xref: /llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision a132016d4d080734e0ba2d7ac044b512f3917c26)
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/GuardUtils.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopAnalysisManager.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/Utils/Local.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Use.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/GenericDomTree.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/Cloning.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include "llvm/Transforms/Utils/ValueMapper.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <iterator>
54 #include <numeric>
55 #include <utility>
56 
57 #define DEBUG_TYPE "simple-loop-unswitch"
58 
59 using namespace llvm;
60 
61 STATISTIC(NumBranches, "Number of branches unswitched");
62 STATISTIC(NumSwitches, "Number of switches unswitched");
63 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
64 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
65 
66 static cl::opt<bool> EnableNonTrivialUnswitch(
67     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
68     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
69              "following the configuration passed into the pass."));
70 
71 static cl::opt<int>
72     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
73                       cl::desc("The cost threshold for unswitching a loop."));
74 
75 static cl::opt<bool> UnswitchGuards(
76     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
77     cl::desc("If enabled, simple loop unswitching will also consider "
78              "llvm.experimental.guard intrinsics as unswitch candidates."));
79 
80 /// Collect all of the loop invariant input values transitively used by the
81 /// homogeneous instruction graph from a given root.
82 ///
83 /// This essentially walks from a root recursively through loop variant operands
84 /// which have the exact same opcode and finds all inputs which are loop
85 /// invariant. For some operations these can be re-associated and unswitched out
86 /// of the loop entirely.
87 static TinyPtrVector<Value *>
88 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
89                                          LoopInfo &LI) {
90   assert(!L.isLoopInvariant(&Root) &&
91          "Only need to walk the graph if root itself is not invariant.");
92   TinyPtrVector<Value *> Invariants;
93 
94   // Build a worklist and recurse through operators collecting invariants.
95   SmallVector<Instruction *, 4> Worklist;
96   SmallPtrSet<Instruction *, 8> Visited;
97   Worklist.push_back(&Root);
98   Visited.insert(&Root);
99   do {
100     Instruction &I = *Worklist.pop_back_val();
101     for (Value *OpV : I.operand_values()) {
102       // Skip constants as unswitching isn't interesting for them.
103       if (isa<Constant>(OpV))
104         continue;
105 
106       // Add it to our result if loop invariant.
107       if (L.isLoopInvariant(OpV)) {
108         Invariants.push_back(OpV);
109         continue;
110       }
111 
112       // If not an instruction with the same opcode, nothing we can do.
113       Instruction *OpI = dyn_cast<Instruction>(OpV);
114       if (!OpI || OpI->getOpcode() != Root.getOpcode())
115         continue;
116 
117       // Visit this operand.
118       if (Visited.insert(OpI).second)
119         Worklist.push_back(OpI);
120     }
121   } while (!Worklist.empty());
122 
123   return Invariants;
124 }
125 
126 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
127                                      Constant &Replacement) {
128   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
129 
130   // Replace uses of LIC in the loop with the given constant.
131   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
132     // Grab the use and walk past it so we can clobber it in the use list.
133     Use *U = &*UI++;
134     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
135 
136     // Replace this use within the loop body.
137     if (UserI && L.contains(UserI))
138       U->set(&Replacement);
139   }
140 }
141 
142 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
143 /// incoming values along this edge.
144 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
145                                          BasicBlock &ExitBB) {
146   for (Instruction &I : ExitBB) {
147     auto *PN = dyn_cast<PHINode>(&I);
148     if (!PN)
149       // No more PHIs to check.
150       return true;
151 
152     // If the incoming value for this edge isn't loop invariant the unswitch
153     // won't be trivial.
154     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
155       return false;
156   }
157   llvm_unreachable("Basic blocks should never be empty!");
158 }
159 
160 /// Insert code to test a set of loop invariant values, and conditionally branch
161 /// on them.
162 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
163                                                   ArrayRef<Value *> Invariants,
164                                                   bool Direction,
165                                                   BasicBlock &UnswitchedSucc,
166                                                   BasicBlock &NormalSucc) {
167   IRBuilder<> IRB(&BB);
168   Value *Cond = Invariants.front();
169   for (Value *Invariant :
170        make_range(std::next(Invariants.begin()), Invariants.end()))
171     if (Direction)
172       Cond = IRB.CreateOr(Cond, Invariant);
173     else
174       Cond = IRB.CreateAnd(Cond, Invariant);
175 
176   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
177                    Direction ? &NormalSucc : &UnswitchedSucc);
178 }
179 
180 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
181 ///
182 /// Requires that the loop exit and unswitched basic block are the same, and
183 /// that the exiting block was a unique predecessor of that block. Rewrites the
184 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
185 /// PHI nodes from the old preheader that now contains the unswitched
186 /// terminator.
187 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
188                                                   BasicBlock &OldExitingBB,
189                                                   BasicBlock &OldPH) {
190   for (PHINode &PN : UnswitchedBB.phis()) {
191     // When the loop exit is directly unswitched we just need to update the
192     // incoming basic block. We loop to handle weird cases with repeated
193     // incoming blocks, but expect to typically only have one operand here.
194     for (auto i : seq<int>(0, PN.getNumOperands())) {
195       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
196              "Found incoming block different from unique predecessor!");
197       PN.setIncomingBlock(i, &OldPH);
198     }
199   }
200 }
201 
202 /// Rewrite the PHI nodes in the loop exit basic block and the split off
203 /// unswitched block.
204 ///
205 /// Because the exit block remains an exit from the loop, this rewrites the
206 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
207 /// nodes into the unswitched basic block to select between the value in the
208 /// old preheader and the loop exit.
209 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
210                                                       BasicBlock &UnswitchedBB,
211                                                       BasicBlock &OldExitingBB,
212                                                       BasicBlock &OldPH,
213                                                       bool FullUnswitch) {
214   assert(&ExitBB != &UnswitchedBB &&
215          "Must have different loop exit and unswitched blocks!");
216   Instruction *InsertPt = &*UnswitchedBB.begin();
217   for (PHINode &PN : ExitBB.phis()) {
218     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
219                                   PN.getName() + ".split", InsertPt);
220 
221     // Walk backwards over the old PHI node's inputs to minimize the cost of
222     // removing each one. We have to do this weird loop manually so that we
223     // create the same number of new incoming edges in the new PHI as we expect
224     // each case-based edge to be included in the unswitched switch in some
225     // cases.
226     // FIXME: This is really, really gross. It would be much cleaner if LLVM
227     // allowed us to create a single entry for a predecessor block without
228     // having separate entries for each "edge" even though these edges are
229     // required to produce identical results.
230     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
231       if (PN.getIncomingBlock(i) != &OldExitingBB)
232         continue;
233 
234       Value *Incoming = PN.getIncomingValue(i);
235       if (FullUnswitch)
236         // No more edge from the old exiting block to the exit block.
237         PN.removeIncomingValue(i);
238 
239       NewPN->addIncoming(Incoming, &OldPH);
240     }
241 
242     // Now replace the old PHI with the new one and wire the old one in as an
243     // input to the new one.
244     PN.replaceAllUsesWith(NewPN);
245     NewPN->addIncoming(&PN, &ExitBB);
246   }
247 }
248 
249 /// Hoist the current loop up to the innermost loop containing a remaining exit.
250 ///
251 /// Because we've removed an exit from the loop, we may have changed the set of
252 /// loops reachable and need to move the current loop up the loop nest or even
253 /// to an entirely separate nest.
254 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
255                                  DominatorTree &DT, LoopInfo &LI) {
256   // If the loop is already at the top level, we can't hoist it anywhere.
257   Loop *OldParentL = L.getParentLoop();
258   if (!OldParentL)
259     return;
260 
261   SmallVector<BasicBlock *, 4> Exits;
262   L.getExitBlocks(Exits);
263   Loop *NewParentL = nullptr;
264   for (auto *ExitBB : Exits)
265     if (Loop *ExitL = LI.getLoopFor(ExitBB))
266       if (!NewParentL || NewParentL->contains(ExitL))
267         NewParentL = ExitL;
268 
269   if (NewParentL == OldParentL)
270     return;
271 
272   // The new parent loop (if different) should always contain the old one.
273   if (NewParentL)
274     assert(NewParentL->contains(OldParentL) &&
275            "Can only hoist this loop up the nest!");
276 
277   // The preheader will need to move with the body of this loop. However,
278   // because it isn't in this loop we also need to update the primary loop map.
279   assert(OldParentL == LI.getLoopFor(&Preheader) &&
280          "Parent loop of this loop should contain this loop's preheader!");
281   LI.changeLoopFor(&Preheader, NewParentL);
282 
283   // Remove this loop from its old parent.
284   OldParentL->removeChildLoop(&L);
285 
286   // Add the loop either to the new parent or as a top-level loop.
287   if (NewParentL)
288     NewParentL->addChildLoop(&L);
289   else
290     LI.addTopLevelLoop(&L);
291 
292   // Remove this loops blocks from the old parent and every other loop up the
293   // nest until reaching the new parent. Also update all of these
294   // no-longer-containing loops to reflect the nesting change.
295   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
296        OldContainingL = OldContainingL->getParentLoop()) {
297     llvm::erase_if(OldContainingL->getBlocksVector(),
298                    [&](const BasicBlock *BB) {
299                      return BB == &Preheader || L.contains(BB);
300                    });
301 
302     OldContainingL->getBlocksSet().erase(&Preheader);
303     for (BasicBlock *BB : L.blocks())
304       OldContainingL->getBlocksSet().erase(BB);
305 
306     // Because we just hoisted a loop out of this one, we have essentially
307     // created new exit paths from it. That means we need to form LCSSA PHI
308     // nodes for values used in the no-longer-nested loop.
309     formLCSSA(*OldContainingL, DT, &LI, nullptr);
310 
311     // We shouldn't need to form dedicated exits because the exit introduced
312     // here is the (just split by unswitching) preheader. However, after trivial
313     // unswitching it is possible to get new non-dedicated exits out of parent
314     // loop so let's conservatively form dedicated exit blocks and figure out
315     // if we can optimize later.
316     formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true);
317   }
318 }
319 
320 /// Unswitch a trivial branch if the condition is loop invariant.
321 ///
322 /// This routine should only be called when loop code leading to the branch has
323 /// been validated as trivial (no side effects). This routine checks if the
324 /// condition is invariant and one of the successors is a loop exit. This
325 /// allows us to unswitch without duplicating the loop, making it trivial.
326 ///
327 /// If this routine fails to unswitch the branch it returns false.
328 ///
329 /// If the branch can be unswitched, this routine splits the preheader and
330 /// hoists the branch above that split. Preserves loop simplified form
331 /// (splitting the exit block as necessary). It simplifies the branch within
332 /// the loop to an unconditional branch but doesn't remove it entirely. Further
333 /// cleanup can be done with some simplify-cfg like pass.
334 ///
335 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
336 /// invalidated by this.
337 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
338                                   LoopInfo &LI, ScalarEvolution *SE) {
339   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
340   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
341 
342   // The loop invariant values that we want to unswitch.
343   TinyPtrVector<Value *> Invariants;
344 
345   // When true, we're fully unswitching the branch rather than just unswitching
346   // some input conditions to the branch.
347   bool FullUnswitch = false;
348 
349   if (L.isLoopInvariant(BI.getCondition())) {
350     Invariants.push_back(BI.getCondition());
351     FullUnswitch = true;
352   } else {
353     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
354       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
355     if (Invariants.empty())
356       // Couldn't find invariant inputs!
357       return false;
358   }
359 
360   // Check that one of the branch's successors exits, and which one.
