetTransformInfo &TTI,
2705     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2706     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2707     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2708   // Collect all invariant conditions within this loop (as opposed to an inner
2709   // loop which would be handled when visiting that inner loop).
2710   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2711       UnswitchCandidates;
2712 
2713   // Whether or not we should also collect guards in the loop.
2714   bool CollectGuards = false;
2715   if (UnswitchGuards) {
2716     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2717         Intrinsic::getName(Intrinsic::experimental_guard));
2718     if (GuardDecl && !GuardDecl->use_empty())
2719       CollectGuards = true;
2720   }
2721 
2722   IVConditionInfo PartialIVInfo;
2723   for (auto *BB : L.blocks()) {
2724     if (LI.getLoopFor(BB) != &L)
2725       continue;
2726 
2727     if (CollectGuards)
2728       for (auto &I : *BB)
2729         if (isGuard(&I)) {
2730           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2731           // TODO: Support AND, OR conditions and partial unswitching.
2732           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2733             UnswitchCandidates.push_back({&I, {Cond}});
2734         }
2735 
2736     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2737       // We can only consider fully loop-invariant switch conditions as we need
2738       // to completely eliminate the switch after unswitching.
2739       if (!isa<Constant>(SI->getCondition()) &&
2740           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2741         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2742       continue;
2743     }
2744 
2745     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2746     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2747         BI->getSuccessor(0) == BI->getSuccessor(1))
2748       continue;
2749 
2750     // If BI's condition is 'select _, true, false', simplify it to confuse
2751     // matchers
2752     Value *Cond = BI->getCondition(), *CondNext;
2753     while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2754       Cond = CondNext;
2755     BI->setCondition(Cond);
2756 
2757     if (isa<Constant>(Cond))
2758       continue;
2759 
2760     if (L.isLoopInvariant(BI->getCondition())) {
2761       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2762       continue;
2763     }
2764 
2765     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2766     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2767       TinyPtrVector<Value *> Invariants =
2768           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2769       if (Invariants.empty())
2770         continue;
2771 
2772       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2773       continue;
2774     }
2775   }
2776 
2777   Instruction *PartialIVCondBranch = nullptr;
2778   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2779       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2780         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2781       })) {
2782     MemorySSA *MSSA = MSSAU->getMemorySSA();
2783     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2784       LLVM_DEBUG(
2785           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2786                  << *Info->InstToDuplicate[0] << "\n");
2787       PartialIVInfo = *Info;
2788       PartialIVCondBranch = L.getHeader()->getTerminator();
2789       TinyPtrVector<Value *> ValsToDuplicate;
2790       for (auto *Inst : Info->InstToDuplicate)
2791         ValsToDuplicate.push_back(Inst);
2792       UnswitchCandidates.push_back(
2793           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2794     }
2795   }
2796 
2797   // If we didn't find any candidates, we're done.
2798   if (UnswitchCandidates.empty())
2799     return false;
2800 
2801   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2802   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2803   // irreducible control flow into reducible control flow and introduce new
2804   // loops "out of thin air". If we ever discover important use cases for doing
2805   // this, we can add support to loop unswitch, but it is a lot of complexity
2806   // for what seems little or no real world benefit.
2807   LoopBlocksRPO RPOT(&L);
2808   RPOT.perform(&LI);
2809   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2810     return false;
2811 
2812   SmallVector<BasicBlock *, 4> ExitBlocks;
2813   L.getUniqueExitBlocks(ExitBlocks);
2814 
2815   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2816   // instruction as we don't know how to split those exit blocks.
2817   // FIXME: We should teach SplitBlock to handle this and remove this
2818   // restriction.