361   bool ExitDirection = true;
362   int LoopExitSuccIdx = 0;
363   auto *LoopExitBB = BI.getSuccessor(0);
364   if (L.contains(LoopExitBB)) {
365     ExitDirection = false;
366     LoopExitSuccIdx = 1;
367     LoopExitBB = BI.getSuccessor(1);
368     if (L.contains(LoopExitBB))
369       return false;
370   }
371   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
372   auto *ParentBB = BI.getParent();
373   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
374     return false;
375 
376   // When unswitching only part of the branch's condition, we need the exit
377   // block to be reached directly from the partially unswitched input. This can
378   // be done when the exit block is along the true edge and the branch condition
379   // is a graph of `or` operations, or the exit block is along the false edge
380   // and the condition is a graph of `and` operations.
381   if (!FullUnswitch) {
382     if (ExitDirection) {
383       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
384         return false;
385     } else {
386       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
387         return false;
388     }
389   }
390 
391   LLVM_DEBUG({
392     dbgs() << "    unswitching trivial invariant conditions for: " << BI
393            << "\n";
394     for (Value *Invariant : Invariants) {
395       dbgs() << "      " << *Invariant << " == true";
396       if (Invariant != Invariants.back())
397         dbgs() << " ||";
398       dbgs() << "\n";
399     }
400   });
401 
402   // If we have scalar evolutions, we need to invalidate them including this
403   // loop and the loop containing the exit block.
404   if (SE) {
405     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
406       SE->forgetLoop(ExitL);
407     else
408       // Forget the entire nest as this exits the entire nest.
409       SE->forgetTopmostLoop(&L);
410   }
411 
412   // Split the preheader, so that we know that there is a safe place to insert
413   // the conditional branch. We will change the preheader to have a conditional
414   // branch on LoopCond.
415   BasicBlock *OldPH = L.getLoopPreheader();
416   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
417 
418   // Now that we have a place to insert the conditional branch, create a place
419   // to branch to: this is the exit block out of the loop that we are
420   // unswitching. We need to split this if there are other loop predecessors.
421   // Because the loop is in simplified form, *any* other predecessor is enough.
422   BasicBlock *UnswitchedBB;
423   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
424     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
425            "A branch's parent isn't a predecessor!");
426     UnswitchedBB = LoopExitBB;
427   } else {
428     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
429   }
430 
431   // Actually move the invariant uses into the unswitched position. If possible,
432   // we do this by moving the instructions, but when doing partial unswitching
433   // we do it by building a new merge of the values in the unswitched position.
434   OldPH->getTerminator()->eraseFromParent();
435   if (FullUnswitch) {
436     // If fully unswitching, we can use the existing branch instruction.
437     // Splice it into the old PH to gate reaching the new preheader and re-point
438     // its successors.
439     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
440                                 BI);
441     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
442     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
443 
444     // Create a new unconditional branch that will continue the loop as a new
445     // terminator.
446     BranchInst::Create(ContinueBB, ParentBB);
447   } else {
448     // Only unswitching a subset of inputs to the condition, so we will need to
449     // build a new branch that merges the invariant inputs.
450     if (ExitDirection)
451       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
452                  Instruction::Or &&
453              "Must have an `or` of `i1`s for the condition!");
454     else
455       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
456                  Instruction::And &&
457              "Must have an `and` of `i1`s for the condition!");
458     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
459                                           *UnswitchedBB, *NewPH);
460   }
461 
462   // Rewrite the relevant PHI nodes.
463   if (UnswitchedBB == LoopExitBB)
464     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
465   else
466     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
467                                               *ParentBB, *OldPH, FullUnswitch);
468 
469   // Now we need to update the dominator tree.
470   SmallVector<DominatorTree::UpdateType, 2> DTUpdates;
471   DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
472   if (FullUnswitch)
473     DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB});
474   DT.applyUpdates(DTUpdates);
475 
476   // The constant we can replace all of our invariants with inside the loop
477   // body. If any of the invariants have a value other than this the loop won't
478   // be entered.
479   ConstantInt *Replacement = ExitDirection
480                                  ? ConstantInt::getFalse(BI.getContext())
481                                  : ConstantInt::getTrue(BI.getContext());
482 
483   // Since this is an i1 condition we can also trivially replace uses of it
484   // within the loop with a constant.
485   for (Value *Invariant : Invariants)
486     replaceLoopInvariantUses(L, Invariant, *Replacement);
487 
488   // If this was full unswitching, we may have changed the nesting relationship
489   // for this loop so hoist it to its correct parent if needed.
490   if (FullUnswitch)
491     hoistLoopToNewParent(L, *NewPH, DT, LI);
492 
493   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
494   ++NumTrivial;
495   ++NumBranches;
496   return true;
497 }
498 
499 /// Unswitch a trivial switch if the condition is loop invariant.
500 ///
501 /// This routine should only be called when loop code leading to the switch has
502 /// been validated as trivial (no side effects). This routine checks if the
503 /// condition is invariant and that at least one of the successors is a loop
504 /// exit. This allows us to unswitch without duplicating the loop, making it
505 /// trivial.
506 ///
507 /// If this routine fails to unswitch the switch it returns false.
508 ///
509 /// If the switch can be unswitched, this routine splits the preheader and
510 /// copies the switch above that split. If the default case is one of the
511 /// exiting cases, it copies the non-exiting cases and points them at the new
512 /// preheader. If the default case is not exiting, it copies the exiting cases
513 /// and points the default at the preheader. It preserves loop simplified form
514 /// (splitting the exit blocks as necessary). It simplifies the switch within
515 /// the loop by removing now-dead cases. If the default case is one of those
516 /// unswitched, it replaces its destination with a new basic block containing
517 /// only unreachable. Such basic blocks, while technically loop exits, are not
518 /// considered for unswitching so this is a stable transform and the same
519 /// switch will not be revisited. If after unswitching there is only a single
520 /// in-loop successor, the switch is further simplified to an unconditional
521 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
522 ///
523 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
524 /// invalidated by this.
525 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
526                                   LoopInfo &LI, ScalarEvolution *SE) {
527   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
528   Value *LoopCond = SI.getCondition();
529 
530   // If this isn't switching on an invariant condition, we can't unswitch it.
531   if (!L.isLoopInvariant(LoopCond))
532     return false;
533 
534   auto *ParentBB = SI.getParent();
535 
536   SmallVector<int, 4> ExitCaseIndices;
537   for (auto Case : SI.cases()) {
538     auto *SuccBB = Case.getCaseSuccessor();
539     if (!L.contains(SuccBB) &&
540         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
541       ExitCaseIndices.push_back(Case.getCaseIndex());
542   }
543   BasicBlock *DefaultExitBB = nullptr;
544   if (!L.contains(SI.getDefaultDest()) &&
545       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
546       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
547     DefaultExitBB = SI.getDefaultDest();
548   else if (ExitCaseIndices.empty())
549     return false;
550 
551   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
552 
553   // We may need to invalidate SCEVs for the outermost loop reached by any of
554   // the exits.
555   Loop *OuterL = &L;
556 
557   if (DefaultExitBB) {
558     // Clear out the default destination temporarily to allow accurate
559     // predecessor lists to be examined below.
560     SI.setDefaultDest(nullptr);
561     // Check the loop containing this exit.
562     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
563     if (!ExitL || ExitL->contains(OuterL))
564       OuterL = ExitL;
565   }
566 
567   // Store the exit cases into a separate data structure and remove them from
568   // the switch.
569   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
570   ExitCases.reserve(ExitCaseIndices.size());
571   // We walk the case indices backwards so that we remove the last case first
572   // and don't disrupt the earlier indices.
573   for (unsigned Index : reverse(ExitCaseIndices)) {
574     auto CaseI = SI.case_begin() + Index;
575     // Compute the outer loop from this exit.
576     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
577     if (!ExitL || ExitL->contains(OuterL))
578       OuterL = ExitL;
579     // Save the value of this case.
580     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
581     // Delete the unswitched cases.
582     SI.removeCase(CaseI);
583   }
584 
585   if (SE) {
586     if (OuterL)
587       SE->forgetLoop(OuterL);
588     else
589       SE->forgetTopmostLoop(&L);
590   }
591 
592   // Check if after this all of the remaining cases point at the same
593   // successor.
594   BasicBlock *CommonSuccBB = nullptr;
595   if (SI.getNumCases() > 0 &&
596       std::all_of(std::next(SI.case_begin()), SI.case_end(),
597                   [&SI](const SwitchInst::CaseHandle &Case) {
598                     return Case.getCaseSuccessor() ==
599                            SI.case_begin()->getCaseSuccessor();
600                   }))
601     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
602   if (!DefaultExitBB) {
603     // If we're not unswitching the default, we need it to match any cases to
604     // have a common successor or if we have no cases it is the common
605     // successor.
606     if (SI.getNumCases() == 0)
607       CommonSuccBB = SI.getDefaultDest();
608     else if (SI.getDefaultDest() != CommonSuccBB)
609       CommonSuccBB = nullptr;
610   }
611 
612   // Split the preheader, so that we know that there is a safe place to insert
613   // the switch.
614   BasicBlock *OldPH = L.getLoopPreheader();
615   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
616   OldPH->getTerminator()->eraseFromParent();
617 
618   // Now add the unswitched switch.
619   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
620 
621   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
622   // First, we split any exit blocks with remaining in-loop predecessors. Then
623   // we update the PHIs in one of two ways depending on if there was a split.
624   // We walk in reverse so that we split in the same order as the cases
625   // appeared. This is purely for convenience of reading the resulting IR, but
626   // it doesn't cost anything really.
627   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
628   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
629   // Handle the default exit if necessary.
630   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
631   // ranges aren't quite powerful enough yet.
632   if (DefaultExitBB) {
633     if (pred_empty(DefaultExitBB)) {
634       UnswitchedExitBBs.insert(DefaultExitBB);
635       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
636     } else {
637       auto *SplitBB =
638           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
639       rewritePHINodesForExitAndUnswitchedBlocks(
640           *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
641       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
642     }
643   }
644   // Note that we must use a reference in the for loop so that we update the
645   // container.
646   for (auto &CasePair : reverse(ExitCases)) {
647     // Grab a reference to the exit block in the pair so that we can update it.
648     BasicBlock *ExitBB = CasePair.second;
649 
650     // If this case is the last edge into the exit block, we can simply reuse it
651     // as it will no longer be a loop exit. No mapping necessary.
652     if (pred_empty(ExitBB)) {
653       // Only rewrite once.
654       if (UnswitchedExitBBs.insert(ExitBB).second)
655         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
656       continue;
657     }
658 
659     // Otherwise we need to split the exit block so that we retain an exit
660     // block from the loop and a target for the unswitched condition.
661     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
662     if (!SplitExitBB) {
663       // If this is the first time we see this, do the split and remember it.
664       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
665       rewritePHINodesForExitAndUnswitchedBlocks(
666           *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
667     }
668     // Update the case pair to point to the split block.
669     CasePair.second = SplitExitBB;
670   }
671 
672   // Now add the unswitched cases. We do this in reverse order as we built them
673   // in reverse order.
674   for (auto CasePair : reverse(ExitCases)) {
675     ConstantInt *CaseVal = CasePair.first;
676     BasicBlock *UnswitchedBB = CasePair.second;
677 
678     NewSI->addCase(CaseVal, UnswitchedBB);
679   }
680 
681   // If the default was unswitched, re-point it and add explicit cases for
682   // entering the loop.
683   if (DefaultExitBB) {
684     NewSI->setDefaultDest(DefaultExitBB);
685 
686     // We removed all the exit cases, so we just copy the cases to the
687     // unswitched switch.
688     for (auto Case : SI.cases())
689       NewSI->addCase(Case.getCaseValue(), NewPH);
690   }
691 
692   // If we ended up with a common successor for every path through the switch
693   // after unswitching, rewrite it to an unconditional branch to make it easy
694   // to recognize. Otherwise we potentially have to recognize the default case
695   // pointing at unreachable and other complexity.
696   if (CommonSuccBB) {
697     BasicBlock *BB = SI.getParent();
698     // We may have had multiple edges to this common successor block, so remove
699     // them as predecessors. We skip the first one, either the default or the
700     // actual first case.
701     bool SkippedFirst = DefaultExitBB == nullptr;
702     for (auto Case : SI.cases()) {
703       assert(Case.getCaseSuccessor() == CommonSuccBB &&
704              "Non-common successor!");
705       (void)Case;
706       if (!SkippedFirst) {
707         SkippedFirst = true;
708         continue;
709       }
710       CommonSuccBB->removePredecessor(BB,
711                                       /*DontDeleteUselessPHIs*/ true);
712     }
713     // Now nuke the switch and replace it with a direct branch.
714     SI.eraseFromParent();
715     BranchInst::Create(CommonSuccBB, BB);
716   } else if (DefaultExitBB) {
717     assert(SI.getNumCases() > 0 &&
718            "If we had no cases we'd have a common successor!");
719     // Move the last case to the default successor. This is valid as if the
720     // default got unswitched it cannot be reached. This has the advantage of
721     // being simple and keeping the number of edges from this switch to
722     // successors the same, and avoiding any PHI update complexity.
723     auto LastCaseI = std::prev(SI.case_end());
724     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
725     SI.removeCase(LastCaseI);
726   }
727 
728   // Walk the unswitched exit blocks and the unswitched split blocks and update
729   // the dominator tree based on the CFG edits. While we are walking unordered
730   // containers here, the API for applyUpdates takes an unordered list of
731   // updates and requires them to not contain duplicates.
732   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
733   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
734     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
735     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
736   }
737   for (auto SplitUnswitchedPair : SplitExitBBMap) {
738     auto *UnswitchedBB = SplitUnswitchedPair.second;
739     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
740     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
741   }
742   DT.applyUpdates(DTUpdates);
743   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
744 
745   // We may have changed the nesting relationship for this loop so hoist it to
746   // its correct parent if needed.
747   hoistLoopToNewParent(L, *NewPH, DT, LI);
748 
749   ++NumTrivial;
750   ++NumSwitches;
751   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
752   return true;
753 }
754 
755 /// This routine scans the loop to find a branch or switch which occurs before
756 /// any side effects occur. These can potentially be unswitched without
757 /// duplicating the loop. If a branch or switch is successfully unswitched the
758 /// scanning continues to see if subsequent branches or switches have become
759 /// trivial. Once all trivial candidates have been unswitched, this routine
760 /// returns.
761 ///
762 /// The return value indicates whether anything was unswitched (and therefore
763 /// changed).
764 ///
765 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
766 /// invalidated by this.
767 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
768                                          LoopInfo &LI, ScalarEvolution *SE) {
769   bool Changed = false;
770 
771   // If loop header has only one reachable successor we should keep looking for
772   // trivial condition candidates in the successor as well. An alternative is
773   // to constant fold conditions and merge successors into loop header (then we
774   // only need to check header's terminator). The reason for not doing this in
775   // LoopUnswitch pass is that it could potentially break LoopPassManager's
776   // invariants. Folding dead branches could either eliminate the current loop
777   // or make other loops unreachable. LCSSA form might also not be preserved
778   // after deleting branches. The following code keeps traversing loop header's
779   // successors until it finds the trivial condition candidate (condition that
780   // is not a constant). Since unswitching generates branches with constant
781   // conditions, this scenario could be very common in practice.
782   BasicBlock *CurrentBB = L.getHeader();
783   SmallPtrSet<BasicBlock *, 8> Visited;
784   Visited.insert(CurrentBB);
785   do {
786     // Check if there are any side-effecting instructions (e.g. stores, calls,
787     // volatile loads) in the part of the loop that the code *would* execute
788     // without unswitching.
789     if (llvm::any_of(*CurrentBB,
790                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
791       return Changed;
792 
793     Instruction *CurrentTerm = CurrentBB->getTerminator();
794 
795     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
796       // Don't bother trying to unswitch past a switch with a constant
797       // condition. This should be removed prior to running this pass by
798       // simplify-cfg.
799       if (isa<Constant>(SI->getCondition()))
800         return Changed;
801 
802       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
803         // Couldn't unswitch this one so we're done.
804         return Changed;
805 
806       // Mark that we managed to unswitch something.
807       Changed = true;
808 
809       // If unswitching turned the terminator into an unconditional branch then
810       // we can continue. The unswitching logic specifically works to fold any
811       // cases it can into an unconditional branch to make it easier to
812       // recognize here.
813       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
814       if (!BI || BI->isConditional())
815         return Changed;
816 
817       CurrentBB = BI->getSuccessor(0);
818       continue;
819     }
820 
821     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
822     if (!BI)
823       // We do not understand other terminator instructions.
824       return Changed;
825 
826     // Don't bother trying to unswitch past an unconditional branch or a branch
827     // with a constant value. These should be removed by simplify-cfg prior to
828     // running this pass.
829     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
830       return Changed;
831 
832     // Found a trivial condition candidate: non-foldable conditional branch. If
833     // we fail to unswitch this, we can't do anything else that is trivial.
834     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
835       return Changed;
836 
837     // Mark that we managed to unswitch something.
838     Changed = true;
839 
840     // If we only unswitched some of the conditions feeding the branch, we won't
841     // have collapsed it to a single successor.
842     BI = cast<BranchInst>(CurrentBB->getTerminator());
843     if (BI->isConditional())
844       return Changed;
845 
846     // Follow the newly unconditional branch into its successor.
847     CurrentBB = BI->getSuccessor(0);
848 
849     // When continuing, if we exit the loop or reach a previous visited block,
850     // then we can not reach any trivial condition candidates (unfoldable
851     // branch instructions or switch instructions) and no unswitch can happen.
852   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
853 
854   return Changed;
855 }
856 
857 /// Build the cloned blocks for an unswitched copy of the given loop.
858 ///
859 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
860 /// after the split block (`SplitBB`) that will be used to select between the
861 /// cloned and original loop.
862 ///
863 /// This routine handles cloning all of the necessary loop blocks and exit
864 /// blocks including rewriting their instructions and the relevant PHI nodes.
865 /// Any loop blocks or exit blocks which are dominated by a different successor
866 /// than the one for this clone of the loop blocks can be trivially skipped. We
867 /// use the `DominatingSucc` map to determine whether a block satisfies that
868 /// property with a simple map lookup.
869 ///
870 /// It also correctly creates the unconditional branch in the cloned
871 /// unswitched parent block to only point at the unswitched successor.
872 ///
873 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
874 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
875 /// the cloned blocks (and their loops) are left without full `LoopInfo`
876 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
877 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
878 /// instead the caller must recompute an accurate DT. It *does* correctly
879 /// update the `AssumptionCache` provided in `AC`.
880 static BasicBlock *buildClonedLoopBlocks(
881     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
882     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
883     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
884     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
885     ValueToValueMapTy &VMap,
886     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
887     DominatorTree &DT, LoopInfo &LI) {
888   SmallVector<BasicBlock *, 4> NewBlocks;
889   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
890 
891   // We will need to clone a bunch of blocks, wrap up the clone operation in
892   // a helper.
893   auto CloneBlock = [&](BasicBlock *OldBB) {
894     // Clone the basic block and insert it before the new preheader.
895     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
896     NewBB->moveBefore(LoopPH);
897 
898     // Record this block and the mapping.
899     NewBlocks.push_back(NewBB);
900     VMap[OldBB] = NewBB;
901 
902     return NewBB;
903   };
904 
905   // We skip cloning blocks when they have a dominating succ that is not the
906   // succ we are cloning for.
907   auto SkipBlock = [&](BasicBlock *BB) {
908     auto It = DominatingSucc.find(BB);
909     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
910   };
911 
912   // First, clone the preheader.
913   auto *ClonedPH = CloneBlock(LoopPH);
914 
915   // Then clone all the loop blocks, skipping the ones that aren't necessary.
916   for (auto *LoopBB : L.blocks())
917     if (!SkipBlock(LoopBB))
918       CloneBlock(LoopBB);
919 
920   // Split all the loop exit edges so that when we clone the exit blocks, if
921   // any of the exit blocks are *also* a preheader for some other loop, we
922   // don't create multiple predecessors entering the loop header.
923   for (auto *ExitBB : ExitBlocks) {
924     if (SkipBlock(ExitBB))
925       continue;
926 
927     // When we are going to clone an exit, we don't need to clone all the
928     // instructions in the exit block and we want to ensure we have an easy
929     // place to merge the CFG, so split the exit first. This is always safe to
930     // do because there cannot be any non-loop predecessors of a loop exit in
931     // loop simplified form.
932     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
933 
934     // Rearrange the names to make it easier to write test cases by having the
935     // exit block carry the suffix rather than the merge block carrying the
936     // suffix.
937     MergeBB->takeName(ExitBB);
938     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
939 
940     // Now clone the original exit block.
941     auto *ClonedExitBB = CloneBlock(ExitBB);
942     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
943            "Exit block should have been split to have one successor!");
944     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
945            "Cloned exit block has the wrong successor!");
946 
947     // Remap any cloned instructions and create a merge phi node for them.
948     for (auto ZippedInsts : llvm::zip_first(
949              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
950              llvm::make_range(ClonedExitBB->begin(),
951                               std::prev(ClonedExitBB->end())))) {
952       Instruction &I = std::get<0>(ZippedInsts);
953       Instruction &ClonedI = std::get<1>(ZippedInsts);
954 
955       // The only instructions in the exit block should be PHI nodes and
956       // potentially a landing pad.
957       assert(
958           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
959           "Bad instruction in exit block!");
960       // We should have a value map between the instruction and its clone.
961       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
962 
963       auto *MergePN =
964           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
965                           &*MergeBB->getFirstInsertionPt());
966       I.replaceAllUsesWith(MergePN);
967       MergePN->addIncoming(&I, ExitBB);
968       MergePN->addIncoming(&ClonedI, ClonedExitBB);
969     }
970   }
971 
972   // Rewrite the instructions in the cloned blocks to refer to the instructions
973   // in the cloned blocks. We have to do this as a second pass so that we have
974   // everything available. Also, we have inserted new instructions which may
975   // include assume intrinsics, so we update the assumption cache while
976   // processing this.
977   for (auto *ClonedBB : NewBlocks)
978     for (Instruction &I : *ClonedBB) {
979       RemapInstruction(&I, VMap,
980                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
981       if (auto *II = dyn_cast<IntrinsicInst>(&I))
982         if (II->getIntrinsicID() == Intrinsic::assume)
983           AC.registerAssumption(II);
984     }
985 
986   // Update any PHI nodes in the cloned successors of the skipped blocks to not
987   // have spurious incoming values.
988   for (auto *LoopBB : L.blocks())
989     if (SkipBlock(LoopBB))
990       for (auto *SuccBB : successors(LoopBB))
991         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
992           for (PHINode &PN : ClonedSuccBB->phis())
993             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
994 
995   // Remove the cloned parent as a predecessor of any successor we ended up
996   // cloning other than the unswitched one.
997   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
998   for (auto *SuccBB : successors(ParentBB)) {
999     if (SuccBB == UnswitchedSuccBB)
1000       continue;
1001 
1002     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1003     if (!ClonedSuccBB)
1004       continue;
1005 
1006     ClonedSuccBB->removePredecessor(ClonedParentBB,
1007                                     /*DontDeleteUselessPHIs*/ true);
1008   }
1009 
1010   // Replace the cloned branch with an unconditional branch to the cloned
1011   // unswitched successor.
1012   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1013   ClonedParentBB->getTerminator()->eraseFromParent();
1014   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1015 
1016   // If there are duplicate entries in the PHI nodes because of multiple edges
1017   // to the unswitched successor, we need to nuke all but one as we replaced it
1018   // with a direct branch.