2819   for (auto *ExitBB : ExitBlocks) {
2820     auto *I = ExitBB->getFirstNonPHI();
2821     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2822       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2823                            "in exit block\n");
2824       return false;
2825     }
2826   }
2827 
2828   LLVM_DEBUG(
2829       dbgs() << "Considering " << UnswitchCandidates.size()
2830              << " non-trivial loop invariant conditions for unswitching.\n");
2831 
2832   // Given that unswitching these terminators will require duplicating parts of
2833   // the loop, so we need to be able to model that cost. Compute the ephemeral
2834   // values and set up a data structure to hold per-BB costs. We cache each
2835   // block's cost so that we don't recompute this when considering different
2836   // subsets of the loop for duplication during unswitching.
2837   SmallPtrSet<const Value *, 4> EphValues;
2838   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2839   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2840 
2841   // Compute the cost of each block, as well as the total loop cost. Also, bail
2842   // out if we see instructions which are incompatible with loop unswitching
2843   // (convergent, noduplicate, or cross-basic-block tokens).
2844   // FIXME: We might be able to safely handle some of these in non-duplicated
2845   // regions.
2846   TargetTransformInfo::TargetCostKind CostKind =
2847       L.getHeader()->getParent()->hasMinSize()
2848       ? TargetTransformInfo::TCK_CodeSize
2849       : TargetTransformInfo::TCK_SizeAndLatency;
2850   InstructionCost LoopCost = 0;
2851   for (auto *BB : L.blocks()) {
2852     InstructionCost Cost = 0;
2853     for (auto &I : *BB) {
2854       if (EphValues.count(&I))
2855         continue;
2856 
2857       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2858         return false;
2859       if (auto *CB = dyn_cast<CallBase>(&I))
2860         if (CB->isConvergent() || CB->cannotDuplicate())
2861           return false;
2862 
2863       Cost += TTI.getUserCost(&I, CostKind);
2864     }
2865     assert(Cost >= 0 && "Must not have negative costs!");
2866     LoopCost += Cost;
2867     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2868     BBCostMap[BB] = Cost;
2869   }
2870   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2871 
2872   // Now we find the best candidate by searching for the one with the following
2873   // properties in order:
2874   //
2875   // 1) An unswitching cost below the threshold
2876   // 2) The smallest number of duplicated unswitch candidates (to avoid
2877   //    creating redundant subsequent unswitching)
2878   // 3) The smallest cost after unswitching.
2879   //
2880   // We prioritize reducing fanout of unswitch candidates provided the cost
2881   // remains below the threshold because this has a multiplicative effect.
2882   //
2883   // This requires memoizing each dominator subtree to avoid redundant work.
2884   //
2885   // FIXME: Need to actually do the number of candidates part above.
2886   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2887   // Given a terminator which might be unswitched, computes the non-duplicated
2888   // cost for that terminator.
2889   auto ComputeUnswitchedCost = [&](Instruction &TI,
2890                                    bool FullUnswitch) -> InstructionCost {
2891     BasicBlock &BB = *TI.getParent();
2892     SmallPtrSet<BasicBlock *, 4> Visited;
2893 
2894     InstructionCost Cost = 0;
2895     for (BasicBlock *SuccBB : successors(&BB)) {
2896       // Don't count successors more than once.
2897       if (!Visited.insert(SuccBB).second)
2898         continue;
2899 
2900       // If this is a partial unswitch candidate, then it must be a conditional
2901       // branch with a condition of either `or`, `and`, their corresponding
2902       // select forms or partially invariant instructions. In that case, one of
2903       // the successors is necessarily duplicated, so don't even try to remove
2904       // its cost.
2905       if (!FullUnswitch) {
2906         auto &BI = cast<BranchInst>(TI);
2907         if (match(BI.getCondition(), m_LogicalAnd())) {
2908           if (SuccBB == BI.getSuccessor(1))
2909             continue;
2910         } else if (match(BI.getCondition(), m_LogicalOr())) {
2911           if (SuccBB == BI.getSuccessor(0))
2912             continue;
2913         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2914                     SuccBB == BI.getSuccessor(0)) ||
2915                    (!PartialIVInfo.KnownValue->isOneValue() &&
2916                     SuccBB == BI.getSuccessor(1)))
2917           continue;
2918       }
2919 
2920       // This successor's domtree will not need to be duplicated after
2921       // unswitching if the edge to the successor dominates it (and thus the
2922       // entire tree). This essentially means there is no other path into this
2923       // subtree and so it will end up live in only one clone of the loop.