1019   for (PHINode &PN : ClonedSuccBB->phis()) {
1020     bool Found = false;
1021     // Loop over the incoming operands backwards so we can easily delete as we
1022     // go without invalidating the index.
1023     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1024       if (PN.getIncomingBlock(i) != ClonedParentBB)
1025         continue;
1026       if (!Found) {
1027         Found = true;
1028         continue;
1029       }
1030       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1031     }
1032   }
1033 
1034   // Record the domtree updates for the new blocks.
1035   SmallPtrSet<BasicBlock *, 4> SuccSet;
1036   for (auto *ClonedBB : NewBlocks) {
1037     for (auto *SuccBB : successors(ClonedBB))
1038       if (SuccSet.insert(SuccBB).second)
1039         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1040     SuccSet.clear();
1041   }
1042 
1043   return ClonedPH;
1044 }
1045 
1046 /// Recursively clone the specified loop and all of its children.
1047 ///
1048 /// The target parent loop for the clone should be provided, or can be null if
1049 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1050 /// with the provided value map. The entire original loop must be present in
1051 /// the value map. The cloned loop is returned.
1052 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1053                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1054   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1055     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1056     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1057     for (auto *BB : OrigL.blocks()) {
1058       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1059       ClonedL.addBlockEntry(ClonedBB);
1060       if (LI.getLoopFor(BB) == &OrigL)
1061         LI.changeLoopFor(ClonedBB, &ClonedL);
1062     }
1063   };
1064 
1065   // We specially handle the first loop because it may get cloned into
1066   // a different parent and because we most commonly are cloning leaf loops.
1067   Loop *ClonedRootL = LI.AllocateLoop();
1068   if (RootParentL)
1069     RootParentL->addChildLoop(ClonedRootL);
1070   else
1071     LI.addTopLevelLoop(ClonedRootL);
1072   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1073 
1074   if (OrigRootL.empty())
1075     return ClonedRootL;
1076 
1077   // If we have a nest, we can quickly clone the entire loop nest using an
1078   // iterative approach because it is a tree. We keep the cloned parent in the
1079   // data structure to avoid repeatedly querying through a map to find it.
1080   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1081   // Build up the loops to clone in reverse order as we'll clone them from the
1082   // back.
1083   for (Loop *ChildL : llvm::reverse(OrigRootL))
1084     LoopsToClone.push_back({ClonedRootL, ChildL});
1085   do {
1086     Loop *ClonedParentL, *L;
1087     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1088     Loop *ClonedL = LI.AllocateLoop();
1089     ClonedParentL->addChildLoop(ClonedL);
1090     AddClonedBlocksToLoop(*L, *ClonedL);
1091     for (Loop *ChildL : llvm::reverse(*L))
1092       LoopsToClone.push_back({ClonedL, ChildL});
1093   } while (!LoopsToClone.empty());
1094 
1095   return ClonedRootL;
1096 }
1097 
1098 /// Build the cloned loops of an original loop from unswitching.
1099 ///
1100 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1101 /// operation. We need to re-verify that there even is a loop (as the backedge
1102 /// may not have been cloned), and even if there are remaining backedges the
1103 /// backedge set may be different. However, we know that each child loop is
1104 /// undisturbed, we only need to find where to place each child loop within
1105 /// either any parent loop or within a cloned version of the original loop.
1106 ///
1107 /// Because child loops may end up cloned outside of any cloned version of the
1108 /// original loop, multiple cloned sibling loops may be created. All of them
1109 /// are returned so that the newly introduced loop nest roots can be
1110 /// identified.
1111 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1112                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1113                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1114   Loop *ClonedL = nullptr;
1115 
1116   auto *OrigPH = OrigL.getLoopPreheader();
1117   auto *OrigHeader = OrigL.getHeader();
1118 
1119   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1120   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1121 
1122   // We need to know the loops of the cloned exit blocks to even compute the
1123   // accurate parent loop. If we only clone exits to some parent of the
1124   // original parent, we want to clone into that outer loop. We also keep track
1125   // of the loops that our cloned exit blocks participate in.
1126   Loop *ParentL = nullptr;
1127   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1128   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1129   ClonedExitsInLoops.reserve(ExitBlocks.size());
1130   for (auto *ExitBB : ExitBlocks)
1131     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1132       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1133         ExitLoopMap[ClonedExitBB] = ExitL;
1134         ClonedExitsInLoops.push_back(ClonedExitBB);
1135         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1136           ParentL = ExitL;
1137       }
1138   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1139           ParentL->contains(OrigL.getParentLoop())) &&
1140          "The computed parent loop should always contain (or be) the parent of "
1141          "the original loop.");
1142 
1143   // We build the set of blocks dominated by the cloned header from the set of
1144   // cloned blocks out of the original loop. While not all of these will
1145   // necessarily be in the cloned loop, it is enough to establish that they
1146   // aren't in unreachable cycles, etc.
1147   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1148   for (auto *BB : OrigL.blocks())
1149     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1150       ClonedLoopBlocks.insert(ClonedBB);
1151 
1152   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1153   // skipped cloning some region of this loop which can in turn skip some of
1154   // the backedges so we have to rebuild the blocks in the loop based on the
1155   // backedges that remain after cloning.
1156   SmallVector<BasicBlock *, 16> Worklist;
1157   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1158   for (auto *Pred : predecessors(ClonedHeader)) {
1159     // The only possible non-loop header predecessor is the preheader because
1160     // we know we cloned the loop in simplified form.
1161     if (Pred == ClonedPH)
1162       continue;
1163 
1164     // Because the loop was in simplified form, the only non-loop predecessor
1165     // should be the preheader.
1166     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1167                                            "header other than the preheader "
1168                                            "that is not part of the loop!");
1169 
1170     // Insert this block into the loop set and on the first visit (and if it
1171     // isn't the header we're currently walking) put it into the worklist to
1172     // recurse through.
1173     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1174       Worklist.push_back(Pred);
1175   }
1176 
1177   // If we had any backedges then there *is* a cloned loop. Put the header into
1178   // the loop set and then walk the worklist backwards to find all the blocks
1179   // that remain within the loop after cloning.
1180   if (!BlocksInClonedLoop.empty()) {
1181     BlocksInClonedLoop.insert(ClonedHeader);
1182 
1183     while (!Worklist.empty()) {
1184       BasicBlock *BB = Worklist.pop_back_val();
1185       assert(BlocksInClonedLoop.count(BB) &&
1186              "Didn't put block into the loop set!");
1187 
1188       // Insert any predecessors that are in the possible set into the cloned
1189       // set, and if the insert is successful, add them to the worklist. Note
1190       // that we filter on the blocks that are definitely reachable via the
1191       // backedge to the loop header so we may prune out dead code within the
1192       // cloned loop.
1193       for (auto *Pred : predecessors(BB))
1194         if (ClonedLoopBlocks.count(Pred) &&
1195             BlocksInClonedLoop.insert(Pred).second)
1196           Worklist.push_back(Pred);
1197     }
1198 
1199     ClonedL = LI.AllocateLoop();
1200     if (ParentL) {
1201       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1202       ParentL->addChildLoop(ClonedL);
1203     } else {
1204       LI.addTopLevelLoop(ClonedL);
1205     }
1206     NonChildClonedLoops.push_back(ClonedL);
1207 
1208     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1209     // We don't want to just add the cloned loop blocks based on how we
1210     // discovered them. The original order of blocks was carefully built in
1211     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1212     // that logic, we just re-walk the original blocks (and those of the child
1213     // loops) and filter them as we add them into the cloned loop.
1214     for (auto *BB : OrigL.blocks()) {
1215       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1216       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1217         continue;
1218 
1219       // Directly add the blocks that are only in this loop.
1220       if (LI.getLoopFor(BB) == &OrigL) {
1221         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1222         continue;
1223       }
1224 
1225       // We want to manually add it to this loop and parents.
1226       // Registering it with LoopInfo will happen when we clone the top
1227       // loop for this block.
1228       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1229         PL->addBlockEntry(ClonedBB);
1230     }
1231 
1232     // Now add each child loop whose header remains within the cloned loop. All
1233     // of the blocks within the loop must satisfy the same constraints as the
1234     // header so once we pass the header checks we can just clone the entire
1235     // child loop nest.
1236     for (Loop *ChildL : OrigL) {
1237       auto *ClonedChildHeader =
1238           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1239       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1240         continue;
1241 
1242 #ifndef NDEBUG
1243       // We should never have a cloned child loop header but fail to have
1244       // all of the blocks for that child loop.
1245       for (auto *ChildLoopBB : ChildL->blocks())
1246         assert(BlocksInClonedLoop.count(
1247                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1248                "Child cloned loop has a header within the cloned outer "
1249                "loop but not all of its blocks!");
1250 #endif
1251 
1252       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1253     }
1254   }
1255 
1256   // Now that we've handled all the components of the original loop that were
1257   // cloned into a new loop, we still need to handle anything from the original
1258   // loop that wasn't in a cloned loop.
1259 
1260   // Figure out what blocks are left to place within any loop nest containing
1261   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1262   // them.
1263   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1264   if (BlocksInClonedLoop.empty())
1265     UnloopedBlockSet.insert(ClonedPH);
1266   for (auto *ClonedBB : ClonedLoopBlocks)
1267     if (!BlocksInClonedLoop.count(ClonedBB))
1268       UnloopedBlockSet.insert(ClonedBB);
1269 
1270   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1271   // backwards across these to process them inside out. The order shouldn't
1272   // matter as we're just trying to build up the map from inside-out; we use
1273   // the map in a more stably ordered way below.
1274   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1275   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1276     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1277            ExitLoopMap.lookup(RHS)->getLoopDepth();
1278   });
1279 
1280   // Populate the existing ExitLoopMap with everything reachable from each
1281   // exit, starting from the inner most exit.
1282   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1283     assert(Worklist.empty() && "Didn't clear worklist!");
1284 
1285     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1286     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1287 
1288     // Walk the CFG back until we hit the cloned PH adding everything reachable
1289     // and in the unlooped set to this exit block's loop.
1290     Worklist.push_back(ExitBB);
1291     do {
1292       BasicBlock *BB = Worklist.pop_back_val();
1293       // We can stop recursing at the cloned preheader (if we get there).
1294       if (BB == ClonedPH)
1295         continue;
1296 
1297       for (BasicBlock *PredBB : predecessors(BB)) {
1298         // If this pred has already been moved to our set or is part of some
1299         // (inner) loop, no update needed.
1300         if (!UnloopedBlockSet.erase(PredBB)) {
1301           assert(
1302               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1303               "Predecessor not mapped to a loop!");
1304           continue;
1305         }
1306 
1307         // We just insert into the loop set here. We'll add these blocks to the
1308         // exit loop after we build up the set in an order that doesn't rely on
1309         // predecessor order (which in turn relies on use list order).
1310         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1311         (void)Inserted;
1312         assert(Inserted && "Should only visit an unlooped block once!");
1313 
1314         // And recurse through to its predecessors.
1315         Worklist.push_back(PredBB);
1316       }
1317     } while (!Worklist.empty());
1318   }
1319 
1320   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1321   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1322   // in their original order adding them to the correct loop.
1323 
1324   // We need a stable insertion order. We use the order of the original loop
1325   // order and map into the correct parent loop.
1326   for (auto *BB : llvm::concat<BasicBlock *const>(
1327            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1328     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1329       OuterL->addBasicBlockToLoop(BB, LI);
1330 
1331 #ifndef NDEBUG
1332   for (auto &BBAndL : ExitLoopMap) {
1333     auto *BB = BBAndL.first;
1334     auto *OuterL = BBAndL.second;
1335     assert(LI.getLoopFor(BB) == OuterL &&
1336            "Failed to put all blocks into outer loops!");
1337   }
1338 #endif
1339 
1340   // Now that all the blocks are placed into the correct containing loop in the
1341   // absence of child loops, find all the potentially cloned child loops and
1342   // clone them into whatever outer loop we placed their header into.