2924       if (SuccBB->getUniquePredecessor() ||
2925           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2926             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2927           })) {
2928         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2929         assert(Cost <= LoopCost &&
2930                "Non-duplicated cost should never exceed total loop cost!");
2931       }
2932     }
2933 
2934     // Now scale the cost by the number of unique successors minus one. We
2935     // subtract one because there is already at least one copy of the entire
2936     // loop. This is computing the new cost of unswitching a condition.
2937     // Note that guards always have 2 unique successors that are implicit and
2938     // will be materialized if we decide to unswitch it.
2939     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2940     assert(SuccessorsCount > 1 &&
2941            "Cannot unswitch a condition without multiple distinct successors!");
2942     return (LoopCost - Cost) * (SuccessorsCount - 1);
2943   };
2944   Instruction *BestUnswitchTI = nullptr;
2945   InstructionCost BestUnswitchCost = 0;
2946   ArrayRef<Value *> BestUnswitchInvariants;
2947   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2948     Instruction &TI = *TerminatorAndInvariants.first;
2949     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2950     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2951     InstructionCost CandidateCost = ComputeUnswitchedCost(
2952         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2953                                      Invariants[0] == BI->getCondition()));
2954     // Calculate cost multiplier which is a tool to limit potentially
2955     // exponential behavior of loop-unswitch.
2956     if (EnableUnswitchCostMultiplier) {
2957       int CostMultiplier =
2958           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2959       assert(
2960           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2961           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2962       CandidateCost *= CostMultiplier;
2963       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2964                         << " (multiplier: " << CostMultiplier << ")"
2965                         << " for unswitch candidate: " << TI << "\n");
2966     } else {
2967       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2968                         << " for unswitch candidate: " << TI << "\n");
2969     }
2970 
2971     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2972       BestUnswitchTI = &TI;
2973       BestUnswitchCost = CandidateCost;
2974       BestUnswitchInvariants = Invariants;
2975     }
2976   }
2977   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2978 
2979   if (BestUnswitchCost >= UnswitchThreshold) {
2980     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2981                       << BestUnswitchCost << "\n");
2982     return false;
2983   }
2984 
2985   if (BestUnswitchTI != PartialIVCondBranch)
2986     PartialIVInfo.InstToDuplicate.clear();
2987 
2988   // If the best candidate is a guard, turn it into a branch.
2989   if (isGuard(BestUnswitchTI))
2990     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2991                                          ExitBlocks, DT, LI, MSSAU);
2992 
2993   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2994                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2995                     << "\n");
2996   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2997                                ExitBlocks, PartialIVInfo, DT, LI, AC,
2998                                UnswitchCB, SE, MSSAU, DestroyLoopCB);
2999   return true;
3000 }
3001 
3002 /// Unswitch control flow predicated on loop invariant conditions.
3003 ///
3004 /// This first hoists all branches or switches which are trivial (IE, do not
3005 /// require duplicating any part of the loop) out of the loop body. It then
3006 /// looks at other loop invariant control flows and tries to unswitch those as
3007 /// well by cloning the loop if the result is small enough.
3008 ///
3009 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3010 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3011 /// valid (i.e. its use is enabled).
3012 ///
3013 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3014 /// true, we will attempt to do non-trivial unswitching as well as trivial
3015 /// unswitching.
3016 ///
3017 /// The `UnswitchCB` callback provided will be run after unswitching is
3018 /// complete, with the first parameter set to `true` if the provided loop
3019 /// remains a loop, and a list of new sibling loops created.