1343   for (Loop *ChildL : OrigL) {
1344     auto *ClonedChildHeader =
1345         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1346     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1347       continue;
1348 
1349 #ifndef NDEBUG
1350     for (auto *ChildLoopBB : ChildL->blocks())
1351       assert(VMap.count(ChildLoopBB) &&
1352              "Cloned a child loop header but not all of that loops blocks!");
1353 #endif
1354 
1355     NonChildClonedLoops.push_back(cloneLoopNest(
1356         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1357   }
1358 }
1359 
1360 static void
1361 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1362                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1363                        DominatorTree &DT) {
1364   // Find all the dead clones, and remove them from their successors.
1365   SmallVector<BasicBlock *, 16> DeadBlocks;
1366   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1367     for (auto &VMap : VMaps)
1368       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1369         if (!DT.isReachableFromEntry(ClonedBB)) {
1370           for (BasicBlock *SuccBB : successors(ClonedBB))
1371             SuccBB->removePredecessor(ClonedBB);
1372           DeadBlocks.push_back(ClonedBB);
1373         }
1374 
1375   // Drop any remaining references to break cycles.
1376   for (BasicBlock *BB : DeadBlocks)
1377     BB->dropAllReferences();
1378   // Erase them from the IR.
1379   for (BasicBlock *BB : DeadBlocks)
1380     BB->eraseFromParent();
1381 }
1382 
1383 static void
1384 deleteDeadBlocksFromLoop(Loop &L,
1385                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1386                          DominatorTree &DT, LoopInfo &LI) {
1387   // Find all the dead blocks tied to this loop, and remove them from their
1388   // successors.
1389   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
1390 
1391   // Start with loop/exit blocks and get a transitive closure of reachable dead
1392   // blocks.
1393   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1394                                                 ExitBlocks.end());
1395   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1396   while (!DeathCandidates.empty()) {
1397     auto *BB = DeathCandidates.pop_back_val();
1398     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1399       for (BasicBlock *SuccBB : successors(BB)) {
1400         SuccBB->removePredecessor(BB);
1401         DeathCandidates.push_back(SuccBB);
1402       }
1403       DeadBlockSet.insert(BB);
1404     }
1405   }
1406 
1407   // Filter out the dead blocks from the exit blocks list so that it can be
1408   // used in the caller.
1409   llvm::erase_if(ExitBlocks,
1410                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1411 
1412   // Walk from this loop up through its parents removing all of the dead blocks.
1413   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1414     for (auto *BB : DeadBlockSet)
1415       ParentL->getBlocksSet().erase(BB);
1416     llvm::erase_if(ParentL->getBlocksVector(),
1417                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1418   }
1419 
1420   // Now delete the dead child loops. This raw delete will clear them
1421   // recursively.
1422   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1423     if (!DeadBlockSet.count(ChildL->getHeader()))
1424       return false;
1425 
1426     assert(llvm::all_of(ChildL->blocks(),
1427                         [&](BasicBlock *ChildBB) {
1428                           return DeadBlockSet.count(ChildBB);
1429                         }) &&
1430            "If the child loop header is dead all blocks in the child loop must "
1431            "be dead as well!");
1432     LI.destroy(ChildL);
1433     return true;
1434   });
1435 
1436   // Remove the loop mappings for the dead blocks and drop all the references
1437   // from these blocks to others to handle cyclic references as we start
1438   // deleting the blocks themselves.
1439   for (auto *BB : DeadBlockSet) {
1440     // Check that the dominator tree has already been updated.
1441     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1442     LI.changeLoopFor(BB, nullptr);
1443     BB->dropAllReferences();
1444   }
1445 
1446   // Actually delete the blocks now that they've been fully unhooked from the
1447   // IR.
1448   for (auto *BB : DeadBlockSet)
1449     BB->eraseFromParent();
1450 }
1451 
1452 /// Recompute the set of blocks in a loop after unswitching.
1453 ///
1454 /// This walks from the original headers predecessors to rebuild the loop. We
1455 /// take advantage of the fact that new blocks can't have been added, and so we
1456 /// filter by the original loop's blocks. This also handles potentially
1457 /// unreachable code that we don't want to explore but might be found examining
1458 /// the predecessors of the header.
1459 ///
1460 /// If the original loop is no longer a loop, this will return an empty set. If
1461 /// it remains a loop, all the blocks within it will be added to the set
1462 /// (including those blocks in inner loops).
1463 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1464                                                                  LoopInfo &LI) {
1465   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1466 
1467   auto *PH = L.getLoopPreheader();
1468   auto *Header = L.getHeader();
1469 
1470   // A worklist to use while walking backwards from the header.
1471   SmallVector<BasicBlock *, 16> Worklist;
1472 
1473   // First walk the predecessors of the header to find the backedges. This will
1474   // form the basis of our walk.
1475   for (auto *Pred : predecessors(Header)) {
1476     // Skip the preheader.
1477     if (Pred == PH)
1478       continue;
1479 
1480     // Because the loop was in simplified form, the only non-loop predecessor
1481     // is the preheader.
1482     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1483                                "than the preheader that is not part of the "
1484                                "loop!");
1485 
1486     // Insert this block into the loop set and on the first visit and, if it
1487     // isn't the header we're currently walking, put it into the worklist to
1488     // recurse through.
1489     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1490       Worklist.push_back(Pred);
1491   }
1492 
1493   // If no backedges were found, we're done.
1494   if (LoopBlockSet.empty())
1495     return LoopBlockSet;
1496 
1497   // We found backedges, recurse through them to identify the loop blocks.
1498   while (!Worklist.empty()) {
1499     BasicBlock *BB = Worklist.pop_back_val();
1500     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1501 
1502     // No need to walk past the header.
1503     if (BB == Header)
1504       continue;
1505 
1506     // Because we know the inner loop structure remains valid we can use the
1507     // loop structure to jump immediately across the entire nested loop.
1508     // Further, because it is in loop simplified form, we can directly jump
1509     // to its preheader afterward.
1510     if (Loop *InnerL = LI.getLoopFor(BB))
1511       if (InnerL != &L) {
1512         assert(L.contains(InnerL) &&
1513                "Should not reach a loop *outside* this loop!");
1514         // The preheader is the only possible predecessor of the loop so
1515         // insert it into the set and check whether it was already handled.
1516         auto *InnerPH = InnerL->getLoopPreheader();
1517         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1518                                       "but not contain the inner loop "
1519                                       "preheader!");
1520         if (!LoopBlockSet.insert(InnerPH).second)
1521           // The only way to reach the preheader is through the loop body
1522           // itself so if it has been visited the loop is already handled.
1523           continue;
1524 
1525         // Insert all of the blocks (other than those already present) into
1526         // the loop set. We expect at least the block that led us to find the
1527         // inner loop to be in the block set, but we may also have other loop
1528         // blocks if they were already enqueued as predecessors of some other
1529         // outer loop block.
1530         for (auto *InnerBB : InnerL->blocks()) {
1531           if (InnerBB == BB) {
1532             assert(LoopBlockSet.count(InnerBB) &&
1533                    "Block should already be in the set!");
1534             continue;
1535           }
1536 
1537           LoopBlockSet.insert(InnerBB);
1538         }
1539 
1540         // Add the preheader to the worklist so we will continue past the
1541         // loop body.
1542         Worklist.push_back(InnerPH);
1543         continue;
1544       }
1545 
1546     // Insert any predecessors that were in the original loop into the new
1547     // set, and if the insert is successful, add them to the worklist.
1548     for (auto *Pred : predecessors(BB))
1549       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1550         Worklist.push_back(Pred);
1551   }
1552 
1553   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1554 
1555   // We've found all the blocks participating in the loop, return our completed
1556   // set.
1557   return LoopBlockSet;
1558 }
1559 
1560 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1561 ///
1562 /// The removal may have removed some child loops entirely but cannot have
1563 /// disturbed any remaining child loops. However, they may need to be hoisted
1564 /// to the parent loop (or to be top-level loops). The original loop may be
1565 /// completely removed.
1566 ///
1567 /// The sibling loops resulting from this update are returned. If the original
1568 /// loop remains a valid loop, it will be the first entry in this list with all
1569 /// of the newly sibling loops following it.
1570 ///
1571 /// Returns true if the loop remains a loop after unswitching, and false if it
1572 /// is no longer a loop after unswitching (and should not continue to be
1573 /// referenced).
1574 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1575                                      LoopInfo &LI,
1576                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1577   auto *PH = L.getLoopPreheader();
1578 
1579   // Compute the actual parent loop from the exit blocks. Because we may have
1580   // pruned some exits the loop may be different from the original parent.
1581   Loop *ParentL = nullptr;
1582   SmallVector<Loop *, 4> ExitLoops;
1583   SmallVector<BasicBlock *, 4> ExitsInLoops;
1584   ExitsInLoops.reserve(ExitBlocks.size());
1585   for (auto *ExitBB : ExitBlocks)
1586     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1587       ExitLoops.push_back(ExitL);
1588       ExitsInLoops.push_back(ExitBB);
1589       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1590         ParentL = ExitL;
1591     }
1592 
1593   // Recompute the blocks participating in this loop. This may be empty if it
1594   // is no longer a loop.
1595   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1596 
1597   // If we still have a loop, we need to re-set the loop's parent as the exit
1598   // block set changing may have moved it within the loop nest. Note that this
1599   // can only happen when this loop has a parent as it can only hoist the loop
1600   // *up* the nest.
1601   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1602     // Remove this loop's (original) blocks from all of the intervening loops.
1603     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1604          IL = IL->getParentLoop()) {
1605       IL->getBlocksSet().erase(PH);
1606       for (auto *BB : L.blocks())
1607         IL->getBlocksSet().erase(BB);
1608       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1609         return BB == PH || L.contains(BB);
1610       });
1611     }
1612 
1613     LI.changeLoopFor(PH, ParentL);
1614     L.getParentLoop()->removeChildLoop(&L);
1615     if (ParentL)
1616       ParentL->addChildLoop(&L);
1617     else
1618       LI.addTopLevelLoop(&L);
1619   }
1620 
1621   // Now we update all the blocks which are no longer within the loop.
1622   auto &Blocks = L.getBlocksVector();
1623   auto BlocksSplitI =
1624       LoopBlockSet.empty()
1625           ? Blocks.begin()
1626           : std::stable_partition(
1627                 Blocks.begin(), Blocks.end(),
1628                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1629 
1630   // Before we erase the list of unlooped blocks, build a set of them.
1631   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1632   if (LoopBlockSet.empty())
1633     UnloopedBlocks.insert(PH);
1634 
1635   // Now erase these blocks from the loop.
1636   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1637     L.getBlocksSet().erase(BB);
1638   Blocks.erase(BlocksSplitI, Blocks.end());
1639 
1640   // Sort the exits in ascending loop depth, we'll work backwards across these
1641   // to process them inside out.
1642   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1643                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1644                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1645                    });
1646 
1647   // We'll build up a set for each exit loop.
1648   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1649   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1650 
1651   auto RemoveUnloopedBlocksFromLoop =
1652       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1653         for (auto *BB : UnloopedBlocks)
1654           L.getBlocksSet().erase(BB);
1655         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1656           return UnloopedBlocks.count(BB);
1657         });
1658       };
1659 
1660   SmallVector<BasicBlock *, 16> Worklist;
1661   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1662     assert(Worklist.empty() && "Didn't clear worklist!");
1663     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1664 
1665     // Grab the next exit block, in decreasing loop depth order.
1666     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1667     Loop &ExitL = *LI.getLoopFor(ExitBB);
1668     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1669 
1670     // Erase all of the unlooped blocks from the loops between the previous
1671     // exit loop and this exit loop. This works because the ExitInLoops list is
1672     // sorted in increasing order of loop depth and thus we visit loops in
1673     // decreasing order of loop depth.