3020 ///
3021 /// If `SE` is non-null, we will update that analysis based on the unswitching
3022 /// done.
3023 static bool
3024 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3025              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3026              bool NonTrivial,
3027              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3028              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3029              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3030   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3031          "Loops must be in LCSSA form before unswitching.");
3032 
3033   // Must be in loop simplified form: we need a preheader and dedicated exits.
3034   if (!L.isLoopSimplifyForm())
3035     return false;
3036 
3037   // Try trivial unswitch first before loop over other basic blocks in the loop.
3038   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3039     // If we unswitched successfully we will want to clean up the loop before
3040     // processing it further so just mark it as unswitched and return.
3041     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3042     return true;
3043   }
3044 
3045   // Check whether we should continue with non-trivial conditions.
3046   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3047   //                           unswitching for testing and debugging.
3048   // NonTrivial: Parameter that enables non-trivial unswitching for this
3049   //             invocation of the transform. But this should be allowed only
3050   //             for targets without branch divergence.
3051   //
3052   // FIXME: If divergence analysis becomes available to a loop
3053   // transform, we should allow unswitching for non-trivial uniform
3054   // branches even on targets that have divergence.
3055   // https://bugs.llvm.org/show_bug.cgi?id=48819
3056   bool ContinueWithNonTrivial =
3057       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3058   if (!ContinueWithNonTrivial)
3059     return false;
3060 
3061   // Skip non-trivial unswitching for optsize functions.
3062   if (L.getHeader()->getParent()->hasOptSize())
3063     return false;
3064 
3065   // Skip non-trivial unswitching for loops that cannot be cloned.
3066   if (!L.isSafeToClone())
3067     return false;
3068 
3069   // For non-trivial unswitching, because it often creates new loops, we rely on
3070   // the pass manager to iterate on the loops rather than trying to immediately
3071   // reach a fixed point. There is no substantial advantage to iterating
3072   // internally, and if any of the new loops are simplified enough to contain
3073   // trivial unswitching we want to prefer those.
3074 
3075   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3076   // a partial unswitch when possible below the threshold.
3077   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3078                             DestroyLoopCB))
3079     return true;
3080 
3081   // No other opportunities to unswitch.
3082   return false;
3083 }
3084 
3085 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3086                                               LoopStandardAnalysisResults &AR,
3087                                               LPMUpdater &U) {
3088   Function &F = *L.getHeader()->getParent();
3089   (void)F;
3090 
3091   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3092                     << "\n");
3093 
3094   // Save the current loop name in a variable so that we can report it even
3095   // after it has been deleted.
3096   std::string LoopName = std::string(L.getName());
3097 
3098   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3099                                         bool PartiallyInvariant,
3100                                         ArrayRef<Loop *> NewLoops) {
3101     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3102     if (!NewLoops.empty())
3103       U.addSiblingLoops(NewLoops);
3104 
3105     // If the current loop remains valid, we should revisit it to catch any
3106     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3107     if (CurrentLoopValid) {
3108       if (PartiallyInvariant) {
3109         // Mark the new loop as partially unswitched, to avoid unswitching on
3110         // the same condition again.
3111         auto &Context = L.getHeader()->getContext();
3112         MDNode *DisableUnswitchMD = MDNode::get(
3113             Context,
3114             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3115         MDNode *NewLoopID = makePostTransformationMetadata(
3116             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3117             {DisableUnswitchMD});
3118         L.setLoopID(NewLoopID);
3119       } else
3120         U.revisitCurrentLoop();
3121     } else
3122       U.markLoopAsDeleted(L, LoopName);
3123   };
3124 
3125   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3126     U.markLoopAsDeleted(L, Name);
3127   };
3128 
3129   Optional<MemorySSAUpdater> MSSAU;
3130   if (AR.MSSA) {
3131     MSSAU = MemorySSAUpdater(AR.MSSA);
3132     if (VerifyMemorySSA)
3133       AR.MSSA->verifyMemorySSA();
3134   }
3135   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3136                     UnswitchCB, &AR.SE,
3137                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
3138                     DestroyLoopCB))
3139     return PreservedAnalyses::all();
3140 
3141   if (AR.MSSA && VerifyMemorySSA)
3142     AR.MSSA->verifyMemorySSA();
3143 
3144   // Historically this pass has had issues with the dominator tree so verify it
3145   // in asserts builds.
3146   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3147 
3148   auto PA = getLoopPassPreservedAnalyses();
3149   if (AR.MSSA)
3150     PA.preserve<MemorySSAAnalysis>();
3151   return PA;
3152 }
3153 
3154 void SimpleLoopUnswitchPass::printPipeline(
3155     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3156   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3157       OS, MapClassName2PassName);
3158 
3159   OS << "<";
3160   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3161   OS << (Trivial ? "" : "no-") << "trivial";
3162   OS << ">";
3163 }
3164 
3165 namespace {
3166 
3167 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3168   bool NonTrivial;
3169 
3170 public:
3171   static char ID; // Pass ID, replacement for typeid
3172 
3173   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3174       : LoopPass(ID), NonTrivial(NonTrivial) {
3175     initializeSimpleLoopUnswitchLegacyPassPass(
3176         *PassRegistry::getPassRegistry());
3177   }
3178 
3179   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3180 
3181   void getAnalysisUsage(AnalysisUsage &AU) const override {
3182     AU.addRequired<AssumptionCacheTracker>();
3183     AU.addRequired<TargetTransformInfoWrapperPass>();
3184     AU.addRequired<MemorySSAWrapperPass>();
3185     AU.addPreserved<MemorySSAWrapperPass>();
3186     getLoopAnalysisUsage(AU);
3187   }
3188 };
3189 
3190 } // end anonymous namespace
3191 
3192 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3193   if (skipLoop(L))
3194     return false;
3195 
3196   Function &F = *L->getHeader()->getParent();
3197 
3198   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3199                     << "\n");
3200 
3201   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3202   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3203   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3204   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3205   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3206   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3207   MemorySSAUpdater MSSAU(MSSA);
3208 
3209   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3210   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3211 
3212   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3213                                ArrayRef<Loop *> NewLoops) {
3214     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3215     for (auto *NewL : NewLoops)
3216       LPM.addLoop(*NewL);
3217 
3218     // If the current loop remains valid, re-add it to the queue. This is
3219     // a little wasteful as we'll finish processing the current loop as well,
3220     // but it is the best we can do in the old PM.
3221     if (CurrentLoopValid) {
3222       // If the current loop has been unswitched using a partially invariant
3223       // condition, we should not re-add the current loop to avoid unswitching
3224       // on the same condition again.
3225       if (!PartiallyInvariant)
3226         LPM.addLoop(*L);
3227     } else
3228       LPM.markLoopAsDeleted(*L);
3229   };
3230 
3231   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3232     LPM.markLoopAsDeleted(L);
3233   };
3234 
3235   if (VerifyMemorySSA)
3236     MSSA->verifyMemorySSA();
3237 
3238   bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial,
3239                               UnswitchCB, SE, &MSSAU, DestroyLoopCB);
3240 
3241   if (VerifyMemorySSA)
3242     MSSA->verifyMemorySSA();
3243 
3244   // Historically this pass has had issues with the dominator tree so verify it
3245   // in asserts builds.
3246   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3247 
3248   return Changed;
3249 }
3250 
3251 char SimpleLoopUnswitchLegacyPass::ID = 0;
3252 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3253                       "Simple unswitch loops", false, false)
3254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3255 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3256 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3257 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3258 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3259 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3260 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3261                     "Simple unswitch loops", false, false)
3262 
3263 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3264   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3265 }
3266