1674     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1675       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1676 
1677     // Walk the CFG back until we hit the cloned PH adding everything reachable
1678     // and in the unlooped set to this exit block's loop.
1679     Worklist.push_back(ExitBB);
1680     do {
1681       BasicBlock *BB = Worklist.pop_back_val();
1682       // We can stop recursing at the cloned preheader (if we get there).
1683       if (BB == PH)
1684         continue;
1685 
1686       for (BasicBlock *PredBB : predecessors(BB)) {
1687         // If this pred has already been moved to our set or is part of some
1688         // (inner) loop, no update needed.
1689         if (!UnloopedBlocks.erase(PredBB)) {
1690           assert((NewExitLoopBlocks.count(PredBB) ||
1691                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1692                  "Predecessor not in a nested loop (or already visited)!");
1693           continue;
1694         }
1695 
1696         // We just insert into the loop set here. We'll add these blocks to the
1697         // exit loop after we build up the set in a deterministic order rather
1698         // than the predecessor-influenced visit order.
1699         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1700         (void)Inserted;
1701         assert(Inserted && "Should only visit an unlooped block once!");
1702 
1703         // And recurse through to its predecessors.
1704         Worklist.push_back(PredBB);
1705       }
1706     } while (!Worklist.empty());
1707 
1708     // If blocks in this exit loop were directly part of the original loop (as
1709     // opposed to a child loop) update the map to point to this exit loop. This
1710     // just updates a map and so the fact that the order is unstable is fine.
1711     for (auto *BB : NewExitLoopBlocks)
1712       if (Loop *BBL = LI.getLoopFor(BB))
1713         if (BBL == &L || !L.contains(BBL))
1714           LI.changeLoopFor(BB, &ExitL);
1715 
1716     // We will remove the remaining unlooped blocks from this loop in the next
1717     // iteration or below.
1718     NewExitLoopBlocks.clear();
1719   }
1720 
1721   // Any remaining unlooped blocks are no longer part of any loop unless they
1722   // are part of some child loop.
1723   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1724     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1725   for (auto *BB : UnloopedBlocks)
1726     if (Loop *BBL = LI.getLoopFor(BB))
1727       if (BBL == &L || !L.contains(BBL))
1728         LI.changeLoopFor(BB, nullptr);
1729 
1730   // Sink all the child loops whose headers are no longer in the loop set to
1731   // the parent (or to be top level loops). We reach into the loop and directly
1732   // update its subloop vector to make this batch update efficient.
1733   auto &SubLoops = L.getSubLoopsVector();
1734   auto SubLoopsSplitI =
1735       LoopBlockSet.empty()
1736           ? SubLoops.begin()
1737           : std::stable_partition(
1738                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1739                   return LoopBlockSet.count(SubL->getHeader());
1740                 });
1741   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1742     HoistedLoops.push_back(HoistedL);
1743     HoistedL->setParentLoop(nullptr);
1744 
1745     // To compute the new parent of this hoisted loop we look at where we
1746     // placed the preheader above. We can't lookup the header itself because we
1747     // retained the mapping from the header to the hoisted loop. But the
1748     // preheader and header should have the exact same new parent computed
1749     // based on the set of exit blocks from the original loop as the preheader
1750     // is a predecessor of the header and so reached in the reverse walk. And
1751     // because the loops were all in simplified form the preheader of the
1752     // hoisted loop can't be part of some *other* loop.
1753     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1754       NewParentL->addChildLoop(HoistedL);
1755     else
1756       LI.addTopLevelLoop(HoistedL);
1757   }
1758   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1759 
1760   // Actually delete the loop if nothing remained within it.
1761   if (Blocks.empty()) {
1762     assert(SubLoops.empty() &&
1763            "Failed to remove all subloops from the original loop!");
1764     if (Loop *ParentL = L.getParentLoop())
1765       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1766     else
1767       LI.removeLoop(llvm::find(LI, &L));
1768     LI.destroy(&L);
1769     return false;
1770   }
1771 
1772   return true;
1773 }
1774 
1775 /// Helper to visit a dominator subtree, invoking a callable on each node.
1776 ///
1777 /// Returning false at any point will stop walking past that node of the tree.
1778 template <typename CallableT>
1779 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1780   SmallVector<DomTreeNode *, 4> DomWorklist;
1781   DomWorklist.push_back(DT[BB]);
1782 #ifndef NDEBUG
1783   SmallPtrSet<DomTreeNode *, 4> Visited;
1784   Visited.insert(DT[BB]);
1785 #endif
1786   do {
1787     DomTreeNode *N = DomWorklist.pop_back_val();
1788 
1789     // Visit this node.
1790     if (!Callable(N->getBlock()))
1791       continue;
1792 
1793     // Accumulate the child nodes.
1794     for (DomTreeNode *ChildN : *N) {
1795       assert(Visited.insert(ChildN).second &&
1796              "Cannot visit a node twice when walking a tree!");
1797       DomWorklist.push_back(ChildN);
1798     }
1799   } while (!DomWorklist.empty());
1800 }
1801 
1802 static void unswitchNontrivialInvariants(
1803     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1804     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1805     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1806     ScalarEvolution *SE) {
1807   auto *ParentBB = TI.getParent();
1808   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1809   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1810 
1811   // We can only unswitch switches, conditional branches with an invariant
1812   // condition, or combining invariant conditions with an instruction.
1813   assert((SI || BI->isConditional()) &&
1814          "Can only unswitch switches and conditional branch!");
1815   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1816   if (FullUnswitch)
1817     assert(Invariants.size() == 1 &&
1818            "Cannot have other invariants with full unswitching!");
1819   else
1820     assert(isa<Instruction>(BI->getCondition()) &&
1821            "Partial unswitching requires an instruction as the condition!");
1822 
1823   // Constant and BBs tracking the cloned and continuing successor. When we are
1824   // unswitching the entire condition, this can just be trivially chosen to
1825   // unswitch towards `true`. However, when we are unswitching a set of
1826   // invariants combined with `and` or `or`, the combining operation determines
1827   // the best direction to unswitch: we want to unswitch the direction that will
1828   // collapse the branch.
1829   bool Direction = true;
1830   int ClonedSucc = 0;
1831   if (!FullUnswitch) {
1832     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1833       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1834                  Instruction::And &&
1835              "Only `or` and `and` instructions can combine invariants being "
1836              "unswitched.");
1837       Direction = false;
1838       ClonedSucc = 1;
1839     }
1840   }
1841 
1842   BasicBlock *RetainedSuccBB =
1843       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1844   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1845   if (BI)
1846     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1847   else
1848     for (auto Case : SI->cases())
1849       if (Case.getCaseSuccessor() != RetainedSuccBB)
1850         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1851 
1852   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1853          "Should not unswitch the same successor we are retaining!");
1854 
1855   // The branch should be in this exact loop. Any inner loop's invariant branch
1856   // should be handled by unswitching that inner loop. The caller of this
1857   // routine should filter out any candidates that remain (but were skipped for
1858   // whatever reason).
1859   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1860 
1861   // Compute the parent loop now before we start hacking on things.
1862   Loop *ParentL = L.getParentLoop();
1863 
1864   // Compute the outer-most loop containing one of our exit blocks. This is the
1865   // furthest up our loopnest which can be mutated, which we will use below to
1866   // update things.
1867   Loop *OuterExitL = &L;
1868   for (auto *ExitBB : ExitBlocks) {
1869     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1870     if (!NewOuterExitL) {
1871       // We exited the entire nest with this block, so we're done.
1872       OuterExitL = nullptr;
1873       break;
1874     }
1875     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1876       OuterExitL = NewOuterExitL;
1877   }
1878 
1879   // At this point, we're definitely going to unswitch something so invalidate
1880   // any cached information in ScalarEvolution for the outer most loop
1881   // containing an exit block and all nested loops.
1882   if (SE) {
1883     if (OuterExitL)
1884       SE->forgetLoop(OuterExitL);
1885     else
1886       SE->forgetTopmostLoop(&L);
1887   }
1888 
1889   // If the edge from this terminator to a successor dominates that successor,
1890   // store a map from each block in its dominator subtree to it. This lets us
1891   // tell when cloning for a particular successor if a block is dominated by
1892   // some *other* successor with a single data structure. We use this to
1893   // significantly reduce cloning.
1894   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1895   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1896            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1897     if (SuccBB->getUniquePredecessor() ||
1898         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1899           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1900         }))
1901       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1902         DominatingSucc[BB] = SuccBB;
1903         return true;
1904       });
1905 
1906   // Split the preheader, so that we know that there is a safe place to insert
1907   // the conditional branch. We will change the preheader to have a conditional
1908   // branch on LoopCond. The original preheader will become the split point
1909   // between the unswitched versions, and we will have a new preheader for the
1910   // original loop.
1911   BasicBlock *SplitBB = L.getLoopPreheader();
1912   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1913 
1914   // Keep track of the dominator tree updates needed.
1915   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1916 
1917   // Clone the loop for each unswitched successor.
1918   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
1919   VMaps.reserve(UnswitchedSuccBBs.size());
1920   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
1921   for (auto *SuccBB : UnswitchedSuccBBs) {
1922     VMaps.emplace_back(new ValueToValueMapTy());
1923     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
1924         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
1925         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
1926   }
1927 
1928   // The stitching of the branched code back together depends on whether we're
1929   // doing full unswitching or not with the exception that we always want to
1930   // nuke the initial terminator placed in the split block.
1931   SplitBB->getTerminator()->eraseFromParent();
1932   if (FullUnswitch) {
1933     // First we need to unhook the successor relationship as we'll be replacing
1934     // the terminator with a direct branch. This is much simpler for branches
1935     // than switches so we handle those first.
1936     if (BI) {
1937       // Remove the parent as a predecessor of the unswitched successor.
1938       assert(UnswitchedSuccBBs.size() == 1 &&
1939              "Only one possible unswitched block for a branch!");
1940       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
1941       UnswitchedSuccBB->removePredecessor(ParentBB,
1942                                           /*DontDeleteUselessPHIs*/ true);
1943       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
1944     } else {
1945       // Note that we actually want to remove the parent block as a predecessor
1946       // of *every* case successor. The case successor is either unswitched,
1947       // completely eliminating an edge from the parent to that successor, or it
1948       // is a duplicate edge to the retained successor as the retained successor
1949       // is always the default successor and as we'll replace this with a direct
1950       // branch we no longer need the duplicate entries in the PHI nodes.
1951       assert(SI->getDefaultDest() == RetainedSuccBB &&
1952              "Not retaining default successor!");
1953       for (auto &Case : SI->cases())
1954         Case.getCaseSuccessor()->removePredecessor(
1955             ParentBB,
1956             /*DontDeleteUselessPHIs*/ true);
1957 
1958       // We need to use the set to populate domtree updates as even when there
1959       // are multiple cases pointing at the same successor we only want to
1960       // remove and insert one edge in the domtree.
1961       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1962         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
1963     }
1964 
1965     // Now that we've unhooked the successor relationship, splice the terminator
1966     // from the original loop to the split.
1967     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1968 
1969     // Now wire up the terminator to the preheaders.
1970     if (BI) {
1971       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1972       BI->setSuccessor(ClonedSucc, ClonedPH);
1973       BI->setSuccessor(1 - ClonedSucc, LoopPH);
1974       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
1975     } else {
1976       assert(SI && "Must either be a branch or switch!");
1977 
1978       // Walk the cases and directly update their successors.
1979       SI->setDefaultDest(LoopPH);
1980       for (auto &Case : SI->cases())
1981         if (Case.getCaseSuccessor() == RetainedSuccBB)
1982           Case.setSuccessor(LoopPH);
1983         else
1984           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1985 
1986       // We need to use the set to populate domtree updates as even when there
1987       // are multiple cases pointing at the same successor we only want to
1988       // remove and insert one edge in the domtree.
1989       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1990         DTUpdates.push_back(
1991             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
1992     }
1993 
1994     // Create a new unconditional branch to the continuing block (as opposed to
1995     // the one cloned).
1996     BranchInst::Create(RetainedSuccBB, ParentBB);
1997   } else {
1998     assert(BI && "Only branches have partial unswitching.");
1999     assert(UnswitchedSuccBBs.size() == 1 &&
2000            "Only one possible unswitched block for a branch!");
2001     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2002     // When doing a partial unswitch, we have to do a bit more work to build up
2003     // the branch in the split block.
2004     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2005                                           *ClonedPH, *LoopPH);
2006     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2007   }
2008 
2009   // Apply the updates accumulated above to get an up-to-date dominator tree.
2010   DT.applyUpdates(DTUpdates);
2011 
2012   // Now that we have an accurate dominator tree, first delete the dead cloned
2013   // blocks so that we can accurately build any cloned loops. It is important to
2014   // not delete the blocks from the original loop yet because we still want to
2015   // reference the original loop to understand the cloned loop's structure.
2016   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
2017 
2018   // Build the cloned loop structure itself. This may be substantially
2019   // different from the original structure due to the simplified CFG. This also
2020   // handles inserting all the cloned blocks into the correct loops.
2021   SmallVector<Loop *, 4> NonChildClonedLoops;
2022   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2023     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2024 
2025   // Now that our cloned loops have been built, we can update the original loop.
2026   // First we delete the dead blocks from it and then we rebuild the loop
2027   // structure taking these deletions into account.
2028   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
2029   SmallVector<Loop *, 4> HoistedLoops;
2030   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2031 
2032   // This transformation has a high risk of corrupting the dominator tree, and
2033   // the below steps to rebuild loop structures will result in hard to debug
2034   // errors in that case so verify that the dominator tree is sane first.
2035   // FIXME: Remove this when the bugs stop showing up and rely on existing
2036   // verification steps.
2037   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2038 
2039   if (BI) {
2040     // If we unswitched a branch which collapses the condition to a known
2041     // constant we want to replace all the uses of the invariants within both
2042     // the original and cloned blocks. We do this here so that we can use the
2043     // now updated dominator tree to identify which side the users are on.
2044     assert(UnswitchedSuccBBs.size() == 1 &&
2045            "Only one possible unswitched block for a branch!");
2046     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2047     ConstantInt *UnswitchedReplacement =
2048         Direction ? ConstantInt::getTrue(BI->getContext())
2049                   : ConstantInt::getFalse(BI->getContext());
2050     ConstantInt *ContinueReplacement =
2051         Direction ? ConstantInt::getFalse(BI->getContext())
2052                   : ConstantInt::getTrue(BI->getContext());
2053     for (Value *Invariant : Invariants)
2054       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2055            UI != UE;) {
2056         // Grab the use and walk past it so we can clobber it in the use list.
2057         Use *U = &*UI++;
2058         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2059         if (!UserI)
2060           continue;
2061 
2062         // Replace it with the 'continue' side if in the main loop body, and the
2063         // unswitched if in the cloned blocks.
2064         if (DT.dominates(LoopPH, UserI->getParent()))
2065           U->set(ContinueReplacement);
2066         else if (DT.dominates(ClonedPH, UserI->getParent()))
2067           U->set(UnswitchedReplacement);
2068       }
2069   }
2070 
2071   // We can change which blocks are exit blocks of all the cloned sibling
2072   // loops, the current loop, and any parent loops which shared exit blocks
2073   // with the current loop. As a consequence, we need to re-form LCSSA for
2074   // them. But we shouldn't need to re-form LCSSA for any child loops.
2075   // FIXME: This could be made more efficient by tracking which exit blocks are
2076   // new, and focusing on them, but that isn't likely to be necessary.
2077   //
2078   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2079   // loop nest and update every loop that could have had its exits changed. We
2080   // also need to cover any intervening loops. We add all of these loops to
2081   // a list and sort them by loop depth to achieve this without updating
2082   // unnecessary loops.
2083   auto UpdateLoop = [&](Loop &UpdateL) {
2084 #ifndef NDEBUG
2085     UpdateL.verifyLoop();
2086     for (Loop *ChildL : UpdateL) {
2087       ChildL->verifyLoop();
2088       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2089              "Perturbed a child loop's LCSSA form!");
2090     }
2091 #endif
2092     // First build LCSSA for this loop so that we can preserve it when
2093     // forming dedicated exits. We don't want to perturb some other loop's
2094     // LCSSA while doing that CFG edit.
2095     formLCSSA(UpdateL, DT, &LI, nullptr);
2096 
2097     // For loops reached by this loop's original exit blocks we may
2098     // introduced new, non-dedicated exits. At least try to re-form dedicated
2099     // exits for these loops. This may fail if they couldn't have dedicated
2100     // exits to start with.
2101     formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
2102   };
2103 
2104   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2105   // and we can do it in any order as they don't nest relative to each other.
2106   //
2107   // Also check if any of the loops we have updated have become top-level loops
2108   // as that will necessitate widening the outer loop scope.
2109   for (Loop *UpdatedL :
2110        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2111     UpdateLoop(*UpdatedL);
2112     if (!UpdatedL->getParentLoop())
2113       OuterExitL = nullptr;
2114   }
2115   if (IsStillLoop) {
2116     UpdateLoop(L);
2117     if (!L.getParentLoop())
2118       OuterExitL = nullptr;
2119   }
2120 
2121   // If the original loop had exit blocks, walk up through the outer most loop
2122   // of those exit blocks to update LCSSA and form updated dedicated exits.
2123   if (OuterExitL != &L)
2124     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2125          OuterL = OuterL->getParentLoop())
2126       UpdateLoop(*OuterL);
2127 
2128 #ifndef NDEBUG
2129   // Verify the entire loop structure to catch any incorrect updates before we
2130   // progress in the pass pipeline.
2131   LI.verify(DT);
2132 #endif
2133 
2134   // Now that we've unswitched something, make callbacks to report the changes.
2135   // For that we need to merge together the updated loops and the cloned loops
2136   // and check whether the original loop survived.
2137   SmallVector<Loop *, 4> SibLoops;
2138   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2139     if (UpdatedL->getParentLoop() == ParentL)
2140       SibLoops.push_back(UpdatedL);
2141   UnswitchCB(IsStillLoop, SibLoops);
2142 
2143   ++NumBranches;
2144 }
2145 
2146 /// Recursively compute the cost of a dominator subtree based on the per-block
2147 /// cost map provided.
2148 ///
2149 /// The recursive computation is memozied into the provided DT-indexed cost map
2150 /// to allow querying it for most nodes in the domtree without it becoming
2151 /// quadratic.
2152 static int
2153 computeDomSubtreeCost(DomTreeNode &N,
2154                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2155                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2156   // Don't accumulate cost (or recurse through) blocks not in our block cost
2157   // map and thus not part of the duplication cost being considered.
2158   auto BBCostIt = BBCostMap.find(N.getBlock());
2159   if (BBCostIt == BBCostMap.end())
2160     return 0;
2161 
2162   // Lookup this node to see if we already computed its cost.
2163   auto DTCostIt = DTCostMap.find(&N);
2164   if (DTCostIt != DTCostMap.end())
2165     return DTCostIt->second;
2166 
2167   // If not, we have to compute it. We can't use insert above and update
2168   // because computing the cost may insert more things into the map.
2169   int Cost = std::accumulate(
2170       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2171         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2172       });
2173   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2174   (void)Inserted;
2175   assert(Inserted && "Should not insert a node while visiting children!");
2176   return Cost;
2177 }
2178 
2179 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2180 /// making the following replacement:
2181 ///
2182 ///   --code before guard--
2183 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2184 ///   --code after guard--
2185 ///
2186 /// into
2187 ///
2188 ///   --code before guard--
2189 ///   br i1 %cond, label %guarded, label %deopt
2190 ///
2191 /// guarded:
2192 ///   --code after guard--
2193 ///
2194 /// deopt:
2195 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2196 ///   unreachable
2197 ///
2198 /// It also makes all relevant DT and LI updates, so that all structures are in
2199 /// valid state after this transform.
2200 static BranchInst *
2201 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2202                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2203                     DominatorTree &DT, LoopInfo &LI) {
2204   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2205   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2206   BasicBlock *CheckBB = GI->getParent();
2207 
2208   // Remove all CheckBB's successors from DomTree. A block can be seen among
2209   // successors more than once, but for DomTree it should be added only once.
2210   SmallPtrSet<BasicBlock *, 4> Successors;
2211   for (auto *Succ : successors(CheckBB))
2212     if (Successors.insert(Succ).second)
2213       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2214 
2215   Instruction *DeoptBlockTerm =
2216       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2217   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2218   // SplitBlockAndInsertIfThen inserts control flow that branches to
2219   // DeoptBlockTerm if the condition is true.  We want the opposite.
2220   CheckBI->swapSuccessors();
2221 
2222   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2223   GuardedBlock->setName("guarded");
2224   CheckBI->getSuccessor(1)->setName("deopt");
2225 
2226   // We now have a new exit block.
2227   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2228 
2229   GI->moveBefore(DeoptBlockTerm);
2230   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2231 
2232   // Add new successors of CheckBB into DomTree.
2233   for (auto *Succ : successors(CheckBB))
2234     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2235 
2236   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2237   // successors.
2238   for (auto *Succ : Successors)
2239     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2240 
2241   // Make proper changes to DT.
2242   DT.applyUpdates(DTUpdates);
2243   // Inform LI of a new loop block.
2244   L.addBasicBlockToLoop(GuardedBlock, LI);
2245 
2246   ++NumGuards;
2247   return CheckBI;
2248 }
2249 
2250 static bool
2251 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2252                       AssumptionCache &AC, TargetTransformInfo &TTI,
2253                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2254                       ScalarEvolution *SE) {
2255   // Collect all invariant conditions within this loop (as opposed to an inner
2256   // loop which would be handled when visiting that inner loop).
2257   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2258       UnswitchCandidates;
2259 
2260   // Whether or not we should also collect guards in the loop.
2261   bool CollectGuards = false;
2262   if (UnswitchGuards) {
2263     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2264         Intrinsic::getName(Intrinsic::experimental_guard));
2265     if (GuardDecl && !GuardDecl->use_empty())
2266       CollectGuards = true;
2267   }
2268 
2269   for (auto *BB : L.blocks()) {
2270     if (LI.getLoopFor(BB) != &L)
2271       continue;
2272 
2273     if (CollectGuards)
2274       for (auto &I : *BB)
2275         if (isGuard(&I)) {
2276           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2277           // TODO: Support AND, OR conditions and partial unswitching.
2278           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2279             UnswitchCandidates.push_back({&I, {Cond}});
2280         }
2281 
2282     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2283       // We can only consider fully loop-invariant switch conditions as we need
2284       // to completely eliminate the switch after unswitching.
2285       if (!isa<Constant>(SI->getCondition()) &&
2286           L.isLoopInvariant(SI->getCondition()))
2287         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2288       continue;
2289     }
2290 
2291     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2292     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2293         BI->getSuccessor(0) == BI->getSuccessor(1))
2294       continue;
2295 
2296     if (L.isLoopInvariant(BI->getCondition())) {
2297       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2298       continue;
2299     }
2300 
2301     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2302     if (CondI.getOpcode() != Instruction::And &&
2303       CondI.getOpcode() != Instruction::Or)
2304       continue;
2305 
2306     TinyPtrVector<Value *> Invariants =
2307         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2308     if (Invariants.empty())
2309       continue;
2310 
2311     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2312   }
2313 
2314   // If we didn't find any candidates, we're done.
2315   if (UnswitchCandidates.empty())
2316     return false;
2317 
2318   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2319   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2320   // irreducible control flow into reducible control flow and introduce new
2321   // loops "out of thin air". If we ever discover important use cases for doing
2322   // this, we can add support to loop unswitch, but it is a lot of complexity
2323   // for what seems little or no real world benefit.
2324   LoopBlocksRPO RPOT(&L);
2325   RPOT.perform(&LI);
2326   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2327     return false;
2328 
2329   SmallVector<BasicBlock *, 4> ExitBlocks;
2330   L.getUniqueExitBlocks(ExitBlocks);
2331 
2332   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2333   // don't know how to split those exit blocks.
2334   // FIXME: We should teach SplitBlock to handle this and remove this
2335   // restriction.
2336   for (auto *ExitBB : ExitBlocks)
2337     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2338       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2339       return false;
2340     }
2341 
2342   LLVM_DEBUG(
2343       dbgs() << "Considering " << UnswitchCandidates.size()
2344              << " non-trivial loop invariant conditions for unswitching.\n");
2345 
2346   // Given that unswitching these terminators will require duplicating parts of
2347   // the loop, so we need to be able to model that cost. Compute the ephemeral
2348   // values and set up a data structure to hold per-BB costs. We cache each
2349   // block's cost so that we don't recompute this when considering different
2350   // subsets of the loop for duplication during unswitching.
2351   SmallPtrSet<const Value *, 4> EphValues;
2352   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2353   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2354 
2355   // Compute the cost of each block, as well as the total loop cost. Also, bail
2356   // out if we see instructions which are incompatible with loop unswitching
2357   // (convergent, noduplicate, or cross-basic-block tokens).
2358   // FIXME: We might be able to safely handle some of these in non-duplicated
2359   // regions.
2360   int LoopCost = 0;
2361   for (auto *BB : L.blocks()) {
2362     int Cost = 0;
2363     for (auto &I : *BB) {
2364       if (EphValues.count(&I))
2365         continue;
2366 
2367       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2368         return false;
2369       if (auto CS = CallSite(&I))
2370         if (CS.isConvergent() || CS.cannotDuplicate())
2371           return false;
2372 
2373       Cost += TTI.getUserCost(&I);
2374     }
2375     assert(Cost >= 0 && "Must not have negative costs!");
2376     LoopCost += Cost;
2377     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2378     BBCostMap[BB] = Cost;
2379   }
2380   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2381 
2382   // Now we find the best candidate by searching for the one with the following
2383   // properties in order:
2384   //
2385   // 1) An unswitching cost below the threshold
2386   // 2) The smallest number of duplicated unswitch candidates (to avoid
2387   //    creating redundant subsequent unswitching)
2388   // 3) The smallest cost after unswitching.
2389   //
2390   // We prioritize reducing fanout of unswitch candidates provided the cost
2391   // remains below the threshold because this has a multiplicative effect.
2392   //
2393   // This requires memoizing each dominator subtree to avoid redundant work.
2394   //
2395   // FIXME: Need to actually do the number of candidates part above.
2396   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2397   // Given a terminator which might be unswitched, computes the non-duplicated
2398   // cost for that terminator.
2399   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2400     BasicBlock &BB = *TI.getParent();
2401     SmallPtrSet<BasicBlock *, 4> Visited;
2402 
2403     int Cost = LoopCost;
2404     for (BasicBlock *SuccBB : successors(&BB)) {
2405       // Don't count successors more than once.
2406       if (!Visited.insert(SuccBB).second)
2407         continue;
2408 
2409       // If this is a partial unswitch candidate, then it must be a conditional
2410       // branch with a condition of either `or` or `and`. In that case, one of
2411       // the successors is necessarily duplicated, so don't even try to remove
2412       // its cost.
2413       if (!FullUnswitch) {
2414         auto &BI = cast<BranchInst>(TI);
2415         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2416             Instruction::And) {
2417           if (SuccBB == BI.getSuccessor(1))
2418             continue;
2419         } else {
2420           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2421                      Instruction::Or &&
2422                  "Only `and` and `or` conditions can result in a partial "
2423                  "unswitch!");
2424           if (SuccBB == BI.getSuccessor(0))
2425             continue;
2426         }
2427       }
2428 
2429       // This successor's domtree will not need to be duplicated after
2430       // unswitching if the edge to the successor dominates it (and thus the
2431       // entire tree). This essentially means there is no other path into this
2432       // subtree and so it will end up live in only one clone of the loop.
2433       if (SuccBB->getUniquePredecessor() ||
2434           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2435             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2436           })) {
2437         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2438         assert(Cost >= 0 &&
2439                "Non-duplicated cost should never exceed total loop cost!");
2440       }
2441     }
2442 
2443     // Now scale the cost by the number of unique successors minus one. We
2444     // subtract one because there is already at least one copy of the entire
2445     // loop. This is computing the new cost of unswitching a condition.
2446     // Note that guards always have 2 unique successors that are implicit and
2447     // will be materialized if we decide to unswitch it.
2448     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2449     assert(SuccessorsCount > 1 &&
2450            "Cannot unswitch a condition without multiple distinct successors!");
2451     return Cost * (SuccessorsCount - 1);
2452   };
2453   Instruction *BestUnswitchTI = nullptr;
2454   int BestUnswitchCost;
2455   ArrayRef<Value *> BestUnswitchInvariants;
2456   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2457     Instruction &TI = *TerminatorAndInvariants.first;
2458     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2459     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2460     int CandidateCost = ComputeUnswitchedCost(
2461         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2462                                      Invariants[0] == BI->getCondition()));
2463     LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2464                       << " for unswitch candidate: " << TI << "\n");
2465     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2466       BestUnswitchTI = &TI;
2467       BestUnswitchCost = CandidateCost;
2468       BestUnswitchInvariants = Invariants;
2469     }
2470   }
2471 
2472   if (BestUnswitchCost >= UnswitchThreshold) {
2473     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2474                       << BestUnswitchCost << "\n");
2475     return false;
2476   }
2477 
2478   // If the best candidate is a guard, turn it into a branch.
2479   if (isGuard(BestUnswitchTI))
2480     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2481                                          ExitBlocks, DT, LI);
2482 
2483   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2484                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2485                     << "\n");
2486   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2487                                ExitBlocks, DT, LI, AC, UnswitchCB, SE);
2488   return true;
2489 }
2490 
2491 /// Unswitch control flow predicated on loop invariant conditions.
2492 ///
2493 /// This first hoists all branches or switches which are trivial (IE, do not
2494 /// require duplicating any part of the loop) out of the loop body. It then
2495 /// looks at other loop invariant control flows and tries to unswitch those as
2496 /// well by cloning the loop if the result is small enough.
2497 ///
2498 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2499 /// updated based on the unswitch.
2500 ///
2501 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2502 /// true, we will attempt to do non-trivial unswitching as well as trivial
2503 /// unswitching.
2504 ///
2505 /// The `UnswitchCB` callback provided will be run after unswitching is
2506 /// complete, with the first parameter set to `true` if the provided loop
2507 /// remains a loop, and a list of new sibling loops created.
2508 ///
2509 /// If `SE` is non-null, we will update that analysis based on the unswitching
2510 /// done.
2511 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2512                          AssumptionCache &AC, TargetTransformInfo &TTI,
2513                          bool NonTrivial,
2514                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2515                          ScalarEvolution *SE) {
2516   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2517          "Loops must be in LCSSA form before unswitching.");
2518   bool Changed = false;
2519 
2520   // Must be in loop simplified form: we need a preheader and dedicated exits.
2521   if (!L.isLoopSimplifyForm())
2522     return false;
2523 
2524   // Try trivial unswitch first before loop over other basic blocks in the loop.
2525   if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
2526     // If we unswitched successfully we will want to clean up the loop before
2527     // processing it further so just mark it as unswitched and return.
2528     UnswitchCB(/*CurrentLoopValid*/ true, {});
2529     return true;
2530   }
2531 
2532   // If we're not doing non-trivial unswitching, we're done. We both accept
2533   // a parameter but also check a local flag that can be used for testing
2534   // a debugging.
2535   if (!NonTrivial && !EnableNonTrivialUnswitch)
2536     return false;
2537 
2538   // For non-trivial unswitching, because it often creates new loops, we rely on
2539   // the pass manager to iterate on the loops rather than trying to immediately
2540   // reach a fixed point. There is no substantial advantage to iterating
2541   // internally, and if any of the new loops are simplified enough to contain
2542   // trivial unswitching we want to prefer those.
2543 
2544   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2545   // a partial unswitch when possible below the threshold.
2546   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
2547     return true;
2548 
2549   // No other opportunities to unswitch.
2550   return Changed;
2551 }
2552 
2553 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2554                                               LoopStandardAnalysisResults &AR,
2555                                               LPMUpdater &U) {
2556   Function &F = *L.getHeader()->getParent();
2557   (void)F;
2558 
2559   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2560                     << "\n");
2561 
2562   // Save the current loop name in a variable so that we can report it even
2563   // after it has been deleted.
2564   std::string LoopName = L.getName();
2565 
2566   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2567                                         ArrayRef<Loop *> NewLoops) {
2568     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2569     if (!NewLoops.empty())
2570       U.addSiblingLoops(NewLoops);
2571 
2572     // If the current loop remains valid, we should revisit it to catch any
2573     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2574     if (CurrentLoopValid)
2575       U.revisitCurrentLoop();
2576     else
2577       U.markLoopAsDeleted(L, LoopName);
2578   };
2579 
2580   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2581                     &AR.SE))
2582     return PreservedAnalyses::all();
2583 
2584   // Historically this pass has had issues with the dominator tree so verify it
2585   // in asserts builds.
2586   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2587   return getLoopPassPreservedAnalyses();
2588 }
2589 
2590 namespace {
2591 
2592 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2593   bool NonTrivial;
2594 
2595 public:
2596   static char ID; // Pass ID, replacement for typeid
2597 
2598   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2599       : LoopPass(ID), NonTrivial(NonTrivial) {
2600     initializeSimpleLoopUnswitchLegacyPassPass(
2601         *PassRegistry::getPassRegistry());
2602   }
2603 
2604   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2605 
2606   void getAnalysisUsage(AnalysisUsage &AU) const override {
2607     AU.addRequired<AssumptionCacheTracker>();
2608     AU.addRequired<TargetTransformInfoWrapperPass>();
2609     getLoopAnalysisUsage(AU);
2610   }
2611 };
2612 
2613 } // end anonymous namespace
2614 
2615 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2616   if (skipLoop(L))
2617     return false;
2618 
2619   Function &F = *L->getHeader()->getParent();
2620 
2621   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2622                     << "\n");
2623 
2624   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2625   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2626   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2627   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2628 
2629   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2630   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2631 
2632   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2633                                ArrayRef<Loop *> NewLoops) {
2634     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2635     for (auto *NewL : NewLoops)
2636       LPM.addLoop(*NewL);
2637 
2638     // If the current loop remains valid, re-add it to the queue. This is
2639     // a little wasteful as we'll finish processing the current loop as well,
2640     // but it is the best we can do in the old PM.
2641     if (CurrentLoopValid)
2642       LPM.addLoop(*L);
2643     else
2644       LPM.markLoopAsDeleted(*L);
2645   };
2646 
2647   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
2648 
2649   // If anything was unswitched, also clear any cached information about this
2650   // loop.
2651   LPM.deleteSimpleAnalysisLoop(L);
2652 
2653   // Historically this pass has had issues with the dominator tree so verify it
2654   // in asserts builds.
2655   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2656 
2657   return Changed;
2658 }
2659 
2660 char SimpleLoopUnswitchLegacyPass::ID = 0;
2661 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2662                       "Simple unswitch loops", false, false)
2663 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2664 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2665 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2666 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2667 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2668 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2669                     "Simple unswitch loops", false, false)
2670 
2671 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2672   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2673 }
2674